
Northumbria Research Link

Citation: Hill, Emily, Gudmundsson, Hilmar, Carr, Rachel, Stokes, Chris R. and King, Helen
(2021) Twenty-first century response of Petermann Glacier, northwest Greenland to ice
shelf loss. Journal of Glaciology, 67 (261). pp. 147-157. ISSN 0022-1430 

Published by: Cambridge University Press

URL: https://doi.org/10.1017/jog.2020.97 <https://doi.org/10.1017/jog.2020.97>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/44607/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


Journal of Glaciology, Vol. 00, No. 0, 0000 1

21st century response of Petermann Glacier, northwest1

Greenland to ice shelf loss2

Emily A. HILL,1∗ G. Hilmar GUDMUNDSSON,2 J. Rachel CARR,1 Chris R. STOKES3, Helen M.3

KING2
4

1School of Geography, Politics, and Sociology, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK5

2Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne,6

NE1 8ST, UK7

3Department of Geography, Durham University, Durham, DH1 3LE, UK8

Correspondence: Emily Hill <emily.hill@northumbria.ac.uk>9

ABSTRACT. Ice shelves restrain flow from the Greenland and Antarctic ice10

sheets. Climate-ocean warming could force thinning or collapse of floating11

ice shelves and subsequently accelerate flow, increase ice discharge, and raise12

global mean sea levels. Petermann Glacier (PG), northwest Greenland, re-13

cently lost large sections of its ice shelf, but its response to total ice shelf loss14

in the future remains uncertain. Here, we use the ice flow model Úa to assess15

the sensitivity of PG to changes in ice shelf extent, and to estimate the resul-16

tant loss of grounded ice and contribution to sea level rise. Our results have17

shown that under several scenarios of ice shelf thinning and retreat, removal of18

the shelf will not contribute substantially to global mean sea level (< 1 mm).19

We hypothesise that grounded ice loss was limited by the stabilization of the20

grounding line at a topographic high approximately 12 km inland of its current21

grounding line position. Further inland, the likelihood of a narrow fjord that22

slopes seawards suggests that PG is likely to remain insensitive to terminus23

changes in the near future.24

∗Present address: Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne,
NE1 8ST, UK UK.
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INTRODUCTION25

Fast-flowing outlet glaciers draining the Greenland Ice Sheet are dynamically coupled to changes at their26

terminus (Nick and others, 2009). Many outlet glaciers have thinned and accelerated in response to 21st27

century terminus retreat from either a grounded (e.g. Howat and others, 2007; Joughin and others, 2008;28

Moon and others, 2012) or floating terminus (Joughin and others, 2008; Hill and others, 2017). Laterally29

confined ice shelves at marine termini can provide strong back-stress (i.e. buttressing) on grounded ice30

(Schoof and others, 2017; Haseloff and Sergienko, 2018). However, floating ice shelves could be destabilised31

under future climate-ocean warming, reducing resistive stress at the grounding line, which in turn could32

accelerate ice flow, increase ice discharge, and ultimately raise global mean sea level. Ice shelf buttressing33

has been the focus of recent work on ice shelf collapse/stability in Antarctica (e.g. De Rydt and others,34

2015; Paolo and others, 2015; Reese and others, 2018a), but has received limited attention in Greenland.35

Petermann Glacier (PG) is a fast flowing (∼ 1 km yr−1) outlet glacier in northwest Greenland that36

drains approximately 4% of the ice sheet (Figure 1: Münchow and others, 2014). The catchment contains37

1.6 × 105 km3 of ice volume above flotation (VAF), equivalent to 0.41 m of global mean sea level rise.38

PG terminates in one of the last remaining ice shelves in Greenland (Hill and others, 2017) (Petermann39

Glacier Ice Shelf: hereafter PGIS). In the early Holocene the grounding line retreated from the mouth of40

the fjord (Jakobsson and others, 2018), but the extent of the ice shelf remained largely unchanged. More41

recently, two large well-documented calving events in 2010 and 2012 (Nick and others, 2012; Johannessen42

and others, 2013; Münchow and others, 2014) shortened the ice shelf from ∼70 km to 46 km (Figure 1),43

which caused some inland ice acceleration (∼12%) after 2012 (Münchow and others, 2016; Rückamp and44

others, 2019). Aside from this, Petermann Glacier does not appear to be undergoing significant temporal45

changes in geometry or speed as it has exhibited limited surface lowering (Figure 2), no obvious grounding46

line retreat over a 19-year period (1992–2011: Hogg and others, 2016), and no significant speed-up in47

response to recent calving (Nick and others, 2010; Rückamp and others, 2019).48

Alongside episodic calving, the extent of the PGIS is controlled by ice-ocean interactions that force49

high basal melt rates (∼35 m yr−1) beneath the shelf (Rignot and Steffen, 2008). Indeed melting along50

the base of the ice shelf is considered to account for ∼80% of mass loss from the PGIS (Rignot and others,51

2008; Münchow and others, 2014). Recent warming (∼ 0.2◦C) of Atlantic water between 2002 and 201652

