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Abstract: 3D car models are heavily used in computer games, visual effects, and even automotive designs. As a result,
producing such models with minimal labour costs is increasingly more important. To tackle the challenge,
we propose a novel system to reconstruct a 3D car using a single sketch image. The system learns from a
synthetic database of 3D car models and their corresponding 2D contour sketches and segmentation masks,
allowing effective training with minimal data collection cost. The core of the system is a machine learning
pipeline that combines the use of a Generative Adversarial Network (GAN) and lazy learning. GAN, being a
deep learning method, is capable of modelling complicated data distributions, enabling the effective modelling
of a large variety of cars. Its major weakness is that as a global method, modelling the fine details in the local
region is challenging. Lazy learning works well to preserve local features by generating a local subspace with
relevant data samples. We demonstrate that the combined use of GAN and lazy learning produces is able to
produce high-quality results, in which different types of cars with complicated local features can be generated
effectively with a single sketch. Our method outperforms existing ones using other machine learning structures
such as the variational autoencoder.

1 INTRODUCTION

3D car models are heavily used across multiple
fields such as entertainment (Goedicke et al., 2018),
visual effects (Rameau et al., 2016) and automotive
designs (Umetani, 2017). The process to generate
models that resemble similar features from the real-
world ones is usually time-consuming and labour-
intensive. Automatic approaches that reconstruct 3D
models from a single image input can be served as
effective solutions.

Despite significant research (Umetani, 2017) (Di-
nesh Reddy et al., 2018) in related areas, high-quality
reconstruction of complicated 3D car models remains
challenging due to several reasons. First, in anima-
tion, game, and automotive manufacturing industries,
the design process usually involves concept arts of the
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car, which are typically represented as sketches on
predefined viewpoints. Therefore, previous methods
with photo inputs (Jiang et al., 2018) are not prac-
tical in designing new shapes or modifying existing
designs. Second, for learning-based methods, differ-
ent types of cars such as SUVs and trucks consist of
significantly diverse features, making the process of
learning complicated data distributions difficult for a
single neural network (Nishida et al., 2016). Third,
cars modelling with fine details is a distinct problem
as cars have common features such as where to place
the wheels, but also distinctive parts such as the shape
of rear wings and roofs (Dinesh Reddy et al., 2018).
Past research (Umetani, 2017) shows that it is chal-
lenging to learn a diverse car subspace that represents
both common and distinctive car features well.

In this paper, we propose a novel system to re-
construct a 3D car using a single sketch image, en-
abling an effective car shape creation process. To
provide a good user interface for creating car shape,



Figure 1: Examples of 3D car shapes generated by our system with side-view sketches. Top-left white lines are input contour
sketches, while blue point clouds are corresponding outputs.

we use contour sketches (Li et al., 2019) that contain
car boundaries and salient inner edges as the input.
Such drawing greatly helps the car designing process
as it allows users to directly use their understanding
of scene geometry. We propose a data generating sys-
tem that produces synthetic quadruplets of contour
sketches, depth, segmentation masks and shape anno-
tations from 3D car models obtained from ShapeNet
(Chang et al., 2015) for facilitating an effective train-
ing process, and a feature-preserving car mesh aug-
mentation pipeline to maximize the data variation.

To tackle the challenge of modelling 3D car
shapes, we propose a novel 2-stage machine learning
framework. In the first stage, We propose a GAN-
based network that learns from contour sketches and
3D shapes to ensure a wide variety of car shapes. As
the GAN (Goodfellow et al., 2014) has shown suc-
cess in modelling 3D shapes (Sela et al., 2017) with
its strong ability to model complicated data distribu-
tions, we adapt GAN to generate global shapes of
3D car models. Since it is computationally ineffi-
cient to directly learn 3D shape representation from
mesh, we propose to learn an intermediate representa-
tion of multiple depth images instead, and reconstruct
the 3D car mesh as a post-processing step. As global
deep learning-based methods are limited in represent-
ing local details such as rear wings (Umetani, 2017;
Güler et al., 2018), in the second stage, we intro-
duce a lazy learning method to learn a local subspace
from the relevant samples in the database. Compared
to traditional approaches, lazy learning postpones the
generalization of the database to run-time (Chai and
Hodgins, 2005), which reduces the scale of learning
by only considering the most relevant data. This fa-
cilitates the representation of local features that may
be insignificant on a global scale. We further apply
Principal Component Analysis (PCA) to improve the
search space of point clouds, from which we search
for the k-nearest neighbours. We finally perform a
low-cost optimization process on the subspace to gen-
erate a 3D car shape with fine details.

Experimental results show consistent outputs of
3D car models generated form contour sketches with
diverse shapes and topologies (Figure 1). In addition

to well resembled global shapes of contour sketches,
fine details and local features such as rear bumpers
are also effectively preserved in the generated models
(see Figure 8). When compared to existing methods,
ours out-performs existing ones using other machine
learning structures such as the variational autoencoder
(VAE) (Nozawa et al., 2020).

