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Abstract: This paper reviews the sector of waste-to-energy looking at the main processes and
feedstock involved. Within this, incineration, gasification, pyrolysis, anaerobic digestion
and hydrothermal liquefaction are named and discussed. Through the discussions and
scrutiny, manure is highlighted as a significant source of ammonia, methane, and
nitrogen oxides emission, estimated to be 40%, 22.5% and 28% respectively of the
total UK’s anthropogenic emissions. Manure, and indeed the pollution it poses, are
shown to remain largely ignored. In waste to energy processing, manure is capable of
providing biogas for a number of pathways including electricity generation. Anaerobic
digestion is highlighted as a suitable process with the crucial capability of drastically
reducing the pollution potential of manure and slurry compared to no processing, with
up to 90% reduction in methane and 50% reduction in nitrogen oxide emissions. If the
majority of the 90 million tonnes of manure and slurry in the UK were to be processed
through biogas harvesting, this could have the potential of producing more than 1.615
TWh of electricity. As such, the economics and legislation surrounding the
implementation of anaerobic digestion for manure and slurry are discussed. In the end,
restraining factors that limit the implementation of anaerobic digesters on farms in the
UK are discussed. These are found to be mainly capital costs, lack of grants,
insufficiently high tariff systems, rather than low gas yields from manure and slurry.
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Waste-to-energy conversion technologies in the UK: processes and 

barriers – a review 

William Foster1, Ulugbek Azimov1*, Paola Gauthier-Maradei2, Liliana Castro Molano2, 

Madeleine Combrinck1, Jose Munoz3, Jaime Jaimes Esteves2, Luis Patino1  

1 Faculty of Engineering and Environment, Northumbria University, Newcastle upon type, NE1 8ST 
2  School of Chemical Engineering, University of Santander, Bucaramanga, Colombia 
3 Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST  

Abstract: This paper reviews the sector of waste-to-energy looking at the main processes and 

feedstock involved. Within this, incineration, gasification, pyrolysis, anaerobic digestion and 

hydrothermal liquefaction are named and discussed. Through the discussions and scrutiny, manure 

is highlighted as a significant source of ammonia, methane, and nitrogen oxides emission, estimated 

to be 40%, 22.5% and 28% respectively of the total UK’s anthropogenic emissions. Manure, and 

indeed the pollution it poses, are shown to remain largely ignored. In waste to energy processing, 

manure is capable of providing biogas for a number of pathways including electricity generation. 

Anaerobic digestion is highlighted as a suitable process with the crucial capability of drastically 

reducing the pollution potential of manure and slurry compared to no processing, with up to 90% 

reduction in methane and 50% reduction in nitrogen oxide emissions. If the majority of the 90 

million tonnes of manure and slurry in the UK were to be processed through biogas harvesting, this 

could have the potential of producing more than 1.615 TWh of electricity. As such, the economics 

and legislation surrounding the implementation of anaerobic digestion for manure and slurry are 

discussed. In the end, restraining factors that limit the implementation of anaerobic digesters on 

farms in the UK are discussed. These are found to be mainly capital costs, lack of grants, 

insufficiently high tariff systems, rather than low gas yields from manure and slurry.  

Keywords: waste feedstock; manure; anaerobic digestion; waste-to-energy 

1. Introduction 

The need to become more sustainable through the threat of global climate change and resource 

depletion is ever more prominent. Coupled with an ever-increasing population, rapid 

industrialisation, depleting fossil fuel resources present significant biowaste disposal and energy 

demand problems. In the UK, around 7.4 million tonnes of biodegradable municipal waste were sent 

to landfill in 2017 [1]. This waste could otherwise have been processed and recycled. The 

environmental impact of biodegradable waste extends beyond increasing greenhouse gasses due to 

the decomposition process. Untreated biodegradable waste release unpleasant odours due to 

decomposition and attracts scavenger animals and pests [2]. This has an impact on general public 

health and changes the biodiversity in the surrounding areas. Leaching from landfills not only 

contaminates the groundwater but can also affect the adjacent soil quality. In EU legislation, it is 

stipulated that biodegradable waste ending up at landfill must be reduced by 35% by 2020 compared 

to 1995 levels. This is one example of the driving forces behind waste to energy (WtE) processing, 

focused on reducing the volume of waste, recovering valuable products and producing electricity.  

The term 'waste-to-energy' can be used interchangeably and encompass a variety of processes and 

technologies. The conversion of waste into energy will be analysed in this paper by the following 

processes: incineration, gasification, pyrolysis, anaerobic digestion, and hydrothermal liquefaction. 

The schematics of waste to energy processes are shown in Figure 1.   
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Figure 1. Schematics of waste-to-energy processes 

 

Incineration is known as the complete oxidation within a waste stream of combustible materials and 

operates as temperatures above 850 °C. All feedstocks of waste addressed in this paper can be 

incinerated. This is one of the key advantages of incineration, the ability to deal with a diversity of 

wastes. Gasification in many sectors has been operating worldwide on a large basis for more than 80 

years.  During high temperatures (500 – 1800 °C), partial oxidation is accomplished by reducing the 

access to oxygen. The gases produced known as 'syngas' do not burn but can be gathered and 

processed for subsequent use. Pyrolysis operates similarly to gasification where partial oxidation is 

used to maintain thermal conditions. While this development is not new, a widespread deployment 

has not yet been accomplished. The process operates at about 300-700 °C. Anaerobic Digestion (AD) 

is an established process for the treatment of organic waste within the waste to energy sector. In 2007 

the Department for Environment, Food and Rural Affairs recommended companies in England and 

Wales to use AD to better achieve electricity goals. Interest decreased because of concerns about 

economic viability. AD is still considered a key process for achieving a circular economy, increasing 

resource-efficiency and for the bioenergy-economy. Hydrothermal liquefaction is the 

thermochemical conversion of biomass into biocrude oil that can then be refined into petroleum 

derived fuels. The process is conducted in a 4 to 22 MPa pressurised environment at temperatures 

250-374 °C.  With promising biomass yields this process can become more widespread in the future 

in the waste-to-energy sector.  

The rise in WtE has contributed to energy recovery increases in the UK with tonnage of processed 

wastes up to 7.3 million in 2018, nearly 4 times that of 2014 at 1.9 million [1]. The estimated range of 

total biological waste in the UK in 2020, including forestry residue and sewage sludge waste streams, 

amounts to 406.86 PJ, as shown in Table 1. 

 

Table 1. Summary of UK maximum estimates of potential for biological waste streams 

 

Waste stream Petajoule [PJ] Reference 
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Renewable fraction of waste 43.7 [3] 

Straw 132 [4] 

 88.5 [5] 

Food waste 46.9 [3] 

 38 [4] 

Green waste 10 [4] 

Livestock manure 16.4 [3] 

Sewage sludge 12.4 [3] 

Used cooking oil 9.66 [4] 

Forestry residues 8.3 [3] 

 19.2 [6] 

Arboricultural arisings 46 [3] 

Landscape care wood 35.8 [6] 

Total 406.86  

*1 Mtoe = 41.868 PJ 

 

Large amounts of waste are now processed at facilities capable of energy production. On top of this, 

wastes once discarded into landfills through enhanced landfill mining, can be dealt with past and 

present, altering previous perceptions of what a landfill is, considering them simply as ‘’temporary 

storage awaiting further processing’’ [7], with vast amounts of valuable materials and heavy metals 

that can be recovered. The waste generated worldwide is losing its potential contribution to 

sustainable living. Therefore, this paper looks to review the different wastes and the processes 

involved in WtE and assessing process capabilities and waste streams that can be incorporated. It 

also looks at the question on what more can be done and what if any significant waste streams 

remained untapped or not utilized to their full potential, how this can cause significant 

environmental and sustainable problems.  

This paper also emphasizes on manure that has great potential to be used as energy source in 

anaerobic digesters if implemented on small scales at local farms. A global concern is poor production 

and utilisation of nitrogen (N), phosphorus (P), and potassium (K) from livestock [8]. Organic matter 

and nutrients recycled in manure are essential for agricultural soil structure and nutrient content [9]. 

Manure has a natural nitrogen and phosphorus content so if it is not utilised as a fertiliser on 

agriculture, natural nutrient cycles are disrupted, possibly that nutrient leaching, so artificial fertiliser 

needs are generated. Nitrogen fertiliser processing requires extensive usage of natural gas and 

produces pollution that lead to global warming [10]. In addition, it is stated that existing usage of 

small phosphate supplies for phosphorus fertiliser is unsustainable [11]. Therefore, some issues may 

be mitigated by rising the use of artificial fertiliser by reusing manure. 

On the other hand, the vast quantities of excreta produced in localised areas will add to the 

nutrient excess at the regional level [12]. Excessive use of manure as an organic fertiliser can 

contribute to soil and water eutrophication, pathogen transmission, air contamination, and 

greenhouse gas emissions [13]. Sustainable processing of these large units of output is only possible 

if manure is reused properly. Composting is a potential stabilising procedure. A significant 

drawback, though, is the strong nitrogen depletion. This phenomenon decreases the fertiliser benefit 

and may cause odour disturbance and present a serious environmental threat [14]. An option to eco-

friendly treatment is anaerobic digestion (AD), which provides added advantage to restore the caloric 

content by biogas production. Unfortunately, manure 's strong nitrogen content is prohibitive to 

successful AD. Organic Nitrogen is transformed to ammonia through microbial degradation. 

Ammonia exerts a strong inhibitory influence on microbiological conversion at high concentrations. 

Non-dissociated free ammonia triggers the toxicity [15, 16]. This compound diffuses into cells, 

causing a proton imbalance or interfering with microorganisms' metabolic enzymes [17]. Overcoming 

ammonia inhibition is essential to effective manure AD. 

To make this implementation feasible and sustainable, we have highlighted the need for further 

processing and changing application methods of slurry and muck to land as a requirement to reduce 
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ammonia, methane and NOx emissions. The paper also discusses the barriers in the form of 

inadequate high banding tariff and systems, planning, high capital costs, lack of government 

subsidies and low biogas yields. It has been suggested that a lower high-paying tariff banding system 

needs to be introduced to increase anaerobic digestion plants on farms. It is required addition of a 

gate fee payment to reduce the high energy crops use as supplements for biogas yield, and to increase 

the amount of slurry and muck that are digested. The paper also discusses the bespoke nature of 

anaerobic digesters on farms and the scales of anaerobic digestion plants. The value of this paper is 

that it has reviewed different challenges and aspects of implementation of anaerobic digestion 

systems on farms within a framework of waste-to-energy conversion.  

In addition to technological and environmental prospects of WtE, previous studies also tried to 

understand social acceptance of wate to energy and renewable energy technology. Shackley et al. [18] 

performed work on carbon dioxide absorption and storage in Europe and found that most of the 

respondents accepted this issue under the regional CO2 mitigation plan. Wolsink [19] points out that 

including local citizens in the policymaking phase would help strengthen the policies on social 

acceptance and that without societal recognition it is difficult to accomplish both waste-to - energy 

and sustainability targets. Social tolerance also has to be taken into consideration through decision 

formation. The three reasons for popular resistance to renewable energy technology were stated by 

Rogers et al. [20]: inadequate growth size, unreasonable cost-to-public benefit ratio and the lack of 

proper connexion between the local people and their views. Wang et al [21] analysed the waste 

management engagement in China, as well as how waste processing, sorting, collection, cost, age and 

education impact waste sorting satisfaction. They also examined the impact of satisfaction on 

participation in terms of enthusiasm, social contact and active involvement between region and 

gender by using systemic equation analysis from multiple communities. 

Therefore, the aim of this review is to cover the current status of WtE, understand its limitations, 

advantages, environmental effects, identify challenges in regards to the implementation of the waste, 

and assess what can be done to further utilize waste to energy in the effort to reduce pollution, resolve 

waste disposal issues and address energy needs.  

2. Sources of waste feedstock 

There is a significant discussion on the sustainability of bioenergy in Europe and the United Kingdom 

in particular, sparked by the recognition that increasing bioenergy use has larger environmental and 

social effects than was previously expected. The effect of expanded crop production for bioenergy 

usage on land use and the implications for the bioenergy profile of greenhouse gas (GHG) are 

significant environmental concerns. Increasing global demand for main grains and other crops for 

bioenergy processing results in increased competition on global agriculture markets, which decreases 

food prices to differing degrees [22]. This coupled with land purchases from primarily subsistence 

farmers for the development of large-scale bioenergy crops is the primary source of worry over the 

social impacts of traditional bioenergy.  

The bioenergy produced from waste and residues is considered a way to boost environmental 

and social efficiency and industry credibility and to save more GHGs than conventional energy. 

Nonetheless, there are concerns about the viability of other feedstocks and the amounts of biomass 

accessible to the bioenergy industry as a feedstock. Considering that the UK energy market must be 

decarbonized, it is important to consider 1) possible domestic waste and residue that can help 

minimise the effect of UK biofuel use on biologically, socially and economically, including the ILUC 

impacts from outside the UK; 2) sustainable waste and residue amounts that could be required in 

advanced processing of biofuel; 3) the growth of job opportunities in the United Kingdom as a 

consequence of setting up a bioenergy industry in sustainable development. 

2.1 Biomass waste 

The efficient use of biomass waste offers an extensive range of advantages. Apart from fulfilling the 

requirements of public services, biomass can be a tap alternative sources of carbon and play a key 

role in a production energy system using renewable sources without decreasing food and feed stocks. 
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There exists a great variety of biomass waste that can be used for bioenergy production. One common 

type is straw, which is a by-product of the cereals harvest, but the definition may be further specified 

to include oil-seed rape grain and maize-growing 'substantive.' There are a variety of common 

applications both in the farming industry and beyond. The large-scale usage as field improvement, 

livestock bedding and the substitute for fodder are significant applications in the UK. Straw is also 

used for mushroom and horticultural production. Apart from growing, straw is used as stalk and 

more commonly as a building medium and for direct combustion for heat and electricity production.  

As a bioenergy feedstock, the sustainability of straw is highly linked to its scale, its location and 

removal from current applications which can benefit from their own impact. Kretschmer et al [22] 

address the potential for European straw usage as well as the adverse effects of excessive straw 

diversion on energy usage, including: the degraded capacity of the soil, particularly through a 

reduction of organic soil content and consequently of nutrients; potential long lasting impacts on 

fauna arising from shifts in stubble heights and straw control and impact on livestock health because 

there is no readily accessible option to roughage and bedding (like sawdust or wood chipping). For 

2020, multiple reports forecast the availability and order of straw for different purposes. As Table 1 

shows, the results vary greatly. One potential explanation is the challenge of taking into account 

regional differences. Depending on these reports, the amount of 18 to 132 PJ of straw for UK 

bioenergy output was predicted for 2020 by Smith [4]. The UK's straw capacity is 88.5 PJ from a 

European report that offers forecasts for different countries [5]. 

Another type of biomass waste is woody residues. Smith [4] stated that most of the UK 's new 

forestry (roundwoods and residues) products were recycled into the sawmill industry and the 

panelboard industry. Given the high proportions of (mostly private) under management forests in 

the UK, however, the supply of residues is likely to increase significantly, with certain materials 

available for the energy sector as a feedstock. It may have positive side consequences, such as 

providing local work, which also contribute to habitat upgrades. Increasing the production of forestry 

residues by better management was one of the specified goals of the new forestry policies and 

strategies of the UK, in particular the Woodfuel Strategy and the Woodfuel Implementation Plan 

2011-2014 of the Forestry Commission. It is expected to produce another two million renewable 

tonnes (residue and plant) of wood biomass each year by 2020 by: 1) Setting requirements for a 

profitable and safe wood fuel supply chain; 2) Capacity building by market growth and reduction of 

obstacles to forest management; 3) Ensure that, in close collaboration with the Biomass Energy Center 

(BEC), access to specialist expertise leads to business growth. 

2.1. Landfill mining 

This feedstock is the result of landfills ‘reopening’ to be extracted of their sources of valuable and 

combustible material wastes. As landfills are known to incorporate a large degree of different wastes, 

the exact chemical constitution can vary considerably. Prior to the European directive in 2001, there 

was little control in the way of what ended up in landfill sites, giving rise to concerns of hazardous 

wastes and indeed the effects to the environment [23]. That said typically plastics, organic wastes, 

different kinds of metals, textiles, wood and rubber are most commonly found in the feedstock based 

on the combinations of waste ending up at landfill. Table 2 gives a brief outline of these sources. 

These main raw materials may be mixed in with contaminates containing elements such as sulphur, 

chlorine and heavy metals. Bosmans et al. [7] showed that the presence of these elements can greatly 

affect the quality of the products produced though waste valorisation such as the syngas, bottom ash, 

fly ash, digestate and vitrified slag. Increasing the need of specialized abatement technologies 

required to reduce the amount of pollutants in the products or emissions to the atmosphere. These 

technologies take the form of flue gas cleaning systems.  

Table 2. Different landfill waste streams 

Source Types of different waste streams 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 6 

 

Commercial and 

Industrial waste (CaIW) 
Paper, packaging, metals, tyres, textiles and biomass [24] 

Municipal Solid Waste 

(MSW) (Household waste) 

Paper, cardboard, metals, textiles, organics 

 

Refuse Derived Fuel 

(RDF) (processed CaIW 

and MSW) 

Separation of recyclables, non-combustibles from source. 

Shredding/size reduction may include pelletizing. Processing done 

to adhere to a fuel specification. 

Solid Recovered Fuel 

(SRF) 

Similar to RDF but less contaminated and more homogenous, 

adheres to more stringent specifications [25] 

 

Scrap Yard Shredder 

Residue (SYSR) 

 

High degree of plastic and mixtures, metals, rubber glass, wood, 

leather, textile, dirt and grit. Mainly result of automotive 

scrappage [26] 

 

Note that the streams shown in Table 2 are in their own right different wastes that can be utilized for 

energy or product extraction if landfill is circumvented all together. Where Table 3 provides the 

typical properties that can be expected from MSW and RDF.  

Table 3. Characteristics of MSW and RDF 

Source % C % H % N % O 
% 

VM 

Lower 

heating value 

(MJ/Kg) 

% water Ref 

MSW 49.5 5.60 1.33 32.4 87.1 18.7 34.2 [7] 

 35.8 4.8 0.78 24.3 67 15.2 32.4 [27] 

 43.71 7.73 1.95 37.66 77.66 18.5 20 [28] 

RDF 54.6 8.37 0.91 34.4 88.5 22.6 10.8 [7] 

 48.2 6.4 1.22 28.4 75.9 17.8 20 [29] 

 48.5 6.4 1.2 31.3 83.5 20.9 26.51 [30] 

RDF (From 

landfill) 
54.9 7.38 2.03 NA 80.4 22 14.4 [7] 

2.2. Food waste  

The definition of food waste is taken from Lebersorger and Scheinder [31] where it includes solid 

components from food preparation residues, post-preparation and consumption residues, part 

consumed food and whole unused food.  The main sectors according to Skaggs et al. [32] from which 

this waste arises are firstly industrial food processing centres; secondly, institutions such as hospitals, 

universities, schools, prisons; thirdly, commercial enterprises such as restaurants, grocery stores, 

food distribution centres; and fourthly residential units. A degree of this waste is averted through a 

food waste recovery hierarchy before the level of energy and product extraction. This type of waste 

is known to be of high value in its uncontaminated state where a large part at the industrial level 

waste can be used to create animal feeds. The types different from the animal feeds are opened up to 

energy and combustible product extraction and through anaerobic digestion. Looking at published 

work, generally speaking, the degree to which the feedstock is valued revolves around the moisture 

content [33,34,35]. Where a lower moisture content increases the combustion characteristics and 

suitability to associated processes, also reduces energy loss through steam/drying. A higher moisture 

content increases suitability for digestion. Table 4 shows typical composition of food waste in UK.  

Table 4. Characteristics of typical food waste 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 7 

 

Source 
% 

C* 

% 

H* 

% 

N* 

% 

O* 

% VM* 

Of TM 

Higher 

heating 

value 

(HHV) 

(MJ/Kg) 

% 

Lipid 

% 

Protein 

% 

Carb 
Ref 

UK 52 6.9 3.1 38 22 22 15 21 48 [36] 

Korea 51.2 7.2 2.9 38.1 - - - - - [37] 

Various - - - - - - 
6.4- 

24.1 

3.9- 

21.8 

24-

46.1 
[38] 

Malaysia 47.4 6.9 3.3 38.7 - 17.45 - - - [39] 

2.3. Fats, Oils and Grease (FOG) 

Large institutional kitchens, restaurants, cafeterias are responsible for the production of waste/used 

oils, fats from animals and grease through cooking. A percentage of this waste inevitably ends up 

down sinks and in the sewers whereas they are non-water soluble can collect and form blockages. 

The Environmental Protection Agency (EPA) has estimated FOG build ups contribute to 70% of sewer 

pipe blockages and 30% of pump station failures [40]. Water UK [41] provides guidance on avoiding 

fats and oils from entering the sewers for large kitchens where grease traps are the primary means of 

capture. This works via taking advantage of the difference in density of water and FOG to capture 

and contain the grease to be disposed. This grease can contain a wide range of suspended waste food 

solids and wastewater, and as such, is known as ‘brown grease’. These contaminates make it more 

difficult to recycle than ‘yellow grease’ which is from spent oils and fats that have not interacted with 

wastewater i.e. deep fat frying. Due to this contamination, the brown grease is not used for biodiesel 

production due to lower energy content of 35 MJ/kg compared to 40 MJ/kg of waste cooking oil.   

[42]. So, the brown grease is usually disposed as waste rather than recycled into energy. There are 

many options in regards to utilizing yellow grease in anaerobic digestion, composting, processing 

into biodiesel as mentioned, or used as additives for animal feed and soap. But the uses of brown 

grease are not so clear with its hazardous classification and more difficult extraction procedures.  

Other than waste oils, fats and grease from the cooking industry, a large amount of synthetic 

and mineral oil wastes accumulate when they are no longer deemed fit for purpose. These are motor 

oils, heating oils, hydraulic oils, ship oils, sump residue and oil-water emulsions. All categorized as 

hazardous waste due to the chemical makeups used. For example, used engine oil contains cocktail 

of hydrocarbons, heavy metals (magnesium, cobalt, zinc, iron), minerals, chlorine, sulphur, 

phosphorus, nitrogen and additives all known to have cancerous effects and detrimental to the 

environment [43]. The environment protection agency states that one drop of used motor oil can 

contaminate 1 cm3 of water, highlighting the scale of potential cause when considering if all vehicles 

that have internal combustion engines produce waste oils.  

2.4. Wastewater sludge (WWS)  

During the processing and treatment of wastewater to return it to the environment, a residual 

nutrient rich semi-solid is produced known as wastewater sludge (WWS), typically containing 25-

75% solid based on weight. WWS can be composed of solids from primary and secondary treatment 

stages. During the primary stage, the initial suspended solids within the wastewater are separated. 

Around 40-70% of solids within the wastewater are captured, where the organic and inorganic fines 

are concentrated down to 2-7% and 60-85% for volatile suspended solids. Secondary treatment stage 

focusses on biological aspects where a combination of aeration, exposure, microbes and secondary 

settling occurs. Solids are concentrated to 0.5-1.5% with volatile suspended solids concentrations at 

70-80% [32]. Biochemical characteristics of primary and secondary sludge are shown in Table 5. 
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In the US approximately 6.3 million metric tons of municipal WWS was produced in 1998 of dry 

solid weight (according to the US environment protection agency) and todays figure will only be 

higher. When processed properly it can be very beneficial for the application of agricultural land to 

improve soil quality, using as a soil conditioner in landscaping, and using for part of landfill cover-

ups [44]. Hence the term ‘biosolids’ is associated with processed WWS. The main energy recovery 

process associated with WWS is anaerobic digestion, in which the resultant bio-waste and indeed the 

treated WWS can be used in the production of biosolids for fertilizer. However, there are social 

concerns in regards to heavy metals and pharmaceutical compounds that could be within the WSS. 

Which, when introduced to agricultural cropping soils can give a predominately negative effect on 

local water, energy and material sustainability [45]. In addition to affecting the ecosystem through 

concentration of heavy metals, crucially highlighting contaminates play negative role in reducing the 

sustainability and product quality. An option that reroutes the biosolids from being used as fertilizers 

and averting the social concerns is hydrothermal liquefaction processing into bio crude oil. This bio 

crude oil can then be refined to meet bio diesel and diesel standards [46].  

Table 5. Biochemical characteristics of primary and secondary sludge 

Source 
% 

C 

% 

H 

% 

N 

% 

O 

% 

VM 

HHV 

(MJ/Kg) 

% 

Lipid 

% 

Protein 

% 

Carb 
Ref 

Primary 

sludge 
47.8 6.5 3.64 33.6 82.17 20.7 - - - [47] 

 51.5 7.0 4.5 35.5 65 - 18 24 16 
[48] 

 

Secondary 

sludge 
43.6 6.55 7.9 29.0 76.25 19.6 - - - [47] 

 52.5 6.0 7.5 33.0 67 - 8 36 17 
[48] 

 

2.5. Manure 

This is the combination of animal faeces with an agricultural by product such as straw (used as animal 

bedding). All livestock, particularly indoor bred stock produce manure. This manure can vary in 

composition depending on the type of animal it is from and what diet they are on. Table 6 shows 

these differences in the biochemical characteristics.  

Table 6. Characteristics of different manures at 76.37% water content  

Source % C % H % N % O 
% 

VM 

HHV 

(MJ/Kg) 

% 

Lipid 

% 

Protein 

% 

Carb 
Ref 

Fattened 

cattle 
35.38 3.73 2.38 57.51 16.21 15.16 6.8 26.6 52.5 [32] 

Dairy cows 38.8 5.1 1.3 54.7 83.2 11.9 5 18.11 52.6 [32] 

Bacon pigs 41.1 5.42 3.36 50.1 83.7 - 20.3 24.5 34.7 [32] 

 

Fertilization is the primary use for this type of fully biodegradable waste where without any 

processing it is spread onto crop producing land. A common life cycle is known to be set up between 

arable and livestock farmers in the UK as a result where manure is exchanged for straw. Where the 

manure is desirable for arable farmers to fertilize their land and the straw from the crops produced 

by the arable can provide a bedding and food source for a livestock farmer [49]. This is the virtually 

at present the only pathway for disposing the manure and slurry. Processes such as anaerobic 

digestion (discussed in the next section) aim to tap into the vast amount of energy stored within this 

feed though emitted products. Nitrous oxides, methane and ammonia are the most prevalent gasses 

released into the atmosphere by the decomposing manure without any process intervention. This is 
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of great concern given the amount of manure produced every year and known the global warming 

characteristics of said gasses. The animal agriculture sector accounts for 37% and 64% of the annual 

anthropogenic methane and nitrogen oxides emissions, respectively, which are 23 and 296 times the 

global warming potential (GWP) of carbon dioxide. In addition, livestock are responsible for 64% of 

the anthropogenic ammonia emissions, contributing to the formation of acid rain and acidification of 

ecosystems [50]. Such high percentages are alarming considering that the majority of these emissions 

are from manure and slurry and highlight the need for processing to bring emissions in the sector to 

some acceptable level.  

3. Waste-to-Energy Processes 

Waste-to-energy encompasses a variety of specific methods and technologies. In the purposes of this 

article, this is intended to identify a variety of disposal methods and techniques utilised to produce a 

functional source of energy and to minimise the amount of residual waste. Such energy may be in 

the form of power, heating and/or cooling, or turning the waste into a product for potential usage, 

such as biogas, automotive fuels, or a mixture of these types. In this paper we will review the 

conversion of waste to energy through the following processes: incineration, gasification, pyrolysis, 

anaerobic digestion, and hydrothermal liquefaction. 

3.1. Incineration 

Incineration is classified as the full oxidation of the combustible materials within a waste stream. The 

process is composed of several key stages of drying/degassing, pyrolysis and gasification then 

combustion. Unlike other processes in this list that only partially oxidize the waste stream, 

incineration can be fed by a large variety of waste streams. In fact, all waste streams discussed in this 

paper can be incinerated. This is one of the main advantages incineration has, the ability to deal with 

a high degree of waste variety. The variety effects the product percentages left after processing, such 

as the bottom ash which in MSW incinerators is approximately 25-30 % by weigh of dry waste input, 

and the fly ash is at 1-5 %. The fly ash requires immobilization to be made environmentally safe, 

which can then be used in asphalt concrete. The bottom ash however requires much more processing, 

where at a slag reprocessing pilot plant facility, valuable metals (Al, Fe, Cu) can be recovered. The 

residue after metal recovery can then be granulated for the construction industry [51]. Figure 2 is an 

example diagram of a combined heat and power (CHP) plant based on incineration. 

 

 
 

Figure 2. Simplified layout of a waste-to-energy incinerator [51] 
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Originally, incineration was purely used to reduce the volume of waste as well as destroy 

harmful substances in the effort to prevent health threats. Now, waste incineration is predominantly 

combined with energy recovery the importance of which is increasing. Denmark and Sweden are 

notably the world leaders having produced electricity from the incineration of waste for more than 

100 years [52]. Now there are 3 main types of incinerators; gate, rotary kilns and fluidized beds, each 

type specified for particular feedstock. The plant efficiency factor of these incinerators according to 

the confederation of European WtE plants (CEWEP) in 2010 based on accounted 314 plants was at 

average 0.69. The specific electricity produced as weighted average was 14.89% of total Mg and heat 

at 34.59% of total Mg [53]. Note that the Plant Efficiency Factor (R1) in the equation (1) was used to 

obtain the figures given in accordance with the waste frame directive [54]. WtE plants “producing 

electricity only” have the lowest R1 factor of 0.55, as a non-weighted average, so that only 37.3% 

plants reach R1 ≥ 0.60. Although WtE plants “producing heat only” have a higher R1 factor of 0.64, 

as a non-weighted average, only 68.1% plants reach R1 ≥ 0.60. In this case, the import of the total 

amount of electricity to treat the waste has a negative influence. WtE plants “CHP producing” achieve 

the highest R1 factor of 0.76, as a non-weighted average, so that 77.2% plants reach R1 ≥ 0.60. 

 

𝑅1 =  
(𝐸𝑝 − (𝐸𝑓 + 𝐸𝑖)

(0.97 ∙ (𝐸𝑤 + 𝐸𝑓))
 (1) 

where, R1 - plant efficiency factor, Ep - annual energy produced as heat or electricity, Ew - annual 

energy contained in the treated waste, Ei - annual energy imported, and Ef - annual energy input to 

the system from fuels contributing to the production of steam [53]. These plants are notably still less 

efficient than conventional power plants. This is in part due to specific equipment requirements for 

incineration of waste, limitations on steam pressures due to corrosion risks, energy requirements to 

maintain optimal operational regime and critically pollution control equipment necessary to treat 

flue gasses. Generally, the more effective and complex a pollution control system is the higher the 

energy needs. 

The current status of this technology in the UK is at TRL 9 since the actual system is proven in 

an operational environment. In 2016 there were 115 incineration facilities in the UK. It is estimated 

that 6.1% of waste generated in the UK is processed through incineration [55, 56]. 37 incineration 

facilities were fitted for energy recovery accounting for 3.4% of waste processing, as shown in Table 

7. This equates to 7.3 million tonnes of waste. It is in increase from 2014 where only 0.9% of waste 

were processed with energy recovery representing 1.9 million tonnes of waste. Three new facilities 

were commissioned between 2014 and 2016, however, the total number of incineration facilities with 

energy recovery increased by eight. It is likely that new facilities are designed for energy recovery, 

while older facilities without energy recovery are converting to enable energy recovery. It is 

foreseeable that the number of incineration facilities with energy recovery will increase over the next 

decade as older facilities are converted. 

 

Table 7. Use and capacity of incineration facilities in the United Kingdom [55, 56] 

Incineration in the United Kingdom 

 Incineration only Incineration with energy recovery 

Year Mt Capacity 

Mt/yr 

% of all 

waste 

Number 

of 

facilities 

Mt Capacity 

Mt/yr 

% of all 

waste 

Number 

of 

facilities 

2012 5.9 8.4 3.1% 87 1.6 2.9 0.8% 27 

2014 7.6 9.9 3.7% 83 1.9 4.9 0.9% 29 

2016 5.7 8.5 2.7% 78 7.3 9.8 3.4% 37 

 

The UK Strategy for Recourses and Waste reported that 3.4% renewable energy was generated from 

incineration of biodegradable waste in 2017 [57]. It is estimated that 2.3% of the UK’s energy demand 
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can be met through incineration with energy recovery should all the municipal solid waste that are 

currently sent to landfills be rerouted to incineration facilities [58]. Not only will this have a positive 

effect on the renewable energy generation in the UK, but also on greenhouse gas emissions generated 

from landfills. It is plausible that greenhouse gas emissions can be reduced by 2 million tonnes in this 

manner [106]. Legislation requires that biodegradable waste sent to landfills must be significantly 

reduced. This will see more municipal solid waste rerouted to incinerators providing an increase in 

feedstock and more opportunity for energy recovery from incineration. However, the current stance 

of the UK Government is that although incineration plays an important role in waste management 

the focus should be on prevention and recycling rather than landfills and incinerators. Taxation on 

the incineration of waste is likely to increase over the next few years which may reduce the economic 

benefit of this manner of waste management.   