(Münchow and others, 2011; Washam and others, 2018), accompanied by stronger ocean circulation and53
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the break up of sea ice, are likely to have promoted warm water transport into the Petermann fjord and54

beneath the ice shelf (Johnson and others, 2011; Shroyer and others, 2017; Washam and others, 2018). In55

response to recent ocean warming and increased subglacial discharge, basal melt rates are estimated to have56

increased by 8.1 m yr−1 from the 1990s to early 2000s (Cai and others, 2017). The most recent estimates57

revealed 50 m yr−1 of basal melt at the grounding line between 2011 and 2015 (Wilson and others, 2017).58

Fig. 1. Study figure of Petermann Glacier, northwest Greenland. The yellow outline shows the former extent of

PGIS prior to calving events in 2010 and 2012 which are shown in green. Splices of the ice shelf removed during

our model experiments are shown in red. The glacier catchment, i.e. our model domain, is outlined in black. Note

that the terminus re-advanced following the 2012 calving event. Ice flow speeds are derived from the MEaSUREs

Greenland annual ice sheet velocity mosaic (Joughin and others, 2010b) supplied courtesy of the NASA National

Snow and Ice Data Center. Background imagery is panchromatic band 8 (15 m resolution) Landsat 8 imagery from

winter 2016, acquired from the U.S. Geological Survey Earth Explorer.

Reductions in the extent and/or thickness of the PGIS in future could reduce buttressing at the ground-59

ing line and accelerate ice flow. Accelerated ice flow has been documented following ice shelf thinning or60
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collapse both across Antarctica (Antarctic Peninsula: Scambos and others (2004); De Rydt and others61

(2015), Amundsen Sea region: Rignot and others (2014); Gudmundsson and others (2019), and in East62

Antarctica Miles and others (2018)) and Greenland (Jakobshavn Isbræ: Joughin and others (2004, 2008)63

and Zachariæ Isstrøm: Mouginot and others (2015)). It is therefore important to quantify the impact of64

losing the PGIS on future ice discharge and sea level rise. Previous work used a flowline model at PG to65

examine both the short term response to ice shelf collapse (Nick and others, 2012), and the long-term sea66

level rise contribution under scenarios of future climate change (Nick and others, 2013). However, one-67

horizontal dimensional (1HD) models do not account for lateral stresses and buttressing in both horizontal68

directions which limits the accuracy of sea level rise projections (Gudmundsson, 2013; Bondzio and others,69

2017). More recently, Hill and others (2018b) used a two-horizontal dimensional (2HD) ice flow model Úa70

(Gudmundsson and others, 2012), to examine the time-independent response of PG to large calving events.71

While this showed ice shelf collapse could cause a 96% instantaneous speed-up, it did not examine the72

transient response of PG to a loss of ice-shelf buttressing. Thus, aside from using a flowline model (Nick73

and others, 2012), no modelling study has yet assessed the impact of ice shelf thinning/collapse on PG’s74

future contribution to sea level rise.75

Here, we use Úa to assess the long-term (100-yrs) dynamic response and sea level contribution of PG76

to changes downstream of the grounding line. To do this, we perform four forward-in-time sensitivity77

experiments to assess the the future evolution of PG under different scenarios of ice shelf change. The first78

represents a continuation of current conditions with no further change in ice shelf extent (control run).79

The following experiments were then designed to encompass the main mass loss mechanisms for the PGIS.80

The second raised basal melt rates but left the terminus position fixed through time. The following two81

experiments both impose enhanced basal melting but simulate two mechanisms of ice shelf loss. The third82

experiment episodically removes sections of the shelf, similar in size to past observed calving events, and83

the final experiment imposes immediate ice shelf collapse.84

METHODS85

Model set-up86

Úa (Gudmundsson, 2020) is a vertically integrated ice flow model that solves the ice dynamics equations87

using the shallow ice-stream/shelf approximation (SSA) (Morland, 1987; MacAyeal, 1989), a Weertman-88

sliding law (Weertman, 1957), and Glen’s flow law (Glen, 1955). The model has been used to understand89
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grounding line dynamics (Pattyn and others, 2012; Gudmundsson and others, 2012) and the impact of ice90

shelf buttressing and collapse on outlet glacier dynamics in both Antarctica (De Rydt and others, 2015;91

Reese and others, 2018a) and Greenland (e.g. Hill and others, 2018b).92

To set-up the model we use 150 m resolution bedrock geometry, fjord bathymetry, ice thickness, and93

surface topography from the BedMachine v3 dataset (Morlighem and others, 2017). The model domain94

extends from the ice shelf front in 2016 across the ice surface drainage catchment of PG (∼85,000 km2:95

Figure 1). Our entire computational domain can be seen in Figure 1 and in Figure S1. We used the Mesh2D96

Delaunay-based unstructured mesh-generator (Engwirda, 2014) to create a linear triangular finite-element97

mesh with 111391 elements and 56340 nodes (Figure S1). The mesh was refined anisotropically based on98

three criteria: i) flotation mask, ii) measured flow speeds, and iii) surface elevation. Element sizes were99

