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Abstract  11 

Wind power plays a key role in reducing global carbon emission. The power curve provided by wind turbine manufacturers 12 

offers an effective way of presenting the global performance of wind turbines. However, due to the complicated dynamics 13 

nature of offshore wind turbines, and the harsh environment in which they are operating, wind power forecasting is challenging, 14 

but at the same time vital to enable condition monitoring (CM). Wind turbine power prediction, using supervisory control and 15 

data acquisition (SCADA) data, may not lead to the optimum control strategy as sensors may generate non-calibrated data due 16 

to degradation. To mitigate the adverse effects of outliers from SCADA data on wind power forecasting, this paper proposed a 17 

novel approach to perform power prediction using high-frequency SCADA data, based on isolate forest (IF) and deep learning 18 

neural networks. In the predictive model, wind speed, nacelle orientation, yaw error, blade pitch angle, and ambient temperature 19 

were considered as input features, while wind power is evaluated as the output feature. The deep learning model has been 20 

trained, tested, and validated against SCADA measurements. Compared against the conventional predictive model used for 21 

outlier detection, i.e. based on Gaussian processes, the proposed integrated approach, which coupled IF and deep learning, is 22 

expected to be a more efficient tool for anomaly detection in wind power prediction. 23 
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Abbreviations 27 

AI    Artificial Intelligence 28 

ANN   Artificial Neural Networks 29 

CFD   Computational Fluid Dynamics 30 

CM    Condition Monitoring 31 

EE    Elliptic Envelope 32 

GP    Gaussian Process 33 
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IEC    International Electrotechnical Commission 34 

IF    Isolation Forest 35 

NWP   Numerical Weather Prediction 36 

ORE Catapult  Offshore Renewable Energy Catapult  37 

O&M   Operations and Maintenance 38 

PCA   Principal Component Analysis 39 

PMG   Permanent Magnet Generator 40 

ReLU    Rectified Linear Unit 41 

RMSE   Root Mean Square Error 42 

SCADA   Supervisory Control and Data Acquisition 43 

SVMs   Support Vector Machines 44 

SVR   Support Vector Regression 45 

 46 

1. Introduction 47 

Wind power is well-thought-out as a promising source for electric generation, especially in terms of minimizing carbon 48 

emission. Worldwide, the wind industry has seen a speedy growth of its business in the past few decades. For example, gross 49 

installations of EU onshore and offshore wind were 0.3 GW in 2008, amplified to 3.2 GW in 2017 [1].  More specifically, in 50 

2018, Germany, Spain, and the UK are the top three EU countries in terms of owning the largest cumulative capacities [1]. 51 

Moreover, in Denmark, more than 40% of annual electricity was generated by wind in the same year [1]. With the continuous 52 

progress of wind turbine equipment, the rate of wind turbine installation has seen an increase. Benefited by the evolving 53 

technology, progressively more new installed wind farms have moved from onshore to offshore. For instance, annual EU 54 

installed offshore wind farms accounted for 12% of total installations in 2013, increased to 23.07% in 2018 [1]. Compared with 55 

the onshore wind turbine, offshore wind turbines have a couple of key advantages, for example, a much lower level of noise 56 

and a larger power output. On the other hand, different sources of challenges between onshore and offshore wind turbines, such 57 

as a harsher environment and a complex, multidisciplinary dynamics of the system, have increased the challenge for the CM 58 

of offshore wind farms, and hence more likely, resulting in a surge in Operations and Maintenance (O&M) costs. 59 

Wind power forecasting is essential to wind farm CM. Theoretically, wind power can be evaluated by the following 60 

equation [2]: 61 

𝑃 =
1

2
𝜌𝜋𝑅2𝐶𝑃𝑢3 

(1) 