3.2. Gasification 

Gasification has been around for some time more than 80 years globally on a commercial scale in 

many industries and 35 years in the power generation. In partial oxidation process of organic 

substances, high temperatures of around 500-1800 ℃ are used. Partial oxidation is achieved by 

limiting the oxygen exposure at those temperatures so the gases produced known as ‘syngas’ do not 

combust but instead can be collected and stored for later use. These later uses include the chemical 

industry, as a fuel for the production of heat and or electricity or conversion into ethanol [59]. The 

syngas constitutes of H2, CH4, CO, CO2, H2O and N2 with trace amounts of other hydrocarbons like 

propane and ethane. Predominantly air is supplied to the reaction site which in comparison to using 

pure oxygen results in a syngas of lower energy. Such that, in terms of heating value, pure oxygen 

gives 8.7 - 11.3 MJ/Nm3 and air gives 4–7 MJ/Nm3 [60]. There are 3 main types of gasifiers: fluidized 

bed, fixed bed and entrained flow which are capable of dealing with MSW, dried sewage sludge, 

some types of hazardous wastes and waste food among others. One of the key requirements for the 

feedstock is that it must be finely granulated, therefore MSW for instance requires pre-treatment. This 

is a clear negative side when compared to incineration, which comparatively has lower residue 

percentage of the feedstock. But there are positive comparisons such as lower volumes of gases 

produced mean smaller flue gas treatment systems can be used and smaller wastewater flows from 

syngas cleaning [7]. In addition, the overall thermal efficiency is more than 75% [61]. Furthermore, 

by the use of partial oxidisation, the amount of oxidized species such as SOx and NOx are reduced, 

which are replaced by H2S, nitrogen and ammonia. Known to be better forms that can be scrubbed 

from the syngas than the oxidized versions prior to syngas utilization [62].  

In terms of gasification process a number of sub process take place. These constitute of a degree 

of pre-processing to remove inorganics such as metals and glass, which cannot be gasified, particle 

size reduction, drying (within the gasifier and in some cases prior to), oxidation and syngas collection. 

As can be seen the main waste product left over is slag (in high temperature gasifiers), this is similar 

to the bottom ash in the incineration process where metals and other valuable products can be 

recovered. Gasification of fossil feedstocks is an established process and is therefore rated at TRL 9. 

The use of biomass feedstock, such as municipal solid waste, is not readily applied in the UK. 

Although there are a number of plant in Norway, Germany, Finland, Italy and Sweden [63]. It was 

recently reported that operation had begun at UK’s first municipal solid waste gasification plant 

located in Aldridge [64, 65]. To date the plant is operating on waste wood feedstock and the 

technology is not proven for municipal solid waste, although it is the intension to do so in the future. 

This is not the first gasification plant constructed in the UK for processing of biomass waste. Several 

such facilities have been built in the past and all have failed [66, 67]. One such example is the company 

Energos Ltd. that operated a gasification plant in the Isle of Wight since 2009 [68]. The plant made 

use of Refuse Derived Fuel (RDF) and was designed to provide 1.8 MWe power. The company had 

plans to build similar plants in Glasgow, Milton Keynes and Derby. However, the plant went into 

administration in 2016; the route cause was found to be a failure to deliver on gasification contracts. 

Another example is Ascot Environmental and its subsidiaries Planet Advantage and Scotgen that 

build a gasification plant in Dumfries in 2009. The plant was designed to deliver 6.2 MWe power 
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from municipal solid waste and RDF feedstock. The company filed for administration in 2012 since 

the plant failed to produce energy during its three years of operation. The permit to operate that plant 

was revoked due to non-compliancy with the Scottish Environmental Protection Agency. 

Fiscal incentives for the development of advanced conversion technologies, such a gasification 

of municipal waste, might receive more attention in the next decade [69]. The Engineering and 

Physical Sciences Research Council (EPSRC) does not have a specific research focus in this area but 

has supported gasification projects in the past [70]. Considering the past failures of the technology, it 

will be challenging to obtain the necessary funding to increase the TRL. Much depends on the 

operation and economic viability of the Aldridge plant and its ability to robustly process municipal 

solid waste on a large scale. The success of this plant will unlock the potential for gasification as 

biowaste processor.  The failure however, along with the historical failure of similar plants, will be 

seen as conclusive proof that further development of this technology should be abandoned. 

3.3. Pyrolysis 

This process works on the thermal degradation similarly to gasification where partial oxidation is 

used to maintain the thermal conditions. Pyrolysis can also be achieved in complete absence of 

oxygen with an external heat source in inert conditions. Comparatively to gasification, pyrolysis 

works on lower temperatures of around 300 - 700 ℃ [71]. To date, although this technology is not 

new, it has not yet reached a widespread implementation. During the process, 3 products are made: 

solid coke, pyrolysis gas, pyrolysis liquid. The exact constitution and proportions of these products 

depends on the feedstock, reactor conditions, reactant residence time and pyrolysis method. The 

process can be optimized to maximize the formation of each product [72]. For example, in the case of 

fluidized bed reactors (fast pyrolysis), high temperature and high biomass residence time increases 

the production of gases; On the contrary, high temperature and low residence time however increases 

the formation of condensable liquid oils; then low temperature and high residence increases the 

production of solid coke. Typically, the pyrolysis gas, liquid and coke have calorific values of 5-16 

MJ/kg, 22-25 MJ/kg and 33 MJ/kg respectively. The low heating values of the gases and liquids mean 

that upgrading is necessary to produce fossil fuel substitutes [73]. Pyrolysis can work on any 

hydrocarbon waste that can be cracked to release gasses, oils and char. For instance, FOG, MSW, food 

waste, manure and sewage sludge are all acceptable.  

One of the notable advantages of pyrolysis against other waste-to-energy processes is the higher 

energy density achievable of the products produced. But what some researchers don’t mention is that 

these higher energy products were produced with external heat sources supplied to the reactor. 

Furthermore, a degree of preparation is required to reduce feedstock particle size. Also, drying can 

be required depending on moisture content and the desired calorific value of the products. The inner 

stages are centralized around the reactions (thermal cracking) of the waste to release the pyrolysis 

products, which are then captured through condensing. The remaining coke is sometimes incinerated 

to rid of the organic matter remaining. Main pyrolysis reactor types include rotary kiln, fluidized 

bed, fixed bed, entrance flow, moving bed and more experimentally auger [74]. As hinted here, this 

process can be responsible of higher waste residue than gasification and incineration. This is mainly 

due to lower temperatures as a result of lower flue gas volumes after combustion of the products 

than incinerators [7]. 

As a general process, fast pyrolysis is currently deployed in operational environments with 

system completion and qualification. This places fast pyrolysis at TRL 8. Pyrolysis with upgrading, 

that increase the quality for the oil produced so that it can be used as transport fuel, is currently at 

TRL 5 [70]. There are 8 companies and 9 universities actively engaged in activities related to waste 

treatment through pyrolysis (Table 8). Activities are mostly aimed at waste-to-fuel applications 

instead of waste-to-energy. There are currently no large-scale facilities for pyrolysis in the UK. 

 

Table 8. UK Companies and institutions involvement in pyrolysis 
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Company/Institution Location Feedstock Conversion Ref 

2G BioPOWER Kent Tyre  Recycling [75] 

Anergy Ltd London Biomass Waste-to-Energy [76] 

Conversion and Resource 

Evaluation (CARE) Ltd 

Down Biomass Waste-to-Fuel [75] 

Cynar Plc London Plastic Waste-to-Fuel [76] 

Environmental Power 

International 

Surrey Various Waste-to-Fuel [76] 

Future Blends Ltd Oxfordshire Biomass Waste-to-Fuel [75] 

PYREG (UK) Cambridge Sewage Sludge Phosphorous 

Recovery 

[75] 

Torftech Energy Ltd Thatcham Biomass Waste-to-Energy 

Waste-to-Fuel 

[75] 

Aberystwyth University Aberystwyth Biomass  Waste-to-Fuel [75] 

Aston University Birmingham Biomass Waste-to-Fuel [77, 78] 

Newcastle University Newcastle Biomass Waste-to-Fuel [75, 79] 

University College London London Plastic Waste-to-Fuel [80, 81] 

University of Cambridge Cambridge Various Material 

Recovery 

Waste-to-Fuel 

[75, 82] 

University of Edinburgh Edinburgh Biomass Waste-to-Fuel [83, 84] 

University of Leeds Leeds Biomass Waste-to-Fuel [85] 

University of Sheffield Sheffield Biomass Waste-to-Fuel [86, 87] 

University of York York Biomass Waste-to-Fuel [88] 

 

The EPSRC are routinely funding research aimed the development of bioenergy. The bioenergy 

thematical area currently holds 14 research grants worth £12,511,100.00. There are a number of grants 

awarded that is specifically aimed at improving the pyrolysis process. These were all related to waste-

to-fuel applications focusing on upgrading the quality of products to be used as marine and aviation 

fuel. Funding for waste-to-energy applications of pyrolysis remains uncommon. The financial and 

technical challenges will hamper the integration of pyrolysis as a process for waste management in 

the next decade. Pyrolysis as waste-to-energy mechanism is subjected to technical challenges [68]. 

The feedstock from municipal solid waste is inconsistent and will need significant preprocessing 

before it can be used. Blockages are often caused in pyrolysis plants due to tar deposition which lead 

to inefficiencies. Catalyst deactivation and choking can result in plant failure. These challenges are 

not negligible and has led to the limited application of this process worldwide. 

3.4. Anaerobic digestion (AD) 

As with incineration and gasification, Anaerobic Digestion (AD) is a well-established process within 

the waste to energy sector for the treatment of organic wastes. Dating back to the 1800s making it one 

of the oldest waste to energy processes. The concerns around the environment has increased its 

utilization when in 2007 England and Wales businesses were encouraged to use AD by the 

department for environment, food and rural affairs (DEFRA) to help meet energy targets set by the 

government [89]. Now, however, interest has dropped due to economic viability concerns. 

Investments and interest primarily come from businesses such as farms and not large waste industry 

companies, as the case studies included in the Royal Agricultural Society of England report show 

[90]. One of the main differences between AD and incineration/gasification is the predominantly 
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large plant waste treatment centres, costing hundreds of millions. However even with the economic 

concerns, AD is still considered a key process for achieving a circular economy, increasing resource-

efficiency and for the bioenergy-economy as a whole [91].  

The main feedstock for AD is manure and slurry, but it is not limited to these. Essentially, any 

organic matter can be fed into the digester such as WWS, FOG and food waste, as the process works 

on decomposition of organic matter. Microorganisms digest/eat the feedstock producing biogas, 

predominantly made up of methane (50-75%), with carbon dioxide along with traces of other gases 

making up the remaining percentage [92]. After the process, a solid mass known as digestate is left, 

a nutrients rich product that can be used as a fertilizer. As for the gasses produced, the high 

percentage of methane means it can either be upgraded to pure methane (main constitute of natural 

gas) or be combusted in a CHP plant. As Bywater [90] states ‘’The ratio of heat to power varies 

dependent on the scale and technology, but typically 35-40% is converted to electricity, 40-45% to 

heat and the balance lost as inefficiencies at various stages of the process, equating to over 2 kWh 

electricity and 2.5 kWh heat per cubic meter, at 60% methane’’. There are two types of AD’s: 

mesophilic and thermophilic, categorized according to their operation temperatures. The most 

common type (mesophilic) operate at temperatures between 20-45 ℃. Thermophilic digester operates 

at higher temperatures and most commonly used for sanitizing materials, so that they can be used 

for the benefit of agriculture. 

Anaerobic digestors are widely used in the UK placing the technology at TRL 9. There are 

currently 661 digestors operational in the UK [93]. It supplies the national grid with biomethane (102 

plants) and electricity (583 plants) and provide local heating (42 plants). The feedstock varies from 

agricultural waste (374 digestors), municipal/commercial waste (113 digestors), industrial waste (48 

digestors), and sewage sludge (163 digestors). Between 2008 and 2017, 255 new anaerobic digestors 

were built in the UK with a total capacity of 193,354 kW [92]. 

The percentage of energy generated in the UK from bioenergy is steadily increasing (Table 9). In 

2010 3.5% of energy generated were from biological sources. This has increased to 9.4% in 2016. 

Anaerobic digestors forms a component of bioenergy and is increasing as well. In 2010, 117 GWh 

electricity was generated with AD, accounting for 1% of energy generated with bioenergy. This 

increased to 2052 GWh in 2016, which is 7% of energy generated with bioenergy. AD is further 

discussed in section 4 where the environmental, economic, legislative and implementation is 

investigated. 

 

Table 9. Electricity generated in the UK from bioenergy by year [94] 

 

Source  Units 2010 2011 2012 2013 2014 2015 2016 

Landfill gas GWh 5,217 5,318 5,208 5,175 5,033 4,872 4,703 

Sewage sludge 

digestion 

GWh 723 775 739 766 840 894 950 

Energy from 

waste 

GWh 1,529 1,504 1,773 1,648 1,900 2,585 2,741 

Co-firing with 

fossil fuels 

GWh 2,432 3,093 1,829 337 124 183 117 

Animal Biomass GWh 627 615 643 628 614 648 650 

Anaerobic 

digestion 

GWh 117 237 495 713 1,023 1,471 2,052 

Plant Biomass GWh 1,615 1,771 4,048 8,832 13,086 18,587 18,829 

Total electricity 

generated from 

bioenergy 

GWh 12,260 13,313 14,735 18,099 22,620 29,240 30,042 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 15 

 

Total electricity 

generated from all 

sources 

GWh 347,896 332,461 341,912 336,504 317,732 318,552 320,110 

3.5. Hydrothermal Liquefaction (HTL) 

This is the thermochemical conversion of biomass into oils referred to as ‘biocrude oil’ that can then 

be refined into petroleum derived fuels. The main advantage of this process is that water has a higher 

dissociation constant (and lower dielectric constant) at these operating conditions. The water is 

thereby less polar and helps to be a good solvent for hydrocarbon products and promote their 

reactions. As shown in Figure 3, the process is performed in a pressurized environment from 4 to 22 

MPa, which avoids oxygen and heats to elevated temperatures between 250 - 374 ℃ [95]. These high 

pressures and temperatures help breakdown and reform biomass macromolecules into biocrude oil.  

As with anaerobic digestion, the process provides a means for processing wet biomass without 

drying that incineration, gasification and pyrolysis require. However, HTL is essentially pyrolysis in 

hot liquid water. As such, feedstock high in water content are suitable i.e. manure and sewage sludge. 

HTL biocrude oils contain a diverse range of chemical compounds, which present major challenges 

for downstream processes. This in some instances due to high heteroatom content in the biocrude oil 

can result in undesirable qualities, like acidity [96]. That said significant amounts of biocrude oil can 

be obtained from pig manure and digestate sludge. Vardon et al. [96] showed that at 300 ℃, 10-12 

MPa and 30 min reaction time, pig manure and digestate sludge yielded 30% and 9.4% respectively 

with HHV’s of 34.7 MJ/kg and 32 MJ/kg. With promising yields from biomasses, this process may 

become more widespread in the waste-to-energy sector in the future. 

 

 
 

Figure 3. Diagram of HTL reactor system [95] 

The current status of hydrothermal liquefaction in the UK is TRL4 since it has only been 

validated in the laboratory environment [70]. A recent review has indicated that the technology 
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is immature with scaled testing at a limited number of UK universities [97]. The University of 

Leeds, Imperial College and Bath University are the only known institutions actively involved 

in experimental research in this area [98, 99, 100]. A recent review from the University of Surrey 

suggested the research focus for the process [101]. It highlighted the developments needed in 

the field to allow for both wet and dry biomass to be processed through this technique. Currently 

challenged associated with the process is catalyst performance, efficiency, product quality and 

handling of the high volumes of wastewater. Stirring large volumes of biomass slurry at high 

pressure is problematic and the solid content needs to be less than 35% to ensure pumpability. 

The process remains expensive due to the components necessary to operate in a corrosive 

environment at high pressures. The technology is expected to reach TRL 8 by 2030 [70]. 

3.6. Summary of advantages and disadvantages of WtE processes  

Looking at how prolific the processes are, HTL and AD lag behind incineration, gasification and 

pyrolysis in the UK, aligning with some of the issues discussed. Other process, such as fermentation, 

is used to some extent to produce bioethanol, but this is not so prevalent in waste feedstock streams. 

Incineration has been shown to be the most capable in feedstock admissions combined with the 

lowest end process waste percentages. However, this comes at the cost of lower efficiencies, high flue 

gas volumes and the loss of product extraction from the waste streams. The partial oxidations 

adopted in gasification and pyrolysis give advantages of lower flue gas volumes of which have lower 

percentage levels of oxidized species such as SOX and NOX, resulting in smaller flue gas treatment 

systems.  

The other main advantage is the product extraction possibilities. Notably pyrolysis process 

results in products of higher energy density. Although not discussed, plasma pyrolysis and plasma 

gasification among others are some of the technological advances of these processes, essentially 

working at higher temperatures to create more reactions and result in less end process. AD is shown 

to be different from the other processes, attaining products without the need of high temperatures 

and complex systems. But AD is limited to predominately manure feedstocks and economic 

uncertainties through lowering levels of government schemes and grants. This is alarming, 

considering a degree of pollution raw manure is responsible for. HTL offers a pathway to obtaining 

bio crude oil which can be upgraded and refined to match petroleum-based fuels from waste streams, 

unlike other processes that use more valuable resources, such as rapeseed biodiesel, for instance.  

One thing that has been made clear across literature of WtE processes is that although some of the 

processes have the ability to deal with a wide variety of wastes, the facilities are usually specifically 

designed to suit one particular waste stream. For example, in 2009 the chimney of ConTerm pyrolysis 

plant in Hamm Germany collapsed. The accident was the result of an insulation problem which lead 

to very high temperatures and softening of the steel structure. It was later found that inadequate 

sorting of the waste stream was a key contributor, as the feed characteristics exceeded the process 

design resulting in excessive temperatures past tolerable limits [7].   

The utilisation of waste streams for energy and products has proven to be well documented, 

with landfills now considered as temporary storage. Waste FOG’s and food can be fully utilized for 

WtE processes, same goes for WWS. Despite the widespread implementation/capture of these wastes 

in the UK, it still requires a degree of work in achieving a circular economy as the government plans. 

4. Discussion on the Effects of Manure and Barriers to Processing 

When looking at preventative environmental emissions, manure as a feedstock remains largely 

untouched. As a result, high concentrations of NOX, ammonia and methane, which are retained in 

the manure are emitted into the environment. A complete contrast is shown to strict legislation placed 

on internal combustion engines for NOX emissions, which in fact, account for far less of the 

anthropogenic emissions than manure. These and other wastes discussed in the previous section 

should be the subject to a higher attention even if they are responsible for a lower fraction of the 

emissions of manure. Therefore, this section will cover the issues of manure and anaerobic digestion 
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related to the environment, economics, legislature, and implementation. It will discuss the severity 

that untreated manure can pose in the UK through emissions of nitrous oxides, methane, and 

ammonia. Amount of emissions produced by manure can be mitigated through WtE processing by 

avoiding the barriers preventing the implementation of this as a whole, and also bringing most of 

manure generated in the UK under pollution control.  

4.1. Environmental effect of emmisions from manure  

4.1.1. Ammonia 

Overall, the agricultural sector accounts for 88% of all NH3 emissions in the UK and is estimated at 

94% in the EU [101, 102]. The lack of manure and sludge treatment in the UK results in the livestock 

industry accounting for 66% of all ammonia emissions, as shown in Figure 4 (b) (not including 

grazing/outdoors), according to the Department for Environment Food and Rural Affairs (DEFRA) 

[102]. The figure related to manure and slurry production is not taking into account cattle graze on 

open fields for at least half a year, not counting some unavoidable proportion of ammonia (NH3) 

emitted into the atmosphere. Report on NH3 emissions produced by agriculture sector was prepared 

by DEFRA. Figure 4 (a) shows the proportion of ammonia emissions per livestock.  

 

 
(a)                                               (b) 

Figure 4. Ammonia emissions within agriculture by (a) livestock and fertilizer category and (b) by 

agricultural management category [102] 

An estimation from Figure 4 can be made on the true amount of NH3 emissions, the direct result of 

manure formation and slurry at around 40 % (Manure storage 9% + Grazing 8% + Hard standings 7% 

+ Sewage sludge 2%) of 66% of all ammonia emissions subject to unavoidable losses through animal 

grazing and hard standings. Hard standings are defined as unroofed paved or concrete areas. 

Examples include areas outside the milking parlor, where dairy cows congregate prior to milking. 

Meaning that up to 40% of NH3 has the potential to be avoided with widespread waste to energy 

processes applied. This 40% in 2019 amounts to 86.2 kT of NH3 emitted every year [103]. As NH3 is a 

soluble alkaline gas with a high reactivity, the effects to the environment are numerous. In terms of 

the atmosphere, it reacts with acid pollutants such as the products of SO2 and NOx emissions to 

produce fine ammonium NH4+. Both forms have a lifetime of 10-100 years which lessen the overall 

effects atmospherically but creates localized affection zones with high concentrations of NH3 and 

ammonium fallout [104]. The effects of ammonia vary as it is a commonly found naturally. One of 

the most notable aspects is the unpleasant odour, which even at low concentrations due to the 

pungency is still detectable. In the atmosphere, it can be an irritant to the eyes throat and lungs in 

high concentrations, the ammonium can penetrate deep into the lungs with links to respiratory 

problems and diseases due to the fine particle size [105].  
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For vegetation, ammonia is on the most part beneficial as a source of nitrogen essential for the 

formation of amino acids. When in the form of ammonium and is deposited onto soil it is converted 

by bacteria into nitrates which are then absorbed by roots increasing growing rates of nitrogen loving 

plants. But this can lead to imbalances affecting biodiversity, where nitrogen loving plants take over 

smothering out other species less effective in nitrogen take up. NH3 pollution also effects species 

through soil acidification, damage to leaves through a burning effect reducing the resistance to frost, 

pathogens and drought. These negative effects in a report conducted by RAND [106] say that by 2020 

the negative impacts could be equivalent to the cost of more than £700,000,000 per year.  

The effects of NH3 in water sources is notably more severe, with links to eutrophication and 

acidification, where in concentrations ranging from 0.53 to 22.8 mg/L it becomes toxic to freshwater 

organisms. The toxic effects differ depending on species but generally fish may suffer loss of 

equilibrium, hyper excitability, increased oxygen uptake and increased heartbeat rate. In extreme 

levels NH3 can cause fish to suffer convulsions, coma and death. Even at levels below 0.1 mg/litre fish 

can experience irritation, gill damage, reduction in hatching and growth rates [107]. Fish and aquatic 

life can also be indirectly affected through eutrophication creating algal blooms reducing the amount 

dissolved oxygen. 

4.1.2. Nitrous Oxides (NOX) 

This is another notable pollutant given off by manure, known for its high GWP of 298 times that of 

carbon dioxide. The lifetime is around 110 years in the atmosphere where the process that removes 

NOX from the atmosphere contributes to depletion of the ozone layer [108]. Aside from methane and 

ammonia, NOX is the 3rd biggest contributor in emissions from agriculture. The degree of NOX 

produced from manure is dependent on the amount of aeration where the greater availability to 

oxygen leads to more NOX formation. Looking back at the waste to energy processes, anaerobic 

digestion offers the most suitable option in limiting NOX formation. The amount of NOX emitted as 

the direct result of manure is unknown, however the overall NOX emissions from agriculture are 

known to be 27 kT in 2017 [109]. This amounts to 3% of the total NOX emissions in the UK, with 

transport contributing the most, 34%. Contradictory to this data, the national statistics for the UK in 

2017 showed that in fact agriculture is responsible for 70% of NOX emissions, amounting to 14.3 Mt 

CO2e [110].. As both are from reputable governmental sources, this serves as an example of the degree 

of uncertainty these estimates are subject to. Nevertheless, more trust will be placed on the higher 

figures when looking at another report stating it to be 65% [111]. Similarly, to the NH3 emissions, the 

amount emitted as the result of manure can be expected to be considerably less. 28% is a reasonable 

estimation if manure amounts to 40% of agriculture’s overall impact. 

4.1.3. Methane  

As with nitrous oxides, methane presents a significant contribution to greenhouse gases with a GWP 

25 times that of CO2 and a lifetime in the atmosphere of around 10 years, where other chemicals in 

the air are responsible for its removal. The main source of methane is from the natural decomposition 

of organic matter in anaerobic conditions. As manure and slurry present large quantities of organic 

matter they contribute significantly to the agricultural sectors total emissions 51% of the UK’s 

anthropogenic methane emissions in 2015 [112] and 50% in 2017 [110]. Figure 5 shows this in 

comparison to other sectors highlighting again that agriculture is the biggest contributor. Unlike NH3 

and NOX emission where artificial fertilizer contributes heavily, methane is almost exclusively from 

manure, slurry and the animals’ digestive systems. As the animals are known to be high contributors 

a ballpark estimation would be that 45% of methane emissions within agriculture are the direct result 

of manure and slurry. This in wider terms translates to 22.5% of total methane emissions in the UK.  
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Figure 5. Methane emissions by sector in 2017 [110] 

Methane can present an explosion risk at 5-15% content in the air [113]. There are numerous 

documented incidents where methane has been the result of gas fires and explosions in agriculture. 

For example, under certain conditions in which animals are fed a particular diet, this can result in the 

formation of bubbles containing methane in the slurry. The bubbles have been known to form a foam 

above the slurry which is susceptible to combustion [114]. 

4.1.4. Anaerobic digestion of manure as mitigation strategy for harmful emissions  

The waste to energy conversion of manure to electricity, heat, fuel or grid gas is a four-stage process, 

as shown in Figure 6, consisting of hydrolysis, acidogenesis, acetogenesis and methanogenesis [115].  

Manure feedstock is complex organic matter that consist of carbohydrates, proteins and fats.  

Through hydrolysis this is converted to soluble organic molecules such as sugars, amino acids and 

fatty acids. Acidogenesis or these components lead to the formation of volatile fatty acids, acetic acids, 

hydrogen and carbon dioxide. The volatile fatty acids is converted to acetic acids, hydrogen and 

carbon dioxide through acetogenesis. The last stage of the process is methanogenesis that forms 

biogas which can be converted into biomethane. Biogas is used at fuel in electricity and heating 

applications, while biomethane can be directed pumped into the national grid. Each stage the process 

is reliant on a number of microorganisms to participate in the reactions. Since this reaction occurs in 

an oxygen lean environment, there are less oxygen molecule to bind with the nitrogen molecules and 

form NOx.   
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Figure 6. Waste-to Energy-process using manure as waste feedstock 

As highlighted, NOx formation is related to the degree of oxygen present when organic matter is 

decomposing, but when in an anaerobic environment, methane emissions increase. In the process of 

anaerobic digestion, this is ideal where the methane can be captured and used. In work produced by 

Sommer et al. [116], algorithms were developed for calculating methane and NOX emissions from 

manure management [116], in which, the degree of emission reduction through anaerobic digestion 

was calculated. The model predicted 90% reduction of methane from outside stores with digested 

slurry. The digested slurry/muck is said to have a reduction of more than 50% of NOX emissions after 

the application of the digested slurry onto agricultural land vs that of untreated slurry. No 

estimations were made regarding the effect on NH3 production, where this is considered an anaerobic 

digestion inhibitor, through the change in pH. High toxicity levels also destroy microbes that produce 

methane [117].  

For reduction in NH3 emissions, it is clear that anaerobic digestion is not best suited to this. The 

addition of magnesium ammonium phosphate otherwise known as struvite is said to reduce NH3 

levels in a digester. Where struvite is a valuable plant nutrient source that slowly releases nitrogen 

and phosphorus overtime, it also known for its low solubility in water. Uludag-Demirer et al. [118] 

in an experiment added a set amount of struvite to a digester, resulting in 11% NH3 reduction. Other 

work in this area also highlights the role pH plays, highlighting reactor conditions having a 

significant impact. Apart from optimizing reactor conditions and introducing additives, further 

processing would be the next cause of action. The anammox process is one such process aimed at 

post digested effluent. It is considered an efficient biological method for nitrogen removal through 

ammonium oxidization to nitrogen gas in anaerobic environment. Molinuevo’s experiments [119] 

found that up to 92% of ammonium could be removed this way. As it can be quite costly to remove 

the NH3, others look towards how the manure is applied to soil and if emission mitigation can be 

achieved there. Some of the main techniques from this aim towards limiting the mixing the slurry 

and muck have with the atmosphere through trail hoses and direct injection. The trail hoses limit the 

surface area that the muck and slurry is applied to. From Sommer and Hutchings [120], this is said to 

reduce the amount of emitted ammonia by 40%. For injection, this figure is said to be even higher at 

60% when in combination of harrowing prior to the application. 
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4.2. Economical aspects of anaerobic digestion  

4.2.1. Current Incentives 

As mentioned in the AD description, incentives have been on the decline at current, it can be assumed 

that almost all grants have been withdrawn by the government. Similarly, the tariffs in recent years 

have been reduced from 15.15 p/kWh in 2010 to 4.50 p/kWh in Jan 2019 for biodigester units less than 

500 kW [121]. The gradual change in tariff rates for all sizes of AD is shown in Figure 7, offering a 

depiction of the decrease in the amount of government funds made available per year. The curves 

show the tariffs in p/kWh for three bands of installed capacity: 0-250 kW, 250-500 kW and 500-5000 

kW. Some studies suggest that such change in tariff rates is too high for average size of UK farms and 

that lower boundaries should be introduced. Even incorporating the sale price tariffs, the cost 

viability particularly for small scale farm systems comes into question. This can be linked with the 

step decline seen in the number of AD plants commissioned each year. Where from the peak of 79 

new plants commissioned in 2014 a fraction of that number is now commissioned which was only 6 

in 2017 [122]. This is shown in a graph taken from Savills summary [123] on AD growth and 

performance depicted by Figure 8. A clear link can be seen between the drops in tariff rates from 2014 

to 2015 shown in Figure 7 to the fall in plants commissioned per year shown in Figure 8.  

 

 

Figure 7. Change in generation tariff rate for anaerobic digestion [121] 

 

 

 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

0-250 kW 15.15 15.15 17.54 17.54 17.54 12.64 10.11 6.48 4.57 4.5

250-500 kW 15.15 15.15 16.23 16.23 16.23 11.69 9.34 5.98 4.33 4.27

500-5000 kW 11.82 11.82 10.69 10.69 10.69 10.16 9.63 6.16 1.61 1.54
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(a) 

 

(b) 

Figure 8. Number of AD plants commissioned from 2008 to 2017 in UK (a) and the total capacity in kW 

(b) [123] 

 

The numbers are very low considering the number of farms in the UK and goals set out by the DEFRA 

and National Farmers Union (NFU) aiming for 1000 on-farm AD plants by 2020 [124]. The actual 

number by 2020 will be considerably less highlighting the lag that this industry has to overcome if it 

were to pose a significant reduction in GHG emissions and averted emissions through methane 

capture pathways. 

4.2.2. Capital Grants and Finance  

The lag on the farm scale can be mostly put down to the capital costs required for installation. Almost 

all AD plants surveyed has some form of capital subsidy at 93% according to Bywater [90]. This is in 

part due to the financial status of smaller farms which can struggle to break even relaying on 

receiving farm payments from the government every year, making it unlikely that the capital would 

be available for such an investment. This lack of capital changes the use pathway of the methane gas, 

where expensive onsite gas cleaning and combustion in gas engines is not an option. Thus, the gas 

produced is merely used in boilers to heat farmhouses and to use for hot water, losing the potential 

for self-electricity generation and associated benefits. It is also worth noting that the tariff system 

changes onto the renewable heat incentive (RHI) as a result. A system not designed for this sector is 

providing yet a smaller insignificant income. Currently for small biogas combustion of which this 

pathway would fall under, the rate stands at 4.74 p/kWh as shown in Table 10, further lowering the 

economic prospects for farm AD. 

