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Abstract

This paper investigates resilient consensus problems over directed networks with state constraints. Cooperative agents in the
network can potentially be influenced by uncooperative neighbors, who are knowledgable, anonymous and able to spread mis-
information. We formulate the resilient constrained consensus problem for high-dimensional multi-agent systems. A projection
based resilient constrained consensus protocol is presented so that the agent’s state will be pushed back to the constraint set
when it approaches the boundary. We show that resilient constrained consensus can be reached for robust networks when the
constraint sets are convex and share a non-empty overlap. The proposed algorithm is of low complexity, purely distributed,
and can be performed in tandem with a max-consensus process to estimate the allowed number of uncooperative neighbors.
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1 Introduction

Complex networked multi-agent systems abound in the
world of nature and technology, where non-local in-
formation of each agent is usually not assumed. The
problem of how a group of autonomous agents can
achieve an agreement or consensus under distributed in-
teractions is extensively investigated (Ge, Yang, & Han,
2017; Olfati-Saber, Fax, & Murray, 2007). The problem
becomes the resilient consensus problem when some
agents are infected due to malicious attacks or system
level faults. Instead of losing just those compromised
agents, the performance of the whole network could be
corrupted. Recently, the graph concept of r-robustness
is introduced in LeBlanc et al. (2013); Zhang, Fata, &
Sundaram (2015) to facilitate the resilient consensus
on networks. Using the Mean-Subsequence-Reduced
(MSR) algorithm, agents of r-robust networks are en-
abled to reach consensus even when there are r malicious
agents in the neighborhood of each cooperative agent
(LeBlanc et al., 2013). The results are generalized to
double-integrator dynamics with time delays in Dibaji
& Tshii (2017). Resilient consensus frameworks unifying
both continuous- and discrete-time agents have been de-
veloped for switched (Shang, 2018) and hybrid (Shang,
2020) multi-agent systems. A modified MSR algorithm
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is introduced in Fiore & Russo (2019) to handle both
fault tolerance and differential privacy requirements on
the initial conditions. Resilient control strategies have
been effectively applied in asynchronous systems (Sene-
johnny et al., 2019) and distributed optimization (Zhao,
He, & Wang, 2019). We refer the readers to Yang et
al. (2020) for an updated overview on the trends and
methodologies of resilient distributed coordination.

All the aforementioned works concern about uncon-
strained consensus meaning that the states of agents
are not constrained. In many real world applications,
agents need to reach consensus and at the same time
their state trajectories and equilibrium have to be in
some constrained sets due to physical limitation (Lin
& Ren, 2014; Zhou & Wang, 2018). Such restrictions
negatively impact the system’s ability to reach consen-
sus. In distributed target formation of unmanned aerial
vehicles, for example, consensus may fail to form if the
speed of some vehicles is constrained. State constrained
consensus problem is introduced in Nedic, Ozdaglar,
& Parrilo (2010) using nonlinear projection over bal-
anced networks with doubly stochastic adjacency struc-
tures. A discarded consensus algorithm is proposed in
Liu & Chen (2012) to achieve constrained consensus
for strongly connected communication networks over
both discrete-time and continuous-time dynamics. An
adaptive neural network based consensus protocol is
designed in Meng et al. (2017) to achieve constrained
consensus in fixed undirected networks. Different state
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constrained protocols have also been studied in the
context of, e.g., optimal consensus (Qiu, Liu, & Xie,
2016) and robust consensus against state uncertainties
(Nguyen, Narikiyo, & Kawanishi, 2018).

