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Non-causal Linear Optimal Control of Wave Energy
Converters with Enhanced Robustness by Sliding

Mode Control
Yao Zhang, and Guang Li, Member, IEEE

Abstract—Sea wave energy converter control is a non-causal
optimal control problem, and the control performance relies
on the accuracy of wave prediction information. However, the
existing wave prediction methods, such as Auto-Regressive (AR)
method, extended Kalman Filter (EKF), Artificial neural net-
work and deterministic sea wave prediction (DSWP), inevitably
introduce prediction errors. This paper presents a robust non-
causal linear optimal control of wave energy converters to
explicitly cope with the prediction error of sea wave prediction
and simultaneously compensate the modelling uncertainty caused
by wave force approximations. This is achieved by designing
a non-causal linear optimal control (LOC) to maximize the
energy output and a sliding mode control (SMC) to compensate
unmodeled WEC dynamics and wave prediction error. The
parameters of both SMC and non-causal LOC are calculated off-
line, which significantly enhances the real-time implementation
of the proposed controller with reasonably low computational
load. Simulation results demonstrate the efficacy of the proposed
control strategy.

Index Terms—Non-causal control, Sliding mode control, Wave
Energy Converters, Prediction error, Modelling uncertainty

I. INTRODUCTION

Sea waves provide an enormous source of renewable energy
with high energy density and continuous power supply [1], [2].
To harness wave energy [3], many wave energy converters
(WECs) have been developed, including oscillating water
columns, overtopping WECs, point absorber and attenuators.
It has also been recognized that WEC control is a non-causal
control problem, which means the current control decision is
based on the prediction of the incoming sea waves [4]. Recent
studies show that wave prediction can play an important role
in improving WEC control performance and maintaining safe
operations compared to the counterpart of causal control, see
[5]–[9].

Several prediction methods have been developed and ap-
plied to the WEC non-causal control problem. One class of
prediction approaches are based on statistical methods, such
as the Auto-Regressive (AR) prediction method [10] and the
extended Kalman Filters (EKF) [11]. Artificial neural network
(ANN) has also been used to forecast the short-term wave
forces [12], [13]. Another class of prediction is based on the
measurements of sea wave elevations at multiple upstream
locations with certain distances away from the WEC, such
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as the deterministic sea wave prediction (DSWP) [14], which
provides longer and more reliable wave prediction but at the
cost of installation of extra more expensive hardware for wave
measurements.

The accuracy of the prediction plays an important role
in influencing WEC control performance. With inaccurate
predictions of the wave excitation force or the wave elevation,
the control performance can be degraded as shown in [15]–
[17], where the sensitivity of non-causal control of WECs to
prediction errors was fully analyzed. However, the prediction
error has not been explicitly compensated for.

Sliding mode control (SMC) is a well-known nonlinear
control strategy that has unique advantages in coping with
robustness [18], [19], and has been widely applied in aerospace
engineering [20], marine engineering [21] and permanent
magnet synchronous motor system [22], etc. To maximize the
energy output subject to prediction errors and modelling uncer-
tainties, this paper proposes a SMC based non-causal linear
optimal control (LOC) to maximize the energy output and
simultaneously enhance the robustness by explicitly compen-
sating the prediction error and the modelling uncertainty. The
main novelties and contributions of the paper are summarized
as follows:
• The wave prediction error and the modelling uncertainty

are explicitly handled;
• Robust WEC control performance can be achieved with

large prediction errors even in the absence of wave
prediction;

• The proposed controller is computationally cheap so that
it can be efficiently implemented in real-time;

• The tuning procedure is straightforward since the ap-
proach only has two tuning parameters.

Although the proposed controller can be applied to a wide
variety of WEC devices, we select a particular WEC, called
point absorber, as a case study for demonstration purpose. The
schematic diagram of the point absorber is shown in Fig. 1.
The proposed controller consists of a non-causal LOC and an
additional term of SMC. The former is designed to maximize
the energy output using the predicted wave information, and
the latter is for coping with the prediction error and the
modelling uncertainty.