Table 10. Tariff rates for RHI (small biogas combustion) [125] 

Eligible 

Technology 

Eligible 

Sizes 
Accreditation Date 

Tariff Rate 

2019/20 (p/kWh) 

Small Biogas 

Combustion 

Less 

than 200 

kWth 

Before 1 April 2016 8.44 

Between 1 April and 30 June 2016 7.41 

Between 1 July and 30 September 2016 6.30 

Between 1 October and 31 December 2016 4.74 

Between 1 January and 31 March 2017 3.54 
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Between 1 April and 30 June 2017 3.37 

Between 1 July 2017 and 21 May 2018 3.03 

On or after 22 May 2018 4.74 

4.2.3. Supply of slurry and muck 

There is a high volume of slurry and muck produced on farms, where for instance, a pig unit near 

York with around 5000 pigs produces 20m3 of slurry a day and over 1000 tonnes of muck each year. 

More can be said of the future with farm operations switching to fewer much larger operations, as 

small holdings with less than a couple hundred acers struggle financially with expensive farm 

machinery required to operate and  the lack of land and livestock to spread overheads over. It is said 

that in the UK, 4.5 times as much derived organic matter is produced from farm operations (including 

slurry and muck) as from food, 90 million tonnes compared to 20 million tonnes [90]. Thus, the supply 

is not an issue. 

4.3. Legislation controlling implementation of anaerobic digestion plants 

4.3.1. Environmental Permitting  

This is the primary means of regulating and minimizing the impact business activities have towards 

all environment aspects for England and Wales, such as to the air, water, land and considering factors 

like noise and safety. For AD plants to operate and spread digestate, a permit must be obtained. This 

involves completing a technical application form, demonstrating competency and willingness to 

abiding by the conditions of the proposed permit. Currently this can be achieved through Charted 

Institution of Wastes Management / Waste Management Industry Training and Advisory Board 

(CIWM/WAMITAB) scheme or Environmental Services Association / Energy and Utility (ESA/EU) 

sector skills. Setting out 3 different types of permits as shown in Table 11. 

Table 11. Anaerobic digestion permits 

Type Description Conditions 

Exemption 

For small scale plants 

which aren’t waste 

facilities 

 Must provide technical information to the environment 

agency and register  

 No charges  

 Only for agricultural businesses and burning of 

resultant biogas at the site.   

 1,250 m3 limit for the total amount of untreated and 

treated waste on site at any time  

 0.4 MW limit for the thermal generating capacity of the 

plant 

 Minimum 28 days residence time of the waste [126] 

Standard 

For plants which can 

operate within a set 

of standardised rules 

and conditions. 

 AD processing facility including the use of the biogas 

 100 t processing limit per day  

 Combustion of biogas can be in gas engines, boilers, 

turbines, fuel cells or upgrading to bio methane [127] 

Bespoke 

For plants that 

cannot adhere to all 

pre-defined rules or 

conditions 

The conditions vary considerably where both stationary 

and mobile AD plants are categorised for in this type. 

However, the flexibility of this type comes at more cost 

and time. Details can be found on the government 

website [128].  

4.3.2. Permits for Spreading Digestate  
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As with exceptions to environmental permitting, digestate that is solely from agricultural waste 

streams is exempted from disposal charges provided that a number of conditions are met. These are: 

 Only can be spread on agricultural land  

 50 t per hectare spreading limit  

 200 t storage limit at any one time  

 Digestate must be from waste streams that improve or maintain the physical, chemical and 

biological properties of the soil to grow crops [129] 

Note that material that has reached PAS 110 and Quality Protocol standards is no longer regarded as 

a waste. As such, the restrictions above no longer apply.  

To spread waste material which does not meet the publicly available specification (PAS) 110 for 

agricultural and non-agricultural land for business or environmental enrichment, a permit is 

required. That is if the spreading activities to agricultural land exceed the exception conditions. 

Generally, a standard rule permit is given with the conditions and charges depicted in the 

government publication “SR2010 No.4: Mobile plant for land spreading” which specifies: 

 A 250 t per hectare spreading limit  

 3,000 t limit for the amount of waste material on site at any time 

 12-month storage limit for the material  

 For every spreading application of material to the land a charge must be payed depending 

on material type and the risk it poses, ranging from low, medium and high 

High risk (Category 2) animal by-products (ABPs) cannot be used as feedstock in AD plants, unless 

they have been treated to a 133°C/3 bar/20-minute EU pressure-rendering standards [130]. Contrary 

to this manure is classified as a category 2 ABP, however, manure can be used without processing as 

raw material in an AD plant. But when mixed with ABPs such as catering waste the mixture must be 

rendered to the heat and pressure regulations prior to anaerobic digestion.  

4.3.3. Planning Permission 

Potential issues surrounding planning of AD plants revolve around 5 main concerns as highlighted 

from the governments planning policy statements and supplementary planning guidance [131]. 

These are: 

Site Selection. The AD reactor tank can sometimes be quite large presenting a significant change to 

a landscape, where tanks can reach as high as 15 m. However small on farm digesters can sometimes 

be accommodated within the farmyard and buildings concealing it to an extent. Where this may not 

be possible, in the interest of reducing tank visibility, it can be somewhat burried in the ground 

reducing the visual impact. The burial also offers heat insulation benefits. Centralised AD plants have 

issue of the transport of feedstock involved, affecting chances of approval, giving on-farm plants the 

advantage. 

Feed Stocks and Product Storage. Planning permission may be given only for specific feedstock, 

adding to or changing the feedstock is not allowed without further planning consent. This ties in with 

the exception permit given to farms that by adding other feed stocks it can lead to the exception being 

revoked. The storage of slurry and muck used in on-farm AD plants is covered by the water resources 

(control of pollution) (silage, slurry and agricultural fuel oil) England regulations and 

the nitrates directive (91 / 676 /EEC). Specifying the minimum standards for construction related to 

the design and operation of any farm slurry storage system. 

Odour. AD by its nature of breaking down organic matter is an odorous process, this is of concern. 

Where predicted odour effects and proposed mitigating measures should be reviewed. If a location 

is considered to be sensitive to odours, information on the control measures should be provided from 

the developer to ensure that all sources are accounted for. Farms are already known for to be odorous 

and thus odour concerns are lessened to those of centralized facilities.  
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Emissions to Ground and Water Courses. As has been made clear in previous section, the runoff 

from raw agricultural wastes such as manure and slurry can contribute to serious farm pollution 

incidents. Therefore, the AD of farm waste should be conducted in a manor to reduce the likelihood 

and ability of the material to pollute water sources. In many application cases, the requirement of a 

bound wall is put forward by the planning authorities to prevent effluent spillage in the event of a 

leak. As for ground water leaking, the surround surface of a supposed plant is usually required to be 

concreted and run off prevented from reaching normal drains. Delays in the planning process can be 

the result of concerns in regard to designs inadequacies.  

Emissions to Air. The production of biogas from AD and its uses contributes to a number of 

emissions to the atmosphere, manly from engine exhausts, gas vents and flare stacks. The emissions 

can however be considered insignificant provided the equipment meets design specifications and is 

routinely serviced. For larger on-farm and centralised AD plants integrated pollution control 

measures are required to control the emissions to meet regulations.  

4.4. Implementation of anaerobic digestion to farms  

4.4.1. Slurry and Manure as a Feedstock  

Without adding other feedstock, the AD of slurry and manure has been proven to be uneconomical 

for both on farm and centralized plants due to the low gas yields, high capital cost and absence of 

gate fee. The legislation also plays a large role here in the restrictions placed on the exception type 

permit for farm-based plants. Other wastes such as those from grain processing can be added to 

increase gas yield without increasing the potential environment effects. In surveys conducted in 2017, 

it was reported that there were 401 AD plants in the UK, if those for treating sewage sludge are 

ignored, with more than half at 221 utilizing slurry and manure as feedstock. However, those 

dedicated to only slurry and manure are uncommon making up just 6% equating to 24 plants, with 

the capacity of processing 165,000 tonnes per year [132]. 

4.4.2. Grid Connection Issues  

For widespread implementation of AD to farms, significant issues can be expected in connecting to 

the grid in part due to the low load electricity lines supplying many farms and the power of 

transformer. If the national grid deems the transformer inadequate, this can make the implementation 

of an AD plant to produce electricity not economically viable. Because it is presumed that small AD 

plants are unlikely to produce significant extra electricity that can be sold to the grid. 

4.4.3. Lack of Land  

From the regulations on digestate spreading where 50 tonnes per hectare is the spreading limit, large 

livestock farms particularly those where the animals are kept indoors all year round and have little 

in terms of land can be a significant issue. On the contrary these farms must find ways to get rid of 

slurry and muck like the straw-muck exchange highlighted in the feedstock preliminary section. And 

if this were to be replaced by digestate the application rates are the same. If PAS 110 and Quality 

Protocol standards are achievable, converting slurry and manure to digestate would be very 

advantageous for surpassing the application limits. 

4.4.4. Technology 

If widespread implementation were possible this could see a significant contribution to the UK’s 

energy demands if the majority of manure and slurry were to be processed. This amounts to 90-100 

million tonnes of agricultural by-products such as manure and slurry available each year in the UK. 

This is based on a 20 m3/t (8% dry matter) average gas yield of slurry, that 1.7 kWh of electricity is 

produced per 1m3 of gas due to conversion losses and if 50% of the available manure/slurry can be 

processed, 1.615 TWh worth of electricity could be produced. A reasonable estimation which could 

provide 0.45% of the UK’s annual demand, based on 2018 at 352.064 TWh [133]. A low percentage, 
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but after considerations of the useful heat that can be harvested alongside the emission mitigations, 

it becomes more considerable. But the low electricity generation is a limiting factor in the technology 

potential. 

4.4.5. Operation 

The success of an on-farm AD plant, no matter how good the design nor technology, is inevitably 

comes down to operator skills, frequent monitoring and feeding the digester. On many farms, the 

muck and slurry are required to be mixed into the digester at a certain ratio for instance. Adding to 

this AD’s can be plagued by a number of problems namely: 

• Frothing  

• Acidification  

• Increasing viscosity  

• Increasing volatile fatty acids (VFA) and total inorganic carbon (TIC) value  

• Poor methane yield  

These problems, if not corrected and kept on top off, can lead to poor biogas yield. Frothing alone 

can reduce biogas yield by up to 20% [134], with the cause linked to the constitution of the digestant 

and mixing routines within the reactor tank. These problems make time allocation and training a 

must for the farmer/operator. As such, a best practice guide should be made available if not already 

on the operation of AD plants specific to slurry and manure. 

4.4.6. Bespoke cases 

One size does not fit all in the case of widespread farm implementation, every farm is individual and 

presents its own challenges. The differences from farm to farm can be enormous from the amount of 

slurry and muck produced, to the characteristics of the feedstock and the planning complications. At 

a government level to seek to drastically increase the number of on-farm AD plants, this would prove 

complex as what may be beneficial to one may be inadequate to another.   

Here, we provide two cases of commissioning of anaerobic digesters, which use manure as a 

feedstock. The first case is the Copys Green Farm located in Wighton, Wells-next-the-Sea in the 

eastern part of the UK, as shown in Table 12. The farm is very much sustainability driven and owners 

won a number of awards for doing so, namely the Farmers’ Weekly green energy farmer of the year 

2010. Note that £100,000 grant from bioenergy was turned down due to stopping double Renewable 

Obligation Certificate / Feed-in Tariff (ROCs/FIT) from being revived. Payback period was estimated 

at 8 years with a £83,000/year running cost most of which was the high energy feedstock. The biogas 

was produced at the rate of 70 m3/hr burned to generate 131 KVA for grid export. In the planning 

and development stage the biggest barriers to on-farm AD is described as administrative. This 

includes the environment agency and OFGEM paperwork, where the owner feels the paperwork is 

disproportionate to the risk. 

Table 12. Summarised data of Copys Green Farm [90] 

Digester Size 870 m3 (mid to large size) 

Digester Type Mesophilic, insulated, steel glass coasted tank with fixed roof 

Gas Use 
140 kW CHP, Feed in tariffs, extra heat used in grain drying, cheese making, 

dairy hot water and heating the farmhouse. 

Commissioned 2009 

Feedstock (tonnes 

per year) 

Slurry from 100 dairy cows estimated at 2,500T/yr, Maize Silage or fodder 

beet estimated at 2,500T/yr, Whey from cheese making supposed feed stock to 

be incorporated but not yet would be around 210T/yr 
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Farm Size 230ha, arable and dairy, all in NVZ (Nitrate Vulnerable Zone) 

Capital cost 
Estimated to be £750,000, self-financed, with £100,000 capital grant turned 

down. 

Issues Unreliability of CHP. Tech provider issues (takeover midway through project) 

Barriers to AD Administrative: EA and OFGEM paperwork 

Advantages 
Recycling and improved utilisation of crop nutrients. Reducing risks the 

manures pose to NVZ area as digestate 

 

The second case is a Woodhead farm located near Annan in Dumfries and Galloway in the 

western part of the UK, as shown in Table 13. A SlurryGen-50 digester was installed by Advanced 

Anaerobics Ltd. to help reduce electric bill and generate income [135]. 500 kWh is used each day of 

the total 1,200 kWh produced with the balance exported to the grid. Owners applied for the feed in 

tariff in 2014 securing 12.46 p/kWh. The excess heat is planned to be used on farm and generate 

additional income through RHI scheme. With these tariffs and savings to the electricity bill, payback 

period is estimated 60 months (5 years). It is said that for each ton of dry organic matter in slurry can 

produce 300-400 m3 of biogas. Operating cost is highlighted as an issue in this case study, because 

for example the CHP generator requires routine maintenance and periodic engine rebuilds. Over a 

20-year lifetime, the operating costs of the plant as a whole will exceed the initial capital cost.  

The Farmers’ Weekly points out that in 2015 only 18 slurry AD plants were running in the UK. 

There were however 20-30 units at the planning stage. More widely 280 on-farm plants have been 

encouraged with RHI and FIT’s.   

Table 13. Summarised data of Woodhead farm [135] 

Digester Size Small 

Digester Type Mesophilic, insulated, steel glass coasted tank with fixed roof 

Gas Use 
50 kW CHP, some used on farm, rest exported to grid through feed-in tariff. 

Surplus heat planned to be used on farm under RHI 

Commissioned 2015 

Feedstock (tonnes 

per year) 
Slurry from 320 dairy cows estimated at 24 T/day 

Farm Size n/a 

Capital cost Estimated to be £400,000 (self-financed) 

Issues Operating cost due to small plant 

Barriers to AD Administrative: EA and OFGEM paperwork 

Advantages 

Smaller size, simplified planning and permits, as does not need crop or other 

material brought in, there is no requirement to qualify as consented waste 

management site and lower capital cost. 

4.5. Summary of manure and AD implementation  

Manure and slurry present significant anthropogenic emissions of NH3, NOX and methane in the UK 

at 40%, 28% and 22.5% respectively. This requires that anaerobic digestion mitigations of 90% in 

methane from stores and 50% in NOX emission after the application to land can be achieved. 

However, AD has poor NH3 reduction capabilities, requiring extra processing. Although a more 

effective migration pathway may be to change how muck and slurry are applied to land, a reduction 

of up to 40% is achievable by minimizing aeration.  
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Sharp drops in tariff rates, high capital requirements and lack of grants make the economic side of 

AD an issue. On-farm AD has been named numerously as the most suitable type for manure but the 

least viable. Therefore, reforms to the incentives are a must if the number of AD plants are to increase 

in the UK, especially on-farm types which rely on grants. As the current tariff banding system is 

unsuitable for on-farm AD, implementing higher paying bands would be advised. A gate fee for 

processing, which includes the cost of opening, maintaining and eventually closing the site and also 

may include taxes applicable in a region, would also be advised to reduce dependence on biogas 

yield and temptations of using high energy crops.  

Legislation and planning play a key role in the establishment of farm digesters with exception 

permits designed for this scenario, but for an exception to be grated strict rules apply. For more 

normal or unique operations, two other permit types (a standard rule permit SR2010 and a planning 

permit) can be granted at a cost and more time. The quality of the digestate is key in what can be 

done with it and how much can be applied to agricultural land. For use on non-agricultural land 

digestate incurres charges, limitations of quality and permitting (if still a waste). Manure is also found 

to be categorized as a high-risk waste which presents pressure and heat rendering incursions. These 

can however be ignored provided it is not mixed with other animal by-products. Overall, the 

legislation can be said to be well founded and necessary. Planning permission for many is where 

issues arise in legislation delaying a project or preventing its construction. The case studies show 

legislation is a barrier to AD. But as the planning difficulties are routed in reducing the risk an AD 

plant poses to the surrounding environment, no changes are envisaged  as to ease the 

implementation of wide spread AD plants, with the environment as one of the primary focuses of 

this paper.  

A significant amount of electricity could be produced, at 1.615 TWh equivalent to 0.45% of total 

UK’s annual demand. Potential grid connection issues can limit this but for small on-farm plants 

encouraged in this report it can be said to be minimal, with the majority of the useful energy used 

onsite. Furthermore, the bespoke requirements for on-farm AD are known to present difficulties for 

the widespread implementation. Finally, as stated, inevitably the success of an AD plant comes down 

to operation. Improper monitoring and lack of know-how can lead to poor gas yields through 

problems common to digesters. Therefore, training and courses on operation are a must not just to 

prove competency for attaining permits but also for good operating practice. 

5. Conclusions 

Waste-to-energy sector is well developed with a number of processes capable of dealing with a 

variety of waste streams for energy and product extraction, improving sustainability and waste 

management, critically displacing fossil fuels and transferring towards a circular economy. However, 

challenges remain in the effective implementation of these processes in the UK. From the existing 

body of studies, it is clear that no 'quick fix solution' will guarantee energy sector decarbonisation. 

Conventional bioenergy's capacity to produce significant GHG reductions is being constantly 

debated. Sustainable residues and waste from biomass may and should definitely be part of this 

solution. This review has focused on certain waste streams such as biomass residue and agricultural 

waste, landfill waste, food waste, fats-oils-grease, wastewater sludge and manure, because they are 

considered potentially sustainable feedstocks. With a broad variety of current applications for several 

of these feedstocks, it will require strong environmental protections to avoid harmful environmental 

and social outcomes. Although the amount of such waste materials will be raised, it will decrease for 

certain wastes. Given the importance of several other applications, only a portion of the future flow 

of such resources can be devoted to the development of bioenergy. Of this among other purposes, 

there is substantial confusion regarding the exact quantities among energy values of the feedstocks 

that could be used sustainably of bioenergy development in the UK and further research on this is 

desperately required, taking into account economic forces, competitive applications, environmental 

imperatives and other considerations. 

90 million tonnes of manure and slurry in the UK remain largely untapped, presenting the 

biggest contributions to ammonia, methane and nitrogen oxide anthropogenic emissions of any other 
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waste or industry in the UK at 40%, 22.5% and 28% respectively. With large scale implementation for 

on-farm AD, mitigations for 90% and 50% of methane and nitrogen oxide could be achieved with the 

added potential of generating more than 1.615 TWh of sustainable electricity. Further processing and 

changing application methods of slurry and muck to land is required to reduce ammonia emissions. 

Barriers in the form of insufficiently high banding and tariff systems, planning, high capital costs, 

lack of government subsidies and low gas yields prevent this. Therefore, it would be suggested that 

a lower high paying tariff banding system needs to be introduced to increase AD plants on farms. It 

is suggested an addition of a gate fee payment to reduce high energy crops used as supplements for 

gas yield, and to increase the amount of slurry and muck that are digested. The bespoke nature of 

farms could still present a fundamental issue in the degree manure and muck in the UK are processed. 

The use of biomass capital to decarbonize the UK energy market has considerable potential, and 

the use of sustainable biomass waste and residues can be part of this solution, both in the direct 

processing of liquid and gaseous fuels as well as in the supply of renewable electricity generation 

capacity to decarbonize the UK grid and (indirectly) power a possible fleet of electric cars. Fostering 

the use of wastes and residues to create jobs in the UK also has considerable value. This is especially 

true for the AD industry where anaerobic digesters are widely distributed throughout the country, 

including in rural areas. There is also a need for the UK Government to step up measures to ensure 

efficient waste and residue production and we recommend a combination of responses including: 

 Supporting effective EU policy reforms to promote a transition from traditional energy to 

sufficient advanced bioenergy from waste and residues; 

 Formulating specific protections to follow the usage of waste and residues in the energy and 

transport field, notably in the absence of protections established at EU level as part of the 

existing Renewable Energy Directive adjustment procedure. A crucial precaution is the 

development of the required carbon accounting system for waste and residues, taking proper 

account of shifts in soil carbon supplies (e.g. in relation to straw extraction). The design of 

these protections will profit from cross-departmental collaboration to insure, in particular, 

that waste management priorities are not undermined; 

 Research commissioning to enhance the perception of target applications for waste and 

pollutants, taking into consideration the business condition in the United Kingdom with 

regard to domestically accessible production and current applications (energy and non-

energy). This would also create more accurate figures of the quantity of waste and 

contaminants that may be applicable to the energy and transport industry. Although we have 

established the feedstocks that currently tend to be more renewable, their processing into 

biofuels or biomethane might not be the more 'sustainable' usage, for example in terms of the 

total GHG emissions avoided; 

 Cross-sectoral guidance on encouraging safe management and handling of waste and 

residues. Cooperation amongst policy departments collaborating on sectoral policies 

(agriculture, forestry, waste) and establishing targets for green energy and transport policies 

is required to ensure that policies in various sectors are complementary. It will result in 

valuable guidance to the various sectors and stakeholders and cause collaboration between, 

for example, producers, forest owners, waste processors and bioenergy or AD plant 

operators; 

 Providing funding resources to develop emerging waste-to-energy processing technology. It 

would possibly involve capital funding for new projects, as well as help for current 

infrastructure growth. This would help increasing the potential of waste-to-energy 

processing and enjoy the advantages of technical innovation to reduce the costs of emerging 

technology. 

 

Initiatives in these directions would be required not only to promote the development of an 

innovative waste-to - energy sector, but also to establish an acceptable route for the wider usage of 

bioenergy and biomass. There is an ability to reap several benefits by producing more green 

electricity, improving engineering know-how, and creating economic benefits like a large amount of 
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potential jobs by turning waste and residue currently underutilised into beneficial uses. If protections 

are introduced, the environmental advantages of switching away from traditional biofuels in 

decarbonizing the UK energy and transport market would improve. 
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Abstract: This paper reviews the sector of waste-to-energy looking at the main processes and 

feedstock involved. Within this, incineration, gasification, pyrolysis, anaerobic digestion and 

hydrothermal liquefaction are named and discussed. Through the discussions and scrutiny, manure 

is highlighted as a significant source of ammonia, methane, and nitrogen oxides emission, estimated 

to be 40%, 22.5% and 28% respectively of the total UK’s anthropogenic emissions. Manure, and 

indeed the pollution it poses, are shown to remain largely ignored. In waste to energy processing, 

manure is capable of providing biogas for a number of pathways including electricity generation. 

Anaerobic digestion is highlighted as a suitable process with the crucial capability of drastically 

reducing the pollution potential of manure and slurry compared to no processing, with up to 90% 

reduction in methane and 50% reduction in nitrogen oxide emissions. If the majority of the 90 

million tonnes of manure and slurry in the UK were to be processed through biogas harvesting, this 

could have the potential of producing more than 1.615 TWh of electricity. As such, the economics 

and legislation surrounding the implementation of anaerobic digestion for manure and slurry are 

discussed. In the end, restraining factors that limit the implementation of anaerobic digesters on 

farms in the UK are discussed. These are found to be mainly capital costs, lack of grants, 

insufficiently high tariff systems, rather than low gas yields from manure and slurry.  

Keywords: waste feedstock; manure; anaerobic digestion; waste-to-energy 

1. Introduction 

The need to become more sustainable through the threat of global climate change and resource 

depletion is ever more prominent. Coupled with an ever-increasing population, rapid 

industrialisation, depleting fossil fuel resources present significant biowaste disposal and energy 

demand problems. In the UK, around 7.4 million tonnes of biodegradable municipal waste were sent 

to landfill in 2017 [1]. This waste could otherwise have been processed and recycled. The 

environmental impact of biodegradable waste extends beyond increasing greenhouse gasses due to 

the decomposition process. Untreated biodegradable waste release unpleasant odours due to 

decomposition and attracts scavenger animals and pests [2]. This has an impact on general public 

health and changes the biodiversity in the surrounding areas. Leaching from landfills not only 

contaminates the groundwater but can also affect the adjacent soil quality. In EU legislation, it is 

stipulated that biodegradable waste ending up at landfill must be reduced by 35% by 2020 compared 

to 1995 levels. This is one example of the driving forces behind waste to energy (WtE) processing, 

focused on reducing the volume of waste, recovering valuable products and producing electricity.  

The term 'waste-to-energy' can be used interchangeably and encompass a variety of processes and 

technologies. The conversion of waste into energy will be analysed in this paper by the following 

processes: incineration, gasification, pyrolysis, anaerobic digestion, and hydrothermal liquefaction. 

The schematics of waste to energy processes are shown in Figure 1.   
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Figure 1. Schematics of waste-to-energy processes 

 

Incineration is known as the complete oxidation within a waste stream of combustible materials 

and operates as temperatures above 850 °C. All feedstocks of waste addressed in this paper can be 

incinerated. This is one of the key advantages of incineration, the ability to deal with a diversity of 

wastes. Gasification in many sectors has been operating worldwide on a large basis for more than 80 

years.  During high temperatures (500 – 1800 °C), partial oxidation is accomplished by reducing the 

access to oxygen. The gases produced known as 'syngas' do not burn but can be gathered and 

processed for subsequent use. Pyrolysis operates similarly to gasification where partial oxidation is 

used to maintain thermal conditions. While this development is not new, a widespread deployment 

has not yet been accomplished. The process operates at about 300-700 °C. Anaerobic Digestion (AD) 

is an established process for the treatment of organic waste within the waste to energy sector. In 2007 

the Department for Environment, Food and Rural Affairs recommended companies in England and 

Wales to use AD to better achieve electricity goals. Interest decreased because of concerns about 

economic viability. AD is still considered a key process for achieving a circular economy, increasing 

resource-efficiency and for the bioenergy-economy. Hydrothermal liquefaction is the 

thermochemical conversion of biomass into biocrude oil that can then be refined into petroleum 

derived fuels. The process is conducted in a 4 to 22 MPa pressurised environment at temperatures 

250-374 °C.  With promising biomass yields this process can become more widespread in the future 

in the waste-to-energy sector.  

The rise in WtE has contributed to energy recovery increases in the UK with tonnage of 

processed wastes up to 7.3 million in 2018, nearly 4 times that of 2014 at 1.9 million [1]. The estimated 

range of total biological waste in the UK in 2020, including forestry residue and sewage sludge waste 

streams, amounts to 406.86 PJ, as shown in Table 1. 

 

Table 1. Summary of UK maximum estimates of potential for biological waste streams 

 

Waste stream Petajoule [PJ] Reference 
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Renewable fraction of waste 43.7 [3] 

Straw 132 [4] 

 88.5 [5] 

Food waste 46.9 [3] 

 38 [4] 

Green waste 10 [4] 

Livestock manure 16.4 [3] 

Sewage sludge 12.4 [3] 

Used cooking oil 9.66 [4] 

Forestry residues 8.3 [3] 

 19.2 [6] 

Arboricultural arisings 46 [3] 

Landscape care wood 35.8 [6] 

Total 406.86  

*1 Mtoe = 41.868 PJ 

 

Large amounts of waste are now processed at facilities capable of energy production. On top of 

this, wastes once discarded into landfills through enhanced landfill mining, can be dealt with past 

and present, altering previous perceptions of what a landfill is, considering them simply as 

‘’temporary storage awaiting further processing’’ [7], with vast amounts of valuable materials and 

heavy metals that can be recovered. The waste generated worldwide is losing its potential 

contribution to sustainable living. Therefore, this paper looks to review the different wastes and the 

processes involved in WtE and assessing process capabilities and waste streams that can be 

incorporated. It also looks at the question on what more can be done and what if any significant waste 

streams remained untapped or not utilized to their full potential, how this can cause significant 

environmental and sustainable problems.  

This paper also emphasizes on manure that has great potential to be used as energy source in 

anaerobic digesters if implemented on small scales at local farms. A global concern is poor production 

and utilisation of nitrogen (N), phosphorus (P), and potassium (K) from livestock [8]. Organic matter 

and nutrients recycled in manure are essential for agricultural soil structure and nutrient content [9]. 

Manure has a natural nitrogen and phosphorus content so if it is not utilised as a fertiliser on 

agriculture, natural nutrient cycles are disrupted, possibly that nutrient leaching, so artificial fertiliser 

needs are generated. Nitrogen fertiliser processing requires extensive usage of natural gas and 

produces pollution that lead to global warming [10]. In addition, it is stated that existing usage of 

small phosphate supplies for phosphorus fertiliser is unsustainable [11]. Therefore, some issues may 

be mitigated by rising the use of artificial fertiliser by reusing manure. 

On the other hand, the vast quantities of excreta produced in localised areas will add to the 

nutrient excess at the regional level [12]. Excessive use of manure as an organic fertiliser can 

contribute to soil and water eutrophication, pathogen transmission, air contamination, and 

greenhouse gas emissions [13]. Sustainable processing of these large units of output is only possible 

if manure is reused properly. Composting is a potential stabilising procedure. A significant 

drawback, though, is the strong nitrogen depletion. This phenomenon decreases the fertiliser benefit 

and may cause odour disturbance and present a serious environmental threat [14]. An option to eco-

friendly treatment is anaerobic digestion (AD), which provides added advantage to restore the caloric 

content by biogas production. Unfortunately, manure 's strong nitrogen content is prohibitive to 

successful AD. Organic Nitrogen is transformed to ammonia through microbial degradation. 

Ammonia exerts a strong inhibitory influence on microbiological conversion at high concentrations. 

Non-dissociated free ammonia triggers the toxicity [15, 16]. This compound diffuses into cells, 

causing a proton imbalance or interfering with microorganisms' metabolic enzymes [17]. Overcoming 

ammonia inhibition is essential to effective manure AD. 

To make this implementation feasible and sustainable, we have highlighted the need for further 

processing and changing application methods of slurry and muck to land as a requirement to reduce 
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ammonia, methane and NOx emissions. The paper also discusses the barriers in the form of 

inadequate high banding tariff and systems, planning, high capital costs, lack of government 

subsidies and low biogas yields. It has been suggested that a lower high-paying tariff banding system 

needs to be introduced to increase anaerobic digestion plants on farms. It is required addition of a 

gate fee payment to reduce the high energy crops use as supplements for biogas yield, and to increase 

the amount of slurry and muck that are digested. The paper also discusses the bespoke nature of 

anaerobic digesters on farms and the scales of anaerobic digestion plants. The value of this paper is 

that it has reviewed different challenges and aspects of implementation of anaerobic digestion 

systems on farms within a framework of waste-to-energy conversion.  

In addition to technological and environmental prospects of WtE, previous studies also tried to 

understand social acceptance of wate to energy and renewable energy technology. Shackley et al. [18] 

performed work on carbon dioxide absorption and storage in Europe and found that most of the 

respondents accepted this issue under the regional CO2 mitigation plan. Wolsink [19] points out that 

including local citizens in the policymaking phase would help strengthen the policies on social 

acceptance and that without societal recognition it is difficult to accomplish both waste-to - energy 

and sustainability targets. Social tolerance also has to be taken into consideration through decision 

formation. The three reasons for popular resistance to renewable energy technology were stated by 

Rogers et al. [20]: inadequate growth size, unreasonable cost-to-public benefit ratio and the lack of 

proper connexion between the local people and their views. Wang et al [21] analysed the waste 

management engagement in China, as well as how waste processing, sorting, collection, cost, age and 

education impact waste sorting satisfaction. They also examined the impact of satisfaction on 

participation in terms of enthusiasm, social contact and active involvement between region and 

gender by using systemic equation analysis from multiple communities. 

To summarize what was mentioned above, we want to emphasize that this paper is a first 

attempt to look at the waste-to-energy that reviews the status of different WtE technologies in the 

UK, including the incineration, gasification, pyrolysis, anaerobic digestion and hydrothermal 

liquefaction. The reviews [1-6] mentioned above highlighted the expected amount of different types 

of waste in the UK that would be available by 2020 but did not specify the processes to treat these 

types of waste. The reviews [8-11] discussed the importance of using manure as an organic fertiliser 

and also the importance of pre-treatment of manure by using AD to avoid environmental impacts 

associated with soil and water eutrophication, pathogen transmission, air contamination, greenhouse 

gas emissions and overcoming the ammonia inhibition of AD processes [12-17]. However, these 

reviews did not discuss the potential barriers associated with the economic aspects of AD such as 

tariffs, incentives and implementation of AD in farms. Therefore, the aim of this review is to cover 

the current status of WtE in the UK, understand its limitations, advantages, environmental effects, 

identify challenges in regards to the implementation of the waste, and assess what can be done to 

further utilize waste to energy in the effort to reduce pollution, resolve waste disposal issues and 

address energy needs.  