∼0.3 km across the ice tongue, where flow speeds are >250 m yr−1, and at ice surface elevations <750100

m a.s.l.. Where flow speeds are <10 m yr−1 and surface elevation exceeds 1200 m a.s.l., element sizes101

reached a maximum of 15 km. Nunataks on the eastern side of PGIS were digitized in 2016 Landsat-8102

imagery and treated as holes within the mesh, along the boundary of which we fix velocity to zero in both103

normal and tangential directions. Topographic parameters (ice surface, thickness, and bed topography)104

were linearly interpolated onto this mesh. The boundary condition along the floating ice shelf terminus105

is hydrostatic ocean pressure in the normal direction, and free-slip in the tangential. Along the inland106

catchment boundary we used a fixed (no-slip in normal or tangential directions) zero velocity condition107

to conserve mass within our model domain. Velocities were also fixed to zero along the lateral ice shelf108

margins (excluding along the fronts of glaciers on the eastern side of the fjord) as this optimally replicates109

lateral stresses and ice flow along the PGIS (see Hill and others, 2018b).110

We used inverse methodology to initialize the model. Initial observed velocities were taken from the111

2016/17 MEaSUREs Greenland annual ice sheet velocity mosaic (Joughin and others, 2010b) derived from112

both optical (Landsat-8) and synthetic aperture radar data (TerraSAR-X, TanDEM-X,Sentinel-1A and113

1B). We optimized our model to observed velocities by simultaneously estimating the basal slipperiness114

parameter (C) in the Weertman sliding law and the ice rheology parameter (A) in Glen’s flow law (see115

Figure S2). The stress exponents in the Weertman sliding law (m) and Glen’s flow law (n) were both116

set to 3, as commonly used in glaciological studies. This same inverse methodology and model has now117

been used in a number of previous studies (Gudmundsson and others, 2019; Reese and others, 2018b; Hill118

and others, 2018b). Inversion was done by minimizing the cost function of a misfit and regularization119
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term. Úa uses the adjoint method to calculate the gradients of the cost function with respect to A and120

C in a computationally efficient way. Regularization of the A and C fields is imposed using Tikhonov121

regularization of both the amplitude and spatial gradients of A and C. We tested a series of regularization122

parameter values and selected final values based on an L-curve analysis. After a total of 900 iterations,123

the mean difference between modeled and observed velocities was 9.5 m yr−1 (15%). This increased to 14124

m yr−1 where speeds are >300 m yr−1 and to 23 m yr−1 along the PGIS.125

Annual surface mass balance (SMB) for all experiments were input from RACMO2.3 (1-km resolution)

(Noël and others, 2016), averaged between 2011 and 2016, to reflect current mass balance conditions. Basal

melt rates (defined here as melting along the base of the floating shelf) at PGIS are correlated with ice

thickness and are enhanced on either side of basal channels (Rignot and Steffen, 2008; Wilson and others,

2017). In line with a number of studies, we parameterise melt rates based on ice thickness (Joughin and

others, 2010a; Favier and others, 2014). Throughout our experiments basal melt rates mb at each timestep

(t) were prescribed as a linear-function of ice thickness:

mb(t) = mmax − mmin
hmax(t) − hmin(t) · h(t) (1)

where the slope is determined using maximum floating ice thickness (hmax) minus minimum floating ice126

thickness (hmin) and the difference between minimum melt rates (mmin: which we always set to 0 m yr−1)127

and maximum (mmax) melt rates for each experiment. Initially we impose a mmax of 37 m yr−1 to reflect128

near steady-state melt rates in previous studies (Rignot and Steffen, 2008; Cai and others, 2017). This129

reproduces the expected melt rate pattern beneath the shelf; highest at the grounding line (37 m yr−1)130

and either side of basal channels, decreasing to 1 m yr−1 near the terminus (Figure 2).131

Model initialization and control run132

For forward transient experiments, Úa allows for a fully implicit time integration, where, at each time-step,133

changes in geometry, grounding line position and velocity are calculated implicitly. During each forward134

run, we incorporated automated adaptive time-stepping and automated time-dependent mesh refinement135

around the grounding line. Our adaptive time-stepping increases the timestep if the ratio between the136

maximum number of non-linear iterations over the previous 5 timesteps and the target number of iterations137

(set to 4) is less than one. We begin with a timestep of 0.01 years and set our target timestep to 1 year.138

Mesh refinement around the grounding line is known to improve estimates of stress distributions and139
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Fig. 2. a) Bed topography [m] across the lower portion of the Petermann Glacier catchment, b) is initially prescribed

steady-state melt rates beneath the ice tongue (on a logirithmic scale in red) and green shading is observed surface

elevation change (SEC) from Cryosat-2 between 2011 and 2016 (Simonsen and Sørensen, 2017), both of which are

in m yr−1. Both panels show the model domain (black line), the grounding line at the beginning of our control run

(green line), glacier center profile line (orange line), and a sample area (red square) 20 km inland. This square was

chosen sufficiently far inland so that it always remained grounded throughout each experiment. Inset map shows

Greenland ice flow speed [m yr−1] in orange and the Petermann catchment outlined in black.

migration rates of the grounding line (Goldberg and others, 2009; Durand and others, 2009; Pattyn and140

others, 2012; Schoof and others, 2017; Cornford and others, 2013). Within 2 km of the grounding line, we141

locally refined element sizes to 100 m. We also performed mesh sensitivity experiments, and found our142

results were independent of the resolution of the mesh around the grounding line (see Supplementary Text143

S1). In a post-processing step, and for illustrative purposes, annual width-averaged grounding line retreat144

was then calculated using the commonly adopted box method (see Hill and others, 2018a).145