In this paper, we study resilient consensus in continuous-
time multi-agent systems with state constraints. The
malicious agents present in the network are assumed
to be able to change their states arbitrarily and un-
constrainedly, know complete information of the entire
network, and keep their identity anonymous. To our
knowledge, this is the first work considering state con-
strained consensus problems against malicious agents.
The contributions are as follows. First, we present a novel
projection based resilient consensus protocol for agents
with high-dimensional continuous-time dynamics, which
is purely distributed (namely, each agent only knows its
own and neighbors’ states and its own constraint set)
and can withstand locally bounded malicious agents. In
the existing literature of resilient consensus, the state
of an agent is typically assumed to be scalar; see e.g.
Dibaji & Ishii (2017); Fiore & Russo (2019); LeBlanc
et al. (2013); Shang (2018, 2020); Zhang, Fata, & Sun-
daram (2015). With high-dimensional state space, our
strategy will push the agents’ states back to the con-
straint sets whilst guarantee the smoothness of their tra-
jectories. Second, we present sufficient conditions for re-
silient consensus on directed robust networks. Due to the
existence of malicious agents, the previous constrained
consensus algorithms do not work and many of them
even require restrictive conditions. For example in Liu &
Chen (2012), all constraint sets are assumed to be iden-
tical for continuous-time dynamics, while we allow dif-
ferent constraint sets provided their intersection is non-
empty. Moreover, unlike the work Meng et al. (2017);
Nedic, Ozdaglar, & Parrilo (2010); Nguyen, Narikiyo, &
Kawanishi (2018); Zhou & Wang (2018), no balanced
topology condition is assumed here.

The rest of the paper is organized as follows. Section 2
formulates the problem. Section 3 describes the proposed
distributed strategy. Section 4 is devoted to convergence
analysis. Section 5 presents a simulation example and
Section 6 concludes the paper.

2 Problem statement
2.1 Graph theory

The set of integers is denoted by N and the cardinality
of a set is given by | - |. For n € N, the n-dimensional
real space is denoted by R™ and the Euclidean norm of
a vector in R™ is denoted by || - ||. The topology of a
multi-agent system can be modeled by a directed graph
G = (V, E), in which the node set is V = {1,2,--- , N}
representing the agents and the edge set is E C V x V
describing the interaction among agents. To cope with
compromised nodes, the node set V' is partitioned in to

two subsets V' = C' UU, where C consists of cooperative
agents with |C| = N¢ and U consists of uncooperative
agents with |U| = Ny. The uncooperative agents are de-
fined in Definition 2 below. Clearly, N = Ng 4+ Ny. A
directed edge (i,j) € F means that agent ¢ can convey
information to agent j. The (in-degree) neighborhood of
agent ¢ is given by NV; = {j € V : (j,i) € E}. A di-
rected path of length [ from ig € V to 4; € V is an order
sequence of nodes g, 41,42, - - ,%;, in which each consec-
utive pair forms an edge of G. The graph G contains a
directed spanning tree with root ¢ € V when ¢ can be
connected to any other nodes in GG via a directed path
starting from 4. Let A = (a;;) € RV*YN be the adja-
cency matrix of G, in which a;; > 0 when (j,¢) € E and
a;; = 0 otherwise.

We say that a set S C V is r-reachable if there exists
anode ¢ € S with |[M;\S| > r, where r € N (LeBlanc
et al., 2013; Zhang, Fata, & Sundaram, 2015). On the
basis of reachability, G is said to be r-robust if for any
two mutually exclusive node sets S; and Ss in G at least
one of them is r-reachable. Robustness is a refined char-
acterization of structural connectivity as shown in the
following lemma.

Lemma 1.(LeBlanc et al., 2013) Assume that a directed
graph G is r-robust. H is obtained by deleting at most s
incoming edges of each node in G. If s < r, then H is
(r — s)-robust. Furthermore, 1-robustness is equivalent
to containing a directed spanning tree.

2.2 Problem formulation

Consider a multi-agent system characterized by the di-
rected graph G = (V, E) with V' = C U U. The system
state of each agent i € V at time t > 0 is given by
zi(t) = (a1 (t), -+ ,2in(t))T € R, where n € N is the
dimension of the state vector. The following assumption
on the state constraints for cooperative agents is made.

Assumption 1. For each i € C, the constraint set €); =
{z; € R" : gi(z;) < 1} and Q = NY5Q; # 0, where
g; : R™ — R is a twice differentiable convex function.

Remark 1. The set ©; C R™ is called level set of the
convex function g; (Bertsekas, 2009). The above assump-
tion is tantamount to requiring the convexity of the con-
straint set €2;, which is commonly assumed in state con-
straint consensus problems; see e.g. Lin & Ren (2014);
Liu & Chen (2012); Meng et al. (2017); Nedic, Ozdaglar,
& Parrilo (2010); Zhou & Wang (2018). For example, if
n = 1, then €; is a closed interval.