2. Sources of waste feedstock 

There is a significant discussion on the sustainability of bioenergy in Europe and the United 

Kingdom in particular, sparked by the recognition that increasing bioenergy use has larger 

environmental and social effects than was previously expected. The effect of expanded crop 

production for bioenergy usage on land use and the implications for the bioenergy profile of 

greenhouse gas (GHG) are significant environmental concerns. Increasing global demand for main 

grains and other crops for bioenergy processing results in increased competition on global agriculture 

markets, which decreases food prices to differing degrees [22]. This coupled with land purchases 

from primarily subsistence farmers for the development of large-scale bioenergy crops is the primary 

source of worry over the social impacts of traditional bioenergy.  

The bioenergy produced from waste and residues is considered a way to boost environmental 

and social efficiency and industry credibility and to save more GHGs than conventional energy. 

Nonetheless, there are concerns about the viability of other feedstocks and the amounts of biomass 
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accessible to the bioenergy industry as a feedstock. Considering that the UK energy market must be 

decarbonized, it is important to consider 1) possible domestic waste and residue that can help 

minimise the effect of UK biofuel use on biologically, socially and economically, including the ILUC 

impacts from outside the UK; 2) sustainable waste and residue amounts that could be required in 

advanced processing of biofuel; 3) the growth of job opportunities in the United Kingdom as a 

consequence of setting up a bioenergy industry in sustainable development. 

2.1 Biomass waste 

The efficient use of biomass waste offers an extensive range of advantages. Apart from fulfilling 

the requirements of public services, biomass can be a tap alternative sources of carbon and play a key 

role in a production energy system using renewable sources without decreasing food and feed stocks. 

There exists a great variety of biomass waste that can be used for bioenergy production. One common 

type is straw, which is a by-product of the cereals harvest, but the definition may be further specified 

to include oil-seed rape grain and maize-growing 'substantive.' There are a variety of common 

applications both in the farming industry and beyond. The large-scale usage as field improvement, 

livestock bedding and the substitute for fodder are significant applications in the UK. Straw is also 

used for mushroom and horticultural production. Apart from growing, straw is used as stalk and 

more commonly as a building medium and for direct combustion for heat and electricity production.  

As a bioenergy feedstock, the sustainability of straw is highly linked to its scale, its location and 

removal from current applications which can benefit from their own impact. Kretschmer et al [22] 

address the potential for European straw usage as well as the adverse effects of excessive straw 

diversion on energy usage, including: the degraded capacity of the soil, particularly through a 

reduction of organic soil content and consequently of nutrients; potential long lasting impacts on 

fauna arising from shifts in stubble heights and straw control and impact on livestock health because 

there is no readily accessible option to roughage and bedding (like sawdust or wood chipping). For 

2020, multiple reports forecast the availability and order of straw for different purposes. As Table 1 

shows, the results vary greatly. One potential explanation is the challenge of taking into account 

regional differences. Depending on these reports, the amount of 18 to 132 PJ of straw for UK 

bioenergy output was predicted for 2020 by Smith [4]. The UK's straw capacity is 88.5 PJ from a 

European report that offers forecasts for different countries [5]. 

Another type of biomass waste is woody residues. Smith [4] stated that most of the UK 's new 

forestry (roundwoods and residues) products were recycled into the sawmill industry and the 

panelboard industry. Given the high proportions of (mostly private) under management forests in 

the UK, however, the supply of residues is likely to increase significantly, with certain materials 

available for the energy sector as a feedstock. It may have positive side consequences, such as 

providing local work, which also contribute to habitat upgrades. Increasing the production of forestry 

residues by better management was one of the specified goals of the new forestry policies and 

strategies of the UK, in particular the Woodfuel Strategy and the Woodfuel Implementation Plan 

2011-2014 of the Forestry Commission. It is expected to produce another two million renewable 

tonnes (residue and plant) of wood biomass each year by 2020 by: 1) Setting requirements for a 

profitable and safe wood fuel supply chain; 2) Capacity building by market growth and reduction of 

obstacles to forest management; 3) Ensure that, in close collaboration with the Biomass Energy Center 

(BEC), access to specialist expertise leads to business growth. 

2.21. Landfill mining 

This feedstock is the result of landfills ‘reopening’ to be extracted of their sources of valuable 

and combustible material wastes. As landfills are known to incorporate a large degree of different 

wastes, the exact chemical constitution can vary considerably. Prior to the European directive in 2001, 

there was little control in the way of what ended up in landfill sites, giving rise to concerns of 

hazardous wastes and indeed the effects to the environment [23]. That said typically plastics, organic 

wastes, different kinds of metals, textiles, wood and rubber are most commonly found in the 

feedstock based on the combinations of waste ending up at landfill. Table 2 gives a brief outline of 
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these sources. These main raw materials may be mixed in with contaminates containing elements 

such as sulphur, chlorine and heavy metals. Bosmans et al. [7] showed that the presence of these 

elements can greatly affect the quality of the products produced though waste valorisation such as 

the syngas, bottom ash, fly ash, digestate and vitrified slag. Increasing the need of specialized 

abatement technologies required to reduce the amount of pollutants in the products or emissions to 

the atmosphere. These technologies take the form of flue gas cleaning systems.  

Table 2. Different landfill waste streams 

Source Types of different waste streams 

Commercial and 

Industrial waste (CaIW) 
Paper, packaging, metals, tyres, textiles and biomass [24] 

Municipal Solid Waste 

(MSW) (Household waste) 

Paper, cardboard, metals, textiles, organics 

 

Refuse Derived Fuel 

(RDF) (processed CaIW 

and MSW) 

Separation of recyclables, non-combustibles from source. 

Shredding/size reduction may include pelletizing. Processing done 

to adhere to a fuel specification. 

Solid Recovered Fuel 

(SRF) 

Similar to RDF but less contaminated and more homogenous, 

adheres to more stringent specifications [25] 

 

Scrap Yard Shredder 

Residue (SYSR) 

 

High degree of plastic and mixtures, metals, rubber glass, wood, 

leather, textile, dirt and grit. Mainly result of automotive 

scrappage [26] 

 

Note that the streams shown in Table 2 are in their own right different wastes that can be utilized for 

energy or product extraction if landfill is circumvented all together. Where Table 3 provides the 

typical properties that can be expected from MSW and RDF.  

Table 3. Characteristics of MSW and RDF 

Source % C % H % N % O 
% 

VM 

Lower 

heating value 

(MJ/kKg) 

% water Ref 

MSW 49.5 5.60 1.33 32.4 87.1 18.7 34.2 [7] 

 35.8 4.8 0.78 24.3 67 15.2 32.4 [27] 

 43.71 7.73 1.95 37.66 77.66 18.5 20 [28] 

RDF 54.6 8.37 0.91 34.4 88.5 22.6 10.8 [7] 

 48.2 6.4 1.22 28.4 75.9 17.8 20 [29] 

 48.5 6.4 1.2 31.3 83.5 20.9 26.51 [30] 

RDF (From 

landfill) 
54.9 7.38 2.03 NA 80.4 22 14.4 [7] 

2.32. Food waste  

The definition of food waste is taken from Lebersorger and Scheinder [31] where it includes solid 

components from food preparation residues, post-preparation and consumption residues, part 

consumed food and whole unused food.  The main sectors according to Skaggs et al. [32] from which 

this waste arises are firstly industrial food processing centres; secondly, institutions such as hospitals, 

universities, schools, prisons; thirdly, commercial enterprises such as restaurants, grocery stores, 
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food distribution centres; and fourthly residential units. A degree of this waste is averted through a 

food waste recovery hierarchy before the level of energy and product extraction. This type of waste 

is known to be of high value in its uncontaminated state where a large part at the industrial level 

waste can be used to create animal feeds. The types different from the animal feeds are opened up to 

energy and combustible product extraction and through anaerobic digestion. Looking at published 

work, generally speaking, the degree to which the feedstock is valued revolves around the moisture 

content [33,34,35]. Where a lower moisture content increases the combustion characteristics and 

suitability to associated processes, also reduces energy loss through steam/drying. A higher moisture 

content increases suitability for digestion. Table 4 shows typical composition of food waste in UK.  

Table 4. Characteristics of typical food waste 

Source 
% 

C* 

% 

H* 

% 

N* 

% 

O* 

% VM* 

Of TM 

Higher 

heating 

value 

(HHV) 

(MJ/kKg) 

% 

Lipid 

% 

Protein 

% 

Carb 
Ref 

UK 52 6.9 3.1 38 22 22 15 21 48 [36] 

Korea 51.2 7.2 2.9 38.1 - - - - - [37] 

Various - - - - - - 
6.4- 

24.1 

3.9- 

21.8 

24-

46.1 
[38] 

Malaysia 47.4 6.9 3.3 38.7 - 17.45 - - - [39] 

2.43. Fats, Oils and Grease (FOG) 

Large institutional kitchens, restaurants, cafeterias are responsible for the production of 

waste/used oils, fats from animals and grease through cooking. A percentage of this waste inevitably 

ends up down sinks and in the sewers whereas they are non-water soluble can collect and form 

blockages. The Environmental Protection Agency (EPA) has estimated FOG build ups contribute to 

70% of sewer pipe blockages and 30% of pump station failures [40]. Water UK [41] provides guidance 

on avoiding fats and oils from entering the sewers for large kitchens where grease traps are the 

primary means of capture. This works via taking advantage of the difference in density of water and 

FOG to capture and contain the grease to be disposed. This grease can contain a wide range of 

suspended waste food solids and wastewater, and as such, is known as ‘brown grease’. These 

contaminates make it more difficult to recycle than ‘yellow grease’ which is from spent oils and fats 

that have not interacted with wastewater i.e. deep fat frying. Due to this contamination, the brown 

grease is not used for biodiesel production due to lower energy content of 35 MJ/kg compared to 40 

MJ/kg of waste cooking oil.   [42]. So, the brown grease is usually disposed as waste rather than 

recycled into energy. There are many options in regards to utilizing yellow grease in anaerobic 

digestion, composting, processing into biodiesel as mentioned, or used as additives for animal feed 

and soap. But the uses of brown grease are not so clear with its hazardous classification and more 

difficult extraction procedures.  

Other than waste oils, fats and grease from the cooking industry, a large amount of synthetic 

and mineral oil wastes accumulate when they are no longer deemed fit for purpose. These are motor 

oils, heating oils, hydraulic oils, ship oils, sump residue and oil-water emulsions. All categorized as 

hazardous waste due to the chemical makeups used. For example, used engine oil contains cocktail 

of hydrocarbons, heavy metals (magnesium, cobalt, zinc, iron), minerals, chlorine, sulphur, 

phosphorus, nitrogen and additives all known to have cancerous effects and detrimental to the 

environment [43]. The environment protection agency states that one drop of used motor oil can 

contaminate 1 cm3 of water, highlighting the scale of potential cause when considering if all vehicles 

that have internal combustion engines produce waste oils.  
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2.54. Wastewater sludge (WWS)  

During the processing and treatment of wastewater to return it to the environment, a residual 

nutrient rich semi-solid is produced known as wastewater sludge (WWS), typically containing 25-

75% solid based on weight. WWS can be composed of solids from primary and secondary treatment 

stages. During the primary stage, the initial suspended solids within the wastewater are separated. 

Around 40-70% of solids within the wastewater are captured, where the organic and inorganic fines 

are concentrated down to 2-7% and 60-85% for volatile suspended solids. Secondary treatment stage 

focusses on biological aspects where a combination of aeration, exposure, microbes and secondary 

settling occurs. Solids are concentrated to 0.5-1.5% with volatile suspended solids concentrations at 

70-80% [32]. Biochemical characteristics of primary and secondary sludge are shown in Table 5. 

In the US approximately 6.3 million metric tons of municipal WWS was produced in 1998 of dry 

solid weight (according to the US environment protection agency) and todays figure will only be 

higher. When processed properly it can be very beneficial for the application of agricultural land to 

improve soil quality, using as a soil conditioner in landscaping, and using for part of landfill cover-

ups [44]. Hence the term ‘biosolids’ is associated with processed WWS. The main energy recovery 

process associated with WWS is anaerobic digestion, in which the resultant bio-waste and indeed the 

treated WWS can be used in the production of biosolids for fertilizer. However, there are social 

concerns in regards to heavy metals and pharmaceutical compounds that could be within the WSS. 

Which, when introduced to agricultural cropping soils can give a predominately negative effect on 

local water, energy and material sustainability [45]. In addition to affecting the ecosystem through 

concentration of heavy metals, crucially highlighting contaminates play negative role in reducing the 

sustainability and product quality. An option that reroutes the biosolids from being used as fertilizers 

and averting the social concerns is hydrothermal liquefaction processing into bio crude oil. This bio 

crude oil can then be refined to meet bio diesel and diesel standards [46].  

Table 5. Biochemical characteristics of primary and secondary sludge 

Source 
% 

C 

% 

H 

% 

N 

% 

O 

% 

VM 

HHV 

(MJ/kKg) 

% 

Lipid 

% 

Protein 

% 

Carb 
Ref 

Primary 

sludge 
47.8 6.5 3.64 33.6 82.17 20.7 - - - [47] 

 51.5 7.0 4.5 35.5 65 - 18 24 16 
[48] 

 

Secondary 

sludge 
43.6 6.55 7.9 29.0 76.25 19.6 - - - [47] 

 52.5 6.0 7.5 33.0 67 - 8 36 17 
[48] 

 

2.65. Manure 

This is the combination of animal faeces with an agricultural by product such as straw (used as 

animal bedding). All livestock, particularly indoor bred stock produce manure. This manure can vary 

in composition depending on the type of animal it is from and what diet they are on. Table 6 shows 

these differences in the biochemical characteristics.  

Table 6. Characteristics of different manures at 76.37% water content  

Source % C % H % N % O 
% 

VM 

HHV 

(MJ/kKg) 

% 

Lipid 

% 

Protein 

% 

Carb 
Ref 

Fattened 

cattle 
35.38 3.73 2.38 57.51 16.21 15.16 6.8 26.6 52.5 [32] 

Dairy cows 38.8 5.1 1.3 54.7 83.2 11.9 5 18.11 52.6 [32] 
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Bacon pigs 41.1 5.42 3.36 50.1 83.7 - 20.3 24.5 34.7 [32] 

 

Fertilization is the primary use for this type of fully biodegradable waste where without any 

processing it is spread onto crop producing land. A common life cycle is known to be set up between 

arable and livestock farmers in the UK as a result where manure is exchanged for straw. Where the 

manure is desirable for arable farmers to fertilize their land and the straw from the crops produced 

by the arable can provide a bedding and food source for a livestock farmer [49]. This is the virtually 

at present the only pathway for disposing the manure and slurry. Processes such as anaerobic 

digestion (discussed in the next section) aim to tap into the vast amount of energy stored within this 

feed though emitted products. Nitrous oxides, methane and ammonia are the most prevalent gasses 

released into the atmosphere by the decomposing manure without any process intervention. This is 

of great concern given the amount of manure produced every year and known the global warming 

characteristics of said gasses. The animal agriculture sector accounts for 37% and 64% of the annual 

anthropogenic methane and nitrogen oxides emissions, respectively, which are 23 and 296 times the 

global warming potential (GWP) of carbon dioxide. In addition, livestock are responsible for 64% of 

the anthropogenic ammonia emissions, contributing to the formation of acid rain and acidification of 

ecosystems [50]. Such high percentages are alarming considering that the majority of these emissions 

are from manure and slurry and highlight the need for processing to bring emissions in the sector to 

some acceptable level.  

3. Waste-to-Energy Processes 

Waste-to-energy encompasses a variety of specific methods and technologies. In the purposes of 

this article, this is intended to identify a variety of disposal methods and techniques utilised to 

produce a functional source of energy and to minimise the amount of residual waste. Such energy 

may be in the form of power, heating and/or cooling, or turning the waste into a product for potential 

usage, such as biogas, automotive fuels, or a mixture of these types. In this paper we will review the 

conversion of waste to energy through the following processes: incineration, gasification, pyrolysis, 

anaerobic digestion, and hydrothermal liquefaction. 

3.1. Incineration 

Incineration is classified as the full oxidation of the combustible materials within a waste stream. 

The process is composed of several key stages of drying/degassing, pyrolysis and gasification then 

combustion. Unlike other processes in this list that only partially oxidize the waste stream, 

incineration can be fed by a large variety of waste streams. In fact, all waste streams discussed in this 

paper can be incinerated. This is one of the main advantages incineration has, the ability to deal with 

a high degree of waste variety. The variety effects the product percentages left after processing, such 

as the bottom ash which in MSW incinerators is approximately 25-30 % by weigh of dry waste input, 

and the fly ash is at 1-5 %. The fly ash requires immobilization to be made environmentally safe, 

which can then be used in asphalt concrete. The bottom ash however requires much more processing, 

where at a slag reprocessing pilot plant facility, valuable metals (Al, Fe, Cu) can be recovered. The 

residue after metal recovery can then be granulated for the construction industry [51]. Figure 2 is an 

example diagram of a combined heat and power (CHP) plant based on incineration. 
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Figure 2. Simplified layout of a waste-to-energy incinerator [51] 

Originally, incineration was purely used to reduce the volume of waste as well as destroy 

harmful substances in the effort to prevent health threats. Now, waste incineration is predominantly 

combined with energy recovery the importance of which is increasing. Denmark and Sweden are 

notably the world leaders having produced electricity from the incineration of waste for more than 

100 years [52]. Now there are 3 main types of incinerators; gate, rotary kilns and fluidized beds, each 

type specified for particular feedstock. The plant efficiency factor of these incinerators according to 

the confederation of European WtE plants (CEWEP) in 2010 based on accounted 314 plants was at 

average 0.69. The specific electricity produced as weighted average was 14.89% of total Mg and heat 

at 34.59% of total Mg [53]. Note that the Plant Efficiency Factor (R1) in the equation (1) was used to 

obtain the figures given in accordance with the waste frame directive [54]. WtE plants “producing 

electricity only” have the lowest R1 factor of 0.55, as a non-weighted average, so that only 37.3% 

plants reach R1 ≥ 0.60. Although WtE plants “producing heat only” have a higher R1 factor of 0.64, 

as a non-weighted average, only 68.1% plants reach R1 ≥ 0.60. In this case, the import of the total 

amount of electricity to treat the waste has a negative influence. WtE plants “CHP producing” achieve 

the highest R1 factor of 0.76, as a non-weighted average, so that 77.2% plants reach R1 ≥ 0.60. 

 

𝑅1 =  
(𝐸𝑝 − (𝐸𝑓 + 𝐸𝑖)

(0.97 ∙ (𝐸𝑤 + 𝐸𝑓))
 (1) 

where, R1 - plant efficiency factor, Ep - annual energy produced as heat or electricity, Ew - annual 

energy contained in the treated waste, Ei - annual energy imported, and Ef - annual energy input to 

the system from fuels contributing to the production of steam [53]. These plants are notably still less 

efficient than conventional power plants. This is in part due to specific equipment requirements for 

incineration of waste, limitations on steam pressures due to corrosion risks, energy requirements to 

maintain optimal operational regime and critically pollution control equipment necessary to treat 

flue gasses. Generally, the more effective and complex a pollution control system is the higher the 

energy needs. 

The current status of this technology in the UK is at TRL 9 since the actual system is proven in 

an operational environment. In 2016 there were 115 incineration facilities in the UK. It is estimated 

that 6.1% of waste generated in the UK is processed through incineration [55, 56]. 37 incineration 

facilities were fitted for energy recovery accounting for 3.4% of waste processing, as shown in Table 

7. This equates to 7.3 million tonnes of waste. It is in increase from 2014 where only 0.9% of waste 

were processed with energy recovery representing 1.9 million tonnes of waste. Three new facilities 

were commissioned between 2014 and 2016, however, the total number of incineration facilities with 
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energy recovery increased by eight. It is likely that new facilities are designed for energy recovery, 

while older facilities without energy recovery are converting to enable energy recovery. It is 

foreseeable that the number of incineration facilities with energy recovery will increase over the next 

decade as older facilities are converted. 

 

Table 7. Use and capacity of incineration facilities in the United Kingdom [55, 56] 

Incineration in the United Kingdom 

 Incineration only Incineration with energy recovery 

Year Mt Capacity 

Mt/yr 

% of all 

waste 

Number 

of 

facilities 

Mt Capacity 

Mt/yr 

% of all 

waste 

Number 

of 

facilities 

2012 5.9 8.4 3.1% 87 1.6 2.9 0.8% 27 

2014 7.6 9.9 3.7% 83 1.9 4.9 0.9% 29 

2016 5.7 8.5 2.7% 78 7.3 9.8 3.4% 37 

 

The UK Strategy for Recourses and Waste reported that 3.4% renewable energy was generated 

from incineration of biodegradable waste in 2017 [57]. It is estimated that 2.3% of the UK’s energy 

demand can be met through incineration with energy recovery should all the municipal solid waste 

that are currently sent to landfills be rerouted to incineration facilities [58]. Not only will this have a 

positive effect on the renewable energy generation in the UK, but also on greenhouse gas emissions 

generated from landfills. It is plausible that greenhouse gas emissions can be reduced by 2 million 

tonnes in this manner [106]. Legislation requires that biodegradable waste sent to landfills must be 

significantly reduced. This will see more municipal solid waste rerouted to incinerators providing an 

increase in feedstock and more opportunity for energy recovery from incineration. However, the 

current stance of the UK Government is that although incineration plays an important role in waste 

management the focus should be on prevention and recycling rather than landfills and incinerators. 

Taxation on the incineration of waste is likely to increase over the next few years which may reduce 

the economic benefit of this manner of waste management.   

3.2. Gasification 

Gasification has been around for some time more than 80 years globally on a commercial scale 

in many industries and 35 years in the power generation. In partial oxidation process of organic 

substances, high temperatures of around 500-1800 ℃ are used. Partial oxidation is achieved by 

limiting the oxygen exposure at those temperatures so the gases produced known as ‘syngas’ do not 

combust but instead can be collected and stored for later use. These later uses include the chemical 

industry, as a fuel for the production of heat and or electricity or conversion into ethanol [59]. The 

syngas constitutes of H2, CH4, CO, CO2, H2O and N2 with trace amounts of other hydrocarbons like 

propane and ethane. Predominantly air is supplied to the reaction site which in comparison to using 

pure oxygen results in a syngas of lower energy. Such that, in terms of heating value, pure oxygen 

gives 8.7 - 11.3 MJ/Nm3 and air gives 4–7 MJ/Nm3 [60]. There are 3 main types of gasifiers: fluidized 

bed, fixed bed and entrained flow which are capable of dealing with MSW, dried sewage sludge, 

some types of hazardous wastes and waste food among others. One of the key requirements for the 

feedstock is that it must be finely granulated, therefore MSW for instance requires pre-treatment. This 

is a clear negative side when compared to incineration, which comparatively has lower residue 

percentage of the feedstock. But there are positive comparisons such as lower volumes of gases 

produced mean smaller flue gas treatment systems can be used and smaller wastewater flows from 

syngas cleaning [7]. In addition, the overall thermal efficiency is more than 75% [61]. Furthermore, 

by the use of partial oxidisation, the amount of oxidized species such as SOx and NOx are reduced, 

which are replaced by H2S, nitrogen and ammonia. Known to be better forms that can be scrubbed 

from the syngas than the oxidized versions prior to syngas utilization [62].  
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In terms of gasification process a number of sub process take place. These constitute of a degree 

of pre-processing to remove inorganics such as metals and glass, which cannot be gasified, particle 

size reduction, drying (within the gasifier and in some cases prior to), oxidation and syngas collection. 

As can be seen the main waste product left over is slag (in high temperature gasifiers), this is similar 

to the bottom ash in the incineration process where metals and other valuable products can be 

recovered. Gasification of fossil feedstocks is an established process and is therefore rated at TRL 9. 

The use of biomass feedstock, such as municipal solid waste, is not readily applied in the UK. 

Although there are a number of plant in Norway, Germany, Finland, Italy and Sweden [63]. It was 

recently reported that operation had begun at UK’s first municipal solid waste gasification plant 

located in Aldridge [64, 65]. To date the plant is operating on waste wood feedstock and the 

technology is not proven for municipal solid waste, although it is the intension to do so in the future. 

This is not the first gasification plant constructed in the UK for processing of biomass waste. Several 

such facilities have been built in the past and all have failed [66, 67]. One such example is the company 

Energos Ltd. that operated a gasification plant in the Isle of Wight since 2009 [68]. The plant made 

use of Refuse Derived Fuel (RDF) and was designed to provide 1.8 MWe power. The company had 

plans to build similar plants in Glasgow, Milton Keynes and Derby. However, the plant went into 

administration in 2016; the route cause was found to be a failure to deliver on gasification contracts. 

Another example is Ascot Environmental and its subsidiaries Planet Advantage and Scotgen that 

build a gasification plant in Dumfries in 2009. The plant was designed to deliver 6.2 MWe power 

from municipal solid waste and RDF feedstock. The company filed for administration in 2012 since 

the plant failed to produce energy during its three years of operation. The permit to operate that plant 

was revoked due to non-compliancy with the Scottish Environmental Protection Agency. 

Fiscal incentives for the development of advanced conversion technologies, such a gasification 

of municipal waste, might receive more attention in the next decade [69]. The Engineering and 

Physical Sciences Research Council (EPSRC) does not have a specific research focus in this area but 

has supported gasification projects in the past [70]. Considering the past failures of the technology, it 

will be challenging to obtain the necessary funding to increase the TRL. Much depends on the 

operation and economic viability of the Aldridge plant and its ability to robustly process municipal 

solid waste on a large scale. The success of this plant will unlock the potential for gasification as 

biowaste processor.  The failure however, along with the historical failure of similar plants, will be 

seen as conclusive proof that further development of this technology should be abandoned. 

3.3. Pyrolysis 

This process works on the thermal degradation similarly to gasification where partial oxidation 

is used to maintain the thermal conditions. Pyrolysis can also be achieved in complete absence of 

oxygen with an external heat source in inert conditions. Comparatively to gasification, pyrolysis 

works on lower temperatures of around 300 - 700 ℃ [71]. To date, although this technology is not 

new, it has not yet reached a widespread implementation. During the process, 3 products are made: 

solid coke, pyrolysis gas, pyrolysis liquid. The exact constitution and proportions of these products 

depends on the feedstock, reactor conditions, reactant residence time and pyrolysis method. The 

process can be optimized to maximize the formation of each product [72]. For example, in the case of 

fluidized bed reactors (fast pyrolysis), high temperature and high biomass residence time increases 

the production of gases; On the contrary, high temperature and low residence time however increases 

the formation of condensable liquid oils; then low temperature and high residence increases the 

production of solid coke. Typically, the pyrolysis gas, liquid and coke have calorific values of 5-16 

MJ/kg, 22-25 MJ/kg and 33 MJ/kg respectively. The low heating values of the gases and liquids mean 

that upgrading is necessary to produce fossil fuel substitutes [73]. Pyrolysis can work on any 

hydrocarbon waste that can be cracked to release gasses, oils and char. For instance, FOG, MSW, food 

waste, manure and sewage sludge are all acceptable.  

One of the notable advantages of pyrolysis against other waste-to-energy processes is the higher 

energy density achievable of the products produced. But what some researchers don’t mention is that 

these higher energy products were produced with external heat sources supplied to the reactor. 
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Furthermore, a degree of preparation is required to reduce feedstock particle size. Also, drying can 

be required depending on moisture content and the desired calorific value of the products. The inner 

stages are centralized around the reactions (thermal cracking) of the waste to release the pyrolysis 

products, which are then captured through condensing. The remaining coke is sometimes incinerated 

to rid of the organic matter remaining. Main pyrolysis reactor types include rotary kiln, fluidized 

bed, fixed bed, entrance flow, moving bed and more experimentally auger [74]. As hinted here, this 

process can be responsible of higher waste residue than gasification and incineration. This is mainly 

due to lower temperatures as a result of lower flue gas volumes after combustion of the products 

than incinerators [7]. 

As a general process, fast pyrolysis is currently deployed in operational environments with 

system completion and qualification. This places fast pyrolysis at TRL 8. Pyrolysis with upgrading, 

that increase the quality for the oil produced so that it can be used as transport fuel, is currently at 

TRL 5 [70]. There are 8 companies and 9 universities actively engaged in activities related to waste 

treatment through pyrolysis (Table 8). Activities are mostly aimed at waste-to-fuel applications 

instead of waste-to-energy. There are currently no large-scale facilities for pyrolysis in the UK. 

 

Table 8. UK Companies and institutions involvement in pyrolysis 

Company/Institution Location Feedstock Conversion Ref 

2G BioPOWER Kent Tyre  Recycling [75] 

Anergy Ltd London Biomass Waste-to-Energy [76] 

Conversion and Resource 

Evaluation (CARE) Ltd 

Down Biomass Waste-to-Fuel [75] 

Cynar Plc London Plastic Waste-to-Fuel [76] 

Environmental Power 

International 

Surrey Various Waste-to-Fuel [76] 

Future Blends Ltd Oxfordshire Biomass Waste-to-Fuel [75] 

PYREG (UK) Cambridge Sewage Sludge Phosphorous 

Recovery 

[75] 

Torftech Energy Ltd Thatcham Biomass Waste-to-Energy 

Waste-to-Fuel 

[75] 

Aberystwyth University Aberystwyth Biomass  Waste-to-Fuel [75] 

Aston University Birmingham Biomass Waste-to-Fuel [77, 78] 

Newcastle University Newcastle Biomass Waste-to-Fuel [75, 79] 

University College London London Plastic Waste-to-Fuel [80, 81] 

University of Cambridge Cambridge Various Material 

Recovery 

Waste-to-Fuel 

[75, 82] 

University of Edinburgh Edinburgh Biomass Waste-to-Fuel [83, 84] 

University of Leeds Leeds Biomass Waste-to-Fuel [85] 

University of Sheffield Sheffield Biomass Waste-to-Fuel [86, 87] 

University of York York Biomass Waste-to-Fuel [88] 

 

The EPSRC are routinely funding research aimed the development of bioenergy. The bioenergy 

thematical area currently holds 14 research grants worth £12,511,100.00. There are a number of grants 

awarded that is specifically aimed at improving the pyrolysis process. These were all related to waste-

to-fuel applications focusing on upgrading the quality of products to be used as marine and aviation 
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fuel. Funding for waste-to-energy applications of pyrolysis remains uncommon. The financial and 

technical challenges will hamper the integration of pyrolysis as a process for waste management in 

the next decade. Pyrolysis as waste-to-energy mechanism is subjected to technical challenges [68]. 

The feedstock from municipal solid waste is inconsistent and will need significant preprocessing 

before it can be used. Blockages are often caused in pyrolysis plants due to tar deposition which lead 

to inefficiencies. Catalyst deactivation and choking can result in plant failure. These challenges are 

not negligible and has led to the limited application of this process worldwide. 

3.4. Anaerobic digestion (AD) 

As with incineration and gasification, Anaerobic Digestion (AD) is a well-established process 

within the waste to energy sector for the treatment of organic wastes. Dating back to the 1800s making 

it one of the oldest waste to energy processes. The concerns around the environment has increased 

its utilization when in 2007 England and Wales businesses were encouraged to use AD by the 

department for environment, food and rural affairs (DEFRA) to help meet energy targets set by the 

government [89]. Now, however, interest has dropped due to economic viability concerns. 

Investments and interest primarily come from businesses such as farms and not large waste industry 

companies, as the case studies included in the Royal Agricultural Society of England report show 

[90]. One of the main differences between AD and incineration/gasification is the predominantly 

large plant waste treatment centres, costing hundreds of millions. However even with the economic 

concerns, AD is still considered a key process for achieving a circular economy, increasing resource-

efficiency and for the bioenergy-economy as a whole [91].  

The main feedstock for AD is manure and slurry, but it is not limited to these. Essentially, any 

organic matter can be fed into the digester such as WWS, FOG and food waste, as the process works 

on decomposition of organic matter. Microorganisms digest/eat the feedstock producing biogas, 

predominantly made up of methane (50-75%), with carbon dioxide along with traces of other gases 

making up the remaining percentage [92]. After the process, a solid mass known as digestate is left, 

a nutrients rich product that can be used as a fertilizer. As for the gasses produced, the high 

percentage of methane means it can either be upgraded to pure methane (main constitute of natural 

gas) or be combusted in a CHP plant. As Bywater [90] states ‘’The ratio of heat to power varies 

dependent on the scale and technology, but typically 35-40% is converted to electricity, 40-45% to 

heat and the balance lost as inefficiencies at various stages of the process, equating to over 2 kWh 

electricity and 2.5 kWh heat per cubic meter, at 60% methane’’. There are two types of AD’s: 

mesophilic and thermophilic, categorized according to their operation temperatures. The most 

common type (mesophilic) operate at temperatures between 20-45 ℃. Thermophilic digester operates 

at higher temperatures and most commonly used for sanitizing materials, so that they can be used 

for the benefit of agriculture. 