The rest of the paper is as follows. Section II introduces
a state-space model of the point absorber. The SMC based
non-causal LOC is proposed in Section III, where the abil-
ity of compensating the prediction error and the modelling
uncertainty is proven. Simulation results for the comparison
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between the proposed controller and the non-causal LOC [5]
are shown in Section IV. Section V concludes this paper.

II. STATE-SPACE MODEL OF WEC

In this section, the dynamical model of a single-point-
absorber is firstly introduced. To design the controller, the
hydrodynamic model is transformed to a state-space model,
which introduces modelling uncertainties.

A. Dynamical model of WEC

Fig. 1 shows part of a possible hydraulic power take-off
(PTO) design: a hydraulic cylinder is vertically installed below
the float and is fixed to the bottom of the seabed; more details
on this design can be found in [23]. zw and zv are the water
level and the height of the mid-point of the float respectively.
The PTO torque is proportional to the force fu acting on the
piston inside the cylinder. The extracted power is P := −fuv,
where the velocity on the piston is v := żv .

Fig. 1. Schematic diagram of the point absorber

By using Newton’s second law, the dynamic equation [24]
for the float of the point absorber is

msz̈v = −fs − fr + fe + fu (1)

where ms is the float mass; the restoring force fs is given by

fs = kszv (2)

with the hydrostatic stiffness ks = ρgs, and ρ as water density,
g as standard gravity, and s as the cross-sectional area of the
float. fr is the radiation force determined by

fr = m∞z̈v +

∫ ∞
−∞

hr(τ)żv(t− τ)dτ (3)

where m∞ is the added mass; hr is the kernel of the radiation
force that can be computed via hydraulic software packages
(e.g. WAMIT [25]). Following [24], the convolutional term in
(3) fR :=

∫∞
−∞ hr(τ)żv(t − τ)dτ can be approximated by a

causal finite dimensional state-space model

ẋr = Arxr +Br żv (4a)

fR = Crxr ≈
∫ t

−∞
hr(τ)żv(t− τ)dτ (4b)

where (Ar, Br Cr, 0) and xr ∈ Rnr are the state-space
realisation and the state respectively. Following [24], the wave
excitation force fe can be determined by

fe =

∫ ∞
−∞

he(τ)zw(t− τ)dτ (5)

where he is the kernel of the radiation force and the state-space
approximation is given by

ẋe = Aexe +Bezw (6a)

fe = Cexe ≈
∫ t

−∞
he(τ)zw(t− τ)dτ (6b)

where (Ae, Be Ce, 0) and xe ∈ Rne are the state-space
realization and the state respectively.

B. State-space model of a point-absorber

With the realizations of (4) and (6), the state-space model
of (1) can be represented by{

ẋ = Acx+Bucu+Bwcw + ε
y = Ccx

(7)

where w := zw is the wave elevation whose prediction is
incorporated into the controller design, y := zv , y := żv , x :=
[zv, żv, xr, xe], u := fu. ε represents the modelling uncertainty
caused by wave force approximations (4b) and (6b), and

Ac =


0 1 0 0

−ksm 0 Ce

m −Cf

m
0 Br Ar 0
0 0 0 Ae

 Bwc =


0
0
0
Be

 Buc =


0
1
m
0
0


Cc =

[
0 1 01×(nr+ne)

]
(8)

with m := ms +m∞.
The continuous-time model (7) can be converted to a

discrete time model{
xk+1 = Axk +Buuk +Bwwk + εk
yk = Cxk

(9)

where the pair (A,Bu, Bw, C) is the discrete-time form of the
pair (Ac, Buc, Bwc, Cc).

III. NON-CAUSAL LINEAR OPTIMAL CONTROL WITH
PREDICTION ERROR TOLERANCE

In this section, the overall control strategy of the proposed
controller is firstly introduced. The non-causal LOC and the
SMC are then respectively designed, and the stability is
proven. The computational load is also analyzed.