The major contributions of this paper are summa-
rized as follows:

• We propose a system to synthesize training data
to construct a large database of 56,224 samples
with contour sketches, depth, masks and 3d mod-
els. With realistic sketch-like features, the contour
sketch facilitates real-world designing and editing
applications.

• We propose a generative adversarial network to
learn the correlation between a 2D contour sketch
and the corresponding multi-view depth images
that generate a 3D shape. Our GAN-based method
out-performs existing learning-based approaches
such as VAE with more diverse car topologies and
shapes.

• We propose a lazy learning algorithm to learn a
local subspace to reconstruct the fine detail fea-
tures of the car. Such a subspace bases only on the
relevant car shapes in the database, and therefore
effectively retains detailed features in the sam-
ples.(Chang et al., 2015).

The preliminary results of this work have been
presented in (Nozawa et al., 2020). In this work,
we have made the following technical improvements.
First, we represent a new database using contour
sketches for a better sketch-like drawing style, while
(Nozawa et al., 2020) uses a naive Laplacian filter
to generate artificial samples. Second, we propose
GAN that can more robustly learn the 3D representa-
tion of different car types due to its strong capability
to model complicated data distributions, as oppose to
(Nozawa et al., 2020) that used VAE with limited ca-
pacity on varied car topologies. Third, we evaluate the
proposed system with a set of new experiments. We
further compare our work with (Nozawa et al., 2020)
to demonstrate the improvements.



The rest of the paper is organized as follows. We
review previous work in Section 2. We explain the
construction of our car database with contour sketches
in Section 3. We present our generative adversar-
ial network for generating 3D car shapes from 2D
sketches in Section 4. We present our lazy learning
for constructing fine details for the car in Section 5.
We show the results of our system in Section 6. We
conclude the paper and discuss possible future direc-
tions in Section 7.

2 RELATED WORK

In this section, we first review previous sketch-based
applications, followed by related work in the areas of
sketch-style image rendering, Data Representations
for 3D Shapes, and finally machine learning for 3D
shape reconstruction.

2.1 Sketches for 3D Reconstruction

Sketches are powerful representations to capture
users’ design for computer graphics applications. In
particular, we are interested in the problem in using
sketches as a cue to reconstruct 3D shapes. Ear-
lier work utilizes sketches with a predefined control
interface to capture complicated 3D shape designs
(Igarashi et al., 2007). Such a method is further ex-
tended to improve the smoothness of the generated 3D
shape (Igarashi et al., 2006), as well as building the
internal structure of the shapes (Owada et al., 2006).
The control scheme was further enhanced to incorpo-
rate extra information that represents shape symmetry
and angles (Gingold et al., 2009). A major problem
for these methods is that the control scheme has to
be manually designed, and users have to learn such
schemes before using the system.

As an improvement, more general sketch-to-3D
methods are proposed by using the input sketches to
represent geometric features of the 3D shapes. For
example, it is possible to use fit 3D primitive shapes
into the input curves (Shtof et al., 2013), to represent
3D inflating surfaces (Joshi and Carr, 2008), or even
to estimate the normal map of the surface of a shape
(Shao et al., 2012). That said, these methods aim at
using artificial intelligence to infer the sketch infor-
mation provided by the users. With advanced ma-
chine learning such as deep learning becoming more
and more available, we prefer to learning such a kind
of logics automatically.

To create sketch images effectively for machine
learning approaches, sketch-style rendering tech-
niques are useful. These techniques use 2D lines

to represent 3D shapes. Different visual cues such
as image boundaries and edges are usually inferred
from a single input image with edge detectors such
as (Canny, 1986). However, these methods capture
high-frequency signals without understanding the im-
age. Boundary detectors, otherwise, understand the
scene and yield semantic segmentation of different
objects (Martin et al., 2001). However, object bound-
aries that only contain outer edges poorly resemble
realistic drawing features. Recently, contour sketches
(Li et al., 2019) are proposed to provide more sketch-
like features while maintaining the ability to con-
vey geometric information, salient edges and occlu-
sion events. Contrary to professional computer-aided
design software that requires professional training
and has an engineering focus, sketch-based interfaces
(Olsen et al., 2009) are more designer-friendly. To
accommodate users with diverse drawing skills and
artistic styles, we adapt contour sketches as the input
of our approach.

2.2 Machine Learning for 3D Shape
Reconstruction

3D shapes can be represented in different formats, and
such representations affect the performance of ma-
chine learning approaches heavily. In general, there
are three types of representation. The 3D point cloud
has been used heavily for modelling 3D shapes due
to its simplicity, enabling applications such as shape
reconstruction (Fan et al., 2017) and shape classifica-
tion (Qi et al., 2017). The disadvantage of the repre-
sentation is that it does not represent volumetric in-
formation. As a solution, voxels are used as they
can model the volumetric occupancy of a complex
3D shape, allowing more accurate shape reconstruc-
tion (Choy et al., 2016). However, although methods
are proposed to relax the computation requirements
using octrees (Tatarchenko et al., 2017), 3D opera-
tions are still computationally expensive. Depth im-
ages that represent different views of a 3D shape using
2D distance images can resolve this problem. As the
surface information of a shape can be represented us-
ing multiple 2D views, 2D operations can be used to
reconstruct 3D shapes (Li et al., 2018), thereby signif-
icantly reduces the computational requirements. The
combined use of depth images and normal images can
further enhance the representation power and give de-
tails to the surfaces during a reconstruction process
(Isola et al., 2017). In this project, we utilize depth
images as an intermediate output, such that we can
relieve our system from using computationally expen-
sive and difficult to optimize 3D operations. Multiple
views of depth images are then combined to form a