Anaerobic digestors are widely used in the UK placing the technology at TRL 9. There are 

currently 661 digestors operational in the UK [93]. It supplies the national grid with biomethane (102 

plants) and electricity (583 plants) and provide local heating (42 plants). The feedstock varies from 

agricultural waste (374 digestors), municipal/commercial waste (113 digestors), industrial waste (48 

digestors), and sewage sludge (163 digestors). Between 2008 and 2017, 255 new anaerobic digestors 

were built in the UK with a total capacity of 193,354 kW [92]. 

The percentage of energy generated in the UK from bioenergy is steadily increasing (Table 9). In 

2010 3.5% of energy generated were from biological sources. This has increased to 9.4% in 2016. 

Anaerobic digestors forms a component of bioenergy and is increasing as well. In 2010, 117 GWh 

electricity was generated with AD, accounting for 1% of energy generated with bioenergy. This 

increased to 2052 GWh in 2016, which is 7% of energy generated with bioenergy. AD is further 

discussed in section 4 where the environmental, economic, legislative and implementation is 

investigated. 

 

Table 9. Electricity generated in the UK from bioenergy by year [94] 
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Source  Units 2010 2011 2012 2013 2014 2015 2016 

Landfill gas GWh 5,217 5,318 5,208 5,175 5,033 4,872 4,703 

Sewage sludge 

digestion 

GWh 723 775 739 766 840 894 950 

Energy from 

waste 

GWh 1,529 1,504 1,773 1,648 1,900 2,585 2,741 

Co-firing with 

fossil fuels 

GWh 2,432 3,093 1,829 337 124 183 117 

Animal Biomass GWh 627 615 643 628 614 648 650 

Anaerobic 

digestion 

GWh 117 237 495 713 1,023 1,471 2,052 

Plant Biomass GWh 1,615 1,771 4,048 8,832 13,086 18,587 18,829 

Total electricity 

generated from 

bioenergy 

GWh 12,260 13,313 14,735 18,099 22,620 29,240 30,042 

Total electricity 

generated from all 

sources 

GWh 347,896 332,461 341,912 336,504 317,732 318,552 320,110 

3.5. Hydrothermal Liquefaction (HTL) 

This is the thermochemical conversion of biomass into oils referred to as ‘biocrude oil’ that can 

then be refined into petroleum derived fuels. The main advantage of this process is that water has a 

higher dissociation constant (and lower dielectric constant) at these operating conditions. The water 

is thereby less polar and helps to be a good solvent for hydrocarbon products and promote their 

reactions. As shown in Figure 3, the process is performed in a pressurized environment from 4 to 22 

MPa, which avoids oxygen and heats to elevated temperatures between 250 - 374 ℃ [95]. These high 

pressures and temperatures help breakdown and reform biomass macromolecules into biocrude oil.  

As with anaerobic digestion, the process provides a means for processing wet biomass without 

drying that incineration, gasification and pyrolysis require. However, HTL is essentially pyrolysis in 

hot liquid water. As such, feedstock high in water content are suitable i.e. manure and sewage sludge. 

HTL biocrude oils contain a diverse range of chemical compounds, which present major challenges 

for downstream processes. This in some instances due to high heteroatom content in the biocrude oil 

can result in undesirable qualities, like acidity [96]. That said significant amounts of biocrude oil can 

be obtained from pig manure and digestate sludge. Vardon et al. [96] showed that at 300 ℃, 10-12 

MPa and 30 min reaction time, pig manure and digestate sludge yielded 30% and 9.4% respectively 

with HHV’s of 34.7 MJ/kg and 32 MJ/kg. With promising yields from biomasses, this process may 

become more widespread in the waste-to-energy sector in the future. 
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Figure 3. Diagram of HTL reactor system [95] 

The current status of hydrothermal liquefaction in the UK is TRL4 since it has only been 

validated in the laboratory environment [70]. A recent review has indicated that the technology 

is immature with scaled testing at a limited number of UK universities [97]. The University of 

Leeds, Imperial College and Bath University are the only known institutions actively involved 

in experimental research in this area [98, 99, 100]. A recent review from the University of Surrey 

suggested the research focus for the process [101]. It highlighted the developments needed in 

the field to allow for both wet and dry biomass to be processed through this technique. Currently 

challenged associated with the process is catalyst performance, efficiency, product quality and 

handling of the high volumes of wastewater. Stirring large volumes of biomass slurry at high 

pressure is problematic and the solid content needs to be less than 35% to ensure pumpability. 

The process remains expensive due to the components necessary to operate in a corrosive 

environment at high pressures. The technology is expected to reach TRL 8 by 2030 [70]. 

3.6. Summary of advantages and disadvantages of WtE processes  

Looking at how prolific the processes are, HTL and AD lag behind incineration, gasification and 

pyrolysis in the UK, aligning with some of the issues discussed. Other process, such as fermentation, 

is used to some extent to produce bioethanol, but this is not so prevalent in waste feedstock streams. 

Incineration has been shown to be the most capable in feedstock admissions combined with the 

lowest end process waste percentages. However, this comes at the cost of lower efficiencies, high flue 

gas volumes and the loss of product extraction from the waste streams. The partial oxidations 

adopted in gasification and pyrolysis give advantages of lower flue gas volumes of which have lower 

percentage levels of oxidized species such as SOX and NOX, resulting in smaller flue gas treatment 

systems.  

The other main advantage is the product extraction possibilities. Notably pyrolysis process 

results in products of higher energy density. Although not discussed, plasma pyrolysis and plasma 
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gasification among others are some of the technological advances of these processes, essentially 

working at higher temperatures to create more reactions and result in less end process. AD is shown 

to be different from the other processes, attaining products without the need of high temperatures 

and complex systems. But AD is limited to predominately manure feedstocks and economic 

uncertainties through lowering levels of government schemes and grants. This is alarming, 

considering a degree of pollution raw manure is responsible for. HTL offers a pathway to obtaining 

bio crude oil which can be upgraded and refined to match petroleum-based fuels from waste streams, 

unlike other processes that use more valuable resources, such as rapeseed biodiesel, for instance.  

One thing that has been made clear across literature of WtE processes is that although some of 

the processes have the ability to deal with a wide variety of wastes, the facilities are usually 

specifically designed to suit one particular waste stream. For example, in 2009 the chimney of 

ConTerm pyrolysis plant in Hamm Germany collapsed. The accident was the result of an insulation 

problem which lead to very high temperatures and softening of the steel structure. It was later found 

that inadequate sorting of the waste stream was a key contributor, as the feed characteristics exceeded 

the process design resulting in excessive temperatures past tolerable limits [7].   

The utilisation of waste streams for energy and products has proven to be well documented, 

with landfills now considered as temporary storage. Waste FOG’s and food can be fully utilized for 

WtE processes, same goes for WWS. Despite the widespread implementation/capture of these wastes 

in the UK, it still requires a degree of work in achieving a circular economy as the government plans. 

4. Discussion on the Effects of Manure and Barriers to Processing 

When looking at preventative environmental emissions, manure as a feedstock remains largely 

untouched. As a result, high concentrations of NOX, ammonia and methane, which are retained in 

the manure are emitted into the environment. A complete contrast is shown to strict legislation placed 

on internal combustion engines for NOX emissions, which in fact, account for far less of the 

anthropogenic emissions than manure. These and other wastes discussed in the previous section 

should be the subject to a higher attention even if they are responsible for a lower fraction of the 

emissions of manure. Therefore, this section will cover the issues of manure and anaerobic digestion 

related to the environment, economics, legislature, and implementation. It will discuss the severity 

that untreated manure can pose in the UK through emissions of nitrous oxides, methane, and 

ammonia. Amount of emissions produced by manure can be mitigated through WtE processing by 

avoiding the barriers preventing the implementation of this as a whole, and also bringing most of 

manure generated in the UK under pollution control.  

4.1. Environmental effect of emmisions from manure  

4.1.1. Ammonia 

Overall, the agricultural sector accounts for 88% of all NH3 emissions in the UK and is estimated 

at 94% in the EU [101, 102]. The lack of manure and sludge treatment in the UK results in the livestock 

industry accounting for 66% of all ammonia emissions, as shown in Figure 4 (b) (not including 

grazing/outdoors), according to the Department for Environment Food and Rural Affairs (DEFRA) 

[102]. The figure related to manure and slurry production is not taking into account cattle graze on 

open fields for at least half a year, not counting some unavoidable proportion of ammonia (NH3) 

emitted into the atmosphere. Report on NH3 emissions produced by agriculture sector was prepared 

by DEFRA. Figure 4 (a) shows the proportion of ammonia emissions per livestock.  
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(a)                                               (b) 

Figure 4. Ammonia emissions within agriculture by (a) livestock and fertilizer category and (b) by 

agricultural management category [102] 

An estimation from Figure 4 can be made on the true amount of NH3 emissions, the direct result of 

manure formation and slurry at around 40 % (Manure storage 9% + Grazing 8% + Hard standings 7% 

+ Sewage sludge 2%) of 66% of all ammonia emissions subject to unavoidable losses through animal 

grazing and hard standings. Hard standings are defined as unroofed paved or concrete areas. 

Examples include areas outside the milking parlor, where dairy cows congregate prior to milking. 

Meaning that up to 40% of NH3 has the potential to be avoided with widespread waste to energy 

processes applied. This 40% in 2019 amounts to 86.2 kT of NH3 emitted every year [103]. As NH3 is a 

soluble alkaline gas with a high reactivity, the effects to the environment are numerous. In terms of 

the atmosphere, it reacts with acid pollutants such as the products of SO2 and NOx emissions to 

produce fine ammonium NH4+. Both forms have a lifetime of 10-100 years which lessen the overall 

effects atmospherically but creates localized affection zones with high concentrations of NH3 and 

ammonium fallout [104]. The effects of ammonia vary as it is a commonly found naturally. One of 

the most notable aspects is the unpleasant odour, which even at low concentrations due to the 

pungency is still detectable. In the atmosphere, it can be an irritant to the eyes throat and lungs in 

high concentrations, the ammonium can penetrate deep into the lungs with links to respiratory 

problems and diseases due to the fine particle size [105].  

For vegetation, ammonia is on the most part beneficial as a source of nitrogen essential for the 

formation of amino acids. When in the form of ammonium and is deposited onto soil it is converted 

by bacteria into nitrates which are then absorbed by roots increasing growing rates of nitrogen loving 

plants. But this can lead to imbalances affecting biodiversity, where nitrogen loving plants take over 

smothering out other species less effective in nitrogen take up. NH3 pollution also effects species 

through soil acidification, damage to leaves through a burning effect reducing the resistance to frost, 

pathogens and drought. These negative effects in a report conducted by RAND [106] say that by 2020 

the negative impacts could be equivalent to the cost of more than £700,000,000 per year.  

The effects of NH3 in water sources is notably more severe, with links to eutrophication and 

acidification, where in concentrations ranging from 0.53 to 22.8 mg/L it becomes toxic to freshwater 

organisms. The toxic effects differ depending on species but generally fish may suffer loss of 

equilibrium, hyper excitability, increased oxygen uptake and increased heartbeat rate. In extreme 

levels NH3 can cause fish to suffer convulsions, coma and death. Even at levels below 0.1 mg/litre fish 

can experience irritation, gill damage, reduction in hatching and growth rates [107]. Fish and aquatic 

life can also be indirectly affected through eutrophication creating algal blooms reducing the amount 

dissolved oxygen. 

4.1.2. Nitrous Oxides (NOX) 
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This is another notable pollutant given off by manure, known for its high GWP of 298 times that 

of carbon dioxide. The lifetime is around 110 years in the atmosphere where the process that removes 

NOX from the atmosphere contributes to depletion of the ozone layer [108]. Aside from methane and 

ammonia, NOX is the 3rd biggest contributor in emissions from agriculture. The degree of NOX 

produced from manure is dependent on the amount of aeration where the greater availability to 

oxygen leads to more NOX formation. Looking back at the waste to energy processes, anaerobic 

digestion offers the most suitable option in limiting NOX formation. The amount of NOX emitted as 

the direct result of manure is unknown, however the overall NOX emissions from agriculture are 

known to be 27 kT in 2017 [109]. This amounts to 3% of the total NOX emissions in the UK, with 

transport contributing the most, 34%. Contradictory to this data, the national statistics for the UK in 

2017 showed that in fact agriculture is responsible for 70% of NOX emissions, amounting to 14.3 Mt 

CO2e [110].. As both are from reputable governmental sources, this serves as an example of the degree 

of uncertainty these estimates are subject to. Nevertheless, more trust will be placed on the higher 

figures when looking at another report stating it to be 65% [111]. Similarly, to the NH3 emissions, the 

amount emitted as the result of manure can be expected to be considerably less. 28% is a reasonable 

estimation if manure amounts to 40% of agriculture’s overall impact. 

4.1.3. Methane  

As with nitrous oxides, methane presents a significant contribution to greenhouse gases with a 

GWP 25 times that of CO2 and a lifetime in the atmosphere of around 10 years, where other chemicals 

in the air are responsible for its removal. The main source of methane is from the natural 

decomposition of organic matter in anaerobic conditions. As manure and slurry present large 

quantities of organic matter they contribute significantly to the agricultural sectors total emissions 

51% of the UK’s anthropogenic methane emissions in 2015 [112] and 50% in 2017 [110]. Figure 5 shows 

this in comparison to other sectors highlighting again that agriculture is the biggest contributor. 

Unlike NH3 and NOX emission where artificial fertilizer contributes heavily, methane is almost 

exclusively from manure, slurry and the animals’ digestive systems. As the animals are known to be 

high contributors a ballpark estimation would be that 45% of methane emissions within agriculture 

are the direct result of manure and slurry. This in wider terms translates to 22.5% of total methane 

emissions in the UK.  

 

Figure 5. Methane emissions by sector in 2017 [110] 
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Methane can present an explosion risk at 5-15% content in the air [113]. There are numerous 

documented incidents where methane has been the result of gas fires and explosions in agriculture. 

For example, under certain conditions in which animals are fed a particular diet, this can result in the 

formation of bubbles containing methane in the slurry. The bubbles have been known to form a foam 

above the slurry which is susceptible to combustion [114]. 

4.1.4. Anaerobic digestion of manure as mitigation strategy for harmful emissions  

The waste to energy conversion of manure to electricity, heat, fuel or grid gas is a four-stage 

process, as shown in Figure 6, consisting of hydrolysis, acidogenesis, acetogenesis and 

methanogenesis [115].  Manure feedstock is complex organic matter that consist of carbohydrates, 

proteins and fats.  Through hydrolysis this is converted to soluble organic molecules such as sugars, 

amino acids and fatty acids. Acidogenesis or these components lead to the formation of volatile fatty 

acids, acetic acids, hydrogen and carbon dioxide. The volatile fatty acids is converted to acetic acids, 

hydrogen and carbon dioxide through acetogenesis. The last stage of the process is methanogenesis 

that forms biogas which can be converted into biomethane. Biogas is used at fuel in electricity and 

heating applications, while biomethane can be directed pumped into the national grid. Each stage 

the process is reliant on a number of microorganisms to participate in the reactions. Since this reaction 

occurs in an oxygen lean environment, there are less oxygen molecule to bind with the nitrogen 

molecules and form NOx.   

 

 

 

Figure 6. Waste-to Energy-process using manure as waste feedstock 

As highlighted, NOx formation is related to the degree of oxygen present when organic matter 

is decomposing, but when in an anaerobic environment, methane emissions increase. In the process 

of anaerobic digestion, this is ideal where the methane can be captured and used. In work produced 

by Sommer et al. [116], algorithms were developed for calculating methane and NOX emissions from 

manure management [116], in which, the degree of emission reduction through anaerobic digestion 

was calculated. The model predicted 90% reduction of methane from outside stores with digested 
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slurry. The digested slurry/muck is said to have a reduction of more than 50% of NOX emissions after 

the application of the digested slurry onto agricultural land vs that of untreated slurry. No 

estimations were made regarding the effect on NH3 production, where this is considered an anaerobic 

digestion inhibitor, through the change in pH. High toxicity levels also destroy microbes that produce 

methane [117].  

For reduction in NH3 emissions, it is clear that anaerobic digestion is not best suited to this. The 

addition of magnesium ammonium phosphate otherwise known as struvite is said to reduce NH3 

levels in a digester. Where struvite is a valuable plant nutrient source that slowly releases nitrogen 

and phosphorus overtime, it also known for its low solubility in water. Uludag-Demirer et al. [118] 

in an experiment added a set amount of struvite to a digester, resulting in 11% NH3 reduction. Other 

work in this area also highlights the role pH plays, highlighting reactor conditions having a 

significant impact. Apart from optimizing reactor conditions and introducing additives, further 

processing would be the next cause of action. The anammox process is one such process aimed at 

post digested effluent. It is considered an efficient biological method for nitrogen removal through 

ammonium oxidization to nitrogen gas in anaerobic environment. Molinuevo’s experiments [119] 

found that up to 92% of ammonium could be removed this way. As it can be quite costly to remove 

the NH3, others look towards how the manure is applied to soil and if emission mitigation can be 

achieved there. Some of the main techniques from this aim towards limiting the mixing the slurry 

and muck have with the atmosphere through trail hoses and direct injection. The trail hoses limit the 

surface area that the muck and slurry is applied to. From Sommer and Hutchings [120], this is said to 

reduce the amount of emitted ammonia by 40%. For injection, this figure is said to be even higher at 

60% when in combination of harrowing prior to the application. 

4.2. Economical aspects of anaerobic digestion  

4.2.1. Current Incentives 

As mentioned in the AD description, incentives have been on the decline at current, it can be 

assumed that almost all grants have been withdrawn by the government. Similarly, the tariffs in 

recent years have been reduced from 15.15 pence/kWh in 2010 to 4.50 pence/kWh in Jan 2019 for 

biodigester units less than 500 kW [121]. The gradual change in tariff rates for all sizes of AD is shown 

in Figure 7, offering a depiction of the decrease in the amount of government funds made available 

per year. The curves show the tariffs in pence/kWh for three bands of installed capacity: 0-250 kW, 

250-500 kW and 500-5000 kW. Some studies suggest that such change in tariff rates is too high for 

average size of UK farms and that lower boundaries should be introduced. Even incorporating the 

sale price tariffs, the cost viability particularly for small scale farm systems comes into question. This 

can be linked with the step decline seen in the number of AD plants commissioned each year. Where 

from the peak of 79 new plants commissioned in 2014 a fraction of that number is now commissioned 

which was only 6 in 2017 [122]. This is shown in a graph taken from Savills summary [123] on AD 

growth and performance depicted by Figure 8. A clear link can be seen between the drops in tariff 

rates from 2014 to 2015 shown in Figure 7 to the fall in plants commissioned per year shown in Figure 

8.  
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Figure 7. Change in generation tariff rate for anaerobic digestion [121] 

 

 

 

 

(a) 

 

(b) 

Figure 8. (a) nNumber of AD plants commissioned from 2008 to 2017 in UK (a) and (b) the total capacity 

of these plants in kW (b) [123] 

 

The numbers are very low considering the number of farms in the UK and goals set out by the DEFRA 

and National Farmers Union (NFU) aiming for 1000 on-farm AD plants by 2020 [124]. The actual 

number by 2020 will be considerably less highlighting the lag that this industry has to overcome if it 

were to pose a significant reduction in GHG emissions and averted emissions through methane 

capture pathways. 

4.2.2. Capital Grants and Finance  

The lag on the farm scale can be mostly put down to the capital costs required for installation. 

Almost all AD plants surveyed has some form of capital subsidy at 93% according to Bywater [90]. 

This is in part due to the financial status of smaller farms which can struggle to break even relaying 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

0-250 kW 15.15 15.15 17.54 17.54 17.54 12.64 10.11 6.48 4.57 4.5

250-500 kW 15.15 15.15 16.23 16.23 16.23 11.69 9.34 5.98 4.33 4.27

500-5000 kW 11.82 11.82 10.69 10.69 10.69 10.16 9.63 6.16 1.61 1.54
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on receiving farm payments from the government every year, making it unlikely that the capital 

would be available for such an investment. This lack of capital changes the use pathway of the 

methane gas, where expensive onsite gas cleaning and combustion in gas engines is not an option. 

Thus, the gas produced is merely used in boilers to heat farmhouses and to use for hot water, losing 

the potential for self-electricity generation and associated benefits. It is also worth noting that the 

tariff system changes onto the renewable heat incentive (RHI) as a result. A system not designed for 

this sector is providing yet a smaller insignificant income. Currently for small biogas combustion of 

which this pathway would fall under, the rate stands at 4.74 pence/kWh as shown in Table 10, further 

lowering the economic prospects for farm AD. 

Table 10. Tariff rates for RHI (small biogas combustion) [125] 

Eligible 

Technology 

Eligible 

Sizes 
Accreditation Date 

Tariff Rate 

2019/20 

(pence/kWh) 

Small Biogas 

Combustion 

Less 

than 200 

kWth 

Before 1 April 2016 8.44 

Between 1 April and 30 June 2016 7.41 

Between 1 July and 30 September 2016 6.30 

Between 1 October and 31 December 2016 4.74 

Between 1 January and 31 March 2017 3.54 

Between 1 April and 30 June 2017 3.37 

Between 1 July 2017 and 21 May 2018 3.03 

On or after 22 May 2018 4.74 

4.2.3. Supply of slurry and muck 

There is a high volume of slurry and muck produced on farms, where for instance, a pig unit 

near York with around 5000 pigs produces 20m3 of slurry a day and over 1000 tonnes of muck each 

year. More can be said of the future with farm operations switching to fewer much larger operations, 

as small holdings with less than a couple hundred acers struggle financially with expensive farm 

machinery required to operate and  the lack of land and livestock to spread overheads over. It is said 

that in the UK, 4.5 times as much derived organic matter is produced from farm operations (including 

slurry and muck) as from food, 90 million tonnes compared to 20 million tonnes [90]. Thus, the supply 

is not an issue. 

4.3. Legislation controlling implementation of anaerobic digestion plants 

4.3.1. Environmental Permitting  

This is the primary means of regulating and minimizing the impact business activities have 

towards all environment aspects for England and Wales, such as to the air, water, land and 

considering factors like noise and safety. For AD plants to operate and spread digestate, a permit 

must be obtained. This involves completing a technical application form, demonstrating competency 

and willingness to abiding by the conditions of the proposed permit. Currently this can be achieved 

through Charted Institution of Wastes Management / Waste Management Industry Training and 

Advisory Board (CIWM/WAMITAB) scheme or Environmental Services Association / Energy and 

Utility (ESA/EU) sector skills. Setting out 3 different types of permits as shown in Table 11. 

Table 11. Anaerobic digestion permits 
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Type Description Conditions 

Exemption 

For small scale plants 

which aren’t waste 

facilities 

 Must provide technical information to the environment 

agency and register  

 No charges  

 Only for agricultural businesses and burning of 

resultant biogas at the site.   

 1,250 m3 limit for the total amount of untreated and 

treated waste on site at any time  

 0.4 MW limit for the thermal generating capacity of the 

plant 

 Minimum 28 days residence time of the waste [126] 

Standard 

For plants which can 

operate within a set 

of standardised rules 

and conditions. 

 AD processing facility including the use of the biogas 

 100 t processing limit per day  

 Combustion of biogas can be in gas engines, boilers, 

turbines, fuel cells or upgrading to bio methane [127] 

Bespoke 

For plants that 

cannot adhere to all 

pre-defined rules or 

conditions 

The conditions vary considerably where both stationary 

and mobile AD plants are categorised for in this type. 

However, the flexibility of this type comes at more cost 

and time. Details can be found on the government 

website [128].  

4.3.2. Permits for Spreading Digestate  

As with exceptions to environmental permitting, digestate that is solely from agricultural waste 

streams is exempted from disposal charges provided that a number of conditions are met. These are: 

 Only can be spread on agricultural land  

 50 t per hectare spreading limit  

 200 t storage limit at any one time  

 Digestate must be from waste streams that improve or maintain the physical, chemical and 

biological properties of the soil to grow crops [129] 

Note that material that has reached PAS 110 and Quality Protocol standards is no longer regarded as 

a waste. As such, the restrictions above no longer apply.  

To spread waste material which does not meet the publicly available specification (PAS) 110 for 

agricultural and non-agricultural land for business or environmental enrichment, a permit is 

required. That is if the spreading activities to agricultural land exceed the exception conditions. 

Generally, a standard rule permit is given with the conditions and charges depicted in the 

government publication “SR2010 No.4: Mobile plant for land spreading” which specifies: 

 A 250 t per hectare spreading limit  

 3,000 t limit for the amount of waste material on site at any time 

 12-month storage limit for the material  

 For every spreading application of material to the land a charge must be payed depending 

on material type and the risk it poses, ranging from low, medium and high 

High risk (Category 2) animal by-products (ABPs) cannot be used as feedstock in AD plants, 

unless they have been treated to a 133°C/3 bar/20-minute EU pressure-rendering standards [130]. 

Contrary to this manure is classified as a category 2 ABP, however, manure can be used without 

processing as raw material in an AD plant. But when mixed with ABPs such as catering waste the 

mixture must be rendered to the heat and pressure regulations prior to anaerobic digestion.  

4.3.3. Planning Permission 
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Potential issues surrounding planning of AD plants revolve around 5 main concerns as 

highlighted from the governments planning policy statements and supplementary planning 

guidance [131]. These are: 

Site Selection. The AD reactor tank can sometimes be quite large presenting a significant change to 

a landscape, where tanks can reach as high as 15 m. However small on farm digesters can sometimes 

be accommodated within the farmyard and buildings concealing it to an extent. Where this may not 

be possible, in the interest of reducing tank visibility, it can be somewhat burried in the ground 

reducing the visual impact. The burial also offers heat insulation benefits. Centralised AD plants have 

issue of the transport of feedstock involved, affecting chances of approval, giving on-farm plants the 

advantage. 

Feed Stocks and Product Storage. Planning permission may be given only for specific feedstock, 

adding to or changing the feedstock is not allowed without further planning consent. This ties in with 

the exception permit given to farms that by adding other feed stocks it can lead to the exception being 

revoked. The storage of slurry and muck used in on-farm AD plants is covered by the water resources 

(control of pollution) (silage, slurry and agricultural fuel oil) England regulations and 

the nitrates directive (91 / 676 /EEC). Specifying the minimum standards for construction related to 

the design and operation of any farm slurry storage system. 

Odour. AD by its nature of breaking down organic matter is an odorous process, this is of concern. 

Where predicted odour effects and proposed mitigating measures should be reviewed. If a location 

is considered to be sensitive to odours, information on the control measures should be provided from 

the developer to ensure that all sources are accounted for. Farms are already known for to be odorous 

and thus odour concerns are lessened to those of centralized facilities.  

Emissions to Ground and Water Courses. As has been made clear in previous section, the runoff 

from raw agricultural wastes such as manure and slurry can contribute to serious farm pollution 

incidents. Therefore, the AD of farm waste should be conducted in a manor to reduce the likelihood 

and ability of the material to pollute water sources. In many application cases, the requirement of a 

bound wall is put forward by the planning authorities to prevent effluent spillage in the event of a 

leak. As for ground water leaking, the surround surface of a supposed plant is usually required to be 

concreted and run off prevented from reaching normal drains. Delays in the planning process can be 

the result of concerns in regard to designs inadequacies.  

Emissions to Air. The production of biogas from AD and its uses contributes to a number of 

emissions to the atmosphere, manly from engine exhausts, gas vents and flare stacks. The emissions 

can however be considered insignificant provided the equipment meets design specifications and is 

routinely serviced. For larger on-farm and centralised AD plants integrated pollution control 

measures are required to control the emissions to meet regulations.  

4.4. Implementation of anaerobic digestion to farms  

4.4.1. Slurry and Manure as a Feedstock  

Without adding other feedstock, the AD of slurry and manure has been proven to be 

uneconomical for both on farm and centralized plants due to the low gas yields, high capital cost and 

absence of gate fee. The legislation also plays a large role here in the restrictions placed on the 

exception type permit for farm-based plants. Other wastes such as those from grain processing can 

be added to increase gas yield without increasing the potential environment effects. In surveys 

conducted in 2017, it was reported that there were 401 AD plants in the UK, if those for treating 

sewage sludge are ignored, with more than half at 221 utilizing slurry and manure as feedstock. 

However, those dedicated to only slurry and manure are uncommon making up just 6% equating to 

24 plants, with the capacity of processing 165,000 tonnes per year [132]. 

4.4.2. Grid Connection Issues  
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For widespread implementation of AD to farms, significant issues can be expected in connecting 

to the grid in part due to the low load electricity lines supplying many farms and the power of 

transformer. If the national grid deems the transformer inadequate, this can make the implementation 

of an AD plant to produce electricity not economically viable. Because it is presumed that small AD 

plants are unlikely to produce significant extra electricity that can be sold to the grid. 

4.4.3. Lack of Land  

From the regulations on digestate spreading where 50 tonnes per hectare is the spreading limit, 

large livestock farms particularly those where the animals are kept indoors all year round and have 

little in terms of land can be a significant issue. On the contrary these farms must find ways to get rid 

of slurry and muck like the straw-muck exchange highlighted in the feedstock preliminary section. 

And if this were to be replaced by digestate the application rates are the same. If PAS 110 and Quality 

Protocol standards are achievable, converting slurry and manure to digestate would be very 

advantageous for surpassing the application limits. 

4.4.4. Technology 

If widespread implementation were possible this could see a significant contribution to the UK’s 

energy demands if the majority of manure and slurry were to be processed. This amounts to 90-100 

million tonnes of agricultural by-products such as manure and slurry available each year in the UK. 

This is based on a 20 m3/t (8% dry matter) average gas yield of slurry, that 1.7 kWh of electricity is 

produced per 1m3 of gas due to conversion losses and if 50% of the available manure/slurry can be 

processed, 1.615 TWh worth of electricity could be produced. A reasonable estimation which could 

provide 0.45% of the UK’s annual demand, based on 2018 at 352.064 TWh [133]. A low percentage, 

but after considerations of the useful heat that can be harvested alongside the emission mitigations, 

it becomes more considerable. But the low electricity generation is a limiting factor in the technology 

potential. 

4.4.5. Operation 

The success of an on-farm AD plant, no matter how good the design nor technology, is inevitably 

comes down to operator skills, frequent monitoring and feeding the digester. On many farms, the 

muck and slurry are required to be mixed into the digester at a certain ratio for instance. Adding to 

this AD’s can be plagued by a number of problems namely: 

• Frothing  

• Acidification  

• Increasing viscosity  

• Increasing volatile fatty acids (VFA) and total inorganic carbon (TIC) value  

• Poor methane yield  

These problems, if not corrected and kept on top off, can lead to poor biogas yield. Frothing 

alone can reduce biogas yield by up to 20% [134], with the cause linked to the constitution of the 

digestant and mixing routines within the reactor tank. These problems make time allocation and 

training a must for the farmer/operator. As such, a best practice guide should be made available if 

not already on the operation of AD plants specific to slurry and manure. 

4.4.6. Bespoke cases 

One size does not fit all in the case of widespread farm implementation, every farm is individual 

and presents its own challenges. The differences from farm to farm can be enormous from the amount 

of slurry and muck produced, to the characteristics of the feedstock and the planning complications. 

At a government level to seek to drastically increase the number of on-farm AD plants, this would 

prove complex as what may be beneficial to one may be inadequate to another.   
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Here, we provide two cases of commissioning of anaerobic digesters, which use manure as a 

feedstock. The first case is the Copys Green Farm located in Wighton, Wells-next-the-Sea in the 

eastern part of the UK, as shown in Table 12. The farm is very much sustainability driven and owners 

won a number of awards for doing so, namely the Farmers’ Weekly green energy farmer of the year 

2010. Note that £100,000 grant from bioenergy was turned down due to stopping double Renewable 

Obligation Certificate / Feed-in Tariff (ROCs/FIT) from being revived. Payback period was estimated 

at 8 years with a £83,000/year running cost most of which was the high energy feedstock. The biogas 

was produced at the rate of 70 m3/hr burned to generate 131 KVA for grid export. In the planning 

and development stage the biggest barriers to on-farm AD is described as administrative. This 

includes the environment agency and OFGEM paperwork, where the owner feels the paperwork is 

disproportionate to the risk. 