A. Control strategy

Define the prediction error of the wave elevation at each
step as

w̃ := w − ŵ (10)

where ŵ is the predicted wave elevation. The sequence of the
prediction error is w̃k,np

:= [w̃k, w̃k+1, . . . , w̃k+np−1] with np
the prediction step.
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The optimal control problem for energy maximization is as
follows:

min
u0,...,uN

ΣNk=0

{
ykuk +

1

2
x>k Qxk +

1

2
Ru2k

}
(11)

subject to the perturbed state-space model (9).
The cost function consists of three terms. For the first term,

since the power output is Pk = −ykuk, minimisation of ykuk
is equivalent to maximisation of power output. The second
term represents the soft constraints on the state vector xk.
The weight Q is tuned to penalize some motions of the float.
The third term aims to penalize the PTO torque by tuning
the weight R. A good trade-off between these tuning weights
needs to be determined to achieve the maximum energy output
while not violating the constraints on the PTO limit and float
motions for its safe operation. N is the number of time steps
in the optimization process. In this case it is set to N →∞.

Differing from the non-causal controller proposed in [5],
the solution of (11) is subject to a perturbed system with
prediction errors, which leads to a challenge for maintaining
optimality. To tackle this issue, a SMC is designed to eliminate
the unknown modelling uncertainties and the prediction error
in real-time and keep the actual dynamics of the system as
a nominal one based on which the non-causal LOC is the
optimal solution.

The state-space model (7) can be further written as

ẋ = Acx+Bucu+Bwcŵ +Bwcw̃ + ε (12)

The main idea of this paper is to design a SMC that fully
eliminates the unknown terms Bwcw̃ + ε and the prediction
error w̃k,np

so that the robustness is incorporated into the
LOC. Owing to the attenuated uncertainty by SMC, the model
dynamics approximates a nominal model (13) based on which
the non-causal LOC generates the control law to maximize the
energy output. Therefore, a prediction error tolerance control
is achieved and the modelling uncertainty is compensated
without losing the optimality of the non-causal LOC. The
nominal model of (12) that ignores the unknown information
is {

ż = Acz +Bcv +Bwcŵ

yz = Ccz
(13)

where z is the nominal state and v is the nominal control input.
The discrete-time model of (13) is{

zk+1 = Akzk +Bkvk +Bwkŵk

yzk = Ckzk
(14)

The block diagram of the proposed controller is described
in Fig. 2.

B. Controller design

Hypothesis 1. Assume that the prediction error at each step
w̃ and the modelling uncertainty ε are norm bounded, i.e.
‖w̃‖ ≤W and ‖ε‖ ≤ ε with W ≥ 0 and ε ≥ 0.

The proposed controller is proposed as

u = uLOC + uSMC (15)

Fig. 2. Diagram of the proposed control strategy

The first term uLOC is the non-causal LOC proposed in
[5] depending on the predicted wave elevation ŵ. The second
term uSMC is determined by a sliding mode controller used to
compensate the prediction error and the modelling uncertainty.

1) Design of uLOC: It is reported in [5] that the solution of
the following non-causal optimal problem without considering
unknown uncertainties and prediction errors

min
u0,...,uN

ΣNk=0

{
yzkvk +

1

2
z>k Qzk +

1

2
Rv2k

}
(16)

subject to the nominal state-space model (14) is in the form
of

uLOC = Kxzk +Kdŵk,np
(17)

with ŵk,np := [ŵk, ŵk+1, . . . , ŵk+np−1] being the predicted
wave elevation and np being the length of wave prediction
horizon.

The control input uLOC consists of a feedback term with
respect to the system states zk and a feed-forward term with
respect to the prediction of incoming wave elevation ŵk,np

.
Kx and Kd are constant coefficient matrices that can be pre-
calculated off-line. The formulae for calculating them are

Kx = −(R+B>k V Bk)−1(Ck +B>k V Ak) (18)

Kd = −(R+B>k Vk+1Bk)−1B>k Ψ (19)

and

V = Q+A>k V Ak − (Ck +B>k V Ak)>

(R+B>k V Bk)−1(C +B>k V Ak) (20)

where V is the solution of the algebraic Ricatti equation.
Let Φ := (Ak + BkKx)>, then Ψ in (19) is defined as
Ψ := [V Bwk,ΦV Bwk, . . . ,Φ

np−1V Bwk]. Results in [5] show
that with infinite control horizon N →∞ and finite wave pre-
diction horizon np, the control law yields an unique solution.

