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Abstract 

 

The paper aimed at studying the peculiarities of boundary layer on a rotating body. Rotation of 

axisymmetric bodies is often used for their stabilization at a high velocity motion in the 

atmosphere. Presented are calculation of boundary layer flow on a rotating cone at zero angle of 

attack. Longitudinal and full enthalpy profiles in the laminar boundary layer obtained as a result 

of calculations were used to determine upstream disturbances propagation velocity. New integral 

relation was determined to find out disturbances propagation velocity for the regime of weak 

hypersonic viscous-inviscid interaction. Effects of surface rotation velocity along with the 

temperature factor influence were investigated.  

 

Nomenclature 

M – Mach number 

  the dimensionless thickness of the boundary layer 

l characteristic length 

 specific heat ratio 

a velocity of upstream disturbances propagation 

0  the value of the dynamic coefficient of viscosity, determined at the temperature of inhibition 

z transformed longitudinal coordinate 

u longitudinal velocity 

v normal velocity 

w transversal velocity 

H total enthalpy 

 density 

x longitudinal coordinate 

y normal coordinate 

f transformed flow function 

  transformed longitudinal coordinate 

 transformed normal coordinate 

  transformed angular velocity 

 

Keywords: boundary layer, propagation of disturbances, supersonic, weak viscous-inviscid 

interaction, flow near a cone. 

 

1. Introduction 

 

Aerodynamics of bodies in high-speed flight in the atmosphere was always on the top of research 

needs of aerospace science and technology [1, 2, 3]. Effective estimates of aero-dynamical loads 

are necessary for precise evaluation of deorbiting time for satellites [4]. These are aspects 

ensuring safety of Space missions [5, 6]. Rotation of streamlined bodies is often used to ensure 

flight stability at high velocities. Rotation of a streamlined body also affects the stability of the 

flow and the position of the laminar-turbulent transition. A lot of work is devoted to the study of 

boundary layers on rotating bodies [7], including on a cone, since such studies can be used 

Manuscript File Click here to view linked References

https://www.editorialmanager.com/aastronautica/viewRCResults.aspx?pdf=1&docID=8197&rev=1&fileID=144019&msid=d1709be7-678d-4d33-93a6-97fd43cd76b1
https://www.editorialmanager.com/aastronautica/viewRCResults.aspx?pdf=1&docID=8197&rev=1&fileID=144019&msid=d1709be7-678d-4d33-93a6-97fd43cd76b1


directly, both in ballistics and in aerospace industries. In particular, it is interesting to investigate 

what happens to the propagation of perturbations in the boundary layer on a cone if it is rotating. 

Undoubtedly, rotation affects the velocity and enthalpy profiles in the boundary layer, thus 

affecting the propagation characteristics of the perturbations. In this paper, we investigate the 

characteristics of the boundary layer on the surface of a rotating cone and determine the 

propagation velocities of the perturbations in the boundary layers. 

 

2. Statement of the problem. 

 

We consider the flow past a cone by a supersonic flow at zero angle of attack, assuming that the 

Mach number of the oncoming flow is large and that the regime of weak hypersonic interaction 

is realized  

 

1M    

 

where   is the dimensionless thickness of the boundary layer. 

For Cartesian coordinates measured in the direction of the incident flow, along the normal to the 

surface and in the transversal direction, the time, the corresponding components of the velocity 

vector, density, pressure, total enthalpy, dynamic viscosity coefficient, the following notation is 

adopted: ,, lylx  2
0 0/ , , , , , , ,lt u u u u v u w u p H g           . The parameter l is some 

characteristic length (for example, the length of the generatrix of the surface in the longitudinal 

direction); 1/2
0 0( / )u l   
  , where the subscript " " denotes dimensional values in the 

oncoming stream; - 0  the value of the dynamic coefficient of viscosity, determined at the 

temperature of inhibition. It is assumed that the gas is thermodynamically perfect and is 

characterized by a constant value of the specific heat ratio  . Although in hypersonic flows the 

effects of real gas are significant, in this paper they are not considered, since their accounting in 

principle does not change the relationships obtained below. The Reynolds number is large, but 

does not exceed the critical value at which a laminar-turbulent transition occurs. It is known that 

for supersonic and hypersonic flows the Reynolds number of the transition is large enough. It is 

also assumed that the dynamic viscosity depends linearly on temperature, so that const  . The 

angle of the cone solution is such that an associated shock wave is realized, the angle of attack is 

zero. The coordinate system is shown in Fig.1 

 

  

 
 

Fig. 1. The coordinate system used in the calculation 

 

 

 The system of boundary-layer equations on a rotating cone has the form 
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with boundary conditions: 
1;  0;  1,u w H     y   
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This system of equations under rotational conditions includes the effect of centrifugal forces and 

Coriolis forces 

To integrate this system, we pass to the Dorodnicyn-Lees variables 

( ,x y  ) → ( ,  z  )  [8] 