Table 12. Summarised data of Copys Green Farm [90] 

Digester Size 870 m3 (mid to large size) 

Digester Type Mesophilic, insulated, steel glass coasted tank with fixed roof 

Gas Use 
140 kW CHP, Feed in tariffs, extra heat used in grain drying, cheese making, 

dairy hot water and heating the farmhouse. 

Commissioned 2009 

Feedstock (tonnes 

per year) 

Slurry from 100 dairy cows estimated at 2,500T/yr, Maize Silage or fodder 

beet estimated at 2,500T/yr, Whey from cheese making supposed feed stock to 

be incorporated but not yet would be around 210T/yr 

Farm Size 230ha, arable and dairy, all in NVZ (Nitrate Vulnerable Zone) 

Capital cost 
Estimated to be £750,000, self-financed, with £100,000 capital grant turned 

down. 

Issues Unreliability of CHP. Tech provider issues (takeover midway through project) 

Barriers to AD Administrative: EA and OFGEM paperwork 

Advantages 
Recycling and improved utilisation of crop nutrients. Reducing risks the 

manures pose to NVZ area as digestate 

 

The second case is a Woodhead farm located near Annan in Dumfries and Galloway in the 

western part of the UK, as shown in Table 13. A SlurryGen-50 digester was installed by Advanced 

Anaerobics Ltd. to help reduce electric bill and generate income [135]. 500 kWh is used each day of 

the total 1,200 kWh produced with the balance exported to the grid. Owners applied for the feed in 

tariff in 2014 securing 12.46 pence/kWh. The excess heat is planned to be used on farm and generate 

additional income through RHI scheme. With these tariffs and savings to the electricity bill, payback 

period is estimated 60 months (5 years). It is said that for each ton of dry organic matter in slurry can 

produce 300-400 m3 of biogas. Operating cost is highlighted as an issue in this case study, because for 

example the CHP generator requires routine maintenance and periodic engine rebuilds. Over a 20-

year lifetime, the operating costs of the plant as a whole will exceed the initial capital cost.  

The Farmers’ Weekly points out that in 2015 only 18 slurry AD plants were running in the UK. 

There were however 20-30 units at the planning stage. More widely 280 on-farm plants have been 

encouraged with RHI and FIT’s.   

Table 13. Summarised data of Woodhead farm [135] 

Digester Size Small 

Digester Type Mesophilic, insulated, steel glass coasted tank with fixed roof 
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Gas Use 
50 kW CHP, some used on farm, rest exported to grid through feed-in tariff. 

Surplus heat planned to be used on farm under RHI 

Commissioned 2015 

Feedstock (tonnes 

per year) 
Slurry from 320 dairy cows estimated at 24 T/day 

Farm Size n/a 

Capital cost Estimated to be £400,000 (self-financed) 

Issues Operating cost due to small plant 

Barriers to AD Administrative: EA and OFGEM paperwork 

Advantages 

Smaller size, simplified planning and permits, as does not need crop or other 

material brought in, there is no requirement to qualify as consented waste 

management site and lower capital cost. 

4.5. Summary of manure and AD implementation  

Manure and slurry present significant anthropogenic emissions of NH3, NOX and methane in the 

UK at 40%, 28% and 22.5% respectively. This requires that anaerobic digestion mitigations of 90% in 

methane from stores and 50% in NOX emission after the application to land can be achieved. 

However, AD has poor NH3 reduction capabilities, requiring extra processing. Although a more 

effective migration pathway may be to change how muck and slurry are applied to land, a reduction 

of up to 40% is achievable by minimizing aeration.  

Sharp drops in tariff rates, high capital requirements and lack of grants make the economic side 

of AD an issue. On-farm AD has been named numerously as the most suitable type for manure but 

the least viable. Therefore, reforms to the incentives are a must if the number of AD plants are to 

increase in the UK, especially on-farm types which rely on grants. As the current tariff banding 

system is unsuitable for on-farm AD, implementing higher paying bands would be advised. A gate 

fee for processing, which includes the cost of opening, maintaining and eventually closing the site 

and also may include taxes applicable in a region, would also be advised to reduce dependence on 

biogas yield and temptations of using high energy crops.  

Legislation and planning play a key role in the establishment of farm digesters with exception 

permits designed for this scenario, but for an exception to be grated strict rules apply. For more 

normal or unique operations, two other permit types (a standard rule permit SR2010 and a planning 

permit) can be granted at a cost and more time. The quality of the digestate is key in what can be 

done with it and how much can be applied to agricultural land. For use on non-agricultural land 

digestate incurres charges, limitations of quality and permitting (if still a waste). Manure is also found 

to be categorized as a high-risk waste which presents pressure and heat rendering incursions. These 

can however be ignored provided it is not mixed with other animal by-products. Overall, the 

legislation can be said to be well founded and necessary. Planning permission for many is where 

issues arise in legislation delaying a project or preventing its construction. The case studies show 

legislation is a barrier to AD. But as the planning difficulties are routed in reducing the risk an AD 

plant poses to the surrounding environment, no changes are envisaged  as to ease the 

implementation of wide spread AD plants, with the environment as one of the primary focuses of 

this paper.  

A significant amount of electricity could be produced, at 1.615 TWh equivalent to 0.45% of total 

UK’s annual demand. Potential grid connection issues can limit this but for small on-farm plants 

encouraged in this report it can be said to be minimal, with the majority of the useful energy used 

onsite. Furthermore, the bespoke requirements for on-farm AD are known to present difficulties for 

the widespread implementation. Finally, as stated, inevitably the success of an AD plant comes down 

to operation. Improper monitoring and lack of know-how can lead to poor gas yields through 
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problems common to digesters. Therefore, training and courses on operation are a must not just to 

prove competency for attaining permits but also for good operating practice. 

5. Conclusions 

Waste-to-energy sector is well developed with a number of processes capable of dealing with a 

variety of waste streams for energy and product extraction, improving sustainability and waste 

management, critically displacing fossil fuels and transferring towards a circular economy. However, 

challenges remain in the effective implementation of these processes in the UK. From the existing 

body of studies, it is clear that no 'quick fix solution' will guarantee energy sector decarbonisation. 

Conventional bioenergy's capacity to produce significant GHG reductions is being constantly 

debated. Sustainable residues and waste from biomass may and should definitely be part of this 

solution. This review has focused on certain waste streams such as biomass residue and agricultural 

waste, landfill waste, food waste, fats-oils-grease, wastewater sludge and manure, because they are 

considered potentially sustainable feedstocks. With a broad variety of current applications for several 

of these feedstocks, it will require strong environmental protections to avoid harmful environmental 

and social outcomes. Although the amount of such waste materials will be raised, it will decrease for 

certain wastes. Given the importance of several other applications, only a portion of the future flow 

of such resources can be devoted to the development of bioenergy. Of this among other purposes, 

there is substantial confusion regarding the exact quantities among energy values of the feedstocks 

that could be used sustainably of bioenergy development in the UK and further research on this is 

desperately required, taking into account economic forces, competitive applications, environmental 

imperatives and other considerations. 

90 million tonnes of manure and slurry in the UK remain largely untapped, presenting the 

biggest contributions to ammonia, methane and nitrogen oxide anthropogenic emissions of any other 

waste or industry in the UK at 40%, 22.5% and 28% respectively. With large scale implementation for 

on-farm AD, mitigations for 90% and 50% of methane and nitrogen oxide could be achieved with the 

added potential of generating more than 1.615 TWh of sustainable electricity. Further processing and 

changing application methods of slurry and muck to land is required to reduce ammonia emissions. 

Barriers in the form of insufficiently high banding and tariff systems, planning, high capital costs, 

lack of government subsidies and low gas yields prevent this. Therefore, it would be suggested that 

a lower high paying tariff banding system needs to be introduced to increase AD plants on farms. It 

is suggested an addition of a gate fee payment to reduce high energy crops used as supplements for 

gas yield, and to increase the amount of slurry and muck that are digested. The bespoke nature of 

farms could still present a fundamental issue in the degree manure and muck in the UK are processed. 

The use of biomass capital to decarbonize the UK energy market has considerable potential, and 

the use of sustainable biomass waste and residues can be part of this solution, both in the direct 

processing of liquid and gaseous fuels as well as in the supply of renewable electricity generation 

capacity to decarbonize the UK grid and (indirectly) power a possible fleet of electric cars. Fostering 

the use of wastes and residues to create jobs in the UK also has considerable value. This is especially 

true for the AD industry where anaerobic digesters are widely distributed throughout the country, 

including in rural areas. There is also a need for the UK Government to step up measures to ensure 

efficient waste and residue production and we recommend a combination of responses including: 

 Supporting effective EU policy reforms to promote a transition from traditional energy to 

sufficient advanced bioenergy from waste and residues; 

 Formulating specific protections to follow the usage of waste and residues in the energy and 

transport field, notably in the absence of protections established at EU level as part of the 

existing Renewable Energy Directive adjustment procedure. A crucial precaution is the 

development of the required carbon accounting system for waste and residues, taking proper 

account of shifts in soil carbon supplies (e.g. in relation to straw extraction). The design of 

these protections will profit from cross-departmental collaboration to insure, in particular, 

that waste management priorities are not undermined; 
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 Research commissioning to enhance the perception of target applications for waste and 

pollutants, taking into consideration the business condition in the United Kingdom with 

regard to domestically accessible production and current applications (energy and non-

energy). This would also create more accurate figures of the quantity of waste and 

contaminants that may be applicable to the energy and transport industry. Although we have 

established the feedstocks that currently tend to be more renewable, their processing into 

biofuels or biomethane might not be the more 'sustainable' usage, for example in terms of the 

total GHG emissions avoided; 

 Cross-sectoral guidance on encouraging safe management and handling of waste and 

residues. Cooperation amongst policy departments collaborating on sectoral policies 

(agriculture, forestry, waste) and establishing targets for green energy and transport policies 

is required to ensure that policies in various sectors are complementary. It will result in 

valuable guidance to the various sectors and stakeholders and cause collaboration between, 

for example, producers, forest owners, waste processors and bioenergy or AD plant 

operators; 

 Providing funding resources to develop emerging waste-to-energy processing technology. It 

would possibly involve capital funding for new projects, as well as help for current 

infrastructure growth. This would help increasing the potential of waste-to-energy 

processing and enjoy the advantages of technical innovation to reduce the costs of emerging 

technology. 

 

Initiatives in these directions would be required not only to promote the development of an 

innovative waste-to - energy sector, but also to establish an acceptable route for the wider usage of 

bioenergy and biomass. There is an ability to reap several benefits by producing more green 

electricity, improving engineering know-how, and creating economic benefits like a large amount of 

potential jobs by turning waste and residue currently underutilised into beneficial uses. If protections 

are introduced, the environmental advantages of switching away from traditional biofuels in 

decarbonizing the UK energy and transport market would improve. 
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Abstract: This paper reviews the sector of waste-to-energy looking at the main processes and 

feedstock involved. Within this, incineration, gasification, pyrolysis, anaerobic digestion and 

hydrothermal liquefaction are named and discussed. Through the discussions and scrutiny, manure 

is highlighted as a significant source of ammonia, methane, and nitrogen oxides emission, estimated 

to be 40%, 22.5% and 28% respectively of the total UK’s anthropogenic emissions. Manure, and 

indeed the pollution it poses, are shown to remain largely ignored. In waste to energy processing, 

manure is capable of providing biogas for a number of pathways including electricity generation. 

Anaerobic digestion is highlighted as a suitable process with the crucial capability of drastically 

reducing the pollution potential of manure and slurry compared to no processing, with up to 90% 

reduction in methane and 50% reduction in nitrogen oxide emissions. If the majority of the 90 

million tonnes of manure and slurry in the UK were to be processed through biogas harvesting, this 

could have the potential of producing more than 1.615 TWh of electricity. As such, the economics 

and legislation surrounding the implementation of anaerobic digestion for manure and slurry are 

discussed. In the end, restraining factors that limit the implementation of anaerobic digesters on 

farms in the UK are discussed. These are found to be mainly capital costs, lack of grants, 

insufficiently high tariff systems, rather than low gas yields from manure and slurry.  

Keywords: waste feedstock; manure; anaerobic digestion; waste-to-energy 

1. Introduction 

The need to become more sustainable through the threat of global climate change and resource 

depletion is ever more prominent. Coupled with an ever-increasing population, rapid 

industrialisation, depleting fossil fuel resources present significant biowaste disposal and energy 

demand problems. In the UK, around 7.4 million tonnes of biodegradable municipal waste were sent 

to landfill in 2017 [1]. This waste could otherwise have been processed and recycled. The 

environmental impact of biodegradable waste extends beyond increasing greenhouse gasses due to 

the decomposition process. Untreated biodegradable waste release unpleasant odours due to 

decomposition and attracts scavenger animals and pests [2]. This has an impact on general public 

health and changes the biodiversity in the surrounding areas. Leaching from landfills not only 

contaminates the groundwater but can also affect the adjacent soil quality. In EU legislation, it is 

stipulated that biodegradable waste ending up at landfill must be reduced by 35% by 2020 compared 

to 1995 levels. This is one example of the driving forces behind waste to energy (WtE) processing, 

focused on reducing the volume of waste, recovering valuable products and producing electricity.  

The term 'waste-to-energy' can be used interchangeably and encompass a variety of processes and 

technologies. The conversion of waste into energy will be analysed in this paper by the following 

processes: incineration, gasification, pyrolysis, anaerobic digestion, and hydrothermal liquefaction. 

The schematics of waste to energy processes are shown in Figure 1.   
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Figure 1. Schematics of waste-to-energy processes 

 

Incineration is known as the complete oxidation within a waste stream of combustible materials 

and operates as temperatures above 850 °C. All feedstocks of waste addressed in this paper can be 

incinerated. This is one of the key advantages of incineration, the ability to deal with a diversity of 

wastes. Gasification in many sectors has been operating worldwide on a large basis for more than 80 

years.  During high temperatures (500 – 1800 °C), partial oxidation is accomplished by reducing the 

access to oxygen. The gases produced known as 'syngas' do not burn but can be gathered and 

processed for subsequent use. Pyrolysis operates similarly to gasification where partial oxidation is 

used to maintain thermal conditions. While this development is not new, a widespread deployment 

has not yet been accomplished. The process operates at about 300-700 °C. Anaerobic Digestion (AD) 

is an established process for the treatment of organic waste within the waste to energy sector. In 2007 

the Department for Environment, Food and Rural Affairs recommended companies in England and 

Wales to use AD to better achieve electricity goals. Interest decreased because of concerns about 

economic viability. AD is still considered a key process for achieving a circular economy, increasing 

resource-efficiency and for the bioenergy-economy. Hydrothermal liquefaction is the 

thermochemical conversion of biomass into biocrude oil that can then be refined into petroleum 

derived fuels. The process is conducted in a 4 to 22 MPa pressurised environment at temperatures 

250-374 °C.  With promising biomass yields this process can become more widespread in the future 

in the waste-to-energy sector.  

The rise in WtE has contributed to energy recovery increases in the UK with tonnage of 

processed wastes up to 7.3 million in 2018, nearly 4 times that of 2014 at 1.9 million [1]. The estimated 

range of total biological waste in the UK in 2020, including forestry residue and sewage sludge waste 

streams, amounts to 406.86 PJ, as shown in Table 1. 

 

Table 1. Summary of UK maximum estimates of potential for biological waste streams 

 

Waste stream Petajoule [PJ] Reference 
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Renewable fraction of waste 43.7 [3] 

Straw 132 [4] 

 88.5 [5] 

Food waste 46.9 [3] 

 38 [4] 

Green waste 10 [4] 

Livestock manure 16.4 [3] 

Sewage sludge 12.4 [3] 

Used cooking oil 9.66 [4] 

Forestry residues 8.3 [3] 

 19.2 [6] 

Arboricultural arisings 46 [3] 

Landscape care wood 35.8 [6] 

Total 406.86  

*1 Mtoe = 41.868 PJ 

 

Large amounts of waste are now processed at facilities capable of energy production. On top of 

this, wastes once discarded into landfills through enhanced landfill mining, can be dealt with past 

and present, altering previous perceptions of what a landfill is, considering them simply as 

‘’temporary storage awaiting further processing’’ [7], with vast amounts of valuable materials and 

heavy metals that can be recovered. The waste generated worldwide is losing its potential 

contribution to sustainable living. Therefore, this paper looks to review the different wastes and the 

processes involved in WtE and assessing process capabilities and waste streams that can be 

incorporated. It also looks at the question on what more can be done and what if any significant waste 

streams remained untapped or not utilized to their full potential, how this can cause significant 

environmental and sustainable problems.  

This paper also emphasizes on manure that has great potential to be used as energy source in 

anaerobic digesters if implemented on small scales at local farms. A global concern is poor production 

and utilisation of nitrogen (N), phosphorus (P), and potassium (K) from livestock [8]. Organic matter 

and nutrients recycled in manure are essential for agricultural soil structure and nutrient content [9]. 

Manure has a natural nitrogen and phosphorus content so if it is not utilised as a fertiliser on 

agriculture, natural nutrient cycles are disrupted, possibly that nutrient leaching, so artificial fertiliser 

needs are generated. Nitrogen fertiliser processing requires extensive usage of natural gas and 

produces pollution that lead to global warming [10]. In addition, it is stated that existing usage of 

small phosphate supplies for phosphorus fertiliser is unsustainable [11]. Therefore, some issues may 

be mitigated by rising the use of artificial fertiliser by reusing manure. 

On the other hand, the vast quantities of excreta produced in localised areas will add to the 

nutrient excess at the regional level [12]. Excessive use of manure as an organic fertiliser can 

contribute to soil and water eutrophication, pathogen transmission, air contamination, and 

greenhouse gas emissions [13]. Sustainable processing of these large units of output is only possible 

if manure is reused properly. Composting is a potential stabilising procedure. A significant 

drawback, though, is the strong nitrogen depletion. This phenomenon decreases the fertiliser benefit 

and may cause odour disturbance and present a serious environmental threat [14]. An option to eco-

friendly treatment is anaerobic digestion (AD), which provides added advantage to restore the caloric 

content by biogas production. Unfortunately, manure 's strong nitrogen content is prohibitive to 

successful AD. Organic Nitrogen is transformed to ammonia through microbial degradation. 

Ammonia exerts a strong inhibitory influence on microbiological conversion at high concentrations. 

Non-dissociated free ammonia triggers the toxicity [15, 16]. This compound diffuses into cells, 

causing a proton imbalance or interfering with microorganisms' metabolic enzymes [17]. Overcoming 

ammonia inhibition is essential to effective manure AD. 

To make this implementation feasible and sustainable, we have highlighted the need for further 

processing and changing application methods of slurry and muck to land as a requirement to reduce 
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ammonia, methane and NOx emissions. The paper also discusses the barriers in the form of 

inadequate high banding tariff and systems, planning, high capital costs, lack of government 

subsidies and low biogas yields. It has been suggested that a lower high-paying tariff banding system 

needs to be introduced to increase anaerobic digestion plants on farms. It is required addition of a 

gate fee payment to reduce the high energy crops use as supplements for biogas yield, and to increase 

the amount of slurry and muck that are digested. The paper also discusses the bespoke nature of 

anaerobic digesters on farms and the scales of anaerobic digestion plants. The value of this paper is 

that it has reviewed different challenges and aspects of implementation of anaerobic digestion 

systems on farms within a framework of waste-to-energy conversion.  

In addition to technological and environmental prospects of WtE, previous studies also tried to 

understand social acceptance of wate to energy and renewable energy technology. Shackley et al. [18] 

performed work on carbon dioxide absorption and storage in Europe and found that most of the 

respondents accepted this issue under the regional CO2 mitigation plan. Wolsink [19] points out that 

including local citizens in the policymaking phase would help strengthen the policies on social 

acceptance and that without societal recognition it is difficult to accomplish both waste-to - energy 

and sustainability targets. Social tolerance also has to be taken into consideration through decision 

formation. The three reasons for popular resistance to renewable energy technology were stated by 

Rogers et al. [20]: inadequate growth size, unreasonable cost-to-public benefit ratio and the lack of 

proper connexion between the local people and their views. Wang et al [21] analysed the waste 

management engagement in China, as well as how waste processing, sorting, collection, cost, age and 

education impact waste sorting satisfaction. They also examined the impact of satisfaction on 

participation in terms of enthusiasm, social contact and active involvement between region and 

gender by using systemic equation analysis from multiple communities. 

To summarize what was mentioned above, we want to emphasize that this paper is a first 

attempt to look at the waste-to-energy that reviews the status of different WtE technologies in the 

UK, including the incineration, gasification, pyrolysis, anaerobic digestion and hydrothermal 

liquefaction. The reviews [1-6] mentioned above highlighted the expected amount of different types 

of waste in the UK that would be available by 2020 but did not specify the processes to treat these 

types of waste. The reviews [8-11] discussed the importance of using manure as an organic fertiliser 

and also the importance of pre-treatment of manure by using AD to avoid environmental impacts 

associated with soil and water eutrophication, pathogen transmission, air contamination, greenhouse 

gas emissions and overcoming the ammonia inhibition of AD processes [12-17]. However, these 

reviews did not discuss the potential barriers associated with the economic aspects of AD such as 

tariffs, incentives and implementation of AD in farms. Therefore, the aim of this review is to cover 

the current status of WtE in the UK, understand its limitations, advantages, environmental effects, 

identify challenges in regards to the implementation of the waste, and assess what can be done to 

further utilize waste to energy in the effort to reduce pollution, resolve waste disposal issues and 

address energy needs.  

2. Sources of waste feedstock 

There is a significant discussion on the sustainability of bioenergy in Europe and the United 

Kingdom in particular, sparked by the recognition that increasing bioenergy use has larger 

environmental and social effects than was previously expected. The effect of expanded crop 

production for bioenergy usage on land use and the implications for the bioenergy profile of 

greenhouse gas (GHG) are significant environmental concerns. Increasing global demand for main 

grains and other crops for bioenergy processing results in increased competition on global agriculture 

markets, which decreases food prices to differing degrees [22]. This coupled with land purchases 

from primarily subsistence farmers for the development of large-scale bioenergy crops is the primary 

source of worry over the social impacts of traditional bioenergy.  

The bioenergy produced from waste and residues is considered a way to boost environmental 

and social efficiency and industry credibility and to save more GHGs than conventional energy. 

Nonetheless, there are concerns about the viability of other feedstocks and the amounts of biomass 
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accessible to the bioenergy industry as a feedstock. Considering that the UK energy market must be 

decarbonized, it is important to consider 1) possible domestic waste and residue that can help 

minimise the effect of UK biofuel use on biologically, socially and economically, including the ILUC 

impacts from outside the UK; 2) sustainable waste and residue amounts that could be required in 

advanced processing of biofuel; 3) the growth of job opportunities in the United Kingdom as a 

consequence of setting up a bioenergy industry in sustainable development. 

2.1 Biomass waste 

The efficient use of biomass waste offers an extensive range of advantages. Apart from fulfilling 

the requirements of public services, biomass can be a tap alternative sources of carbon and play a key 

role in a production energy system using renewable sources without decreasing food and feed stocks. 

There exists a great variety of biomass waste that can be used for bioenergy production. One common 

type is straw, which is a by-product of the cereals harvest, but the definition may be further specified 

to include oil-seed rape grain and maize-growing 'substantive.' There are a variety of common 

applications both in the farming industry and beyond. The large-scale usage as field improvement, 

livestock bedding and the substitute for fodder are significant applications in the UK. Straw is also 

used for mushroom and horticultural production. Apart from growing, straw is used as stalk and 

more commonly as a building medium and for direct combustion for heat and electricity production.  

As a bioenergy feedstock, the sustainability of straw is highly linked to its scale, its location and 

removal from current applications which can benefit from their own impact. Kretschmer et al [22] 

address the potential for European straw usage as well as the adverse effects of excessive straw 

diversion on energy usage, including: the degraded capacity of the soil, particularly through a 

reduction of organic soil content and consequently of nutrients; potential long lasting impacts on 

fauna arising from shifts in stubble heights and straw control and impact on livestock health because 

there is no readily accessible option to roughage and bedding (like sawdust or wood chipping). For 

2020, multiple reports forecast the availability and order of straw for different purposes. As Table 1 

shows, the results vary greatly. One potential explanation is the challenge of taking into account 

regional differences. Depending on these reports, the amount of 18 to 132 PJ of straw for UK 

bioenergy output was predicted for 2020 by Smith [4]. The UK's straw capacity is 88.5 PJ from a 

European report that offers forecasts for different countries [5]. 

Another type of biomass waste is woody residues. Smith [4] stated that most of the UK 's new 

forestry (roundwoods and residues) products were recycled into the sawmill industry and the 

panelboard industry. Given the high proportions of (mostly private) under management forests in 

the UK, however, the supply of residues is likely to increase significantly, with certain materials 

available for the energy sector as a feedstock. It may have positive side consequences, such as 

providing local work, which also contribute to habitat upgrades. Increasing the production of forestry 

residues by better management was one of the specified goals of the new forestry policies and 

strategies of the UK, in particular the Woodfuel Strategy and the Woodfuel Implementation Plan 

2011-2014 of the Forestry Commission. It is expected to produce another two million renewable 

tonnes (residue and plant) of wood biomass each year by 2020 by: 1) Setting requirements for a 

profitable and safe wood fuel supply chain; 2) Capacity building by market growth and reduction of 

obstacles to forest management; 3) Ensure that, in close collaboration with the Biomass Energy Center 

(BEC), access to specialist expertise leads to business growth. 

2.2. Landfill mining 

This feedstock is the result of landfills ‘reopening’ to be extracted of their sources of valuable 

and combustible material wastes. As landfills are known to incorporate a large degree of different 

wastes, the exact chemical constitution can vary considerably. Prior to the European directive in 2001, 

there was little control in the way of what ended up in landfill sites, giving rise to concerns of 

hazardous wastes and indeed the effects to the environment [23]. That said typically plastics, organic 

wastes, different kinds of metals, textiles, wood and rubber are most commonly found in the 

feedstock based on the combinations of waste ending up at landfill. Table 2 gives a brief outline of 
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these sources. These main raw materials may be mixed in with contaminates containing elements 

such as sulphur, chlorine and heavy metals. Bosmans et al. [7] showed that the presence of these 

elements can greatly affect the quality of the products produced though waste valorisation such as 

the syngas, bottom ash, fly ash, digestate and vitrified slag. Increasing the need of specialized 

abatement technologies required to reduce the amount of pollutants in the products or emissions to 

the atmosphere. These technologies take the form of flue gas cleaning systems.  

Table 2. Different landfill waste streams 

Source Types of different waste streams 

Commercial and 

Industrial waste (CaIW) 
Paper, packaging, metals, tyres, textiles and biomass [24] 

Municipal Solid Waste 

(MSW) (Household waste) 

Paper, cardboard, metals, textiles, organics 

 

Refuse Derived Fuel 

(RDF) (processed CaIW 

and MSW) 

Separation of recyclables, non-combustibles from source. 

Shredding/size reduction may include pelletizing. Processing done 

to adhere to a fuel specification. 

Solid Recovered Fuel 

(SRF) 

Similar to RDF but less contaminated and more homogenous, 

adheres to more stringent specifications [25] 

 

Scrap Yard Shredder 

Residue (SYSR) 

 

High degree of plastic and mixtures, metals, rubber glass, wood, 

leather, textile, dirt and grit. Mainly result of automotive 

scrappage [26] 

 

Note that the streams shown in Table 2 are in their own right different wastes that can be utilized for 

energy or product extraction if landfill is circumvented all together. Where Table 3 provides the 

typical properties that can be expected from MSW and RDF.  

Table 3. Characteristics of MSW and RDF 

Source % C % H % N % O 
% 

VM 

Lower 

heating value 

(MJ/kg) 

% water Ref 

MSW 49.5 5.60 1.33 32.4 87.1 18.7 34.2 [7] 

 35.8 4.8 0.78 24.3 67 15.2 32.4 [27] 

 43.71 7.73 1.95 37.66 77.66 18.5 20 [28] 

RDF 54.6 8.37 0.91 34.4 88.5 22.6 10.8 [7] 

 48.2 6.4 1.22 28.4 75.9 17.8 20 [29] 

 48.5 6.4 1.2 31.3 83.5 20.9 26.51 [30] 

RDF (From 

landfill) 
54.9 7.38 2.03 NA 80.4 22 14.4 [7] 

2.3. Food waste  

The definition of food waste is taken from Lebersorger and Scheinder [31] where it includes solid 

components from food preparation residues, post-preparation and consumption residues, part 

consumed food and whole unused food.  The main sectors according to Skaggs et al. [32] from which 

this waste arises are firstly industrial food processing centres; secondly, institutions such as hospitals, 

universities, schools, prisons; thirdly, commercial enterprises such as restaurants, grocery stores, 
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food distribution centres; and fourthly residential units. A degree of this waste is averted through a 

food waste recovery hierarchy before the level of energy and product extraction. This type of waste 

is known to be of high value in its uncontaminated state where a large part at the industrial level 

waste can be used to create animal feeds. The types different from the animal feeds are opened up to 

energy and combustible product extraction and through anaerobic digestion. Looking at published 

work, generally speaking, the degree to which the feedstock is valued revolves around the moisture 

content [33,34,35]. Where a lower moisture content increases the combustion characteristics and 

suitability to associated processes, also reduces energy loss through steam/drying. A higher moisture 

content increases suitability for digestion. Table 4 shows typical composition of food waste in UK.  

Table 4. Characteristics of typical food waste 

Source 
% 

C* 

% 

H* 

% 

N* 

% 

O* 

% VM* 

Of TM 

Higher 

heating 

value 

(HHV) 

(MJ/kg) 

% 

Lipid 

% 

Protein 

% 

Carb 
Ref 

UK 52 6.9 3.1 38 22 22 15 21 48 [36] 

Korea 51.2 7.2 2.9 38.1 - - - - - [37] 

Various - - - - - - 
6.4- 

24.1 

3.9- 

21.8 

24-

46.1 
[38] 

Malaysia 47.4 6.9 3.3 38.7 - 17.45 - - - [39] 

2.4. Fats, Oils and Grease (FOG) 

Large institutional kitchens, restaurants, cafeterias are responsible for the production of 

waste/used oils, fats from animals and grease through cooking. A percentage of this waste inevitably 

ends up down sinks and in the sewers whereas they are non-water soluble can collect and form 

blockages. The Environmental Protection Agency (EPA) has estimated FOG build ups contribute to 

70% of sewer pipe blockages and 30% of pump station failures [40]. Water UK [41] provides guidance 

on avoiding fats and oils from entering the sewers for large kitchens where grease traps are the 

primary means of capture. This works via taking advantage of the difference in density of water and 

FOG to capture and contain the grease to be disposed. This grease can contain a wide range of 

suspended waste food solids and wastewater, and as such, is known as ‘brown grease’. These 

contaminates make it more difficult to recycle than ‘yellow grease’ which is from spent oils and fats 

that have not interacted with wastewater i.e. deep fat frying. Due to this contamination, the brown 

grease is not used for biodiesel production due to lower energy content of 35 MJ/kg compared to 40 

MJ/kg of waste cooking oil.   [42]. So, the brown grease is usually disposed as waste rather than 

recycled into energy. There are many options in regards to utilizing yellow grease in anaerobic 

digestion, composting, processing into biodiesel as mentioned, or used as additives for animal feed 

and soap. But the uses of brown grease are not so clear with its hazardous classification and more 

difficult extraction procedures.  

Other than waste oils, fats and grease from the cooking industry, a large amount of synthetic 

and mineral oil wastes accumulate when they are no longer deemed fit for purpose. These are motor 

oils, heating oils, hydraulic oils, ship oils, sump residue and oil-water emulsions. All categorized as 

hazardous waste due to the chemical makeups used. For example, used engine oil contains cocktail 

of hydrocarbons, heavy metals (magnesium, cobalt, zinc, iron), minerals, chlorine, sulphur, 

phosphorus, nitrogen and additives all known to have cancerous effects and detrimental to the 

environment [43]. The environment protection agency states that one drop of used motor oil can 

contaminate 1 cm3 of water, highlighting the scale of potential cause when considering if all vehicles 

that have internal combustion engines produce waste oils.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 8 

 

2.5. Wastewater sludge (WWS)  

During the processing and treatment of wastewater to return it to the environment, a residual 

nutrient rich semi-solid is produced known as wastewater sludge (WWS), typically containing 25-

75% solid based on weight. WWS can be composed of solids from primary and secondary treatment 

stages. During the primary stage, the initial suspended solids within the wastewater are separated. 