In addition to transient mesh refinement, we calculate the basal melt rate field at each time step to146

account for changes in ice thickness (h) throughout our simulations. Maximum and minimum ice thickness147

values are updated at each time step but mmax remains constant. This approach, using the difference in ice148

thickness at each timestep, has the effect of keeping the range of melting across the shelf constant despite149

reductions in ice thickness through time. In reality this reflects a warming at shallower water depths, but150

in the absence of additional information on how melt rates will change through time we choose to keep the151
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range of melt rates constant in time across the shelf. Melt rates are applied to every floating and partially152

floating node at each time step. While applying melt rates right at the grounding line (at partially floating153

nodes) can overestimate mass loss (Seroussi and Morlighem, 2018) we performed a sensitivity experiment154

and found that this has a very limited affect on our results (see Figure S7).155

Using the initial input SMB, basal melt rates (mmax = 37 m yr−1), and estimates of basal slipperiness

(C) and ice rheology parameter (A), we performed a control run. This control run was designed to reflect

the future evolution of PG if melt rates remain low and no large calving events occur, but with some inland

thinning (∼ 1 m yr−1) similar to observations (Figure 2: Simonsen and Sørensen, 2017). It was not meant

to replicate steady-state conditions, i.e. total mass balance equal to zero. First, we allowed for a short

period of model relaxation, as experience has shown that transient runs tend to exhibit a short period

of anonymously high rates-of-change following initialization. We calculated the approximate total mass

balance (Mtotal) at the beginning of this run, based on the total melt flux (Mbasal and Msurface) minus

the approximate calving flux (Mcalving). This is not calculated explicitly within our model as we do not

account for calving but is instead based on fixed (width × height × velocity) at the glacier terminus:

Mtotal = Mbasal + Msurface − Mcalving (2)

At time 0 our estimated calving flux is 0.99 Gt a−1, total melt flux is −3.2 Gt a−1 and total mass balance156

is therefore −4.19 Gt a−1. Initial elevation changes were in good agreement with Cryosat 2.2 elevation157

changes from 2011 to 2016 (Figure 2), albeit slightly lower due to imposing near to steady-state melt rates158

(see Figure S4). Over the entire control run there was almost no change from our initial mass balance.159

These early changes in mass balance over the first 10 years are shown in Figure S6. However, some160

variability occurred within the first 10 years, so we discarded these as model drift and time=10 years was161

the starting point for all further experiments. We note that our final results are not sensitive to the selected162

duration of this initial relaxation period as our total modelling time is several times larger, and the changes163

within the first 10 years are small with respect to the total mass balance.164

After running the model for 10 years, to account for the period of model drift, we ran our control165

run forward in time for 100 years, during which there was no change in melt rates or horizontal extent of166

the ice shelf. The terminus position is fixed through time and is not allowed to advance or retreat freely.167

Throughout this, the grounding line position was stable, and the flux across the grounding line (9.85 Gt168

a−1) remained similar to observations (Wilson and others, 2017). As no perturbation in ice shelf extent169
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was imposed, thinning rates remained small (−0.17 m a−1), acceleration was limited (0.26 m a−2: Figures170

3 and 4), and the total contribution to sea level rise over 100 years was only 0.43 mm (Figure 5, Table 1).171

Fig. 3. Top row shows initial ice thickness [m] at time = 0 (a) and plots b-e show the change in ice thickness [m]

after 100 years for each of our experiments. The middle row of plots shows initial ice speed (f) in m yr−1 and plots g-j

show change in speed [m yr−1] after 100 years. The bottom row shows initial thinning rates after the initialization

period (k) in m yr−1 where red is thinning and blue is thickening, and plots l-o show thinning rates at the last

simulation year (100 years) [m yr−1]. In plots a, f and k, the green line represents the initial grounding line position.

In all other plots the green line is the position of the grounding line after 100-years for each experiment. In d, i and

n, the dotted lines represent calved icebergs at 5-year intervals between 5 and 25 years.

Experiments172

Following our model initialization and control run, we performed three additional perturbation experiments.173

These experiments should not necessarily be viewed as projections but were designed to assess the sensitivity174

of PG to three distinct scenarios of ice shelf evolution over the next 100 years. We note that these175

experiments only assess the sea level rise contribution associated with ice shelf loss, as in all cases our SMB176

remains fixed in time. Our three experiments are:177



Hill and others: Future response of Petermann Glacier to ice shelf loss 10

1. Enhanced basal melt rates and no change in ice tongue extent178

2. Enhanced basal melt rates together with prescribed episodic calving179

3. Immediate ice shelf collapse and enhanced melt in newly floating cells180

Each of these experiments began after the 10-year initialization period, and we ran the model forward181

in time for 100 years. Our first experiment aims to assess the role of enhanced basal melt rates, and182

associated thinning of the shelf but with no perturbation in horizontal ice shelf extent. At the beginning of183

the simulation, we increased the maximum basal melt rate beneath the PGIS to mmax = 50 m yr−1, in line184

with the high-end of recent observational estimates (Wilson and others, 2017). This maximum melt rate185

was then kept fixed throughout the experiment, despite changes in ice shelf thickness. It is possible that186

ocean warming in the future may enhance melt rates further at PG, but given the uncertainties associated187

with projecting future basal melt rates, we merely assess the impact of current melt conditions over the188

next 100-years. As a result, these estimates likely represent the low-end member response of PG to future189

ice tongue melt.190

Our second experiment takes the enhanced basal melting from experiment one and additionally removed191

five large sections of the ice tongue (∼180 km2) at 5-year intervals from 5–25 years (Figure 1). This assumes192

that PG will continue to lose its ice tongue via episodic calving, similar in size to large calving events in 2010193

and 2012 (Münchow and others, 2014). Indeed, a large rift formed in 2016 suggesting calving is imminent194