3D shape using an analytical solution.
Traditional methods use multiple views to 3D re-

construct a scene. Reconstructing shapes from a sin-
gle image is a challenging task but would benefit
a wide range of real-world applications. With re-
cent advances in deep learning, data-driven methods
have gained increasing attention. Han et al. (Han
et al., 2017) propose a convolutional neural network
(CNN) based system to generate 3D faces from input
sketches. Nishida et al. (Nishida et al., 2016) adapt a
CNN to generate building models by adding surface
curve information as a style of sketching. In the pre-
liminary work (Nozawa et al., 2020), We also utilize
deep learning for constructing the sketch-based inter-
face by adapting the Variational Autoencoder (VAE)
(Kingma et al., 2014) for correlating the 2D sketch
and the output represented as depth and mask images.
Although such a generative model has shown promis-
ing results in the translation of image style, its ca-
pability in modeling complicated data distribution is
limited.

As a global model, GAN was introduced as a
generative model to synthesize new instances from
multiple predefined classes (Goodfellow et al., 2014).
Other than computer graphic tasks such as image in-
painting (Pathak et al., 2016) and texture transfer (Li
and Wand, 2016), GAN has shown success in recover-
ing the geometric structure from a single given image
(Sela et al., 2017) (Jiang et al., 2018). When recon-
structing the 3D shapes from image inputs, the adver-
sarial loss of GAN is capable of working as a fidelity
regularizer, and ensures that the generated samples
share a close shape probability distribution with the
training data. Considering the ability to learn com-
plicated data distribution and the flexibility to support
different inferences, we adapt GAN in our method to
infer and generate global features of car models.

To further complement the expressiveness and
represent fine details of the shapes that are specific
to a small cluster of samples (Umetani, 2017). In the
area of car reconstruction, different categories of cars
have different specific details such as side mirrors and
rear wings. Past research has shown that local models
utilizing lazy learning can help to preserve fine details
in different problems. Chai et al. (Chai and Hodgins,
2005) generate a human surface from a sparse input
with a large motion database. Shum et al. (Shum
et al., 2013) reconstruct noisy 3D human motion cap-
tured by Kinect using lazy learning. The main idea is
to extract relevant data based on a run-time query and
construct a local model during run-time. In this work,
we adapt lazy learning to generate the fine details of a
car based on the output generated by a deep learning
network.

3 DATABASE CREATION

In this section, we present a robust and efficient pro-
cess to construct a 3D car mesh database with con-
tour sketches that highly resemble human sketches. A
synthesis-based approach reduces the cost to acquire
expensive paired 2D and 3D training samples, while
the generated database can be easily extended with a
larger size and scale. We generate contour sketches
with a conditional GAN and create a point cloud rep-
resentation from the 3D meshes. With contour sketch
annotations, it is made easier for users with draw-
ing skills to make use of the approach. With novel
feature-preserving data augmentation techniques, we
create a large variety of logically correct car meshes.

The database contains two sets of representations:
1) 2D contour sketches, depth and mask images for
shape reconstruction, and (2) registered 3D point
clouds for details synthesis.

Z-axis -20% Z-axis -10% Original Z-axis +10% Z-axis +20%

Y-axis -20% Y-axis 10% Original Y-axis +10% Y-axis +20%

Figure 2: Examples of 3D car meshes synthesized with our
feature-preserving data augmentation method.

3.1 Feature-preserving Car Mesh
Augmentation

We follow the method in (Nozawa et al., 2020) to aug-
ment the 3D car meshes such that we can generate a
larger database with more car variations. The key ad-
vantage of the method is that it can retain the local fea-
tures of the car during the augmentation process. For
example, while scaling a car, unlike previous methods
(Sela et al., 2017) that would distort the proportion of
the car wheels, ours can maintain the circular wheel
shape.

Here, we summarize the augmentation method.
Readers are referred to (Nozawa et al., 2020) for more
details.

Our car meshes came from ShapeNet (Chang
et al., 2015), as it offers different models of car with
different variations. That said, the database is not
big enough to effectively train the deep learning sys-
tem. Therefore, we augment the car meshes following
(Kraevoy et al., 2008), which allows us to change the



shape of the car while retaining local features at the
same time. The core of the method is to voxelize the
mesh and to interpolate the vertices based on the aug-
mented (i.e. scaled) voxel grid. In our system, the
resolution of the grid is set as 5× 10× 15. We then
scale the grid with ±20%, ±15%, ±10% and ±5%
for the height and length directions. With an input
of 7,028 cars meshes, with our augmentation method,
we can create 56,224 meshes. Examples are shown in
Figure 2.