2) Design of uSMC: The second term of the input (15) is
designed by

uSMC = −ρsign(σ) (21)

where ρ is a constant satisfying ρ ≥ δ with

δ =
‖GBwc‖
‖GBuc‖

W +
‖G‖
‖GBuc‖

ε+ 2np‖Kd‖W (22)
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and the function sign(σ) is defined as

sign(σ) =

{
σ
‖σ‖ , σ 6= 0

0, σ = 0
(23)

The sliding variable is designed as

σ =G[x(t)− x(0)−
∫ t

t0

(Acx(τ)

+BucuLOC +Bwcŵ(τ)− npBuc‖Kd‖W sign(σ))dτ ]
(24)

where G is such that GBuc is invertible.
As shown in (22), the gain parameter of the sliding mode

controller uSMC = −ρsign(σ) is determined by three terms.
The first two terms ‖GBwc‖

‖GBuc‖W + ‖G‖
‖GBuc‖ε are to cope with the

inaccurate wave elevation at the current time and the modelling
uncertainty caused by wave force approximations, respectively,
and the last term 2np‖Kd‖W is to cope with the estimation
error of the future wave elevation.

In the ideal situation where the non-causal LOC uses the
accurate prediction, i.e. uLOC = Kxxk +Kdwk,np

. Applying
the control policy (15) to the actual model (12), we have the
actual state-space model as follows

ẋ = Acx+Buc(Kxxk +Kdwk,np
− ρsign(σ)) +Bwcw + ε

(25)
The nominal model (13) that is not aware of modelling

uncertainties and prediction errors is as follows

ż = Acz +Buc(Kxzk +Kdŵk,np) +Bwcŵ (26)

Since the prediction error and the modelling uncertainty
are both unknown, we aim to prove that by using the control
policy (15), the actual ideal model (25) that contains unknown
information can be approximated by the nominal model (26)
that uses available information. Therefore, owing to the com-
pensation by SMC, the control performance can be maintained
by using available but inaccurate information.

Theorem 1. By using the sliding mode controller (21), the
prediction error and the modelling uncertainty can be elimi-
nated and the closed-loop dynamics of (25) approximates the
nominal model (26).

Proof. Step 1: to prove that the proposed sliding mode σ =
σ̇ = 0 can be maintained.

Select a Lyapunov candidate as V = 0.5σ2, and its time
derivative is

V̇ =σσ̇

=Gσ(ẋ−Acx−BucuLOC −Bwcŵ
+ npBuc‖Kd‖W sign(σ))

=Gσ(−Bucρsign(σ) +Bwcw̃ + ε+

+ npBuc‖Kd‖W sign(σ) +BucKdw̃k,np
)

≤− ‖σ‖(‖GBuc‖ρ− (‖GBwc‖‖w̃‖+ ‖G‖‖ε‖
+ 2np‖GBuc‖‖Kd‖W ))

≤− ‖σ‖(‖GBuc‖ρ− (‖GBwc‖W + ‖G‖ε
+ 2np‖GBuc‖‖Kd‖W ))

(27)

Since ρ ≥ δ with δ = ‖GBwc‖
‖GBuc‖W + ‖G‖

‖GBuc‖ε+ 2np‖Kd‖W ,
we have V̇ ≤ 0. Therefore, the σ = σ̇ = 0 can be maintained.

Step 2: to prove that once the sliding mode is maintained,
the closed-loop dynamics becomes the nominal model.