We define the following resilient state constrained con-
sensus, which requires all cooperative agents achieve
consensus with their trajectories within constraints.

Definition 1 (Resilient State Constrained Con-
sensus). The cooperative agents in G are said to reach



resilient state constrained consensus if for any initial con-
ditions {x;(0)};cv such that x;(0) € Q; for alli € C, we
have (i) limy_, o0 ||2;:(t) — 2;(¢)|| = 0 for all ¢, j € C and
(ii) z;(t) € Q; for all i € C and ¢t > 0.

By Definition 1, we readily reproduce the ordinary con-
sensus definition when V' = C' and Q; = R" (e.g., g;(x) =
1) for all ¢ € C. In general, the dynamics of cooperative
agent ¢ € C' are described as

(1) = ui(t) = @i ({wj(8) - 5 € N U{i}}), (1)

where 2% (t) = (2%, (t),--- ,2%,(t))T € R" delineates the
values conveyed from agent j to agent ¢ at time ¢, and
we assume cooperative agents send their own states,
namely, z(t) = x;(t) for all j € C. The control input
u; or the function p; in (1) is the rule to be followed by
cooperative agents aiming to reach agreement on their
states. We will design wu; in Section 3 for cooperative
agents. The uncooperative agents on the other hand are
able to apply different strategies trying to sabotage the
system performance.

Definition 2 (Uncooperative Agents). Any agent
i € U is said to be uncooperative. It uses a different
update rule @; from the cooperative agents in (1), or at
some time t > 0 it conveys different values to different
neighbors.

The uncooperative agents are often difficult to cope with
as they may collude with other uncooperative agents
and spread wrong/malicious information to its neigh-
bors via broadcasting or peer-to-peer communication.
They are often referred to as Byzantine nodes (LeBlanc
et al., 2013; Yang et al., 2020; Zhang, Fata, & Sun-
daram, 2015), for instance, in wireless communications
and sensor networks. We allow the uncooperative agents
to change their states arbitrarily and unconstrainedly,
know complete information of the entire network, and
keep their identity anonymous. To deal with such adver-
saries, we need an upper bound of the number of unco-
operative agents in N; for every i € C. We denote this
parameter by » € N, which satisfies |[V; N U| < r for all
1 € C bounding the adversaries in the neighborhoods of
cooperative agents.

3 Projection based resilient consensus algo-
rithm

To realize resilient state constrained consensus (c.f. Def-
inition 1), we propose the following projection based re-
silient consensus strategy for cooperative agents on the
basis of MSR-like algorithms, which typically deal with
scalar state and unconstrained convergence (Dibaji &
Ishii, 2017; Fiore & Russo, 2019; LeBlanc et al., 2013;
Shang, 2018, 2020; Zhang, Fata, & Sundaram, 2015).

Given r € N, the common upper bound of the number
of uncooperative neighbors of the cooperative agents,
each agent i € C receives its neighbors’ state vectors
{2}(t)}jen, at time t and arranges them in the descend-
ing order for each coordinate independently. Namely, for
each 1 < k < n the real sequence {x?k(t)}jeNi is sorted
in the descending order. For each 1 < k < n, the indices
of the highest r values that are greater than x;;(¢) and
the indices of the lowest r values that are smaller than
xik(t) are put in a set R (¢). If there are less than r such
values respectively, all of these indices are put in the set
Rik(t). See Fig. 1 for a data flow model for i € C.

x () =u(r)
x:(0) x:(0)
J' ) Sort Reduce >
¥ (0 x (0
JeN, JEN\AR (D)

Fig. 1. Data flow model of MSR algorithm for agent 1.