Where 𝑃 is the wind power, 𝜌 and 𝑅 are the air density and the rotor radius, respectively, u is the wind speed, and 𝐶𝑃 is 62 

the power coefficient, denoting power captured by the turbine in percentage. 63 
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Eq. (1) shows a theoretical estimation of wind turbine power. Usually, a smooth power curve, showing the relationship 64 

between wind turbine powers and hub height wind speeds, is provided by wind turbine manufacturers [2]. Each wind turbine 65 

has a unique power curve, showing the overall performance of the wind turbine, even when the detailed components of the 66 

wind turbine generating system is unavailable [2]. However, due to the stochastic nature of the wind, and the non-linear, 67 

multidisciplinary dynamics of offshore wind turbine systems, real wind turbine power outputs are scattered. The generated 68 

power is discontinuous in nature and crucial to the stability of the power system [3]. Moreover, there is usually a multipart 69 

nonlinear relationship among wind turbine components, making the physics-based models inferior to the data-driven models 70 

[4]. Compared with physical models, non-parametric methods, for instance artificial neural networks (ANN) [2], have the 71 

advantage of high reliability and low prediction errors [4]. In terms of O&M, wind turbine power output is an essential 72 

parameter to be monitored. Precise power predicting is indispensable to wind turbine operators, as inaccuracies may result in 73 

financial losses [5]. Yan and Ouyang [6] proposed a two-step modelling methodology for wind power prediction. The two 74 

modelling processes include a tendency of wind power progress and a data-driven correction model. Through a comparison 75 

between the traditional statistical model and the primary physical model, predictive accuracies can be improved up to 80%. 76 

Castellani, et al [5] claimed that, in complex terrain, global performance based on ANN, hybrid ANN and computational fluid 77 

dynamics (CFD) methods showed negligible differences, while local performance has seen a discrepancy. 78 

In recent years, wind power forecasting based on data-mining approaches, which is a non-parametric method, is becoming 79 

progressively popular. This is probably due to the fact that wind turbines rely on SCADA systems for control and performance 80 

monitoring [7], and the system has an advantage in delivering power outputs by default, without additional costs [8]. Many 81 

researchers have developed various methodologies for power prediction based on SCADA data. Fang et al. [9] applied wind 82 

turbine meteorological and SCADA data, together with a Support Vector Regression (SVR) model, to build a wind power 83 

predictive model. Correlation study showed that there is a relationship between the turbine active power and operational 84 

conditions. Jabbari Ghadi [10] developed a hybrid method by using a SCADA database, showing that ANN plus Numerical 85 

Weather Prediction (NWP) could increase the accuracy in short-term and extremely short-term power predictions. 86 

Morshedizadeh et al. [4] performed correlation analyses on a number of signals from SCADA data, concluding that the 87 

dynamics networks, which were built by the rotor speed, gear temperature, blade pitch angle and wind speed, have seen an 88 

error reduction of 40%, compared with the networks relied on wind speed only. 89 

However, special cautions must be paid when using SCADA data to monitor power outputs, due to the degradation of the 90 

sensors [8]. To this end, some previous studies have focused on pre-processing SCADA’s outliers. For example, Yang [11] 91 

applied an algorithm based on individual SCADA data for pre-processing, to increase CM reliability, unlike the International 92 
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Electrotechnical Commission (IEC) standard. Besides, Manobel et al. [12] applied Gaussian Process (GP) filtering for SCADA 93 

data pre-processing. An improvement of 25% Root Mean Square Error (RMSE) was achieved in terms of power forecasting 94 

by their model, comparing with the standard method [12]. Wang et al. [13] proposed a probabilistic method to detect and reject 95 

outliers, showing the advantage of dealing with the non-linear multivariate relationship among parameters, while retaining the 96 

key statistical values of the power curve.  97 

Nowadays, it is worth noting that power curve outlier rejections are still challenging and an active area of research[13]. 98 