If σ = σ̇ = 0 holds, then we have

σ̇ = G(ẋ−Acx−BucuLOC −Bwcŵ) = 0 (28)

which yields

ẋ = Acx+BucuLOC +Bwcŵ (29)

Combining (13) and (29) and applying the nominal input
as v = uLOC , the closed-loop state in the sliding mode
approximates the nominal state, i.e. z = x. This completes
the proof.

From Theorem 1, by applying the proposed SMC (21),
we have zk = xk. Therefore, the solution of the non-causal
optimal problem (11) is (15) with

uLOC = Kxxk +Kdŵk,np
(30)

C. Controller Analysis
The proposed controller achieves the prediction-error-

tolerance and modelling-uncertainty-tolerance control by de-
signing a SMC to compensate the unknown prediction error
and the unknown modelling uncertainty. This controller is
computationally econmic so that it is applicable in practice
due to the following reasons:
• For the term of non-causal LOC, the gain parameters Kx

and Kd are determined off-line with a specific pair of the
weighting matrix (Q,R);

• For the additional term of the SMC, it only has one
parameter ρ, which technically satisfies ρ ≥ δ as stated
in Theorem 1. For further simplicity, this parameter can
be chosen as ρ = δ in practice leading to no parameters
needed to be tuned.

IV. SIMULATION RESULTS

Simulation is run by Matlab/Simulink 2017b. The sampling
rate is 0.1 s. The parameters of the WEC model summarized
in Table I and the hydrodynamic coefficients are adopted from
those used in [24] and [5] for comparison purpose.

TABLE I
THE PARAMETERS USED FOR THE WEC MODEL

Description Notation values
Stiffness ks 3866 N/m
Float mass ms 242 kg
Added mass m∞ 83.5 kg
Total mass m 325.5 kg
Device width DW 0.7 m
Input force limit umax 8 kN
Float heave limit Φmax 0.5 m

The state-space matrices of the impulse function for calcu-
lating the wave excitation force [5], [24] is

Ae =


0 0 0 0 −400
1 0 0 0 −459
0 1 0 0 −226
0 0 1 0 −64
0 0 0 1 −9.96

 , Be =


1549886
−116380

24748
−644
19.3

 ,
Ce =

[
0 0 0 0 1

]
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The state-space matrices of the impulse function for calcu-
lating the radiation force [5], [24] is

Ar =

0 0 −17.9
1 0 −17.7
0 1 −4.41

 , Br =

36.5
394
75.1

 ,
Cr =

[
0 0 1

]
which result in a WEC state-space model with an order of 10.

A realistic sea wave heave trajectory gathered from the
coast of Cornwall, UK, is properly scaled by Froude scaling
according to the size of the point absorber. As shown in Fig.
3 and reported in [5], for the point absorber with parameters
in Table I, the energy output increases significantly when the
wave prediction horizon is within 3 s, and the WEC non-causal
LOC with longer wave prediction has a better performance;
however, the benefit of further increasing wave prediction
horizon over 3 s becomes less obvious.

Therefore, we choose the prediction horizon as 3 s in the
sequel to present the best control performance of non-causal
LOC.

0 1 2 3 4 5 6 7 8 9 10

Wave prediction horizon (s)

32

34

36

38

40

42

44

10
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s 
en
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ut

pu
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kJ
)

Fig. 3. Wave elevation used in simulation and energy output with different
wave predictions

Two sets of simulation are done to verify the effective-
ness and robustness of the proposed SMC based LOC. For
comparison purpose, the control performance of both the
proposed SMC based non-causal LOC (15) and the non-
causal LOC (17) proposed in [5] is tested. Both of the two
controllers share the same choice of the weighting matrixes:
Q = diag{6, 9.8, 0, ..., 0} and R = 0.08 [5].

Simulation A: The unknown modelling uncertainty is firstly
ignored, i.e. ε = 0, and the prediction error of the future
wave elevation is considered. The energy outputs of both the
proposed SMC based non-causal LOC (15) and the non-causal
LOC (17) proposed in [5] are demonstrated in the simulation.