Next, we define
yi(t) =

Lik Z

1 FJEWU{i})\ Rk (t)

aijepi(25(t), 2:(1),  (2)
k

where y;(t) = (Y1 (t), -+, yin ()T € R™, 1y = 1,1},
1 € R™ is the k-th unit vector, and ¢;; : R™” x R" —
R™ satisfies (i) ¢;; is locally Lipschitz continu-

ous, (ii) ¢ij(z1,22) = 0 & x1 = a9, and (iii)
(21 — w21) 1] pij (w1, 29) > 0 for all 1 < k < n, where
1 = (211, ,210)" and x5 = (221, ,22,)". Fi-

nally, we adopt the dynamics (1) with the control input
wi(t) = (uir(t), - ,uin(t))" designed as follows:

o If fi(xz;(t)) <0, then u;(t) = y;(t),
o If f;(zi(t)) > 0 and 2L52Wly,, (1) <0, then () =
Ly = yir(t),
o If fi(z;(t)) > 0 and %jsmyik(t) > 0, then
wik(t) =11 - [ — filai(t) Hig(2(t))]
g > ai;jpij (25(t), zi(t)),

FJEWU{iIP\ R ()

where I,, € R™*" is the identity matrix, f; : R™ — R is
given by

i(x:) — 0

with §; being freely chosen by each agent ¢ such that
inf,,cq, gi(x;) < 6; <1, and Hy : Dy, — R™*™ is given



by
_ Vfi(Ii)Vfi(Ii)T

R™ being the gradient of f;.

Remark 2. The conditions on the function ¢;; in (2)
are fairly mild. For example, we can take ¢;;(x1,z2) =
(1 — x2). This is in line with classical consensus pro-
tocols (Olfati-Saber, Fax, & Murray, 2007). Our strat-
egy is purely distributed in the sense that each coopera-
tive agent only knows the state of its neighbors, its own
state, and its own constraint set. Moreover, in contrast
to discrete-time MSR algorithms, the sorting and reduc-
ing mechanism here can be implemented by a Lipschitz
continuous filter ¢, which is a composition of concate-
nation, sorting, reducing, and sum functions (LeBlanc &
Koutsoukos, 2011, Def. 1). In other words, the equation
(2) can be formally written as

w(t)zzlmk( 3 aijsoz-m;‘-(t),xi(t))).
k=1

JEN;U{i}

Remark 3. If all constraints sets {2; = R", namely, no
state constraint is imposed, we obtain that both g; and
fi are constants (e.g. g; = f; = 1) for all ¢ € C. Hence,
%(ia:) = 0 and the control input u;(t) = y;(t) for each
i € C. This can be viewed as a high-dimensional MSR
algorithm (extending the previous scalar versions e.g.
Dibaji & Ishii (2017); Fiore & Russo (2019); LeBlanc
et al. (2013); Shang (2018, 2020); Zhang, Fata, & Sun-
daram (2015)), in which the state filtering procedure is
performed for each coordinate independently. In partic-
ular, if additionally n = 1, we readily reproduce an or-
dinary scalar MSR algorithm.

Remark 4. By Assumption 1, we have f;(z;) < 1 for
any ¢ € C. Each constraint set §2; can be represented as
Q, =Q,; UQi, where ; = {.Tl eR™:0< fz(Iz) < 1}
and Q, = {z; € R" : fi(z;) < 0} (see Fig. 2). When
the state z; € Q, (‘central area’), the control input is
u; = y;. When z; € Q; (‘peripheral area’), the time
derivative f; = V fi(x;)&; = V fi(x;)y; is checked. If the
k-the coordinate is negative or zero, meaning that f; is
decreasing, we still use u;xz = y;x. When this value is
positive, i.e., f; is increasing, that means x;; has the
tendency to move outside of €2;. In this situation, we
modify the control input wu;; by using the projection.
The choice of §; can change the relative size of €2; and
Q,: Q, is larger when J; become closer to 1. This also
tunes when the projection will be in use.

before projection

projection

Fig. 2. A schematic illustration of state modification.

4 Consensus analysis

In this section, we present the resilient consensus with
state constraints under our proposed distributed algo-
rithm in Section 3. We first show that the state trajec-
tories for cooperative agents remain invariably in their
constraint sets.

Theorem 1. Consider the multi-agent system (1) over
G, in which each cooperative agent follows the projection
based resilient consensus algorithm. If the initial condi-
tion x;(0) € Q; for alli € C, then x;(t) € ; holds for
alli e C andt > 0.