 2

0

( )
x

w w wx u r dx      

0

( , )
2

y
wu r

x y dy 


   

3,    
f

z u



 


 

 

 

, the system of equations in the new variables takes the form 
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With boundary conditions 
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3. Propagation of perturbations in boundary layers with weak interaction 

 

Earlier, an analysis of the propagation processes of perturbations was carried out for supersonic 

flows under strong interaction conditions. Although the original work was performed for channel 

flows (the Pearson integral), the question of the applicability of the integral for other flows or for 

other modes of interaction, for example, for the regime of weak hypersonic interaction, 

remained. We leave the assumption of a large supersonic velocity of the external flow, which is 

necessary to obtain a fixed thickness of the boundary layer due to the discontinuous density 

distribution near the outer boundary of the boundary layer. 

We confine ourselves here to the consideration of the two-dimensional case, assuming that 

propagation to the three-dimensional case can be carried out in the same way as in the works 

performed earlier for the strong-interaction regime. 

In the conditions of a rapid transition in the boundary layer, a number of terms can be neglected. 

Then the system of equations needed to describe the transition has the form 

 

 

2( 1)
( )

2

dp
f f ff g f

p d



 


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0f g fg                                     (2) 
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0

( )
c
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p
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                          (3) 

The form of the constant in the expression for the thickness of displacement does not matter, 

since further analysis is connected with finding the derivative of the thickness of displacement 

by pressure and equating this derivative with zero. This corresponds to finding the state in which 

the average Mach number is equal to one. 
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Let us find the derivatives that appear in the above formula. For this, equation (1) can be 

rewritten in the form 
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Passing to differentiation with respect to pressure, one can obtain 
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Using equation (2), one can obtain 
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We transform expression (7) 

 

  
2 2

2 2
0

( 1) ( ) ( 1) ( )
( )

2 2( ) ( )

f g f g f
f d f a

p p pf a f a


 


 

      
    

   
    (9) 

 

Now we can calculate the integrals in (4) 
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After a number of transformations of (11), we obtain 
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Combining expressions (10) and (11), one can obtain 
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Substituting (13) into (4) we finally obtain 

  

 
2 2

2
2

0 0

( 1) ( ) 1
( )

2 ( )

d g f
c d c g f d

dp p f a

 
 

 

  
  


   

 

 

Where does the expression come from. which determines the rate of propagation of disturbances 
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The propagation of perturbations in boundary layers in the viscous-inviscid interaction theory is 

considered in [9-11] and an expression is obtained for finding the propagation velocity of the 

perturbations, here, ,  u w the longitudinal and transverse velocity profiles, g the total enthalpy 

profile, the   direction of propagation of the perturbations: 
2 2 2

2 2
2
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( ) 0
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4.  Results of calculations 

 

The system of equations is integrated numerically and for the obtained profiles of velocity and 

enthalpy components , ,u w g , using the above integral, one can also find the values of the 

velocity of propagation of perturbations in the boundary layer. The results are obtained for the 

magnitude of the propagation angle,    i. upstream. 

Data were obtained for a number of values of the temperature factor wg , and also for a number 

of values of the velocity of rotation of the cone. 

 

 
 

 Fig. 2 The dependence of the upstream perturbations propagation velocity a on the 

longitudinal coordinate z for three values of the temperature factor 0/w wg T T (1- wg =0.5, 2-

wg =1, wg =2) 

                

 

It can be noted that as the longitudinal coordinate increases, the velocity of perturbation 

propagation increases. It can also be noted that the temperature factor also leads to the same 

effect. This effect is explained by the increase in temperature in the near-wall region and the 

relative increase in the region of subsonic flow in the boundary layer. We note that with a 

relative decrease in the subsonic flow region, the propagation velocity of the perturbations tends 

to zero if the temperature factor tends to zero. Results presented on the fig.3 show that with the 



growth of the longitudinal coordinate, the transverse velocity associated with the rotation of the 

cone increases, which also leads to a relative increase in the subsonic flow region. 

 

 
 

 

Fig. 3. Dependence of the disturbances  propagation velocity on the dimensionless angular 

velocity of rotation of the cone 2/3 1/3
1

3sin
 ( )

w w

u


 
 

  (1- 1 1  , 2- 1 2  ) 

It can be noted that with an increase in the speed of rotation of the cone, the rate of upward 

flow of perturbations increases. As noted above, this effect can be explained by a relative 

increase in the subsonic flow region. 

 

5. Conclusions 

The effects of propagation of disturbances in boundary layers near the surface of a rotating 

cone are investigated. It is shown that the relations obtained earlier for determining the 

propagation velocity of perturbations for the regime of strong hypersonic interaction are also 

valid for describing the regime of weak hypersonic interaction. The dependences of the 

propagation velocity of the perturbations on the longitudinal coordinate are determined for 

different values of the temperature factor and for various velocities of rotation of the cone. The 

obtained data can be used in determining the aerodynamic characteristics of a rotating cone. 
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