(Münchow and others, 2016). As in experiment one, we updated the maximum melt rate to 50 m yr−1 at195

the beginning of the simulation, and then at five year intervals we deactivated elements from our existing196

mesh, downstream of the new prescribed calving front position. In between, and after these calving front197

perturbations, we did not impose an additional calving law. Here, we aim to assess the response to current198

ice shelf retreat and eventual collapse, and not the future evolution once the glacier calves from a grounded199

terminus.200

Our final experiment simulates another scenario of ice shelf loss, by removing it entirely at the beginning201

of the simulation. Since the early 2000s, several floating ice shelves have collapsed, across both Antarctica202

(e.g. Scambos and others, 2004) and Greenland (Hill and others, 2018a). Washam and others (2018)203

highlighted an incised channel close to the grounding line of PG (Figure 4c). Enhanced melting within204

this basal channel could weaken the PGIS causing it to calve in its entirety. This experiment immediately205

removed the entire ∼ 885 km2 ice shelf at the start of the experiment. After this, we did not prescribe206



Hill and others: Future response of Petermann Glacier to ice shelf loss 11

any further changes in ice front position, i.e. no calving law, in order to assess the longevity of the207

glacier response to initial ice shelf collapse. As the grounding line retreats we apply enhanced basal melt208

mmax = 50 m yr−1 to newly floating nodes in the domain, in the same way as in previous experiments.209

RESULTS210

Role of enhanced basal melt211

Our first experiment raised basal melt rates beneath the PGIS to range from 50 m yr−1 at the grounding212

line to ∼5 m yr−1 near the terminus (Wilson and others, 2017). Under these high melt conditions, the ice213

shelf thinned by ∼100 to 300 m (Figure 3c), accelerated by 300 m yr−1 (Figure 3h), and thinned by 2 m214

yr−1 close to the grounding line and either side of streamlined basal channels (Figure 3m). Greater basal215

melt-induced thinning of the shelf resulted in 48% more ice loss after 100 years (−233 Gt) than our control216

run. This is equivalent to 0.65 mm of global mean sea level rise (Table 1).217

Table 1. Thickness change (dh/dt), change in speed between 0 and 100 years and annual acceleration calculated

within a square upstream of the grounding line. Acceleration is relative to initial velocities after 10 year relaxation

period (after 0–10 control run). Flux is average grounding line flux for 0–100 yrs. Mass loss is the ice volume above

flotation lost by the end of the 100 year period.

dh/dt Change in speed Acceleration Flux Mass loss Total

[m yr−1] [m yr−1] [m yr−2] [Gt yr−1] [Gt] SLR

0–100 yrs 0–100 yrs 0–100 yrs 0–100 yrs [mm]

Control run −0.17 691 0.26 9.85 157 0.43

Enhanced basal melt −0.54 763 1.03 10.86 233 0.65

Calving & enhanced basal melt −0.89 841 1.71 11.64 313 0.87

Collapse & enhanced basal melt −0.92 873 1.63 11.58 333 0.92

During the first 20 years of the enhanced melt run, there was limited inland surface lowering or accel-218

eration. However, 0.2 km of grounding line retreat led to a 24 km2 loss of grounded area (Figure 5) and219

initiated positive feedbacks (e.g. acceleration, thinning and retreat) over the following 20 years. Greater220

thinning took place between 20 and 40 years close to the grounding line (188 m) compared to our control221

run (Figure 4b). Crucially, this thinning likely decreased back-stress at the grounding line, causing it to222

retreat rapidly (6.8 km from 20 to 40 year) and un-ground 134 km2 of ice. Subsequently further inland ice223
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flow speeds increased by 13%, thinning rates rose to 1 m yr−1, and there was a 16% increase in ice flux224

across the grounding line (Figure 6). However, acceleration and thinning were confined to ∼10 km inland225

of the initial grounding line (Figures 3 and 4). Between 60 and 100 years, acceleration and thinning rates226

decreased, and the grounding line appeared to stabilise ∼9 km inland (Figure 5). Thus, with no further227

perturbation of the ice shelf (i.e. no further increase in basal melt rates or fracture driven calving), PG228

approached stable conditions (e.g. constant flow speeds and no further grounding line retreat: Figure 5)229

after 60 years.230

Episodic calving and enhanced basal melt231

Our second experiment shows that the gradual loss of buttressing associated with gradual ice tongue232

collapse and enhanced ice shelf thinning caused a larger stress perturbation at the grounding line than233

enhanced basal melting alone. This led to greater inland thinning and acceleration (Figure 3j and o) and234

a total ice volume loss of 313 Gt (Table 1). Despite greater ice loss, the contribution to global mean sea235

level rise was still limited to 0.89 mm after 100 years (Figure 5a).236

Consistent with earlier work (Nick and others, 2012; Hill and others, 2018b), our results show that237

the glacier response to calving differs between removing the lower or upper portions of the PGIS. After238

removing the first three sections of the ice shelf (at 5, 10, and 15 years), ice flow at the terminus accelerated239