Proof. Fix i € C. Since z;(0) € Q;, we only need to
consider the situation where ; is in Q; and has the ten-
dency to move outside of ;. Hence, for any 1 < k < n,
the k-th coordinate of the time derivative of f; can be
expressed as

Ofi(zi(t))

) ulk(t)
Tik
OB T 17— i) Hinl )
Ly > aij i (x5(1), zi(t))
FEWULIP\ Rk ()

:%f))ll > aijpij (5 (1), 2i(t))

FJEWU{iP\ R (t)

oo Ofii(t))

- flas(t) 228
15 Z

FEWULIP\ Rk ()

i)

=1 it L5

1 > aijpiy (25(t), (1))
JEWU{i})\Rix(t)

= = fi(zi (1)) - pir(D). 3)

agjepij (25(t), m4(t))

Note that p(t) = Ofilzilt)), (t) > 0 by using (2) when

Oxix
x; is in €, but has the tendency to move outside. When
x; € Q;, we have f;(z;) € [0,1]. Thanks to (3), we see
that as time ¢ passes by, f;(x;) is increasing (meaning
x;(t) moves towards the boundary of ;) but when it
approaches the boundary (where f;(z;) = 1) it attains



a plateau. In other words, as illustrated in Fig. 2, x;(t)
will eventually stay on the boundary of the constraint
set €); as t grows. O

The next result shows that the states of cooperative
agents will always be within the range of their initial
configurations. More precisely, for 1 < k < n, we de-
fine Ok (t) = max;ec ik (t) and O, (t) = min;eo i (t)
be the largest and smallest state values for cooperative
agents in G, respectively.

Theorem 2. Consider the multi-agent system (1) over
G, in which each cooperative agent follows the projec-
tion based resilient consensus algorithm. For eachi € C,
i (t) € [Omi(0), 0nr(0)] for alll <k <mn andt > 0.

Proof. Fix 1 < k < n. We only show z;(¢) < 0p4(0)
and the proof for ;i (t) > 0,1 (0) is likewise.

If the inequality is not true, there must be some time
t > 0 such that there is some agent iy € C with ;% (f) =
0r1(0) and @;,(f) > 0 but for any ¢t < # and i € C,
Zik(t) < Op1k(0). On the basis of our resilient consensus
algorithm, we consider three situations.

(1) When fi, (24, (f)) < 0, then u;ox () = yior (). By (2),
we have

0 <ion(l)

= )

FEWigU{io D\ Rigk (£)

Qi 4 1k Pioj ( Lo ({)7 L (t)) . (4)

Since there are no more than r uncooperative neigh-

bors in N, the filtering procedure guarantees 7}, (t) <

011 (0) = 5 () for any j € (N, U {io})\Ri,k(f). Note
that 5 may be an uncooperative agent. Using our con-
dition on ¢;,;, we have 1] ¢, ;(x ;0 (t), 24, (f)) < 0. Since
a;y; > 0, the right-hand side of (4) must be non-positive.

We arrive at a contradiction.

(2) When fi, (i, (£) > 0 and gty i) < o,

then w;,x(f) = yi,x(f). This case can be proved exactly
in the same way as above.

(3) When fiy(zi,() > 0 and 252y, (6) > 0,

then wik(f) = 17 - [In fzo(r%( )) Higr (24 (8))] -
Lik Zje(/\fiou{io})\mok(t) aw%og( (t) ()) We

have

0 <ii0k(f)
=17+ [ = fio (io (0)) High (o (£))] - 1k
1 > iojios (@3 (£), 4, (£))
FEWigU{io D\ Rigk (2)
= (1= fio(z5,(£)))
> igj 1 igs (

FEWip Ui D\ Rigk (f)

@ (), 24, (1)- (5)

As shown in case (1) we derive ZjG(N-OU{ig})\R o (F) Bioj
: i0

1kg010]( (), x5, (f)) < 0. Moreover, 1 — f;, (s, (£)) >
0. Therefore7 the right-hand side of (5) must be non-
positive. We arrive at a contradiction. O

It is worth noting that the underlying communication
topology is essentially time-varying in our resilient con-
sensus protocol since the set R;;(t) depends on time.
It is therefore a good idea (conventional in distributed
coordination (Olfati-Saber, Fax, & Murray, 2007)) to
bound the dwell time in order to keep the switching rate
in check. We assume the following.