Simulation B: By taking both the prediction error of the
future wave elevation and the unknown modelling uncertainty
acting on the WEC ε into consideration, the proposed SMC
based non-causal LOC is verified to be effective to cope with
the modelling uncertainty and prediction errors simultaneous-
ly. Two uncertain models (i.e. models with uncertainties) are
considered in Simulation B. In the uncertain model (a), the
parametric uncertainty is considered. In the uncertain model

0 0.5 1 1.5 2 2.5 3

Time (s)

-2

-1

0

1

2

3

4

W
av

e 
el

ev
at

io
n 

(m
)

inaccurate prediction
perfect prediction

0 0.5 1 1.5 2 2.5 3

Time (s)

-1

0

1

2

3

4

P
re

di
ct

io
n 

er
ro

r 
(m

)

prediction error

Fig. 4. Inaccurate 3s prediction of the future wave elevation
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Fig. 5. Energy output of LOC and SMC based LOC with perfect and
inaccurate predictions

(b), the nonlinear effects of the linear wave force such as
Froude Krylov (FK) forces is taken into account.

A. Control performance with prediction error and no mod-
elling uncertainty

In this subsection, the unknown model uncertainty is not
considered, i.e. ε = 0. The prediction error is modelled in the
following form

w̃(k + 1) = λw̃(k) + ξk, k = 1, ..., N (31)

where N > 0 is the prediction step, λ = 1.0001 is taken, mak-
ing the filter unstable, to match with realistic prediction errors
that grows with the prediction time. Both ξk ∼ N (0, 0.1) and
w̃0 ∼ N (0, 0.8) are Gaussian white noises. With the prediction
error shown in Fig. 4 as an example, the control performance
of both LOC and SMC based LOC is demonstrated in Figs. 5
∼ 6.

From Figs. 5 and 6, it can be found from the comparison
between the causal LOC (the black dashed line) and the non-
causal LOC with perfect prediction (the blue dotted line) that
the energy output significantly increases by 36.8%. While
with an inaccurate prediction shown in Fig. 4, the control
performance of the non-causal LOC (the green dotted line) is
degraded with 16.4% energy loss compared with the control
performance of the non-causal LOC with perfect prediction
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Fig. 6. Power output of LOC and SMC based LOC with perfect predictions
and without predictions
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Fig. 7. Heave position of the float of LOC and SMC based LOC with perfect
and inaccurate predictions

(the blue dotted line). By using the proposed SMC based non-
causal LOC (the red line), the control performance is barely
affected by the prediction error with only 1.8% energy loss.
This verifies the effectiveness of the proposed SMC based non-
causal LOC on coping with the prediction error.

From Figs. 7, it can be seen that the float heave trajectories
are all within the limit, which ensure safe operations. By
comparing the control input of the SMC based non-causal
LOC with other control inputs in Fig. 8, we can see that the
magnitude of the control input signal does not significantly
change when the sliding mode term is added, which means no
extra PTO torque limit is required.

To further verify the robustness of the proposed SMC based
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Fig. 8. Control input of LOC and SMC based LOC with perfect predictions
and without predictions
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Fig. 9. Energy output of LOC and SMC based LOC with different prediction
horizons
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Fig. 10. Control input of LOC and SMC based LOC with different prediction
horizons

approach for causal LOC, prediction is assumed completely
unknown for SMC to compensate the 100 % prediction error.
Figs. 9 and 10 show that compared with the non-causal LOC
with 1 s prediction and 2 s prediction, the proposed SMC
based non-causal LOC can ensure an acceptable energy output
without using any predictions, and the maximal magnitudes of
the control input are similar. The energy output of the causal
SMC based LOC is between that of non-causal LOC with
1s prediction and that of non-causal LOC with 2s prediction,
which increases 26.8% compared with that of the causal
LOC (the black dashed line). This verifies the ability of the
proposed controller to compensate the future wave prediction
errors by treating them as completely unknown disturbances.
Therefore, the proposed controller can be used to recover
control performance of non-causal controller to a large extent
in the absence of prediction.