by only 5–10% in the 5 years between each calving event (Figure 4d). The grounding line simultaneously240

retreated at 60 m yr−1 (total of 1.2 km), which is similar to retreat in the early stages of our basal melt241

experiment (Figure 5c). This resulted in 46 km2 loss of grounded area, equivalent to 0.1 mm of sea level242

rise. However, further inland limited change took place, with only 6% flow acceleration and 0.05 m yr−2243

increase in thinning rates (Figure 5). This indicates that the glacier force balance was not significantly244

altered by removing these sections of the shelf. In addition, the lower ice shelf includes the large fracture245

that formed in 2016 (Münchow and others, 2016), which Rückamp and others (2019) showed is likely to246

have already de-coupled the lower part of the shelf, causing a reduction in buttressing and some speed-up247

after its formation.248

Removing thicker (Figure 4) and stiffer (Figure S2) sections of the PGIS closer to the grounding line249

caused greater loss of contact with the side-walls, and thus a larger reduction in lateral resistive stress250

acting on grounded ice. Removing the fourth section of the shelf led to terminus acceleration of 41%,251

which was four times the acceleration after previous calving events. Some terminus deceleration occurred252
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Fig. 4. Annual speed (blue) and elevation (red) along the Petermann Glacier centerline (sampled at 100 m intervals)

for each of our model experiments (a–d). Pale to dark blue and pale to dark red represent each year between 0 and

100 for speed and elevation, respectively. The dotted grey line represents the initial grounding line position and the

ice ocean and bed extents are from the BedMachine v3 dataset (Morlighem and others, 2017). In plot c, the grey

lines are sections of the PGIS removed at 5 year intervals between 5 and 25 years.
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Fig. 5. Model results for each of our experiments; control run (green), enhanced basal melt (purple), prescribed

calving and enhanced basal melt (pink), and ice tongue collapse and enhanced basal melt (orange). a) change in

volume above flotation (VAF) in mm of global mean sea level equivalent. b) change in grounded area [km2]. c)

width-averaged grounding line retreat [km], note some advance associated with re-grounding downstream of the

main grounding line position. d) annual ice flux [Gt yr −1] across the grounding line. e) average annual ice flow

speeds [m yr−1] within a 134 km2 square ∼ 17 km inland of the grounding line (Figure 2). f) average annual thinning

rates (change in thickness (h) over time (t)) in m yr−1 within our sample square.

from 23–25 years, but speeds remained high further inland (Figure 5e), and increased by a further 330 m253

yr−1 at the terminus after the final calving event. Crucially, losing these upper sections of the shelf caused254

the grounding line to retreat a further ∼8 km by 30-years (Figure 5c). Retreat of the grounding line into a255

region of thicker ice inland led to a 240% increase in thinning rate, 25% flow acceleration, and 31% increase256

in ice flux during 19–30 years (Figures 3 and 5). Importantly, this period of dynamic readjustment (inland257

acceleration thinning and grounding line retreat) lasted ∼10 years longer than under basal melting alone258

(Figure 5). However, after 70-years, PG appeared to have returned to conditions prior to the perturbation,259

indicated by slow deceleration (−0.67 m yr−2), thinning rates returning to initial levels (−0.12 m yr−1),260

and the grounding line stabilizing at 3 km further inland of our previous experiments (Figure 5c).261



Hill and others: Future response of Petermann Glacier to ice shelf loss 15

Impact of immediate ice tongue collapse262

Our final experiment showed that if the PGIS were to instantly collapse from its current state in 2016, PG263

would experience increased thinning and acceleration (Figure 3d, i, and n) relative to any of our previous264

experiments but the impact of ice shelf collapse and subsequent enhanced melt would still be limited: the265

glacier would lose about 333 Gt of ice after 100 years (Table 1). While this is more than double the ice266

loss from our control run, and greater than removing the ice tongue episodically, it is equivalent to a global267

mean sea level rise of only 0.92 mm (Figure 5a).268

Our results indicate that an instant removal of the entire ice shelf in contact with the grounding269

line appeared to cause a greater loss of buttressing than gradual sub-shelf thinning and episodic calving270

(Experiment 2). This was evident in the first 5 years where the grounding line retreated 8.2 km (Figure271

5c), and there was a near instantaneous increase in ice flux across the grounding line reaching a maximum272

of 17 Gt −1 at year three (Figure 5d). Substantial surface lowering (31 m) and a 116% (+1380 m yr−1)273

increase in flow speed at the terminus indicates a loss of back-stress (Figure 4d). Changes at the terminus274

propagated inland, where thinning rates increased 5 fold (averaging 5.8 m yr−1) and speeds increased275

to ∼900 m yr−1 (+33%) over the first 5 years (from our upstream sample square: Figure 5). After the276

initial period of acceleration, increased ice flux, and rapid retreat of the grounding line (0 to 10 years),277

PG appeared to dynamically adjust to the loss of buttressing. Between 10 and 35 years, grounding line278

retreat slowed to 0.08 km yr−1 and ice flux decreased to 11.7 Gt yr−1. During this period ice flow speeds279

and thinning rates further inland subsided, indicating a reduction in glacier driving stress (Figure 5d).280