Assumption 2. Denote by {bs}scn a sequence of time
steps at which the set R;(¢) changes for some ¢ € C' and
1 < k < n. We assume there exists a positive number b
satisfying |bsy1 — be| > b > 0 for all £ € N.

Remark 5. Note that continuity of the state trajecto-
ries is neither sufficient nor necessary for Assumption 2.
What required, say in the case of r = n = 1 and consid-
ering only the higher-end of our MSR algorithm for ex-
ample, is whenever j = arg max; ¢\, %, (to) for some

i € C and tg > 0, we have zjl(t) = max;en,ufi} T4 (1)

for all t € [tg, to + b]. This condition generally holds pro-
vided the state trajectories (of both cooperative and un-
cooperative agents) do not change arbitrarily frequently.
For instance, if ¢; in Definition 2 is continuous bounded,
then by (1) and the mean value theorem x;(t) is Lips-
chitz continuous for i € U, while (2) guarantees Lipschitz
continuity for i € C. Therefore, Assumption 2 holds.

Theorem 3. Consider the multi-agent system (1) over
G, in which each cooperative agent follows the projec-
tion based resilient consensus algorithm. If G is (2r +
1)-robust, then resilient state constrained consensus is
achieved.

Proof. In view of Definition 1 and Theorem 2, what re-
mains to show is the convergence of state. Fix 1 < k < n.
For t > 0, we define O(t) := Opi(t) — Opmi(t) > 0.
Recall the Dini derivative of a function ¢(¢) is
D¢(t) = limsup,_ o (6(t + h) — ¢(t))/h. We de-
fine two indices ip; and i, satisfying, respectively,
i’iMk(t) = MaXie (1) j?ik(t) with IMk(t) = {Z e C:



Tik (t) = QMk (t)} and i’imk(t) = maxiejmk(t) ‘fik (t) with
Ink(t) == {i € C : 24(t) = 0pi(t)}. Thanks to the
property of Dini derivative (Danskin, 1966), we have
DaMk (t) = jfiMk(t) and Demk (t) = iimk(t)-

We will show that DOy (t) < 0. Depending on the choice
of two agents i,; and i,,, we have 3 x 3 = 9 combinations
in total under our resilient consensus algorithm (c.f. the
proof of Theorem 2 where three cases are considered re-
garding ig). In the following we only consider two typical
cases. All the rest cases follow with essentially the same
arguments.

(1) fin (2, () <0 and f; (z;, () < 0.1In this case,
we have wu;,, 1 (t) = yiyx(t) and u; ik (t) = yi, k(t). By
(2) and the above analysis, we obtain

DOk (t) =
1}6— Z QingjPinej (x;M (t)a Linm (t>) (6)
JEWip U{line D\ R 1 ()
and
DO, (t) =

1 > Wiy Pin (25 (1), 20,y (1)) (7)
jE (Nim U{im })\le k (t)

By the choice of i3, and the fact that there are no more
than 7 uncooperative agents in \V;,,, we have x;,,x(t) >
zi (t) for j € (N, U {inr})\Riyk(t) under our filter-
ing procedure. Note that 7 may be uncooperative. In-
voking the conditions on the function ¢;,, ;, we see that
1higgj (23 (£), 24, (1)) < 0in (6), leading to Dk (t) <
0. Likewise, using (7) we have D6, () > 0 and hence
DOy (t) = DOy (t) — DO (t) < 0.

2) fins (@i (1)) > 0 with i@y iy 5 g

Tingk
and f; (z; (t)) > 0 with %jﬁ’:(t)) yi k() > 0. In
this case, we obtain wu;,,(t) = 15[, — fiy (Tin (1))
Hipn(Ting (£)]1kk Zje(NiMu{iM})\RiMk(t) Aipj Pinj
(@ (1), 20, (1) and wi,1(t) = (L — fi, (2i,,(1)
H;, k(4,,(1)] Llkk E:je(Aﬁhlu{un})\R¢mk(ﬂ Qi Pimj