3.2 The 2D contour sketches Depth and
Masks Representation

With the 3D meshes created, we produce the corre-
sponding 2D contour sketches and depth represen-
tations for training our deep learning system on car
shape reconstruction. On the one hand, traditional
edge detector such as a Canny edge detector (Canny,
1986) only capture high-frequency signals of an in-
put image, and such samples with excessive details
greatly differ from human drawings. On the other
hand, segmentation models are usually trained with
only the outer boundaries with no salient inner edges,
resulting in oversimplified predictions that poorly rep-
resent geometric information of the input (Li et al.,
2019). To make our method practical when ap-
plied to real-world scenarios such as automotive de-
signing processes, we synthesize contour sketches,
which contain both the outer boundaries and salient
inner edges to represent occlusion events happen in
the original photorealistic counterpart, generated 3D
meshes.

To achieve high-quality contour sketch inferences
from 3D car meshes, we adapt conditional GAN
(Mirza and Osindero, 2014). Compared to a tradi-
tional GAN structure, we incorporate an additional L1
loss that compares the ground truth contour sketches
with the predictions in addition to the adversarial loss
of GAN. For generating contour sketches of cars with
imperfect alignments, we freeze the weight that is
trained with the Contour Sketches database (Li et al.,
2019) and predict sketches with rendered images from
certain perspectives (front, top, side) with a copper
material which empirically best resemble the samples
from the previous database, and then downsize the
normalized cube faces to a 256× 256 resolution for
a more efficient generation process.

To create the depth and mask images, we set up a
template cube that contains the normalized complete
car shapes, and then obtain depth and rendered im-
ages from each face of the cube. For efficient cal-
culation, we utilize a pixel shader and store them as
floating-point values. We ignore the bottom face of

Figure 3: From left to right: the template, a car shape, and
the flow for mapping them.

the car and do not produce the corresponding depth
and mask. This is because the bottom of the car typi-
cally consists of complicated geometry involving me-
chanical gears, which is unrelated to our application.

Compared to existing databases that poorly re-
semble realistic sketches such as the Laplacian filter-
based approach (Nozawa et al., 2020), our mesh aug-
mentation framework creates high-quality sketch-like
annotations and generates a new database that solves
the limitation of sub-optimal performance when the
trained model is applied to real-world scenarios.

3.3 The Registered 3D Point Cloud
Representation

We follow (Nozawa et al., 2020) to generate a reg-
istered 3D point clouds format from the car meshes.
The importance of the registration process is that it
allows machine learning systems to have a uniform
input vector for effective learning. In our system, this
is particularly helpful when we use lazy learning in-
troduce fine details into the car shape. We will give a
summary of the method here. Readers are referred to
(Nozawa et al., 2020) for the implementation details.

We fist generate a point cloud format using Pois-
son sampling (Corsini et al., 2012). As we are aiming
for a registered point cloud format, we need to have
the same number of points per car. We control the to-
tal number of points by iteratively changing the radius
of the Poisson sampling process. Once the number is
within an acceptable range, we randomly take away
points such that the number of point reaches a pre-
defined value, which is set as 10,000 in our system.

We then register the point clouds from different
cars by considering this process as an Earth Mover
problem (Henry et al., 2014; Shen et al., 2019). This
means that we will first select one point cloud ran-
domly as the template, while treating all the rest as
targets. For each point in the template point cloud,
we will find the best mapping point in the target
point cloud, such that the total distance between all
template-target point pairs is minimized. Such one to
one mappings for all points between the template and
the target point clouds are called flow. Figure 3 vi-
sualize the flow between the template and the target.



4 GENERATIVE ADVERSARIAL
NETWORK FOR CAR SHAPE
RECONSTRUCTION

In this section, we present a deep neural network to
reconstruct 3D car shapes from 2D contour sketches.
With a GAN-based network, our method is capable of
modelling complicated and distinctive shapes with an
effective training process, and has the ability to gener-
ate high-quality shapes from a single contour sketch.

In the first stage of car shape reconstruction, we
adapt Generative Adversarial Network (GAN) (Good-
fellow et al., 2014) for getting the depth images and
reconstruct a rough 3D shape that resembles the 2D
contour sketches, as such a generative model has
shown promising results in image translation by alter-
ing the input with a different style. After the shapes
of cars are generated, we introduce the details of the
car in the process of the second stage.

4.1 The Design of the Generative
Adversarial Network

We propose a GAN-based network that learns from
contour sketches and 3D shapes to ensure a wide vari-
ety of car shapes. Compared to previous designs such
as Variational Autoencoder (VAE) (Kingma et al.,
2014), GANs share superior performance (Isola et al.,
2017; Chen and Koltun, 2017; Wang et al., 2018) in
terms of the appearance of the output. More impor-
tantly, our novel network design takes input at the
latent vector layer and generate multiple views from
random noises, and thus reduce the expensive training
cost and allow a larger variety of car shapes. To fur-
ther highlight the distinctive features among different
car shapes during the reconstruction such as spoilers
and rear wings, instead of directly outputting the 3D
point cloud (Fan et al., 2017; Charles et al., 2017) or
the voxels (Delanoy et al., 2018; Choy et al., 2016) of
a car, we propose to output a set of depth images from
the side, top, front and rear views, and reconstruct the
3D vertices by combining them.