In order to compare the control performance in different sea
environments, simulations of different wave profiles (defined
by significant wave height Hs and wave peak period Tp)
are run. Capture width ratio (CWR) is calculated to demon-
strate the energy conversion capability, which is CWR =
Pav/DW/Pw [26] where Pav is the average mechanical
power, Pw is wave power per meter width of wave crest
(integrated from spectra), and DW is the device width. For the
point absorber with parameters shown in Table I, the device
width is DW = 0.7 m.

Fig. 11 shows the CWR of the point absorber obtained
from a wide range of simulations under JONSWAP (Joint
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Fig. 11. Capture width ratio with perfect and inaccurate predictions (Hs = 1
m and Hs = 1.5 m)

North Sea Wave Project) wave model with spectral peakedness
factor of unity to generate irregular wave spectra and the
significant wave heights are Hs = 1 m and Hs = 1.5 m.
Wave peak period ranges from 1s to 12s with 1s interval. The
control performance of the proposed SMC based non-causal
LOC barely affected by the prediction error in different sea
environments.

B. Control performance with prediction error and modelling
uncertainty

In this subsection, both the prediction error and the mod-
elling uncertainty are considered. The robustness of the pro-
posed controller subject to modelling mismatch and prediction
error is verified.

To verify the efficacy of SMC to cope with parametric
uncertainties and wave forces error, two forms of uncertainties
are considered in the model respectively as :
• Uncertain model (a): the added mass used in the control

is 18.4 kg which is 78% less than the nominal value of
WEC added mass. Thus the total mass used in the control
design is 242 + 18.4 = 260.4 kg, which is 20% less than
the nominal value of WEC total mass. The controllers
are designed based on the nominal model, and the plant
is the perturbed model.

• Uncertain model (b): to introduce the static FK force to
the model, the coefficient of restoring force (2) in the
control design is changed from 3866 N/m to 3866 ×
1.5 = 5799 N/m; to introduce the dynamic FK force
to the model, the coefficient of the excitation force Ce
(6b) in the controller design is changed from Ce =[
0 0 0 0 1

]
to Ce =

[
0 0 0 0 1 + 0.5rs(k)

]
with rs(k) ∈ (0, 1) being a random series, k = 1...N .
The resulting model deviation is equivalent to a model
uncertainty that is greater than 40% of the nominal model,
which is sufficiently large for verifying the effectiveness
of SMC in coping with the nonlinear effect.

The controllers are designed based on the nominal model,
and the plant is based on the uncertain model.

With the modelling uncertainties described in (a) and 3 s
of wave predictions, the energy output of the non-causal LOC

and the proposed SMC based non-causal LOC is shown in
Fig. 12, from which we have the following findings.
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Fig. 12. Energy output of accurate and uncertain model (a) with perfect and
inaccurate predictions

Firstly, we consider the case of 3 s perfect prediction.
Compared with the non-causal LOC without any modelling
uncertainties, i.e. ε = 0 (the black line), the control perfor-
mance of the non-causal LOC is degraded with 27.1% energy
loss compared to the case when the modelling uncertainties
are taken into account (the green dotted line). However, the
control performance of the proposed SMC based non-causal
LOC (the grey dotted line) is barely affected with only 1.03%
energy loss subject to the modelling uncertainty. Therefore,
the proposed SMC based non-causal LOC can cope with
the unknown modelling uncertainty and maintain the energy
maximization.

Secondly, we consider the case of 3 s inaccurate prediction
shown in Fig. 4. The non-causal LOC generates further less
energy (the blue dotted line) in the situation where both
the modelling uncertainty and the prediction error are added
than the non-causal LOC without modelling uncertainty and
prediction error (the black line). However, compared with
the energy output of the non-causal LOC without modelling
uncertainties and no prediction error (the black line), the one
of the proposed SMC based non-causal LOC subject to both
modelling uncertainty and prediction error (the red dashed
line) barely decreases with only 1.25% energy loss. Therefore,
the proposed SMC based non-causal LOC can cope with
the unknown modelling uncertainty and the prediction error
simultaneously.