Traditional outlier detection and removal technologies largely rely on the level experience of the engineers, leading to potential 99 

uncertainties in power predictions. To solve this problem, the main, novel contribution of this paper is the application of IF in 100 

outlier detection and elimination, which has not been applied before for wind turbine power prediction. Compared with the 101 

commonly used outlier detection method based on Gaussian processes, the proposed method improves the accuracy in power 102 

predictions.   103 

The remainder of this paper is organized as follows: Section 2 discussed the features of the SCADA datasets used in this 104 

study, obtained from a one-year high-frequency monitoring offshore wind turbine with a rated power of 7MW. Section 3 105 

focused on a detailed description of IF and EE, including the methodology adopted to perform data outlier detection and 106 

removal. Based on the outlier removal process presented in section 3, a deep learning neural networks configuration was 107 

introduced in section 4. After that, power prediction results trained by datasets of raw SCADA, datasets after IF filtering, and 108 

datasets after EE filtering were carried out and compared against each other in section 5, respectively. To conclude, a summary 109 

of the key contributions of the present paper is given in section 6. 110 

2. Turbine characteristics and SCADA data description 111 

2.1. Definition of the 7MW wind turbine 112 

The target wind turbine is a 7MW demonstration offshore wind turbine locates at Levenmouth, Fife, Scotland, UK. It is a 113 

three-bladed upwind wind turbine mounted on a jacket support structure. Fig. 1 shows the configuration of the wind turbine 114 

with a rotor diameter and a hub height of 171.2 m and 110.6 m, respectively. The total height of the turbine is 196 m, ranging 115 

from blade tip to sea level. Regarding the operation regions, the designed cut-in, rated and cut-out speeds are 3.5, 10.5 and 25 116 

m/s, respectively. As for the drivetrain system, a medium speed (400 rpm) is selected, connecting to a Permanent Magnet 117 

Generator (PMG) and a full-power converter. Further specifications of the wind turbine are displayed in Table 1. 118 
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 119 

Fig. 1 – Layout the Levenmouth wind turbine [14].  120 

 121 

Table 1 – Main properties of the 7MW wind turbine [14]. 122 

 123 
Properties Value 

Wind class IEC class 1A 

Rotor diameter 171.2m 

Capacity 7 MW 

Hub height 110.6m 

Blade length 83.5m 

Generator Medium (3.3kV), PMG 

Converter Full power conversion 

Drivetrain 400rpm 

Rated frequency 50Hz 

Rotor speed 5.9-10.6rpm 

Wind speed 3.5-25m/s 

Rated wind speed 10.9m/s 

Design life 25years 

Certification DNV 

 124 
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2.2. SCADA data description and obvious error eliminating 125 

 The investigated SCADA datasets were recorded in the target offshore wind turbine for a one-year period from July 2018 126 

to June 2019. These high-frequency data were provided in 1-second intervals. The offshore wind turbine is owned by the 127 

Offshore Renewable Energy (ORE) Catapult.  In our deep learning neural networks, the investigated features were wind speed, 128 

wind direction, blade pitch angle, ambient temperature, and active wind power. As well known, wind direction can be derived 129 

from the position of the nacelle and yaw error. Therefore, in the current study, wind direction was represented by both nacelle 130 

orientation and yaw error. In total, there are five input features (wind speed, nacelle orientation, yaw error, blade pitch angle, 131 

and ambient temperature) and one output feature (generated wind power). The histograms of the raw SCADA datasets are 132 

presented in Fig.2.  133 

 134 

Fig. 2 – Histograms of selected input and output features in the raw SCADA datasets.  135 
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It can be seen that there are some obvious outliers (such as negative values) in the datasets of active power, wind speed, 136 

and blade pitch angle. For instance, there is an outlier with a value of -1000° located at the left end of the histogram of blade 137 

pitch angle (red circle in Fig. 2). Even if it is physically possible, there is no practical meaning for negative blade pitch angles. 138 

The same theory can be generalized to negative wind speeds and negative powers. In this study, these obvious outliers were 139 

automatically removed along with other corresponding parameters under the same time series. The updated histograms of 140 

selected input and output features are presented in Fig.3.  141 

 142 

Fig. 3 – Updated histograms of selected input and output features after obvious outlier detections.  143 
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The statistical details of percentile, count, mean, and standard deviation of the selected database were displayed in Table 144 