(gc;" (t),zi,, (t)). Therefore,

DOy (t)
:1']I€' ’ [In - fiM (‘riM (t))HiMk(xiM (t))] 1y
’ l;cr Z QinjPinj (x;M (t)’ Tin (1))

JEWip W{ine D\ Ry w(t)
:(1 — fin (‘riJ\l (t))) ’ Z
JEWip U{in D\ R k(1)
*Ping (m;‘M (t)v Lipg (t)) (8)

.
Qipgj L,

and in an analogous manner

DO (t) = (1 = fi, (24, (1))
> @i Lo Pinn (257 (1), 4, (1)) (9)

JEWipn U{im )\ Rip, i (t)

Asin case (1), we similarly obtain 1] ¢;,, ; (xj-M (t), 245, (1))
< 01in (8) and l}ﬁ-goimj(:v;’" (t),x;, (t)) > 0in (9). Com-
bining this with non-negativity of adjacency element in
A, 1 — fi (2, (@) > 0,and 1 — f; (z; (t)) > 0, we
arrive at DOy (t) = DOy (t) — Dy (t) < 0.

Combining all cases as commented above, DO (t) < 0
holds for all ¢ > 0.

Next, we will show that lim;_,, DO (t) = 0 by contra-
diction. If this limit is not true, then there exist €,09 > 0
and a list of time steps {s¢ }reny with limy_, » s¢ = 0o such
that DO (s¢) < —e and |spq41 — s¢| > o for all £ € N.
Consider a time interval J with J N {bg}ren = 0. We
know that DOy(t) is uniformly continuous in J because
DOy (t) is continuous in J and ;1 (t) is bounded for all
1 € C. As a result, there exists o; > 0 such that for any
t1,t9 € J with |t17t2‘ <01, ‘D@k(tl)*D@k(tQH < 6/2
holds. Next, we select 0 < o9 < o7 such that for any
¢ € N, the small interval [sy — 09, S¢ + 03] is a subset of
an interval J delineated as above. For ¢ € [sy — 09, s¢ +
03], a grain of algebra gives DO (t) = —|DOg(s¢) —
(DO (se) — DOk(t))| < —e +¢/2 = —/2. We choose
0 < 0 < o9 such that the family {[s¢ — 0, s¢ + 0] }ren
contains mutually exclusive sets. Based on the these dis-
cussions, we examine the integral of DO (t) as

oo L S¢+o
/ DO(t)dt < lim > / DOy (t)dt
0 T = Jseme

L—oo

) L se+o c
<— lim Z Edt = —oc0. (10)
=1

S¢y—0O

This clearly contradicts with ©(¢t) > 0 for all ¢ > 0.
Therefore, we conclude lim;_, o, DO (t) = 0.

An immediate result of the vanishing of DOy(t) is
that both DOy (t) and DO,,x(t) are vanishing as ¢
goes to infinity (since they are bounded by zero). Fur-
thermore, there exist two constants pprx > pmk sat-
isfying limy o Oprx(t) = limy_ oo @i, x(t) := parr and
limy o0 Ok (t) = lmy o0 i, k() := pmk. According
to our assumption, the graph G is (2r + 1)-robust.
By Lemma 1, the underlying communication topol-
ogy (corresponding to the k-th coordinate of the sys-
tem) contains a directed spanning tree under our re-
silient consensus protocol. Assume that prrx > pmk-
In this case, there is time 71 and ¢ > 0 such that
Tigk(t) > pyk — € > pmr +€ > w1 (t) for all t > 7.
In view of our resilient consensus protocol and the



conditions on ¢;;, the limit lim; oo &i,,%(t) = 0 im-
plies lim; o0 23}/ (t) — @4,,(t) = 0 for all j € (N, U
{im })\Riy k(). Likewise, limy o0 237 (1) — @i, (t) = 0
for all j € (N, U {im})\Ri, k(t). Due to finiteness of
the node set V, there exists 79 > 7 such that there
are two directed paths in the communication topol-
ogy (corresponding to the k-th coordinate) at time 7o,
one beginning from the root node, say [, ending at ips
and the other from [ to ¢,,, and the following holds:
Zie(m2) > pmr — € and x5 (72) < pmi + €. This clearly
cannot happen. Hence, it must be ppx = pmi. Since
the argument applies to all 1 < k < n, the proof is
complete. O

Remark 6. The (2r + 1)-robustness condition in The-
orem 3 is typical in MSR algorithms for resilient con-
sensus problems of systems with 1-dimensional and un-
constrained state space both in discrete time (Dibaji &
Ishii, 2017; Fiore & Russo, 2019; LeBlanc et al., 2013)
and in continuous time (LeBlanc & Koutsoukos, 2011;
Shang, 2018, 2020).