Fig. 13 shows that the heave position trajectories of the float
are all within heave limitations, therefore, safe operations are
ensured. The corresponding control inputs are shown in Fig.
14, from which we can find that the magnitude of a maximal
control input signal does not significantly change when the
sliding mode term is added leading to a fair comparison basis
between the non-causal LOC and the proposed SMC based
non-causal LOC.

Fig. 15 shows the CWR of the point absorber obtained from
a wide range of simulations under JONSWAP wave model
with spectral peakedness factor of unity to generate irregular
wave spectra and the significant wave heights are Hs = 1 m
and Hs = 1.5 m. Wave peak period ranges from 1s to 12s
with 1s interval. The modelling uncertainty and the prediction
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Fig. 14. Control input of accurate and uncertain model (a) with perfect and
inaccurate predictions
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Fig. 15. Capture width ratio with uncertain model (a) and inaccurate
predictions (Hs = 1 m and Hs = 1.5 m)
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Fig. 16. Energy output of accurate and uncertain model (b) with perfect and
inaccurate predictions
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Fig. 17. Heave position of the float of accurate and uncertain model (b) with
perfect and inaccurate predictions

error are both considered. It can be found that the proposed
SMC based non-causal LOC can cope with the prediction error
and the modelling uncertainty simultaneously in different sea
environments.

In order to further verify the effectiveness of the proposed
method in handling the nonlinear effects in linear forces such
as the FK force, we consider the uncertain model (b) which
introduces more than 40% model uncertainty to the model.
With the modelling uncertainties described in (b) and 3 s of
wave predictions, the simulation results of the non-causal LOC
and the proposed SMC based non-causal LOC are shown in
Figs. 16 ∼ 19.

It can be found from Figs. 12 and 16 that for the non-
causal LOC, the control performance with the uncertain model
(b) (the green dashed line in Fig. 16) is further degraded
by 13.51% energy loss by comparison with the one with the
uncertain model (a) (the blue dotted line in Fig. 12), which
means a more significant model uncertainty is added to the
model. While for the proposed SMC based non-causal LOC,
the control performance (the blue dashed line in Fig. 16) is
barely degraded by only 0.7% energy loss by comparison
with the one with the uncertain model (a) (the red dashed
line in Fig. 12). This further verifies the robustness against
the nonlinear effects of the proposed method. Therefore, the
proposed method is quite robust to deal with the uncertainty
and the prediction error.

Fig. 17 shows that the heave position trajectories of the
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Fig. 18. Control input of accurate and uncertain model (b) with perfect and
inaccurate predictions
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Fig. 19. Capture width ratio with uncertain model (b) and inaccurate
predictions (Hs = 1 m and Hs = 1.5 m)

float are all within heave limitations, therefore, safe operations
are ensured by the proposed controller. The corresponding
control inputs are shown in Fig. 18, from which we can find
that the magnitude of a maximal control input signal does
not significantly change when the sliding mode term is added
leading to a fair comparison basis between the non-causal LOC
and the proposed SMC based non-causal LOC.

Fig. 19 shows the CWR of the point absorber obtained from
a wide range of simulations under JONSWAP wave model
with spectral peakedness factor of unity to generate irregular
wave spectra and the significant wave heights are Hs = 1
m and Hs = 1.5 m. Wave peak period ranges from 1s to
12s with 1s interval. It can be found that the proposed SMC
based non-causal LOC can cope with the prediction error and
the modelling uncertainty described in the uncertain model (b)
simultaneously in different sea environments.

V. CONCLUSIONS

A novel SMC based non-causal LOC has been proposed
in this paper to explicitly cope with the prediction error of
the future wave elevation and also the unknown modelling
uncertainties. The robust stability subject to the unknown
prediction errors and uncertainties has been proven. Since
the parameters of the proposed controller are determined off-
line, the computational amount is low enough for the control
approach to be efficiently implemented on economically viable

computational hardware. Future work is applying the proposed
control scheme to the multi-mode WEC control system.
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