2. The mean and median of wind speed were 10.9 and 10.7 m/s, respectively, which are similar to the rated wind speed of this 145 

offshore wind turbine (10.9 m/s), indicating the generated active power is nearing the rated power (7 MW) in most of the 146 

operating time (see Fig. 3a). For the same reason, the blade pitch angle variations were focused on the range of 3 ~ 4 deg (see 147 

Fig. 3c). The mean of blade pitch angle is around 3.36 deg (see Table 2). The scatterings of wind speed, ambient temperature, 148 

and yaw error obeyed normal distributions (see Fig.3b, e, and f). The scattering of nacelle orientation follows a bimodal 149 

distribution (Fig. 3d), indicating the local wind can be roughly divided into two different directions.  150 

Table 2 – Statistical descriptions of the SCADA datasets. 151 

 Active power, 

kW 

Wind speed, 

m/s 

Blade pitch 

angle, ° 

Nacelle 

orientation, ° 

Ambient 

temperature, °C 
Yaw error, ° 

Count 6.33E+06 6.33E+06 6.33E+06 6.33E+06 6.33E+06 6.33E+06 

Mean 5.13E+03 1.09E+01 3.36E+00 1.88E+02 1.15E+01 1.26E-02 

Standard 

deviation 
1.86E+03 3.18E+00 4.03E+00 7.74E+01 4.14E+00 1.45E-01 

Minimum 1.00E+00 1.83E-02 1.54E-06 1.97E-03 8.00E-01 -3.14E+00 

25% 4.41E+03 9.10E+00 3.47E-01 1.07E+02 8.10E+00 -7.84E-02 

Median 6.02E+03 1.07E+01 1.19E+00 2.18E+02 1.11E+01 1.83E-02 

75% 6.50E+03 1.27E+01 5.56E+00 2.42E+02 1.45E+01 1.10E-01 

Maximum 7.18E+03 3.26E+01 6.00E+01 3.60E+02 2.42E+01 2.95E+00 

 152 

3. Outlier detection 153 

In data science, outliers are extreme values that deviate from normal observations within a database. In our SCADA 154 

datasets, they represented a measuring variability, errors, or a novelty. In this study, the method of IF is used to detect data 155 

points that diverge from the overall pattern on wind power prediction, which was further compared with the widely used outlier 156 

detection method based on Gaussian processes. 157 

3.1. Elliptic envelope 158 

One of the widely accepted methods of performing outlier detection is to assume that the target datasets obeyed Gaussian 159 

distribution, indicating the whole database is normally distributed. Under this assumption, the “shape” of the database is pre-160 

defined, where the observations that stand far away from the fitting shape would be detected as outliers. In this paper, the 161 

Elliptic Envelope (EE) method was used and compared with IF in outlier detection by assuming our database is an expression 162 

of a multivariate Gaussian distribution. It fits datasets into an ellipse to certain central data and recognized points outside the 163 

central as outliers.  164 

3.2. Isolation forest 165 
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The principle of IF is different from most other popular outlier detection methods (such as Gaussian processes), which 166 

explicitly recognises anomalies instead of profiling normal datasets. Theoretically, normal data points occur more frequently 167 

than outliers. Also, regular and abnormal observations are different from each other in terms of values. In most cases, outliers 168 

are located further away from the regular data points in one feature space. Base on this fact, an abnormal point (see Fig. 4b) 169 

requires fewer partitions to be identified than a normal one (see Fig. 4a). As the name of “Isolation Forest” indicates, this 170 

algorithm is a type of tree ensemble methods that are based on decision trees. In a built IF, separations are firstly shaped by 171 

randomly picking a feature and then selecting a random split value between the minimum and the maximum within the selected 172 

feature [15].  173 

Like other outlier detection techniques, IF uses anomaly scores for decision making. The anomaly score 𝑠 of an instance 174 

𝑥 can be defined as: 175 

𝑠(𝑥, 𝑛) =  2
−

𝐸(ℎ(𝑥))
𝑐(𝑛)  