We adapt an encoder-decoder network structure
as the generator for creating depth images (Li et al.,
2018). We modified the design of the generator to add
noise directly to the latent space, as shown in Fig-
ure 4. The decoder needs to generate depth images
in multiple predefined views. On the one hand, ex-
isting research typically prepares multiple decoders,
with one decoder generating one output view (Lun
et al., 2017). However, such an approach increases
computational cost and memory requirement signifi-
cantly, considering that we need to generate five dif-

ferent views (i.e., front, rear, left, right, and top). On
the other hand, traditional cGAN networks add noises
to the input through concatenation, resulting in ineffi-
cient memory usage with increased input resolutions.

As a solution, our network shares the encoder
among multiple views, and we novelly control the in-
put at the latent vector layer to solve both limitations.
This design is driven by the observation that there is
shared information across different views. By shar-
ing the same encoder, such information can be dis-
covered. Apart from the massive reduction in mem-
ory usage and training time, such a setup allows the
different output views to be more coherence and pro-
duces higher quality results. We justify our choice in
the network design by conducting an ablation test in
Section 6.3.

4.2 The Loss Function

For the depth images, we implement two loss func-
tions - the mean absolute error (MAE, L1 loss) on the
generated depth images, and the MAE on their Lapla-
cian representations as in our pilot study (Nozawa
et al., 2020). In particular, minimizing the MAE loss
on the generated depth images can preserve the over-
all shape and structure of the car. On the other hand,
including the MAE loss on the Laplacian representa-
tion can better preserve the surface appearance. Read-
ers are referred to (Nozawa et al., 2020) for more de-
tails and justifications.

An adversarial loss is added to the discriminator.
By concatenating all views of depth images and in-
put to the discriminator, the model learns to distin-
guish if the set of depths is real or not. Masks are
one of the sub-task outcomes for depths, so we ig-
nored such mask images when training the discrimi-
nator. By training a single discriminator for multiple
views, this design can save memory usage and learn
the relationship between views simultaneously.

The final loss function is expressed as:

E =
(
Dre f −Drec)◦Mre f )

L1 +
(
Mre f −Mrec)

BCE

+(
(
∆Dre f −∆Drec)◦Mre f )

)
L1 +ADV Loss

(1)

ADV Loss = arg min
G

max
D
{logD(S,Dre f )

+ log(1−D(S,G(S,z))}
(2)

where Dre f and Mre f are depth and mask images of
the ground truths, Drec and Mrec are those of recon-
structed images, S is input Sketch image, the sub-
scripts L1 and BCE (binary cross-entropy) represent
the calculation metrics, ∆ means Laplacian filtering



Figure 4: The design of our generative adversarial network.

Figure 5: From left to right: the reconstructed shape, the
reconstructed surface, and the registered point cloud.

and ◦ is the Hadamard product, ADV Loss is the ad-
versarial loss function, G is the generator, D is the
discriminator, and z is the random noise vector.

4.3 Surface Reconstruction

In this section, the process for reconstructing a rough
point cloud from the generated depth and mask im-
ages generated by our proposed framework is pre-
sented.

As in our pilot study (Nozawa et al., 2020), the
mask and depth images pairs from each view can be
used for reconstructing the 3D point cloud of a part
of the car. By aligning the parts reconstructed from
different views, the overall shape of the car can be
created (Figure 5 (left)) as a single point cloud. The
surface of the entire car (Figure 5 (middle)) can then
be reconstructed by applying Poisson surface recon-
struction to the point cloud of the car. With the sur-
face of the car, we can uniformly sample points from
it and this step is equivalent to the point cloud stan-
dardization process as in the database creation (Sec-
tion 3.3). By this, the register point cloud (Figure 5
(right)) can be directly compared with the example
cars in our database and similar cars will be used in
the lazy learning stage (Section 5) to add fine details
to the car shape.

4.4 Implementation Details

Our framework is implemented with Tensorflow. For
optimization, we use Adam solver with a learning rate
1e-5. The decoder has a dropout ratio of 0.5 except for
the last layer. Inspired by pix2pix (Isola et al., 2017),
We use Leaky ReLU as the activation function for the
hidden layers in the encoder, and ReLU for that in
the decoder. We use tanh as the activation function
for output layers. More details regarding the network
architecture can be referred to in Figure 5. To achieve
high efficiency, the resolution of the images that are
inputted in GAN is 64× 64. To ensure an accurate
evaluation with unaltered data, we train the system
using the data generated by data augmentation, and
test the system with the original data from ShapeNet
(Chang et al., 2015).