Around 40-70% of solids within the wastewater are captured, where the organic and inorganic fines 

are concentrated down to 2-7% and 60-85% for volatile suspended solids. Secondary treatment stage 

focusses on biological aspects where a combination of aeration, exposure, microbes and secondary 

settling occurs. Solids are concentrated to 0.5-1.5% with volatile suspended solids concentrations at 

70-80% [32]. Biochemical characteristics of primary and secondary sludge are shown in Table 5. 

In the US approximately 6.3 million metric tons of municipal WWS was produced in 1998 of dry 

solid weight (according to the US environment protection agency) and todays figure will only be 

higher. When processed properly it can be very beneficial for the application of agricultural land to 

improve soil quality, using as a soil conditioner in landscaping, and using for part of landfill cover-

ups [44]. Hence the term ‘biosolids’ is associated with processed WWS. The main energy recovery 

process associated with WWS is anaerobic digestion, in which the resultant bio-waste and indeed the 

treated WWS can be used in the production of biosolids for fertilizer. However, there are social 

concerns in regards to heavy metals and pharmaceutical compounds that could be within the WSS. 

Which, when introduced to agricultural cropping soils can give a predominately negative effect on 

local water, energy and material sustainability [45]. In addition to affecting the ecosystem through 

concentration of heavy metals, crucially highlighting contaminates play negative role in reducing the 

sustainability and product quality. An option that reroutes the biosolids from being used as fertilizers 

and averting the social concerns is hydrothermal liquefaction processing into bio crude oil. This bio 

crude oil can then be refined to meet bio diesel and diesel standards [46].  

Table 5. Biochemical characteristics of primary and secondary sludge 

Source 
% 

C 

% 

H 

% 

N 

% 

O 

% 

VM 

HHV 

(MJ/kg) 

% 

Lipid 

% 

Protein 

% 

Carb 
Ref 

Primary 

sludge 
47.8 6.5 3.64 33.6 82.17 20.7 - - - [47] 

 51.5 7.0 4.5 35.5 65 - 18 24 16 
[48] 

 

Secondary 

sludge 
43.6 6.55 7.9 29.0 76.25 19.6 - - - [47] 

 52.5 6.0 7.5 33.0 67 - 8 36 17 
[48] 

 

2.6. Manure 

This is the combination of animal faeces with an agricultural by product such as straw (used as 

animal bedding). All livestock, particularly indoor bred stock produce manure. This manure can vary 

in composition depending on the type of animal it is from and what diet they are on. Table 6 shows 

these differences in the biochemical characteristics.  

Table 6. Characteristics of different manures at 76.37% water content  

Source % C % H % N % O 
% 

VM 

HHV 

(MJ/kg) 

% 

Lipid 

% 

Protein 

% 

Carb 
Ref 

Fattened 

cattle 
35.38 3.73 2.38 57.51 16.21 15.16 6.8 26.6 52.5 [32] 

Dairy cows 38.8 5.1 1.3 54.7 83.2 11.9 5 18.11 52.6 [32] 
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Bacon pigs 41.1 5.42 3.36 50.1 83.7 - 20.3 24.5 34.7 [32] 

 

Fertilization is the primary use for this type of fully biodegradable waste where without any 

processing it is spread onto crop producing land. A common life cycle is known to be set up between 

arable and livestock farmers in the UK as a result where manure is exchanged for straw. Where the 

manure is desirable for arable farmers to fertilize their land and the straw from the crops produced 

by the arable can provide a bedding and food source for a livestock farmer [49]. This is the virtually 

at present the only pathway for disposing the manure and slurry. Processes such as anaerobic 

digestion (discussed in the next section) aim to tap into the vast amount of energy stored within this 

feed though emitted products. Nitrous oxides, methane and ammonia are the most prevalent gasses 

released into the atmosphere by the decomposing manure without any process intervention. This is 

of great concern given the amount of manure produced every year and known the global warming 

characteristics of said gasses. The animal agriculture sector accounts for 37% and 64% of the annual 

anthropogenic methane and nitrogen oxides emissions, respectively, which are 23 and 296 times the 

global warming potential (GWP) of carbon dioxide. In addition, livestock are responsible for 64% of 

the anthropogenic ammonia emissions, contributing to the formation of acid rain and acidification of 

ecosystems [50]. Such high percentages are alarming considering that the majority of these emissions 

are from manure and slurry and highlight the need for processing to bring emissions in the sector to 

some acceptable level.  

3. Waste-to-Energy Processes 

Waste-to-energy encompasses a variety of specific methods and technologies. In the purposes of 

this article, this is intended to identify a variety of disposal methods and techniques utilised to 

produce a functional source of energy and to minimise the amount of residual waste. Such energy 

may be in the form of power, heating and/or cooling, or turning the waste into a product for potential 

usage, such as biogas, automotive fuels, or a mixture of these types. In this paper we will review the 

conversion of waste to energy through the following processes: incineration, gasification, pyrolysis, 

anaerobic digestion, and hydrothermal liquefaction. 

3.1. Incineration 

Incineration is classified as the full oxidation of the combustible materials within a waste stream. 

The process is composed of several key stages of drying/degassing, pyrolysis and gasification then 

combustion. Unlike other processes in this list that only partially oxidize the waste stream, 

incineration can be fed by a large variety of waste streams. In fact, all waste streams discussed in this 

paper can be incinerated. This is one of the main advantages incineration has, the ability to deal with 

a high degree of waste variety. The variety effects the product percentages left after processing, such 

as the bottom ash which in MSW incinerators is approximately 25-30 % by weigh of dry waste input, 

and the fly ash is at 1-5 %. The fly ash requires immobilization to be made environmentally safe, 

which can then be used in asphalt concrete. The bottom ash however requires much more processing, 

where at a slag reprocessing pilot plant facility, valuable metals (Al, Fe, Cu) can be recovered. The 

residue after metal recovery can then be granulated for the construction industry [51]. Figure 2 is an 

example diagram of a combined heat and power (CHP) plant based on incineration. 
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Figure 2. Simplified layout of a waste-to-energy incinerator [51] 

Originally, incineration was purely used to reduce the volume of waste as well as destroy 

harmful substances in the effort to prevent health threats. Now, waste incineration is predominantly 

combined with energy recovery the importance of which is increasing. Denmark and Sweden are 

notably the world leaders having produced electricity from the incineration of waste for more than 

100 years [52]. Now there are 3 main types of incinerators; gate, rotary kilns and fluidized beds, each 

type specified for particular feedstock. The plant efficiency factor of these incinerators according to 

the confederation of European WtE plants (CEWEP) in 2010 based on accounted 314 plants was at 

average 0.69. The specific electricity produced as weighted average was 14.89% of total Mg and heat 

at 34.59% of total Mg [53]. Note that the Plant Efficiency Factor (R1) in the equation (1) was used to 

obtain the figures given in accordance with the waste frame directive [54]. WtE plants “producing 

electricity only” have the lowest R1 factor of 0.55, as a non-weighted average, so that only 37.3% 

plants reach R1 ≥ 0.60. Although WtE plants “producing heat only” have a higher R1 factor of 0.64, 

as a non-weighted average, only 68.1% plants reach R1 ≥ 0.60. In this case, the import of the total 

amount of electricity to treat the waste has a negative influence. WtE plants “CHP producing” achieve 

the highest R1 factor of 0.76, as a non-weighted average, so that 77.2% plants reach R1 ≥ 0.60. 

 

𝑅1 =  
(𝐸𝑝 − (𝐸𝑓 + 𝐸𝑖)

(0.97 ∙ (𝐸𝑤 + 𝐸𝑓))
 (1) 

where, R1 - plant efficiency factor, Ep - annual energy produced as heat or electricity, Ew - annual 

energy contained in the treated waste, Ei - annual energy imported, and Ef - annual energy input to 

the system from fuels contributing to the production of steam [53]. These plants are notably still less 

efficient than conventional power plants. This is in part due to specific equipment requirements for 

incineration of waste, limitations on steam pressures due to corrosion risks, energy requirements to 

maintain optimal operational regime and critically pollution control equipment necessary to treat 

flue gasses. Generally, the more effective and complex a pollution control system is the higher the 

energy needs. 

The current status of this technology in the UK is at TRL 9 since the actual system is proven in 

an operational environment. In 2016 there were 115 incineration facilities in the UK. It is estimated 

that 6.1% of waste generated in the UK is processed through incineration [55, 56]. 37 incineration 

facilities were fitted for energy recovery accounting for 3.4% of waste processing, as shown in Table 

7. This equates to 7.3 million tonnes of waste. It is in increase from 2014 where only 0.9% of waste 

were processed with energy recovery representing 1.9 million tonnes of waste. Three new facilities 

were commissioned between 2014 and 2016, however, the total number of incineration facilities with 
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energy recovery increased by eight. It is likely that new facilities are designed for energy recovery, 

while older facilities without energy recovery are converting to enable energy recovery. It is 

foreseeable that the number of incineration facilities with energy recovery will increase over the next 

decade as older facilities are converted. 

 

Table 7. Use and capacity of incineration facilities in the United Kingdom [55, 56] 

Incineration in the United Kingdom 

 Incineration only Incineration with energy recovery 

Year Mt Capacity 

Mt/yr 

% of all 

waste 

Number 

of 

facilities 

Mt Capacity 

Mt/yr 

% of all 

waste 

Number 

of 

facilities 

2012 5.9 8.4 3.1% 87 1.6 2.9 0.8% 27 

2014 7.6 9.9 3.7% 83 1.9 4.9 0.9% 29 

2016 5.7 8.5 2.7% 78 7.3 9.8 3.4% 37 

 

The UK Strategy for Recourses and Waste reported that 3.4% renewable energy was generated 

from incineration of biodegradable waste in 2017 [57]. It is estimated that 2.3% of the UK’s energy 

demand can be met through incineration with energy recovery should all the municipal solid waste 

that are currently sent to landfills be rerouted to incineration facilities [58]. Not only will this have a 

positive effect on the renewable energy generation in the UK, but also on greenhouse gas emissions 

generated from landfills. It is plausible that greenhouse gas emissions can be reduced by 2 million 

tonnes in this manner [106]. Legislation requires that biodegradable waste sent to landfills must be 

significantly reduced. This will see more municipal solid waste rerouted to incinerators providing an 

increase in feedstock and more opportunity for energy recovery from incineration. However, the 

current stance of the UK Government is that although incineration plays an important role in waste 

management the focus should be on prevention and recycling rather than landfills and incinerators. 

Taxation on the incineration of waste is likely to increase over the next few years which may reduce 

the economic benefit of this manner of waste management.   

3.2. Gasification 

Gasification has been around for some time more than 80 years globally on a commercial scale 

in many industries and 35 years in the power generation. In partial oxidation process of organic 

substances, high temperatures of around 500-1800 ℃ are used. Partial oxidation is achieved by 

limiting the oxygen exposure at those temperatures so the gases produced known as ‘syngas’ do not 

combust but instead can be collected and stored for later use. These later uses include the chemical 

industry, as a fuel for the production of heat and or electricity or conversion into ethanol [59]. The 

syngas constitutes of H2, CH4, CO, CO2, H2O and N2 with trace amounts of other hydrocarbons like 

propane and ethane. Predominantly air is supplied to the reaction site which in comparison to using 

pure oxygen results in a syngas of lower energy. Such that, in terms of heating value, pure oxygen 

gives 8.7 - 11.3 MJ/Nm3 and air gives 4–7 MJ/Nm3 [60]. There are 3 main types of gasifiers: fluidized 

bed, fixed bed and entrained flow which are capable of dealing with MSW, dried sewage sludge, 

some types of hazardous wastes and waste food among others. One of the key requirements for the 

feedstock is that it must be finely granulated, therefore MSW for instance requires pre-treatment. This 

is a clear negative side when compared to incineration, which comparatively has lower residue 

percentage of the feedstock. But there are positive comparisons such as lower volumes of gases 

produced mean smaller flue gas treatment systems can be used and smaller wastewater flows from 

syngas cleaning [7]. In addition, the overall thermal efficiency is more than 75% [61]. Furthermore, 

by the use of partial oxidisation, the amount of oxidized species such as SOx and NOx are reduced, 

which are replaced by H2S, nitrogen and ammonia. Known to be better forms that can be scrubbed 

from the syngas than the oxidized versions prior to syngas utilization [62].  
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In terms of gasification process a number of sub process take place. These constitute of a degree 

of pre-processing to remove inorganics such as metals and glass, which cannot be gasified, particle 

size reduction, drying (within the gasifier and in some cases prior to), oxidation and syngas collection. 

As can be seen the main waste product left over is slag (in high temperature gasifiers), this is similar 

to the bottom ash in the incineration process where metals and other valuable products can be 

recovered. Gasification of fossil feedstocks is an established process and is therefore rated at TRL 9. 

The use of biomass feedstock, such as municipal solid waste, is not readily applied in the UK. 

Although there are a number of plant in Norway, Germany, Finland, Italy and Sweden [63]. It was 

recently reported that operation had begun at UK’s first municipal solid waste gasification plant 

located in Aldridge [64, 65]. To date the plant is operating on waste wood feedstock and the 

technology is not proven for municipal solid waste, although it is the intension to do so in the future. 

This is not the first gasification plant constructed in the UK for processing of biomass waste. Several 

such facilities have been built in the past and all have failed [66, 67]. One such example is the company 

Energos Ltd. that operated a gasification plant in the Isle of Wight since 2009 [68]. The plant made 

use of Refuse Derived Fuel (RDF) and was designed to provide 1.8 MWe power. The company had 

plans to build similar plants in Glasgow, Milton Keynes and Derby. However, the plant went into 

administration in 2016; the route cause was found to be a failure to deliver on gasification contracts. 

Another example is Ascot Environmental and its subsidiaries Planet Advantage and Scotgen that 

build a gasification plant in Dumfries in 2009. The plant was designed to deliver 6.2 MWe power 

from municipal solid waste and RDF feedstock. The company filed for administration in 2012 since 

the plant failed to produce energy during its three years of operation. The permit to operate that plant 

was revoked due to non-compliancy with the Scottish Environmental Protection Agency. 

Fiscal incentives for the development of advanced conversion technologies, such a gasification 

of municipal waste, might receive more attention in the next decade [69]. The Engineering and 

Physical Sciences Research Council (EPSRC) does not have a specific research focus in this area but 

has supported gasification projects in the past [70]. Considering the past failures of the technology, it 

will be challenging to obtain the necessary funding to increase the TRL. Much depends on the 

operation and economic viability of the Aldridge plant and its ability to robustly process municipal 

solid waste on a large scale. The success of this plant will unlock the potential for gasification as 

biowaste processor.  The failure however, along with the historical failure of similar plants, will be 

seen as conclusive proof that further development of this technology should be abandoned. 

3.3. Pyrolysis 

This process works on the thermal degradation similarly to gasification where partial oxidation 

is used to maintain the thermal conditions. Pyrolysis can also be achieved in complete absence of 

oxygen with an external heat source in inert conditions. Comparatively to gasification, pyrolysis 

works on lower temperatures of around 300 - 700 ℃ [71]. To date, although this technology is not 

new, it has not yet reached a widespread implementation. During the process, 3 products are made: 

solid coke, pyrolysis gas, pyrolysis liquid. The exact constitution and proportions of these products 

depends on the feedstock, reactor conditions, reactant residence time and pyrolysis method. The 

process can be optimized to maximize the formation of each product [72]. For example, in the case of 

fluidized bed reactors (fast pyrolysis), high temperature and high biomass residence time increases 

the production of gases; On the contrary, high temperature and low residence time however increases 

the formation of condensable liquid oils; then low temperature and high residence increases the 

production of solid coke. Typically, the pyrolysis gas, liquid and coke have calorific values of 5-16 

MJ/kg, 22-25 MJ/kg and 33 MJ/kg respectively. The low heating values of the gases and liquids mean 

that upgrading is necessary to produce fossil fuel substitutes [73]. Pyrolysis can work on any 

hydrocarbon waste that can be cracked to release gasses, oils and char. For instance, FOG, MSW, food 

waste, manure and sewage sludge are all acceptable.  

One of the notable advantages of pyrolysis against other waste-to-energy processes is the higher 

energy density achievable of the products produced. But what some researchers don’t mention is that 

these higher energy products were produced with external heat sources supplied to the reactor. 
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Furthermore, a degree of preparation is required to reduce feedstock particle size. Also, drying can 

be required depending on moisture content and the desired calorific value of the products. The inner 

stages are centralized around the reactions (thermal cracking) of the waste to release the pyrolysis 

products, which are then captured through condensing. The remaining coke is sometimes incinerated 

to rid of the organic matter remaining. Main pyrolysis reactor types include rotary kiln, fluidized 

bed, fixed bed, entrance flow, moving bed and more experimentally auger [74]. As hinted here, this 

process can be responsible of higher waste residue than gasification and incineration. This is mainly 

due to lower temperatures as a result of lower flue gas volumes after combustion of the products 

than incinerators [7]. 

As a general process, fast pyrolysis is currently deployed in operational environments with 

system completion and qualification. This places fast pyrolysis at TRL 8. Pyrolysis with upgrading, 

that increase the quality for the oil produced so that it can be used as transport fuel, is currently at 

TRL 5 [70]. There are 8 companies and 9 universities actively engaged in activities related to waste 

treatment through pyrolysis (Table 8). Activities are mostly aimed at waste-to-fuel applications 

instead of waste-to-energy. There are currently no large-scale facilities for pyrolysis in the UK. 

 

Table 8. UK Companies and institutions involvement in pyrolysis 

Company/Institution Location Feedstock Conversion Ref 

2G BioPOWER Kent Tyre  Recycling [75] 

Anergy Ltd London Biomass Waste-to-Energy [76] 

Conversion and Resource 

Evaluation (CARE) Ltd 

Down Biomass Waste-to-Fuel [75] 

Cynar Plc London Plastic Waste-to-Fuel [76] 

Environmental Power 

International 

Surrey Various Waste-to-Fuel [76] 

Future Blends Ltd Oxfordshire Biomass Waste-to-Fuel [75] 

PYREG (UK) Cambridge Sewage Sludge Phosphorous 

Recovery 

[75] 

Torftech Energy Ltd Thatcham Biomass Waste-to-Energy 

Waste-to-Fuel 

[75] 

Aberystwyth University Aberystwyth Biomass  Waste-to-Fuel [75] 

Aston University Birmingham Biomass Waste-to-Fuel [77, 78] 

Newcastle University Newcastle Biomass Waste-to-Fuel [75, 79] 

University College London London Plastic Waste-to-Fuel [80, 81] 

University of Cambridge Cambridge Various Material 

Recovery 

Waste-to-Fuel 

[75, 82] 

University of Edinburgh Edinburgh Biomass Waste-to-Fuel [83, 84] 

University of Leeds Leeds Biomass Waste-to-Fuel [85] 

University of Sheffield Sheffield Biomass Waste-to-Fuel [86, 87] 

University of York York Biomass Waste-to-Fuel [88] 

 

The EPSRC are routinely funding research aimed the development of bioenergy. The bioenergy 

thematical area currently holds 14 research grants worth £12,511,100.00. There are a number of grants 

awarded that is specifically aimed at improving the pyrolysis process. These were all related to waste-

to-fuel applications focusing on upgrading the quality of products to be used as marine and aviation 
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fuel. Funding for waste-to-energy applications of pyrolysis remains uncommon. The financial and 

technical challenges will hamper the integration of pyrolysis as a process for waste management in 

the next decade. Pyrolysis as waste-to-energy mechanism is subjected to technical challenges [68]. 

The feedstock from municipal solid waste is inconsistent and will need significant preprocessing 

before it can be used. Blockages are often caused in pyrolysis plants due to tar deposition which lead 

to inefficiencies. Catalyst deactivation and choking can result in plant failure. These challenges are 

not negligible and has led to the limited application of this process worldwide. 

3.4. Anaerobic digestion (AD) 

As with incineration and gasification, Anaerobic Digestion (AD) is a well-established process 

within the waste to energy sector for the treatment of organic wastes. Dating back to the 1800s making 

it one of the oldest waste to energy processes. The concerns around the environment has increased 

its utilization when in 2007 England and Wales businesses were encouraged to use AD by the 

department for environment, food and rural affairs (DEFRA) to help meet energy targets set by the 

government [89]. Now, however, interest has dropped due to economic viability concerns. 

Investments and interest primarily come from businesses such as farms and not large waste industry 

companies, as the case studies included in the Royal Agricultural Society of England report show 

[90]. One of the main differences between AD and incineration/gasification is the predominantly 

large plant waste treatment centres, costing hundreds of millions. However even with the economic 

concerns, AD is still considered a key process for achieving a circular economy, increasing resource-

efficiency and for the bioenergy-economy as a whole [91].  

The main feedstock for AD is manure and slurry, but it is not limited to these. Essentially, any 

organic matter can be fed into the digester such as WWS, FOG and food waste, as the process works 

on decomposition of organic matter. Microorganisms digest/eat the feedstock producing biogas, 

predominantly made up of methane (50-75%), with carbon dioxide along with traces of other gases 

making up the remaining percentage [92]. After the process, a solid mass known as digestate is left, 

a nutrients rich product that can be used as a fertilizer. As for the gasses produced, the high 

percentage of methane means it can either be upgraded to pure methane (main constitute of natural 

gas) or be combusted in a CHP plant. As Bywater [90] states ‘’The ratio of heat to power varies 

dependent on the scale and technology, but typically 35-40% is converted to electricity, 40-45% to 

heat and the balance lost as inefficiencies at various stages of the process, equating to over 2 kWh 

electricity and 2.5 kWh heat per cubic meter, at 60% methane’’. There are two types of AD’s: 

mesophilic and thermophilic, categorized according to their operation temperatures. The most 

common type (mesophilic) operate at temperatures between 20-45 ℃. Thermophilic digester operates 

at higher temperatures and most commonly used for sanitizing materials, so that they can be used 

for the benefit of agriculture. 

Anaerobic digestors are widely used in the UK placing the technology at TRL 9. There are 

currently 661 digestors operational in the UK [93]. It supplies the national grid with biomethane (102 

plants) and electricity (583 plants) and provide local heating (42 plants). The feedstock varies from 

agricultural waste (374 digestors), municipal/commercial waste (113 digestors), industrial waste (48 

digestors), and sewage sludge (163 digestors). Between 2008 and 2017, 255 new anaerobic digestors 

were built in the UK with a total capacity of 193,354 kW [92]. 

The percentage of energy generated in the UK from bioenergy is steadily increasing (Table 9). In 

2010 3.5% of energy generated were from biological sources. This has increased to 9.4% in 2016. 

Anaerobic digestors forms a component of bioenergy and is increasing as well. In 2010, 117 GWh 

electricity was generated with AD, accounting for 1% of energy generated with bioenergy. This 

increased to 2052 GWh in 2016, which is 7% of energy generated with bioenergy. AD is further 

discussed in section 4 where the environmental, economic, legislative and implementation is 

investigated. 

 

Table 9. Electricity generated in the UK from bioenergy by year [94] 
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Source  Units 2010 2011 2012 2013 2014 2015 2016 

Landfill gas GWh 5,217 5,318 5,208 5,175 5,033 4,872 4,703 

Sewage sludge 

digestion 

GWh 723 775 739 766 840 894 950 

Energy from 

waste 

GWh 1,529 1,504 1,773 1,648 1,900 2,585 2,741 

Co-firing with 

fossil fuels 

GWh 2,432 3,093 1,829 337 124 183 117 

Animal Biomass GWh 627 615 643 628 614 648 650 

Anaerobic 

digestion 

GWh 117 237 495 713 1,023 1,471 2,052 

Plant Biomass GWh 1,615 1,771 4,048 8,832 13,086 18,587 18,829 

Total electricity 

generated from 

bioenergy 

GWh 12,260 13,313 14,735 18,099 22,620 29,240 30,042 

Total electricity 

generated from all 

sources 

GWh 347,896 332,461 341,912 336,504 317,732 318,552 320,110 

3.5. Hydrothermal Liquefaction (HTL) 

This is the thermochemical conversion of biomass into oils referred to as ‘biocrude oil’ that can 

then be refined into petroleum derived fuels. The main advantage of this process is that water has a 

higher dissociation constant (and lower dielectric constant) at these operating conditions. The water 

is thereby less polar and helps to be a good solvent for hydrocarbon products and promote their 

reactions. As shown in Figure 3, the process is performed in a pressurized environment from 4 to 22 

MPa, which avoids oxygen and heats to elevated temperatures between 250 - 374 ℃ [95]. These high 

pressures and temperatures help breakdown and reform biomass macromolecules into biocrude oil.  

As with anaerobic digestion, the process provides a means for processing wet biomass without 

drying that incineration, gasification and pyrolysis require. However, HTL is essentially pyrolysis in 

hot liquid water. As such, feedstock high in water content are suitable i.e. manure and sewage sludge. 

HTL biocrude oils contain a diverse range of chemical compounds, which present major challenges 

for downstream processes. This in some instances due to high heteroatom content in the biocrude oil 

can result in undesirable qualities, like acidity [96]. That said significant amounts of biocrude oil can 

be obtained from pig manure and digestate sludge. Vardon et al. [96] showed that at 300 ℃, 10-12 

MPa and 30 min reaction time, pig manure and digestate sludge yielded 30% and 9.4% respectively 

with HHV’s of 34.7 MJ/kg and 32 MJ/kg. With promising yields from biomasses, this process may 

become more widespread in the waste-to-energy sector in the future. 
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Figure 3. Diagram of HTL reactor system [95] 

The current status of hydrothermal liquefaction in the UK is TRL4 since it has only been 

validated in the laboratory environment [70]. A recent review has indicated that the technology 

is immature with scaled testing at a limited number of UK universities [97]. The University of 

Leeds, Imperial College and Bath University are the only known institutions actively involved 

in experimental research in this area [98, 99, 100]. A recent review from the University of Surrey 

suggested the research focus for the process [101]. It highlighted the developments needed in 

the field to allow for both wet and dry biomass to be processed through this technique. Currently 

challenged associated with the process is catalyst performance, efficiency, product quality and 

handling of the high volumes of wastewater. Stirring large volumes of biomass slurry at high 

pressure is problematic and the solid content needs to be less than 35% to ensure pumpability. 

The process remains expensive due to the components necessary to operate in a corrosive 

environment at high pressures. The technology is expected to reach TRL 8 by 2030 [70]. 

3.6. Summary of advantages and disadvantages of WtE processes  

Looking at how prolific the processes are, HTL and AD lag behind incineration, gasification and 

pyrolysis in the UK, aligning with some of the issues discussed. Other process, such as fermentation, 

is used to some extent to produce bioethanol, but this is not so prevalent in waste feedstock streams. 

Incineration has been shown to be the most capable in feedstock admissions combined with the 

lowest end process waste percentages. However, this comes at the cost of lower efficiencies, high flue 

gas volumes and the loss of product extraction from the waste streams. The partial oxidations 

adopted in gasification and pyrolysis give advantages of lower flue gas volumes of which have lower 

percentage levels of oxidized species such as SOX and NOX, resulting in smaller flue gas treatment 

systems.  

The other main advantage is the product extraction possibilities. Notably pyrolysis process 

results in products of higher energy density. Although not discussed, plasma pyrolysis and plasma 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 17 

 

gasification among others are some of the technological advances of these processes, essentially 

working at higher temperatures to create more reactions and result in less end process. AD is shown 

to be different from the other processes, attaining products without the need of high temperatures 

and complex systems. But AD is limited to predominately manure feedstocks and economic 

uncertainties through lowering levels of government schemes and grants. This is alarming, 

considering a degree of pollution raw manure is responsible for. HTL offers a pathway to obtaining 

bio crude oil which can be upgraded and refined to match petroleum-based fuels from waste streams, 

unlike other processes that use more valuable resources, such as rapeseed biodiesel, for instance.  

One thing that has been made clear across literature of WtE processes is that although some of 

the processes have the ability to deal with a wide variety of wastes, the facilities are usually 

specifically designed to suit one particular waste stream. For example, in 2009 the chimney of 

ConTerm pyrolysis plant in Hamm Germany collapsed. The accident was the result of an insulation 

problem which lead to very high temperatures and softening of the steel structure. It was later found 

that inadequate sorting of the waste stream was a key contributor, as the feed characteristics exceeded 

the process design resulting in excessive temperatures past tolerable limits [7].   

The utilisation of waste streams for energy and products has proven to be well documented, 

with landfills now considered as temporary storage. Waste FOG’s and food can be fully utilized for 

WtE processes, same goes for WWS. Despite the widespread implementation/capture of these wastes 

in the UK, it still requires a degree of work in achieving a circular economy as the government plans. 

4. Discussion on the Effects of Manure and Barriers to Processing 

When looking at preventative environmental emissions, manure as a feedstock remains largely 

untouched. As a result, high concentrations of NOX, ammonia and methane, which are retained in 

the manure are emitted into the environment. A complete contrast is shown to strict legislation placed 

on internal combustion engines for NOX emissions, which in fact, account for far less of the 

anthropogenic emissions than manure. These and other wastes discussed in the previous section 

should be the subject to a higher attention even if they are responsible for a lower fraction of the 

emissions of manure. Therefore, this section will cover the issues of manure and anaerobic digestion 

related to the environment, economics, legislature, and implementation. It will discuss the severity 

that untreated manure can pose in the UK through emissions of nitrous oxides, methane, and 

ammonia. Amount of emissions produced by manure can be mitigated through WtE processing by 

avoiding the barriers preventing the implementation of this as a whole, and also bringing most of 

manure generated in the UK under pollution control.  

4.1. Environmental effect of emmisions from manure  

4.1.1. Ammonia 

Overall, the agricultural sector accounts for 88% of all NH3 emissions in the UK and is estimated 

at 94% in the EU [101, 102]. The lack of manure and sludge treatment in the UK results in the livestock 

industry accounting for 66% of all ammonia emissions, as shown in Figure 4 (b) (not including 

grazing/outdoors), according to the Department for Environment Food and Rural Affairs (DEFRA) 

[102]. The figure related to manure and slurry production is not taking into account cattle graze on 

open fields for at least half a year, not counting some unavoidable proportion of ammonia (NH3) 

emitted into the atmosphere. Report on NH3 emissions produced by agriculture sector was prepared 

by DEFRA. Figure 4 (a) shows the proportion of ammonia emissions per livestock.  
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(a)                                               (b) 

Figure 4. Ammonia emissions within agriculture by (a) livestock and fertilizer category and (b) by 

agricultural management category [102] 

An estimation from Figure 4 can be made on the true amount of NH3 emissions, the direct result of 

manure formation and slurry at around 40 % (Manure storage 9% + Grazing 8% + Hard standings 7% 

+ Sewage sludge 2%) of 66% of all ammonia emissions subject to unavoidable losses through animal 

grazing and hard standings. Hard standings are defined as unroofed paved or concrete areas. 

Examples include areas outside the milking parlor, where dairy cows congregate prior to milking. 

Meaning that up to 40% of NH3 has the potential to be avoided with widespread waste to energy 

processes applied. This 40% in 2019 amounts to 86.2 kT of NH3 emitted every year [103]. As NH3 is a 

soluble alkaline gas with a high reactivity, the effects to the environment are numerous. In terms of 

the atmosphere, it reacts with acid pollutants such as the products of SO2 and NOx emissions to 

produce fine ammonium NH4+. Both forms have a lifetime of 10-100 years which lessen the overall 

effects atmospherically but creates localized affection zones with high concentrations of NH3 and 

ammonium fallout [104]. The effects of ammonia vary as it is a commonly found naturally. One of 

the most notable aspects is the unpleasant odour, which even at low concentrations due to the 

pungency is still detectable. In the atmosphere, it can be an irritant to the eyes throat and lungs in 

high concentrations, the ammonium can penetrate deep into the lungs with links to respiratory 

problems and diseases due to the fine particle size [105].  

For vegetation, ammonia is on the most part beneficial as a source of nitrogen essential for the 

formation of amino acids. When in the form of ammonium and is deposited onto soil it is converted 

by bacteria into nitrates which are then absorbed by roots increasing growing rates of nitrogen loving 

plants. But this can lead to imbalances affecting biodiversity, where nitrogen loving plants take over 

smothering out other species less effective in nitrogen take up. NH3 pollution also effects species 

through soil acidification, damage to leaves through a burning effect reducing the resistance to frost, 

pathogens and drought. These negative effects in a report conducted by RAND [106] say that by 2020 

the negative impacts could be equivalent to the cost of more than £700,000,000 per year.  