(2) 

where ℎ(𝑥) is the path length of the point 𝑥; 𝐸(ℎ(𝑥)) is the average of ℎ(𝑥) from a collection of isolation trees; 𝑐(𝑛) is 176 

the average path length of unsuccessful search in a Binary Search Tree; 𝑛 is the number of external nodes. 177 

In this study, the anomaly score 𝑠 returns 1 for normal data points and -1 for outliers.    178 

 179 

Fig. 4 – Outliers (𝑥𝑜) are more susceptible to isolation that normal observations (𝑥𝑖), which have short path lengths [15]. 180 

4. Deep Learning Neural Networks 181 

In this study, TensorFlow was used to develop a deep learning structure for wind power prediction, where the input tensor 182 

was passed into the neural network and then output as another tensor (see Fig. 5). For getting better accuracy in predictions, 183 
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several network configurations were assessed, including changing of layers or node numbers in each trial. Consequently, a five-184 

layer deep learning neural network was selected to build the relationship between the inputs (see Fig. 5A) and the output (see 185 

Fig. 5G). The deep learning model was trained by presenting it selected inputs (wind speed, nacelle orientation, yaw error, 186 

blade pitch angle, and ambient temperature) and desired outputs (active power). Before tensors flowing into the designed 187 

configuration, a Min-Max scaler is applied to scale training, testing, and validation data into the range of 0 ~ 1. The 188 

corresponding formulation can be stated as:  189 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥𝑖 − min (𝑥)

max(𝑥) − min (𝑥)
 

(3) 

where 𝑥𝑖 is the original value; 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 is the normalized value; min (𝑥) is the minimum value in the span; max(𝑥) is the 190 

maximum value in the span.  191 

In the five-layer deep learning configuration, the first layer has 20 neurons (see Fig. 5B), while the second/third/fourth 192 

layer has 50 neurons (see Fig. 5C ~ E), and the fifth layer has 20 neurons again (see Fig. 5F). As all the five layers shared a 193 

similar internal structure, only layer 1 is extended and visualized in Fig. 5B. Each fully connected layer of the neural network 194 

has three components:  195 

▪ A weight (𝑤𝑖𝑗) for each connection between each neuron and the neurons in the previous layer; in our deep learning 196 

model, the algorithm of Xavier was selected to be used for weights initialization (see Fig. 5B);  197 

▪ A bias (𝑏𝑗) for each neuron; the bias initialization was realized through the TensorFlow's built-in initializer function, 198 

where the initial bias values of each neuron defaults as zero (see Fig. 5B); 199 

▪ An activation function (𝑅𝑒𝐿𝑈(𝐻𝑖)) that outputs the result of the layer; the Rectified Linear Unit (ReLU) non-linear 200 

activation function was selected in the current deep learning configuration (see Fig. 5B).  201 

In summary, the following correlations are used to implement the fully connected layers:  202 

𝐻𝑖 = ∑ 𝑥𝑖𝑤𝑖𝑗

𝑚

𝑗=1

+ 𝑏𝑗 
(4) 

where 𝐻𝑖 is the net input of neuron j in the output or deeper hidden layer; 𝑥𝑖 is the input of neuron j; 𝑤𝑖𝑗 is the weights that 203 

linked neuron i and j; 𝑏𝑗 is the bias associated with neuron j.  204 

ℎ = 𝑅𝑒𝐿𝑈(𝐻𝑖) = max (0, 𝐻𝑖)  (5) 

where ℎ is the output of neuron j.  205 
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 206 

Fig. 5 – Configuration of the designed deep learning neural networks. 207 
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In this study, the SCADA datasets were randomly divided into three groups – 70 % for training, 20% for testing, and 10% 208 

for validation. While testing and validation datasets were kept as what they are, the raw SCADA training datasets were treated 209 

by IF and EE, respectively. Therefore, three deep learning predictive models were built by training datasets of raw SCADA, 210 

training datasets after IF filtering, and training datasets after EE filtering, respectively, following the classic train-test-validation 211 

workflow. First, the training phase (see Fig. 5I) was carried out by presenting both training inputs and outputs to the neural 212 

network while it learns how to transform input data to produce correct results. After the predictive model has been 213 

trained, testing and validation datasets were fed into the model to make predictions. The loss function of Mean Square Error 214 