5 LAZY LEARNING FOR FINE
DETAILS

We follow our preliminary work (Nozawa et al., 2020)
in developing lazy learning algorithms to reconstruct
local details. Here, we give a summary of the al-
gorithms and highlight the important system designs.
We refer the readers to (Nozawa et al., 2020) for the
implementation details.

While the main bodies of cars share a lot of com-
mon geometric similarities, the fine details such as
side mirrors can be different. Learning a univer-
sal model from all cars with fine details is there-
fore highly ineffective. Motivated by the success of
lazy learning in mesh processing (Chai and Hodgins,



2005; Shen et al., 2018; Ho et al., 2013), we propose
to adapt lazy learning to reconstructed the details.

Unlike traditional approaches that generalize data
in the whole database as a preprocess, lazy learning
postpones the generalization to run-time (Chai and
Hodgins, 2005). As a result, it can utilize run-time in-
formation to limit the scale of learning. In particular,
given a run-time query, relevant data in the database
can be extracted and a small-scale learning process
can be performed. By only considering the most rele-
vant data, the common features that may be insignifi-
cant on a global scale can be successfully represented.
Besides, the similarity of relevant data allows lazy
learning to use a much lower dimensional latent space
comparing to traditional methods.

5.1 Relevant Data Search

Given a car shape generated in Section 4, we search
for the most relevant samples from the database and
perform lazy learning. As the point cloud is registered
(i.e., it aligns with a pre-defined template car shape),
we can effectively calculate the distance using the
sum of Euclidean distances from all points between
two point clouds. To reduce the high dimensional-
ity of the point clouds during searching, we propose
to apply Principal Component Analysis (PCA) onto
the position of the point clouds to generate a search
space, instead of using the Cartesian space. Searching
with the more important components of PCA allows a
faster search with less focus of fine details. Following
(Nozawa et al., 2020), we set the root mean square
distances of the 40 PCA components to find k = 5
nearest neighbours to achieve good results.

5.2 Learning and Optimization in Local
Space

With the k nearest neighbours selected from the
database, we can then learn a small subspace with
PCA. Since these neighbours are similar to each other,
the details of the shape can be well preserved with a
smaller number of components. In such a subspace,
we optimize a set of eigenvalues to construct a car
shape that is as similar as possible to the one gener-
ated by deep learning. We then back project the eigen-
values to formulate a car shape with details such as the
headlight, which is served as our final output.

We utilize the 3D Morphable Model (Blanz and
Vetter, 1999) to optimize the eigenvalues of the com-
ponents with a non-linear optimization process. Since
the point clouds are registered, we use a simple point-
to-point Euclidean distance to evaluate the distance
between the optimizing shape and target shape in the

Cartesian space. To obtain the Cartesian representa-
tion of the optimizing shape, we simply back-project
the optimized eigenvalues to the Cartesian space.

We propose a simple pre-process that construct
a more representative local PCA space with the k
nearest neighbours to further improve the optimiza-
tion process. Based on the observation that there are
still small variations in car shapes within the k near-
est neighbours, which distracts the system from the
main objective of obtaining the detailed shape fea-
tures, we pre-optimize these shapes individually using
the same morphable model-based optimization pro-
cess described above, such that they share a simi-
lar shape before we construct the local PCA space.
This way, the significant components of the local
PCA space can be more representative on the detailed
shape features.

6 EXPERIMENTAL RESULTS

We will first present the experimental results on re-
constructing 3D car shape from input sketches. Next,
we quantitatively analyze the training loss during the
training process to show the convergence of the pro-
posed framework. Finally, a comparison with the
state-of-the-art method (Nozawa et al., 2020) will be
presented to demonstrate the results obtained from
different network architectures and justify our choice.

The training of the deep learning system is per-
formed with an NVIDIA GeForce RTX 2080 Ti GPU
that has 11GB VRAM. With the batch size of 32, the
training finishes within a few days. The run-time sys-
tem is performed on a lower-end computer with an
NVIDIA GeForce 1050 Ti GPU that has 4GB VRAM.
The reconstruction of a car takes approximately 15
seconds to finish, with 5 seconds on car shape recon-
struction (i.e., deep learning) and 10 seconds on re-
construction detail features (i.e., lazy learning).

6.1 Reconstructing 3D Shape from
Contour Sketches

Since different users may have different drawing
styles (e.g. more cartoon-like), real-world sketches
are not objective to evaluate the performance of the
proposed system. As a result, we utilize synthetic
contour sketches for testing.

Examples of the output yielded by every major
step of the proposed framework are illustrated in
Figure 7. Stating with the input sketch (top row),
depth images are computed for reconstructing the 3D
meshes (2nd row). Next, a smooth surface is recon-
structed from the mesh (3rd row) and a point cloud



(a) Depth Loss (b) Mask Loss (c) Laplacian Loss

(d) Generator Loss (e) Discriminator Loss (f) Total Loss
Figure 6: Losses across epoch during the training stage.

Figure 7: Intermediate outputs. From top to bottom:
sketches, meshes from generated depth images, recon-
structed surfaces, sampled point clouds on surfaces, and
point clouds with details.