After 35 years the grounding line occupied a similar position as it did after 50 years in our episodic calving281

experiment, and remained stable for the remaining 65 years.282

DISCUSSION283

Our modelling experiments show that future changes in the extent of the PGIS (via melt only, calving,284

or entire collapse) can cause thinning, acceleration and grounding line retreat. Of our three scenarios285

of ice shelf loss, immediate collapse and enhanced basal melting (up to 50 m yr−1) as the grounding286

line retreats, appeared to cause the greatest loss of buttressing and led to a doubling of the sea level287

rise contribution from 0.43 mm (if current conditions are maintained) to 0.92 mm after 100 years (Table288

1). Immediate thinning and acceleration after shelf collapse is consistent with the observed behaviour of289
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Jakobshavn Isbræ (Thomas, 2004; Joughin and others, 2004) and Zachariæ Isstrøm (Mouginot and others,290

2015; Hill and others, 2018a) in Greenland, and glacier acceleration following the Larsen B ice shelf collapse291

in Antarctica (Scambos and others, 2004; De Rydt and others, 2015). However, despite this, PG appeared292

to adjust to the loss of buttressing after ∼ 40 years, after which there was limited grounding line retreat,293

and without an increase in calving after future collapse the shelf may regrow (Nick and others, 2012). We294

do not assess that here, but suggest it warrants further investigation. Our other experiments (melt only,295

and prescribed calving) were able to prolong the dynamic glacier response up to ∼ 60 years. However, the296

response to basal melt alone was relatively muted (0.65 mm of sea level rise), primarily due to leaving the297

calving front position fixed, whereas in reality sub-shelf thinning is likely to act as a precursor to calving298

(Münchow and others, 2014). While episodic calving of the PGIS (particularly closer to the grounding line)299

in combination with sub-shelf thinning, caused 0.87 mm of sea level rise, this remains less than immediate300

collapse, as PG likely had time between calving events to readjust to stress imbalances.301

Despite some dynamic change at PG, the global impact on sea level rise remains limited. Hence, the302

key conclusion from these experiments is that, in all cases, ice tongue perturbations were unable to force303

long-term instability of PG, i.e. irreversible thinning, acceleration, and grounding line retreat. We attribute304

this insensitivity primarily to a stabilization of the grounding line. In all experiments the grounding line305

positions retreated to within 3 km of each other (Figures 5c and S3). Crucially, this stabilization limits the306

sea level rise contribution of PG to <1 mm over the next 100 years. This is much smaller than projections307

from Jakobshavn Isbræ (2.77–5.7 mm) by 2100 (Bondzio and others, 2017; Guo and others, 2019) and308

Zachariæ Isstrøm (up to 16 mm in an extreme case: Choi and others, 2017) but is similar to the lowest309

emissions scenario (A1B) projections at Petermann and Kangerdlugssuaq (∼ 1 mm: Nick and others, 2013).310

We now discuss several factors limiting grounding-line migration and ice loss. These are: i) bed topography,311

ii) lateral confinement/ fjord width, iii) fixed terminus position, and iv) basal slipperiness.312

Bed slope is known to impact stability of glacier grounding lines (Schoof, 2007; Choi and others, 2017)313

in the absence of additional buttressing from the lateral margins (Gudmundsson and others, 2012; Haseloff314

and Sergienko, 2018). Initial retreat of PG’s grounding line was over a shallow retrograde slope 8 km315

inland (−0.39◦: Figure 6a). In all of our experiments we observed a slowdown in grounding line retreat316

after 50 years (Figure 5c). This is partly due to the absence of additional forcing, but also due to the317

transition to a steeper seaward sloping (+0.7◦) portion of the bed inland (∼ 42 − 50 km inland on Figure318

6a). It is likely that this prograde slope forced the grounding line to stabilize at this position. This is319
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consistent with the observed stability of grounding lines on prograde bed slopes in west Greenland (Catania320

and others, 2018), and the role of bed topography on the retreat of glacier termini elsewhere in Greenland321

(Bunce and others, 2018; Brough and others, 2019). At PG, a seaward sloping bed topography is likely322

to have been a key control that, limited past grounding line retreat (Hogg and others, 2016). In addition,323

previous modelling experiments have also shown that basal topography may limit 21st century grounding324

line retreat (Nick and others, 2013). Elsewhere in Greenland, deep bed topography has allowed runaway325

grounding line retreat after ice shelf collapse. For example, the collapse of Jakobshavn Isbræ’s ice shelf was326

followed by grounding line retreat and acceleration (Joughin and others, 2008, 2014), which is projected to327

continue throughout the 21st century due to deep bed topography further inland (Guo and others, 2019;328

Bondzio and others, 2017). Similarly, at Zachariæ Isstrøm, collapse of the ice shelf by 2012 was followed329

by acceleration, thinning and grounding line retreat down a retrograde bedslope (Mouginot and others,330

2015; Hill and others, 2018a). It is also projected to undergo unstable retreat of the grounding line ∼30331

km inland by 2100 and contribute at least 1.7 mm to sea level rise (Choi and others, 2017). However,332

PG appears unlikely to undergo rapid unstable retreat associated with marine ice sheet instability as333

suggested for regions of West Antarctica (e.g. Favier and others, 2014). Instead, PG is likely to behave334

more similarly to the projected response of 79 North Glacier. Here, Choi and others (2017) showed that335

substantial grounding line retreat, and thus sea level rise contribution (1.12 mm by 2100) will be prevented336

by a stabilisation of the grounding line at a step in bed topography. Thus, the absence of retrograde bed337

topography at PG suggests that it is also unlikely to undergo unstable retreat over the next 100 years.338