(MSE) is used to resolve how far the predicted values deviate from the actual values in the testing/validation loops (see Fig. 215 

5H), which can be expressed as:  216 

𝑀𝑆𝐸 =  
1

𝑛
∑ [

(𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑖 − (𝑀𝑎𝑐𝑡𝑢𝑎𝑙)𝑖

(𝑀𝑎𝑐𝑡𝑢𝑎𝑙)𝑖
]

2𝑛

𝑖=1

 

(6) 

where 𝑛 is the number of tests; (𝑀𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑖  is the predicted value of the 𝑖𝑡ℎ  tensor from the deep learning model; 217 

(𝑀𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)𝑖 is the measured value of the 𝑖𝑡ℎ tensor from the SCADA records.  218 

5. Results and Discussions 219 

5.1. Raw SCADA observations 220 

To investigate the influence of outlier detection on predictive results, the power curve of the selected wind turbine is 221 

presented in Fig.6, using raw SCADA data from July 2018 to June 2019. SCADA measurements often contain erroneous data 222 

caused by maintenance operations and breakdowns, which should not be used to perform wind power forecasting. There are 223 

three types of operating issues can be obviously uncovered by viewing this power curve (corresponding to the two circles in 224 

Fig. 6):  225 

▪ Constrained operation: several reasons can cause wind turbine performance to be artificially constrained. For 226 

instance, a wind turbine should not generate any power that is higher than the rated power to avoid any potential 227 

damage. In addition, the grid supply limitations require a curtailed power from time to time [16]. 228 

▪ Over-measured wind speed: this issue can be caused by the inappropriate position of the anemometer [12], or the 229 

natural degradation of sensors.  230 

▪ Turbine downtime: downtime could be identified from the power curve where wind speed is larger than the cut-231 

in speed but the generated power is null [17]. The detected downtimes could be further evaluated against operating 232 

logs to figure out unplanned downtimes.  233 
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 234 

  235 

Fig. 6 – Raw wind turbine power curve with operating interference.  236 

5.2. Anomaly detection and treatment 237 

Both IF and EE are used for detecting and removing anomalies from SCADA datasets. The outlier fraction is defined as 238 

12%, which kept 88% of what is reflected as normal data in both cases. In Fig. 7a and b, the detected anomalies are represented 239 

by dotted points and normal data are indicated via full lines, where most detected anomalies were located at the boundaries of 240 

the pattern. Fig. 7c and d displayed the power curves after IF and EE filtering, respectively, at which the detected outliers have 241 

been discarded. As showed in Fig. 7, most of the outliers regarding breakdowns and maintenance operations have been cast-242 

off.   243 
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 244 

 245 

Fig. 7 – Anomaly detection (a & b) and remove (c & d) via IF and EE in the one-year SCADA datasets.  246 

5.3. Accuracy of forecasting 247 

While the deep learning configuration was kept as it is, the training database was altered at each trial to investigate the 248 

impact of different outlier detection algorithms on predictive models by using training datasets of raw SCADA, training datasets 249 

after IF filtering, and training datasets after EE filtering, respectively. Then, the three predictive models were further examined 250 

through identical testing/validation datasets. Comparisons of MSE profiles in validation loops was presented in Fig. 8, where 251 

the distinguish among the three curves were obvious. For the deep learning predictive model without outlier filtering, it fails to 252 

converge after 200 epochs. On the other hand, for the cases with IF and EE filtering, the predictive model started to converge 253 

after around 100 epochs. The MSE profiles were initially decreasing during the transient period and then became flat as soon 254 

as the neural networks turned out to be stable. After detecting and removing extreme points in the used database, the deep 255 
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learning model can be trained more accurately and more smoothly. As presented in the zoom-in session of the last parts of MSE 256 

profiles in Fig. 8, comparing with EE filtering, IF filtering provided a more accurate prediction with lower error values. The 257 

network model was stabilized while MSEs equal to 0.003 and 0.004 for IF filtering and EE filtering, respectively. Even both 258 

of outlier detection methods showed a similar trend, the accuracy of deep learning has been boosted when IF was used.    259 