The effects of NH3 in water sources is notably more severe, with links to eutrophication and 

acidification, where in concentrations ranging from 0.53 to 22.8 mg/L it becomes toxic to freshwater 

organisms. The toxic effects differ depending on species but generally fish may suffer loss of 

equilibrium, hyper excitability, increased oxygen uptake and increased heartbeat rate. In extreme 

levels NH3 can cause fish to suffer convulsions, coma and death. Even at levels below 0.1 mg/litre fish 

can experience irritation, gill damage, reduction in hatching and growth rates [107]. Fish and aquatic 

life can also be indirectly affected through eutrophication creating algal blooms reducing the amount 

dissolved oxygen. 

4.1.2. Nitrous Oxides (NOX) 
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This is another notable pollutant given off by manure, known for its high GWP of 298 times that 

of carbon dioxide. The lifetime is around 110 years in the atmosphere where the process that removes 

NOX from the atmosphere contributes to depletion of the ozone layer [108]. Aside from methane and 

ammonia, NOX is the 3rd biggest contributor in emissions from agriculture. The degree of NOX 

produced from manure is dependent on the amount of aeration where the greater availability to 

oxygen leads to more NOX formation. Looking back at the waste to energy processes, anaerobic 

digestion offers the most suitable option in limiting NOX formation. The amount of NOX emitted as 

the direct result of manure is unknown, however the overall NOX emissions from agriculture are 

known to be 27 kT in 2017 [109]. This amounts to 3% of the total NOX emissions in the UK, with 

transport contributing the most, 34%. Contradictory to this data, the national statistics for the UK in 

2017 showed that in fact agriculture is responsible for 70% of NOX emissions, amounting to 14.3 Mt 

CO2e [110].. As both are from reputable governmental sources, this serves as an example of the degree 

of uncertainty these estimates are subject to. Nevertheless, more trust will be placed on the higher 

figures when looking at another report stating it to be 65% [111]. Similarly, to the NH3 emissions, the 

amount emitted as the result of manure can be expected to be considerably less. 28% is a reasonable 

estimation if manure amounts to 40% of agriculture’s overall impact. 

4.1.3. Methane  

As with nitrous oxides, methane presents a significant contribution to greenhouse gases with a 

GWP 25 times that of CO2 and a lifetime in the atmosphere of around 10 years, where other chemicals 

in the air are responsible for its removal. The main source of methane is from the natural 

decomposition of organic matter in anaerobic conditions. As manure and slurry present large 

quantities of organic matter they contribute significantly to the agricultural sectors total emissions 

51% of the UK’s anthropogenic methane emissions in 2015 [112] and 50% in 2017 [110]. Figure 5 shows 

this in comparison to other sectors highlighting again that agriculture is the biggest contributor. 

Unlike NH3 and NOX emission where artificial fertilizer contributes heavily, methane is almost 

exclusively from manure, slurry and the animals’ digestive systems. As the animals are known to be 

high contributors a ballpark estimation would be that 45% of methane emissions within agriculture 

are the direct result of manure and slurry. This in wider terms translates to 22.5% of total methane 

emissions in the UK.  

 

Figure 5. Methane emissions by sector in 2017 [110] 
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Methane can present an explosion risk at 5-15% content in the air [113]. There are numerous 

documented incidents where methane has been the result of gas fires and explosions in agriculture. 

For example, under certain conditions in which animals are fed a particular diet, this can result in the 

formation of bubbles containing methane in the slurry. The bubbles have been known to form a foam 

above the slurry which is susceptible to combustion [114]. 

4.1.4. Anaerobic digestion of manure as mitigation strategy for harmful emissions  

The waste to energy conversion of manure to electricity, heat, fuel or grid gas is a four-stage 

process, as shown in Figure 6, consisting of hydrolysis, acidogenesis, acetogenesis and 

methanogenesis [115].  Manure feedstock is complex organic matter that consist of carbohydrates, 

proteins and fats.  Through hydrolysis this is converted to soluble organic molecules such as sugars, 

amino acids and fatty acids. Acidogenesis or these components lead to the formation of volatile fatty 

acids, acetic acids, hydrogen and carbon dioxide. The volatile fatty acids is converted to acetic acids, 

hydrogen and carbon dioxide through acetogenesis. The last stage of the process is methanogenesis 

that forms biogas which can be converted into biomethane. Biogas is used at fuel in electricity and 

heating applications, while biomethane can be directed pumped into the national grid. Each stage 

the process is reliant on a number of microorganisms to participate in the reactions. Since this reaction 

occurs in an oxygen lean environment, there are less oxygen molecule to bind with the nitrogen 

molecules and form NOx.   

 

 

 

Figure 6. Waste-to Energy-process using manure as waste feedstock 

As highlighted, NOx formation is related to the degree of oxygen present when organic matter 

is decomposing, but when in an anaerobic environment, methane emissions increase. In the process 

of anaerobic digestion, this is ideal where the methane can be captured and used. In work produced 

by Sommer et al. [116], algorithms were developed for calculating methane and NOX emissions from 

manure management [116], in which, the degree of emission reduction through anaerobic digestion 

was calculated. The model predicted 90% reduction of methane from outside stores with digested 
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slurry. The digested slurry/muck is said to have a reduction of more than 50% of NOX emissions after 

the application of the digested slurry onto agricultural land vs that of untreated slurry. No 

estimations were made regarding the effect on NH3 production, where this is considered an anaerobic 

digestion inhibitor, through the change in pH. High toxicity levels also destroy microbes that produce 

methane [117].  

For reduction in NH3 emissions, it is clear that anaerobic digestion is not best suited to this. The 

addition of magnesium ammonium phosphate otherwise known as struvite is said to reduce NH3 

levels in a digester. Where struvite is a valuable plant nutrient source that slowly releases nitrogen 

and phosphorus overtime, it also known for its low solubility in water. Uludag-Demirer et al. [118] 

in an experiment added a set amount of struvite to a digester, resulting in 11% NH3 reduction. Other 

work in this area also highlights the role pH plays, highlighting reactor conditions having a 

significant impact. Apart from optimizing reactor conditions and introducing additives, further 

processing would be the next cause of action. The anammox process is one such process aimed at 

post digested effluent. It is considered an efficient biological method for nitrogen removal through 

ammonium oxidization to nitrogen gas in anaerobic environment. Molinuevo’s experiments [119] 

found that up to 92% of ammonium could be removed this way. As it can be quite costly to remove 

the NH3, others look towards how the manure is applied to soil and if emission mitigation can be 

achieved there. Some of the main techniques from this aim towards limiting the mixing the slurry 

and muck have with the atmosphere through trail hoses and direct injection. The trail hoses limit the 

surface area that the muck and slurry is applied to. From Sommer and Hutchings [120], this is said to 

reduce the amount of emitted ammonia by 40%. For injection, this figure is said to be even higher at 

60% when in combination of harrowing prior to the application. 

4.2. Economical aspects of anaerobic digestion  

4.2.1. Current Incentives 

As mentioned in the AD description, incentives have been on the decline at current, it can be 

assumed that almost all grants have been withdrawn by the government. Similarly, the tariffs in 

recent years have been reduced from 15.15 pence/kWh in 2010 to 4.50 pence/kWh in Jan 2019 for 

biodigester units less than 500 kW [121]. The gradual change in tariff rates for all sizes of AD is shown 

in Figure 7, offering a depiction of the decrease in the amount of government funds made available 

per year. The curves show the tariffs in pence/kWh for three bands of installed capacity: 0-250 kW, 

250-500 kW and 500-5000 kW. Some studies suggest that such change in tariff rates is too high for 

average size of UK farms and that lower boundaries should be introduced. Even incorporating the 

sale price tariffs, the cost viability particularly for small scale farm systems comes into question. This 

can be linked with the step decline seen in the number of AD plants commissioned each year. Where 

from the peak of 79 new plants commissioned in 2014 a fraction of that number is now commissioned 

which was only 6 in 2017 [122]. This is shown in a graph taken from Savills summary [123] on AD 

growth and performance depicted by Figure 8. A clear link can be seen between the drops in tariff 

rates from 2014 to 2015 shown in Figure 7 to the fall in plants commissioned per year shown in Figure 

8.  
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Figure 7. Change in generation tariff rate for anaerobic digestion [121] 

 

 

 

 

(a) 

 

(b) 

Figure 8. (a) number of AD plants commissioned from 2008 to 2017 in UK and (b) the total capacity of 

these plants in kW [123] 

 

The numbers are very low considering the number of farms in the UK and goals set out by the DEFRA 

and National Farmers Union (NFU) aiming for 1000 on-farm AD plants by 2020 [124]. The actual 

number by 2020 will be considerably less highlighting the lag that this industry has to overcome if it 

were to pose a significant reduction in GHG emissions and averted emissions through methane 

capture pathways. 

4.2.2. Capital Grants and Finance  

The lag on the farm scale can be mostly put down to the capital costs required for installation. 

Almost all AD plants surveyed has some form of capital subsidy at 93% according to Bywater [90]. 

This is in part due to the financial status of smaller farms which can struggle to break even relaying 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

0-250 kW 15.15 15.15 17.54 17.54 17.54 12.64 10.11 6.48 4.57 4.5

250-500 kW 15.15 15.15 16.23 16.23 16.23 11.69 9.34 5.98 4.33 4.27

500-5000 kW 11.82 11.82 10.69 10.69 10.69 10.16 9.63 6.16 1.61 1.54
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on receiving farm payments from the government every year, making it unlikely that the capital 

would be available for such an investment. This lack of capital changes the use pathway of the 

methane gas, where expensive onsite gas cleaning and combustion in gas engines is not an option. 

Thus, the gas produced is merely used in boilers to heat farmhouses and to use for hot water, losing 

the potential for self-electricity generation and associated benefits. It is also worth noting that the 

tariff system changes onto the renewable heat incentive (RHI) as a result. A system not designed for 

this sector is providing yet a smaller insignificant income. Currently for small biogas combustion of 

which this pathway would fall under, the rate stands at 4.74 pence/kWh as shown in Table 10, further 

lowering the economic prospects for farm AD. 

Table 10. Tariff rates for RHI (small biogas combustion) [125] 

Eligible 

Technology 

Eligible 

Sizes 
Accreditation Date 

Tariff Rate 

2019/20 

(pence/kWh) 

Small Biogas 

Combustion 

Less 

than 200 

kWth 

Before 1 April 2016 8.44 

Between 1 April and 30 June 2016 7.41 

Between 1 July and 30 September 2016 6.30 

Between 1 October and 31 December 2016 4.74 

Between 1 January and 31 March 2017 3.54 

Between 1 April and 30 June 2017 3.37 

Between 1 July 2017 and 21 May 2018 3.03 

On or after 22 May 2018 4.74 

4.2.3. Supply of slurry and muck 

There is a high volume of slurry and muck produced on farms, where for instance, a pig unit 

near York with around 5000 pigs produces 20m3 of slurry a day and over 1000 tonnes of muck each 

year. More can be said of the future with farm operations switching to fewer much larger operations, 

as small holdings with less than a couple hundred acers struggle financially with expensive farm 

machinery required to operate and  the lack of land and livestock to spread overheads over. It is said 

that in the UK, 4.5 times as much derived organic matter is produced from farm operations (including 

slurry and muck) as from food, 90 million tonnes compared to 20 million tonnes [90]. Thus, the supply 

is not an issue. 

4.3. Legislation controlling implementation of anaerobic digestion plants 

4.3.1. Environmental Permitting  

This is the primary means of regulating and minimizing the impact business activities have 

towards all environment aspects for England and Wales, such as to the air, water, land and 

considering factors like noise and safety. For AD plants to operate and spread digestate, a permit 

must be obtained. This involves completing a technical application form, demonstrating competency 

and willingness to abiding by the conditions of the proposed permit. Currently this can be achieved 

through Charted Institution of Wastes Management / Waste Management Industry Training and 

Advisory Board (CIWM/WAMITAB) scheme or Environmental Services Association / Energy and 

Utility (ESA/EU) sector skills. Setting out 3 different types of permits as shown in Table 11. 

Table 11. Anaerobic digestion permits 
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Type Description Conditions 

Exemption 

For small scale plants 

which aren’t waste 

facilities 

 Must provide technical information to the environment 

agency and register  

 No charges  

 Only for agricultural businesses and burning of 

resultant biogas at the site.   

 1,250 m3 limit for the total amount of untreated and 

treated waste on site at any time  

 0.4 MW limit for the thermal generating capacity of the 

plant 

 Minimum 28 days residence time of the waste [126] 

Standard 

For plants which can 

operate within a set 

of standardised rules 

and conditions. 

 AD processing facility including the use of the biogas 

 100 t processing limit per day  

 Combustion of biogas can be in gas engines, boilers, 

turbines, fuel cells or upgrading to bio methane [127] 

Bespoke 

For plants that 

cannot adhere to all 

pre-defined rules or 

conditions 

The conditions vary considerably where both stationary 

and mobile AD plants are categorised for in this type. 

However, the flexibility of this type comes at more cost 

and time. Details can be found on the government 

website [128].  

4.3.2. Permits for Spreading Digestate  

As with exceptions to environmental permitting, digestate that is solely from agricultural waste 

streams is exempted from disposal charges provided that a number of conditions are met. These are: 

 Only can be spread on agricultural land  

 50 t per hectare spreading limit  

 200 t storage limit at any one time  

 Digestate must be from waste streams that improve or maintain the physical, chemical and 

biological properties of the soil to grow crops [129] 

Note that material that has reached PAS 110 and Quality Protocol standards is no longer regarded as 

a waste. As such, the restrictions above no longer apply.  

To spread waste material which does not meet the publicly available specification (PAS) 110 for 

agricultural and non-agricultural land for business or environmental enrichment, a permit is 

required. That is if the spreading activities to agricultural land exceed the exception conditions. 

Generally, a standard rule permit is given with the conditions and charges depicted in the 

government publication “SR2010 No.4: Mobile plant for land spreading” which specifies: 

 A 250 t per hectare spreading limit  

 3,000 t limit for the amount of waste material on site at any time 

 12-month storage limit for the material  

 For every spreading application of material to the land a charge must be payed depending 

on material type and the risk it poses, ranging from low, medium and high 

High risk (Category 2) animal by-products (ABPs) cannot be used as feedstock in AD plants, 

unless they have been treated to a 133°C/3 bar/20-minute EU pressure-rendering standards [130]. 

Contrary to this manure is classified as a category 2 ABP, however, manure can be used without 

processing as raw material in an AD plant. But when mixed with ABPs such as catering waste the 

mixture must be rendered to the heat and pressure regulations prior to anaerobic digestion.  

4.3.3. Planning Permission 
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Potential issues surrounding planning of AD plants revolve around 5 main concerns as 

highlighted from the governments planning policy statements and supplementary planning 

guidance [131]. These are: 

Site Selection. The AD reactor tank can sometimes be quite large presenting a significant change to 

a landscape, where tanks can reach as high as 15 m. However small on farm digesters can sometimes 

be accommodated within the farmyard and buildings concealing it to an extent. Where this may not 

be possible, in the interest of reducing tank visibility, it can be somewhat burried in the ground 

reducing the visual impact. The burial also offers heat insulation benefits. Centralised AD plants have 

issue of the transport of feedstock involved, affecting chances of approval, giving on-farm plants the 

advantage. 

Feed Stocks and Product Storage. Planning permission may be given only for specific feedstock, 

adding to or changing the feedstock is not allowed without further planning consent. This ties in with 

the exception permit given to farms that by adding other feed stocks it can lead to the exception being 

revoked. The storage of slurry and muck used in on-farm AD plants is covered by the water resources 

(control of pollution) (silage, slurry and agricultural fuel oil) England regulations and 

the nitrates directive (91 / 676 /EEC). Specifying the minimum standards for construction related to 

the design and operation of any farm slurry storage system. 

Odour. AD by its nature of breaking down organic matter is an odorous process, this is of concern. 

Where predicted odour effects and proposed mitigating measures should be reviewed. If a location 

is considered to be sensitive to odours, information on the control measures should be provided from 

the developer to ensure that all sources are accounted for. Farms are already known for to be odorous 

and thus odour concerns are lessened to those of centralized facilities.  

Emissions to Ground and Water Courses. As has been made clear in previous section, the runoff 

from raw agricultural wastes such as manure and slurry can contribute to serious farm pollution 

incidents. Therefore, the AD of farm waste should be conducted in a manor to reduce the likelihood 

and ability of the material to pollute water sources. In many application cases, the requirement of a 

bound wall is put forward by the planning authorities to prevent effluent spillage in the event of a 

leak. As for ground water leaking, the surround surface of a supposed plant is usually required to be 

concreted and run off prevented from reaching normal drains. Delays in the planning process can be 

the result of concerns in regard to designs inadequacies.  

Emissions to Air. The production of biogas from AD and its uses contributes to a number of 

emissions to the atmosphere, manly from engine exhausts, gas vents and flare stacks. The emissions 

can however be considered insignificant provided the equipment meets design specifications and is 

routinely serviced. For larger on-farm and centralised AD plants integrated pollution control 

measures are required to control the emissions to meet regulations.  

4.4. Implementation of anaerobic digestion to farms  

4.4.1. Slurry and Manure as a Feedstock  

Without adding other feedstock, the AD of slurry and manure has been proven to be 

uneconomical for both on farm and centralized plants due to the low gas yields, high capital cost and 

absence of gate fee. The legislation also plays a large role here in the restrictions placed on the 

exception type permit for farm-based plants. Other wastes such as those from grain processing can 

be added to increase gas yield without increasing the potential environment effects. In surveys 

conducted in 2017, it was reported that there were 401 AD plants in the UK, if those for treating 

sewage sludge are ignored, with more than half at 221 utilizing slurry and manure as feedstock. 

However, those dedicated to only slurry and manure are uncommon making up just 6% equating to 

24 plants, with the capacity of processing 165,000 tonnes per year [132]. 

4.4.2. Grid Connection Issues  
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For widespread implementation of AD to farms, significant issues can be expected in connecting 

to the grid in part due to the low load electricity lines supplying many farms and the power of 

transformer. If the national grid deems the transformer inadequate, this can make the implementation 

of an AD plant to produce electricity not economically viable. Because it is presumed that small AD 

plants are unlikely to produce significant extra electricity that can be sold to the grid. 

4.4.3. Lack of Land  

From the regulations on digestate spreading where 50 tonnes per hectare is the spreading limit, 

large livestock farms particularly those where the animals are kept indoors all year round and have 

little in terms of land can be a significant issue. On the contrary these farms must find ways to get rid 

of slurry and muck like the straw-muck exchange highlighted in the feedstock preliminary section. 

And if this were to be replaced by digestate the application rates are the same. If PAS 110 and Quality 

Protocol standards are achievable, converting slurry and manure to digestate would be very 

advantageous for surpassing the application limits. 

4.4.4. Technology 

If widespread implementation were possible this could see a significant contribution to the UK’s 

energy demands if the majority of manure and slurry were to be processed. This amounts to 90-100 

million tonnes of agricultural by-products such as manure and slurry available each year in the UK. 

This is based on a 20 m3/t (8% dry matter) average gas yield of slurry, that 1.7 kWh of electricity is 

produced per 1m3 of gas due to conversion losses and if 50% of the available manure/slurry can be 

processed, 1.615 TWh worth of electricity could be produced. A reasonable estimation which could 

provide 0.45% of the UK’s annual demand, based on 2018 at 352.064 TWh [133]. A low percentage, 

but after considerations of the useful heat that can be harvested alongside the emission mitigations, 

it becomes more considerable. But the low electricity generation is a limiting factor in the technology 

potential. 

4.4.5. Operation 

The success of an on-farm AD plant, no matter how good the design nor technology, is inevitably 

comes down to operator skills, frequent monitoring and feeding the digester. On many farms, the 

muck and slurry are required to be mixed into the digester at a certain ratio for instance. Adding to 

this AD’s can be plagued by a number of problems namely: 

• Frothing  

• Acidification  

• Increasing viscosity  

• Increasing volatile fatty acids (VFA) and total inorganic carbon (TIC) value  

• Poor methane yield  

These problems, if not corrected and kept on top off, can lead to poor biogas yield. Frothing 

alone can reduce biogas yield by up to 20% [134], with the cause linked to the constitution of the 

digestant and mixing routines within the reactor tank. These problems make time allocation and 

training a must for the farmer/operator. As such, a best practice guide should be made available if 

not already on the operation of AD plants specific to slurry and manure. 

4.4.6. Bespoke cases 

One size does not fit all in the case of widespread farm implementation, every farm is individual 

and presents its own challenges. The differences from farm to farm can be enormous from the amount 

of slurry and muck produced, to the characteristics of the feedstock and the planning complications. 

At a government level to seek to drastically increase the number of on-farm AD plants, this would 

prove complex as what may be beneficial to one may be inadequate to another.   
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Here, we provide two cases of commissioning of anaerobic digesters, which use manure as a 

feedstock. The first case is the Copys Green Farm located in Wighton, Wells-next-the-Sea in the 

eastern part of the UK, as shown in Table 12. The farm is very much sustainability driven and owners 

won a number of awards for doing so, namely the Farmers’ Weekly green energy farmer of the year 

2010. Note that £100,000 grant from bioenergy was turned down due to stopping double Renewable 

Obligation Certificate / Feed-in Tariff (ROCs/FIT) from being revived. Payback period was estimated 

at 8 years with a £83,000/year running cost most of which was the high energy feedstock. The biogas 

was produced at the rate of 70 m3/hr burned to generate 131 KVA for grid export. In the planning 

and development stage the biggest barriers to on-farm AD is described as administrative. This 

includes the environment agency and OFGEM paperwork, where the owner feels the paperwork is 

disproportionate to the risk. 

Table 12. Summarised data of Copys Green Farm [90] 

Digester Size 870 m3 (mid to large size) 

Digester Type Mesophilic, insulated, steel glass coasted tank with fixed roof 

Gas Use 
140 kW CHP, Feed in tariffs, extra heat used in grain drying, cheese making, 

dairy hot water and heating the farmhouse. 

Commissioned 2009 

Feedstock (tonnes 

per year) 

Slurry from 100 dairy cows estimated at 2,500T/yr, Maize Silage or fodder 

beet estimated at 2,500T/yr, Whey from cheese making supposed feed stock to 

be incorporated but not yet would be around 210T/yr 

Farm Size 230ha, arable and dairy, all in NVZ (Nitrate Vulnerable Zone) 

Capital cost 
Estimated to be £750,000, self-financed, with £100,000 capital grant turned 

down. 

Issues Unreliability of CHP. Tech provider issues (takeover midway through project) 

Barriers to AD Administrative: EA and OFGEM paperwork 

Advantages 
Recycling and improved utilisation of crop nutrients. Reducing risks the 

manures pose to NVZ area as digestate 

 

The second case is a Woodhead farm located near Annan in Dumfries and Galloway in the 

western part of the UK, as shown in Table 13. A SlurryGen-50 digester was installed by Advanced 

Anaerobics Ltd. to help reduce electric bill and generate income [135]. 500 kWh is used each day of 

the total 1,200 kWh produced with the balance exported to the grid. Owners applied for the feed in 

tariff in 2014 securing 12.46 pence/kWh. The excess heat is planned to be used on farm and generate 

additional income through RHI scheme. With these tariffs and savings to the electricity bill, payback 

period is estimated 60 months (5 years). It is said that for each ton of dry organic matter in slurry can 

produce 300-400 m3 of biogas. Operating cost is highlighted as an issue in this case study, because for 

example the CHP generator requires routine maintenance and periodic engine rebuilds. Over a 20-

year lifetime, the operating costs of the plant as a whole will exceed the initial capital cost.  

The Farmers’ Weekly points out that in 2015 only 18 slurry AD plants were running in the UK. 

There were however 20-30 units at the planning stage. More widely 280 on-farm plants have been 

encouraged with RHI and FIT’s.   

Table 13. Summarised data of Woodhead farm [135] 

Digester Size Small 

Digester Type Mesophilic, insulated, steel glass coasted tank with fixed roof 
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Gas Use 
50 kW CHP, some used on farm, rest exported to grid through feed-in tariff. 

Surplus heat planned to be used on farm under RHI 

Commissioned 2015 

Feedstock (tonnes 

per year) 
Slurry from 320 dairy cows estimated at 24 T/day 

Farm Size n/a 

Capital cost Estimated to be £400,000 (self-financed) 

Issues Operating cost due to small plant 

Barriers to AD Administrative: EA and OFGEM paperwork 

Advantages 

Smaller size, simplified planning and permits, as does not need crop or other 

material brought in, there is no requirement to qualify as consented waste 

management site and lower capital cost. 

4.5. Summary of manure and AD implementation  

Manure and slurry present significant anthropogenic emissions of NH3, NOX and methane in the 

UK at 40%, 28% and 22.5% respectively. This requires that anaerobic digestion mitigations of 90% in 

methane from stores and 50% in NOX emission after the application to land can be achieved. 

However, AD has poor NH3 reduction capabilities, requiring extra processing. Although a more 

effective migration pathway may be to change how muck and slurry are applied to land, a reduction 

of up to 40% is achievable by minimizing aeration.  

Sharp drops in tariff rates, high capital requirements and lack of grants make the economic side 

of AD an issue. On-farm AD has been named numerously as the most suitable type for manure but 

the least viable. Therefore, reforms to the incentives are a must if the number of AD plants are to 

increase in the UK, especially on-farm types which rely on grants. As the current tariff banding 

system is unsuitable for on-farm AD, implementing higher paying bands would be advised. A gate 

fee for processing, which includes the cost of opening, maintaining and eventually closing the site 

and also may include taxes applicable in a region, would also be advised to reduce dependence on 

biogas yield and temptations of using high energy crops.  

Legislation and planning play a key role in the establishment of farm digesters with exception 

permits designed for this scenario, but for an exception to be grated strict rules apply. For more 

normal or unique operations, two other permit types (a standard rule permit SR2010 and a planning 

permit) can be granted at a cost and more time. The quality of the digestate is key in what can be 

done with it and how much can be applied to agricultural land. For use on non-agricultural land 

digestate incurres charges, limitations of quality and permitting (if still a waste). Manure is also found 

to be categorized as a high-risk waste which presents pressure and heat rendering incursions. These 

can however be ignored provided it is not mixed with other animal by-products. Overall, the 

legislation can be said to be well founded and necessary. Planning permission for many is where 

issues arise in legislation delaying a project or preventing its construction. The case studies show 

legislation is a barrier to AD. But as the planning difficulties are routed in reducing the risk an AD 

plant poses to the surrounding environment, no changes are envisaged  as to ease the 

implementation of wide spread AD plants, with the environment as one of the primary focuses of 

this paper.  

A significant amount of electricity could be produced, at 1.615 TWh equivalent to 0.45% of total 

UK’s annual demand. Potential grid connection issues can limit this but for small on-farm plants 

encouraged in this report it can be said to be minimal, with the majority of the useful energy used 

onsite. Furthermore, the bespoke requirements for on-farm AD are known to present difficulties for 

the widespread implementation. Finally, as stated, inevitably the success of an AD plant comes down 

to operation. Improper monitoring and lack of know-how can lead to poor gas yields through 
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problems common to digesters. Therefore, training and courses on operation are a must not just to 

prove competency for attaining permits but also for good operating practice. 

5. Conclusions 

Waste-to-energy sector is well developed with a number of processes capable of dealing with a 

variety of waste streams for energy and product extraction, improving sustainability and waste 

management, critically displacing fossil fuels and transferring towards a circular economy. However, 

challenges remain in the effective implementation of these processes in the UK. From the existing 

body of studies, it is clear that no 'quick fix solution' will guarantee energy sector decarbonisation. 

Conventional bioenergy's capacity to produce significant GHG reductions is being constantly 

debated. Sustainable residues and waste from biomass may and should definitely be part of this 

solution. This review has focused on certain waste streams such as biomass residue and agricultural 

waste, landfill waste, food waste, fats-oils-grease, wastewater sludge and manure, because they are 

considered potentially sustainable feedstocks. With a broad variety of current applications for several 

of these feedstocks, it will require strong environmental protections to avoid harmful environmental 

and social outcomes. Although the amount of such waste materials will be raised, it will decrease for 

certain wastes. Given the importance of several other applications, only a portion of the future flow 

of such resources can be devoted to the development of bioenergy. Of this among other purposes, 

there is substantial confusion regarding the exact quantities among energy values of the feedstocks 

that could be used sustainably of bioenergy development in the UK and further research on this is 

desperately required, taking into account economic forces, competitive applications, environmental 

imperatives and other considerations. 

90 million tonnes of manure and slurry in the UK remain largely untapped, presenting the 

biggest contributions to ammonia, methane and nitrogen oxide anthropogenic emissions of any other 

waste or industry in the UK at 40%, 22.5% and 28% respectively. With large scale implementation for 

on-farm AD, mitigations for 90% and 50% of methane and nitrogen oxide could be achieved with the 

added potential of generating more than 1.615 TWh of sustainable electricity. Further processing and 

changing application methods of slurry and muck to land is required to reduce ammonia emissions. 

Barriers in the form of insufficiently high banding and tariff systems, planning, high capital costs, 

lack of government subsidies and low gas yields prevent this. Therefore, it would be suggested that 

a lower high paying tariff banding system needs to be introduced to increase AD plants on farms. It 

is suggested an addition of a gate fee payment to reduce high energy crops used as supplements for 

gas yield, and to increase the amount of slurry and muck that are digested. The bespoke nature of 

farms could still present a fundamental issue in the degree manure and muck in the UK are processed. 

The use of biomass capital to decarbonize the UK energy market has considerable potential, and 

the use of sustainable biomass waste and residues can be part of this solution, both in the direct 

processing of liquid and gaseous fuels as well as in the supply of renewable electricity generation 

capacity to decarbonize the UK grid and (indirectly) power a possible fleet of electric cars. Fostering 

the use of wastes and residues to create jobs in the UK also has considerable value. This is especially 

true for the AD industry where anaerobic digesters are widely distributed throughout the country, 

including in rural areas. There is also a need for the UK Government to step up measures to ensure 

efficient waste and residue production and we recommend a combination of responses including: 

 Supporting effective EU policy reforms to promote a transition from traditional energy to 

sufficient advanced bioenergy from waste and residues; 

 Formulating specific protections to follow the usage of waste and residues in the energy and 

transport field, notably in the absence of protections established at EU level as part of the 

existing Renewable Energy Directive adjustment procedure. A crucial precaution is the 

development of the required carbon accounting system for waste and residues, taking proper 

account of shifts in soil carbon supplies (e.g. in relation to straw extraction). The design of 

these protections will profit from cross-departmental collaboration to insure, in particular, 

that waste management priorities are not undermined; 
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 Research commissioning to enhance the perception of target applications for waste and 

pollutants, taking into consideration the business condition in the United Kingdom with 

regard to domestically accessible production and current applications (energy and non-

energy). This would also create more accurate figures of the quantity of waste and 

contaminants that may be applicable to the energy and transport industry. Although we have 

established the feedstocks that currently tend to be more renewable, their processing into 

biofuels or biomethane might not be the more 'sustainable' usage, for example in terms of the 

total GHG emissions avoided; 

 Cross-sectoral guidance on encouraging safe management and handling of waste and 

residues. Cooperation amongst policy departments collaborating on sectoral policies 

(agriculture, forestry, waste) and establishing targets for green energy and transport policies 

is required to ensure that policies in various sectors are complementary. It will result in 

valuable guidance to the various sectors and stakeholders and cause collaboration between, 

for example, producers, forest owners, waste processors and bioenergy or AD plant 

operators; 

 Providing funding resources to develop emerging waste-to-energy processing technology. It 

would possibly involve capital funding for new projects, as well as help for current 

infrastructure growth. This would help increasing the potential of waste-to-energy 

processing and enjoy the advantages of technical innovation to reduce the costs of emerging 

technology. 

 

Initiatives in these directions would be required not only to promote the development of an 

innovative waste-to - energy sector, but also to establish an acceptable route for the wider usage of 

bioenergy and biomass. There is an ability to reap several benefits by producing more green 

electricity, improving engineering know-how, and creating economic benefits like a large amount of 

potential jobs by turning waste and residue currently underutilised into beneficial uses. If protections 

are introduced, the environmental advantages of switching away from traditional biofuels in 

decarbonizing the UK energy and transport market would improve. 
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Highlights: 

 Lack of manure treatment in the UK results in 28% of all ammonia emissions 

 NOX emitted from agriculture accounts for 3% of the total NOX emissions in the UK 

 Manure and slurry contribute about 50% of anthropogenic UK’s methane emissions 

 Drops in tariff rates result in fall in number of anaerobic digestion plants in UK 

 AD of manure is uneconomical due to high capital cost and absence of gate fees 

 AD could produce 1.615 TWh electricity, i.e. 0.45% of total UK’s annual demand 
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