(4th row) is sampled from the surface for retrieving
similar car shapes from the database for details re-
finement. Finally, the refined car model (bottom row)
is created using the proposed lazy learning module. It
can be seen that the meshes (Figure 7 2nd row) recon-
structed from the proposed GAN framework can al-
ready resemble the car shape specified in the abstract
input sketch. The proposed lazy learning module fur-
ther enhances the quality of the 3D models by adding
details such as side mirrors and spoilers (Figure 7 2nd
row). This highlights the effectiveness of the pro-
posed framework. Readers are referred to Figure 1

Figure 8: Results generated with different k. From top to
bottom: sketches, point clouds with k = 1, k = 3, k = 5 and
k = 7.

and the video demo accompanied for more examples.
However, details like grilles or wheels are not en-

coded well for practical use of games or movies. The
EMD registration process can cause such low-quality
appearances because the EMD is based on the theory
of optimal transport with global distribution, which
can ignore small features. Besides, the converting
process into point clouds can reduce mesh resolution
that is closely related to details. We will consider
landmarks on 3D mesh in the sampling and hierar-
chical registration process for encoding such small
features. Furthermore, the input sketches can affect



Figure 9: Lower-quality results for sketches that has few
similar samples in the database.

appearance because of sparse information comparing
with photorealistic images. Feature extraction from
sketches is still an open problem in the field of deep
learning, so we will update our network structure. An
interactive sketch-based system will improve appear-
ance as well.

While the point clouds generated from the pro-
posed framework is highly realistic in term of the
overall 3D shape, the system is less effective in re-
constructing meshes with sharp edges. The underly-
ing problem is related to the 3D point sampling pro-
cess during the 3D mesh registration. The 3D point
sampling tends to sample points around sharp edges
instead of along the edges, which is a well-known
problem in 3D point sampling (Huang et al., 2013).
As a result, the sharp edges may be lost when the 3D
surface is reconstructed from the sampled points us-
ing triangulation. While this is an interesting topic
to explore, this is out of the scope of this work. Ex-
ploring the feasibility of using more advanced sam-
pling methods such as (Gauthier and Poulin, 2009)
or (Hanocka et al., 2020) can be an interesting future
direction to further enhance the quality of the recon-
structed 3D meshes.

We further conducted an experiment to have an in-
depth analysis of the proposed lazy learning module.
The proposed lazy learning module plays an impor-
tant role in adding fine details such as the wheels and
grills to the reconstructed 3D car shape. Here, we
focus on the k-value that defines how many nearest-
neighbor will be selected for learning the local space
(Section 5). Different k-values are being used in this
experiment and the results are presented in Figure 8.
From the results, it can be seen that the points clouds
tend to be more noise and contain more holes when

k = 1 and k = 3 (Figure 8 2nd and 3rd rows). In
addition, wrong details can be added to the final 3D
point clouds as the lazy learning process is biased to
a small number of samples when the k-value is small.
For example, the shape of the bed of the truck on the
5th column (from left to right) in Figure 8 is differ-
ent from the input sketch when k = 1 and k = 3. On
the other hand, the 3D point clouds generated using
k = 7 (Figure 8 bottom row) do not have the afore-
mentioned artefacts. However, car shapes tend to be
over-smoothed. Finally, using k = 5 (Figure 8 4th
row) can generate a smooth surface while resembling
the shape specified in the input sketch.

While our proposed framework can generate real-
istic car shapes from sketch images, some of the low-
quality results are presented in Figure 9 for further
analysis. We found that low-quality results are usu-
ally associated with the car shapes that are uncom-
mon in the dataset. The underlying issue is related to
the lack of similar car shapes for the refinement in the
lazy learning step. For example, the 3D mesh (Figure
9 2nd row) generated by the proposed GAN frame-
work has similar shapes as in the input sketch. How-
ever, the refined point clouds (Figure 9 bottom row)
changed the shape of the cars, especially the leftmost
and rightmost columns in Figure 9.

6.2 Training Loss

Here, we present the results of a quantitative evalu-
ation of the performance of the training process in
the proposed framework. A wide range of training
loss plots are illustrated in Figure 6. The plots also
contain the training losses obtained using 4 variants
of the proposed decoder network as an ablation study
and more detailed will be given in Section 6.3.

In particular, the depth loss, mask loss, Lapla-
cian loss, and total loss are reduced stably as training
progress. This highlights the proposed deep learning
framework converges and can effectively improve the
quality of the generated mesh in the training process.
For the Generator and Discriminator Losses (Figure 6
(d) and (e)), the oscillations are mainly caused by the
competitive nature between the Generator and Dis-
criminator, which is a typical pattern in GAN frame-
works and the losses show a decreasing trend in gen-
eral.

6.3 Comparing with the State-of-the-art
and Ablation Tests on Different
Decoder Network Architectures

In this section, we present the result of an ablation
study to justify our network design and followed by



(a) No shared layer (b) A one-layer shared (c) Two layers shared (d) Three layers shared
Figure 10: Different decoder network architectures for the ablation test.