Remark 7. In real-world applications, cooperative
agents may agree on a value r in a distributed manner.
For instance, if each cooperative agent ¢ has a conserva-
tive estimate r;, the max-consensus process (Nakamura,
Ishii, & Dibaji, 2018) can be followed (see Section 5
for an example). It is also worth noting that resilient
consensus is not guaranteed if cooperative agents apply
different values of r. This is because a smaller value
might leave more malicious agents in the neighborhood
while a larger value could lead to an isolated node.

Fig. 3. A directed graph G with N = 6 agents.
5 Numerical simulations

Here we consider a multi-agent system with N = 6
agents,i.e., V ={1,2, -+ ,6}, having cooperative agents
C = {1,---,5} and an uncooperative agent U = {6}
over a directed graph G; see Fig. 3. The adjacency matrix
is taken as a binary one and the agent state is of dimen-
sion n = 2. It can be verified directly that G is 3-robust.
The initial states are set as x1(0) = (3.5,4)7, 25(0) =
(=2,-2)T, 23(0) = (0.5,=3)7, 24(0) = (—1,5.5)T,
25(0) = (4,—2)T, and z¢(0) = (3,—4)T.

For all agent i € C, the state constraint sets are defined
by the functions g;(x;) as g1(x1) = 2(z11 — 2)% + (w12 —

3)2 = 6, ga(w2) = 3(za1 + 1)? + (w22 — 1)* — 2(wo1 +
1) (222 — 1) =8, g3(w3) = 10(x31 — 1) + (232 +1)* — 19,
and g4(x4) = g5(x5) = 1. The sets are shown in Fig. 5
with Q4 = Q5 = R?, and their intersection  # (). We
take 01 = 6 = —2, 63 = 4 = d5 = —3, and the function
wij(v,w) =05 (v—w) for all4,j € C.

5 :
- —agentl
agent 2

4r - % -agent 3]
agent 4

3t agent 5 |
——agent 6

state r

time step t
Fig. 4. Reaching consensus in r over the network G.

Prior to applying the projection based strategy, we need
to agree on the parameter r in a distributed manner.
To this end, we consider the max-consensus process fol-
lowing Nakamura, Ishii, & Dibaji (2018). Initially, we
choose individual estimates r1(0) = r2(0) = r4(0) = 0,
r3(0) = 15(0) = 1, and the uncooperative agent takes
value 2 at even time steps and 0 at odd time steps. It is
shown in Fig. 4 that all cooperative agents are able to
achieve an agreement at r = 1.

With cooperative agents following our projection
based resilient consensus algorithm with » = 1 and
the uncooperative agent 6 following its dynamics
ig(t) = (7% _05)2e(t), the state trajectories are
shown in Fig. 5. As one would expect from Theorem
3, resilient consensus has been reached for cooperative
agents in C'. The final consensus state, i.e., equilibrium,
is located at the boundary of 2. In practical applica-
tions, if the previously agreed r value does not lead to a
consensus, we can gradually increase the estimate r;. If
the network G is sufficiently robust, the desired r will be
ultimately reached and global consensus is guaranteed.

6 Conclusion

In this paper, we have investigated the resilient consen-
sus problem for multi-agent systems over directed net-
works with state constraints. We formulated the resilient
state constrained consensus in the presence of uncooper-
ative agents with some extremely harmful features. On
the basis of the projection based resilient consensus al-
gorithm, we have shown that state constrained resilient
consensus can be reached for robust networks when the
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Fig. 5. Agents trajectories in the state space with initial
states indicated by circles. The inset show a magnified view
of the states around the equilibrium.

constraint sets are convex and have a non-empty over-
lap. The proposed consensus strategy is purely local and
can be carried out in a distributed manner.
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