 260 

Fig. 8 – Variations of testing MSEs along 200 epochs with predictive models trained by raw data, database filtered by IF, and 261 
database filtered by EE in an identical deep learning configuration. 262 

The active power that was forecasted by the three deep learning predictive models is compared with the actual SCADA 263 

measurements in Fig. 9. The worst scenario was observed in the case of raw SCADA data (Fig. 9a), indicating the deep learning 264 

neural network has become an arbitrarily predictive model without outlier filtering. The predictive model with EE filtering 265 

(Fig. 9b) performed better than the case of raw SCADA data. However, when wind speeds are in the range of 15 ~ 25 m/s, 266 

predictive results obviously overestimated active powers. The best forecasting results were achieved by the case with IF (Fig. 267 

9c), where a good agreement was achieved under most data points.  268 
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 Fig. 9 – Comparison of wind power curves between deep learning model (red dotted points) for raw SCADA data (a), IF 269 
(b), EE (c), and actual SCADA records (blue dotted points) respectively. 270 

 271 

Based on the performance of the three predictive models in Fig. 9, it is confirmed that anomalies could not be appropriately 272 

identified by deep learning neural networks, and will give negative influences on their global performance. The reasons why 273 

IF offered better performance in wind power forecasting could be summarized as: EE is a very effective method if the 274 

considered datasets can be represented by the Gaussian distribution. This is why it is so widely used in outlier detection. 275 

However, it is not recommended to use EE when the datasets cannot be assumed to be modelled with a parametric method. In 276 

our SCADA database, the generated active power is not completely following a normal distribution, as its values are close to 277 

the rated power of 7 MW in most of the operating time (see Fig. 3a), triggered by the harsh offshore environment. On the other 278 

hand, IF can be considered as an effective method when Gaussian distributions cannot be assumed [18]. Furthermore, to capture 279 

the stochastic nature of the wind, the current study is using a very high-frequency SCADA database, with a sampling rate of 1 280 

second, which created large-sized datasets with high dimensional input features, including wind speed, nacelle orientation, yaw 281 

error, blade pitch angle, and ambient temperature. Comparing with EE, IF can better handle large datasets with high dimensions 282 

[19].  283 

6.  Conclusions 284 

This paper presented an integrated approach that coupled IF and deep learning for wind power prediction, based on input 285 

features of wind speed, nacelle orientation, yaw error, blade pitch angle, and ambient temperature. Compared with EE, the 286 

anomaly detection technique of IF further improved the global predictive performance of deep learning. Due to the advantages 287 

of the current coupled approach, this model is expected to be more effective in wind power forecasting from offshore wind 288 

turbines. Based on the facts above, this paper has the following conclusions:  289 

▪ In this study, a deep learning neural network model was constructed to predict power for an offshore wind turbine 290 

in Scotland. Advanced data filtering techniques were applied to the inputs, before they were used for the training 291 
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phase of the network model. Deep learning predictive models can perform well only when they are trained with 292 

filtered data. Using raw data would insert uncertainties in the predictive models.  293 

▪ Even if the predictive models performed acceptably when adopting an EE filtering, pre-processing the data by IF 294 

can improve the accuracy of the deep learning method. The anomalies that are related to constrained operations 295 

and turbine downtime have been automatically detected and removed from the SCADA database. Deep learning 296 

neural networks presented its full advantage while combined with IF.  297 

▪ Due to the stochastic nature of the offshore wind, its speed and direction vary with a very small period (few 298 

seconds or shorter), generating high-fluctuating, high-dimensional and large-sized SCADA database. Results 299 

showed that, when compared with commonly used outlier detection method based on Gaussian processes, IF is a 300 

more effective method, since it is more robust when the input features used in wind power prediction cannot be 301 

assumed to be Gaussian.  302 
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