(a) Our proposed GAN network

(b) Nozawa et al. (Nozawa et al., 2020)
Figure 11: The 3D point clouds reconstructed with different decoder architectures. From top to bottom: input sketches, results
of the decoder with no shared layer, sharing the first layer, sharing the first two layers, and sharing the first three layers.

comparing our results with those obtained using the
State-of-the-art method (Nozawa et al., 2020). As ex-
plained in Section 4.1, decoders are used for gener-
ating depth and masks in different views for recon-
structing the 3D shape of the car from input sketches.
While the images in different views have a differ-
ent appearance, they are associated with the same
underlying 3D shape. As a result, Nozawa et al.
(Nozawa et al., 2020) proposed sharing a common
layer among the decoders in the network design to
preserve the underlying structure and improve the
consistency among all synthesized views. In our pro-

posed encoder-decoder network (see Figure 4), each
decoder consists of five layers. In the ablation test,
we vary the number of shared layers in the decoder
from 0 (i.e., not sharing any layer) to 3. The different
decoder architectures are illustrated in Figure 10.

A wide range of 3D car shapes are reconstructed
using different decoder network architectures and the
results are illustrated in Figure 11 (a). It can be seen
that our proposed decoder architecture without shar-
ing any layer (2nd row in Figure 11) produces the
best results in terms of reproducing the car shape
with a smooth surface. On the other hand, sharing



layers (3rd, 4th and 5th rows in Figure 11) result in
3D point clouds with less distinguishable shape and
noisy/rough surface, which can be caused the loss of
balance between preserving the underlying structure
among decoders and refining each view. On the other
hand, Nozawa et al. (Nozawa et al., 2020) reported
that results can be obtained using a decoder network
with 1 shared layer. This highlights the differences
between our proposed GAN framework and the VAE
framework presented in (Nozawa et al., 2020). Unlike
the VAE network, noise is added when encoding fea-
tures from an input sketch in our GAN network. As in
typical GANs, the noise works as the latent vector and
represents the underlying 3D information of the orig-
inal shape. As a result, the concept of reconstructing
the underlying 3D shape by having a common layer
for different depth views in the decoder is not needed.
Without such an explicit constraint among different
views, it can be observed that our proposed frame-
work can still generate high-quality results.

As presented in Section 6.3, we evaluated the per-
formance of our proposed method quantitatively. In
Figure 6, the losses of the 4 variants (i.e. sharing 0-3
layers) of the decoder network are plotted. It can be
seen the losses obtained by 0-layer shared (colored in
red) are the lowest in general. This further justifies
our decoder network design.

Finally, we compare our results with those gen-
erated by the State-of-the-art method (Nozawa et al.,
2020) and the results are presented in Figure 11. The
results highlight that our proposed framework gener-
ated more realistic results that are closer to the car
shape as in the input sketch and contains more fine
details on the mesh. In contrast, the meshes generated
by (Nozawa et al., 2020) are having less distinctive
shapes and a lot of artefacts such as holes and noise
on the surface.

7 CONCLUSION AND
DISCUSSIONS

In this paper, we present a system to reconstruct de-
tailed 3D car shapes with a single 2D contour sketch.
To effectively learn the correlation between contour
sketches and 3D cars, we propose a generative ad-
versarial network (GAN) with an intermediate multi-
view depth image representation as to the output, and
construct the 3D cars as a post-processing step. To en-
sure the volume and diversity of the training data, we
propose a feature-preserving augmentation pipeline
to synthesize more car meshes with realistic sketch-
like annotations while keeping the shape of impor-
tant features. Finally, since deep learning has lim-

ited capability in representing fine details, we pro-
pose a lazy learning algorithm to construct a small
subspace-based only on a few relevant database sam-
ples for optimizing a car shape with fine-detail fea-
tures. We show that the system performs robustly
in creating cars of substantially different shape and
topology, with realistic detailed features included.

Our main focus in this work is to produce a 3D car
models from a single sketch image given by the user.
As a result, the proposed framework mainly resem-
bles the exterior shape of the car without considering
the configurations of the internal mechanical parts.
One of the interesting future direction is to include
additional constraints in the 3D car shape generation
module to reserve space for the internal car parts.

We use multi-view depth images as an interme-
diate representation in the generative adversarial net-
work. The two major advantages are that we do not
need to deal with 3D deep learning, which is memory
hungry and complicated to train, as well as we can
have a more explicit 2D to 2D correlation. Currently,
we combine the depth images as a post-processing
step. However, it is possible to consider them as a
means of rectifying the output space, and construct
extra layers to learn the regression between multi-
view depth images and 3D shapes. One future direc-
tion is to explore network architectures for this pur-
pose, and introduce more views of depth images in a
middle layer of the network for supervision.

The proposed methodology is generic to product
design. It is expected that the framework can be ap-
plied to producing 3D shapes of other types of prod-
ucts from sketch images. This requires a new dataset
with paired sketch images and 3D model for the new
product type. In the future, we will explore in this di-
rection such as producing 3D furniture models from
sketch images with the IKEA dataset (Lim et al.,
2013).
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