In addition to the role of bed topography, channel width can also modulate grounding line retreat339

(Jamieson and others, 2012; Åkesson and others, 2018), and has been identified as a key control on the340

retreat of numerous glaciers using both modern (e.g. Carr and others, 2014; Steiger and others, 2017;341

Catania and others, 2018) and palaeo records (Stokes and others, 2014; Jamieson and others, 2014). PGIS342

is well-confined within its narrow fjord, and hence, its collapse leads to a loss of lateral resistive forces and343

buttressing. Indeed, our results showed inland acceleration and thinning (Figures 4 and 5) following ice344

shelf collapse, which is indicative of a loss of resistive stress at the grounding line. This behaviour contrasts345

with observations elsewhere in northern Greenland e.g. C H. Ostenfeld Glacier. Here, collapse of a laterally346

unconfined ice shelf did not lead to inland acceleration, which indicates that the ice shelf provided limited347

buttressing at the grounding line (Hill and others, 2018a). Importantly, once PG’s grounding line has348

initially retreated in response to an ice tongue perturbation, the fjord width further inland does not vary349
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Fig. 6. a) Centerline profile (shown in grey on b) of ice surface and bed topography of Petermann Glacier. Dashed

brown lines show the errors in bed topography extracted along the profile from the BedMachine v3 dataset (Morlighem

and others, 2017). Annotated numbers along this profile are the degree of the bed slope between the arrows. We

note that the errors in bed topography are small, and do not effect the direction and steepness of the slope along the

profile. b) Plan view of the grounding line region of Petermann Glacier, displaying fjord widths at several locations:

at the initial grounding line position, at the final grounding line position after 100 years in our third perturbation

experiment, and further inland. We note that there is little change in fjord width between these locations.

substantially (< 1 km: Figure 6b). Hence, it is likely that while the grounding line retreated, there was no350

significant reduction in lateral drag, which in turn prevented a positive feedback of continued grounding351

line retreat.352

Alongside glacier geometry (bed topography and fjord width) we acknowledge that there are additional353

factors that may have controlled the final grounding line position. First, in all of our simulations and354

aside from our prescribed calving front position in experiment three, the terminus position is fixed. It355

is therefore possible that in the absence of additional forcing, (e.g. continuous calving at the grounding356

line after ice shelf collapse), the glacier readjusted and became stable at the new grounding line position.357

Secondly, the slipperiness of the bed can also be sensitive to ice shelf buttressing (Gudmundsson, 2003;358

Schoof, 2007). We acknowledge that our inversion method means our slipperiness estimate is fixed in time359

and consequently does not allow for regions of low basal drag to migrate inland. Immediately inland of360

the final grounding line position lies a section of reverse bed slope that may allow for some accelerated361

retreat as the grounding line moves through this region in the future. Errors in bed topography are small362

(16 m) compared to ice thickness (∼ 700 m: Figure 6) along the region of grounding line retreat in our363

experiments. However, between 50 and 60 km along the glacier centerline, errors in bed elevation increase to364
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50 m. Given these uncertainties in bed topography, and the limitations outlined above (i.e. fixed terminus365

and basal slipperiness) we cannot rule out that the grounding line will retreat further over the next 100366

years. Crucially, after ∼60 km (Figure 6a), the bed topography becomes steep (+1.56◦) and seaward367

sloping, before flattening out. Thus, if additional forcing in our experiments had forced the grounding line368

further inland, we do not anticipate a dramatic increase in PG’s contribution to sea level rise, as this steep369

topography would likely prevent runaway retreat of the grounding line. Further work that directly assesses370

the sensitivity of Petermann Glacier to bed topography and basal sliding is needed.371

CONCLUSIONS372

Here, we present the results of three modelling experiments that perturb the extent of the Petermann373

Glacier ice shelf to explore its sensitivity to various forcings and its dynamic response and potential sea374

level rise contribution over the next 100 years. Our results have shown that under several scenarios of ice375

shelf thinning and retreat, unstable rapid retreat of PG’s grounding line is unlikely over the next 100 years.376

Under enhanced basal melt alone, PG will lose 233 Gt of ice, almost 100 Gt more than if current conditions377

are maintained. Ice loss is greater (313 Gt) if the ice shelf calves away episodically alongside enhanced378

melt rates, due to a loss of buttressing from the laterally confined portions of the shelf near the grounding379

line. Immediate collapse of the shelf further increases ice loss to 333 Gt of volume above flotation by 2100,380

equivalent to 0.92 mm of global mean sea level rise. It appears that glacier geometry is the dominant381

control on grounding line retreat and the grounding line could stabilize at a rise in bed topography ∼12 km382

inland of its current position. This stabilisation could prevent a substantial contribution to global mean383

sea level rise in response to the loss of the ice shelf. The question still remains as to the future stability384

of PG if the entire ice shelf collapses, and calving then occurs from a grounded terminus. However, unlike385

glaciers with former ice shelves elsewhere in Greenland (Zachariæ Isstrøm and Jakobshavn Isbræ), where386

deep retrograde beds and widening fjords allowed for sustained retreat after ice shelf collapse (Mouginot387

and others, 2015; Choi and others, 2017; Guo and others, 2019), PG’s inland geometry, (steep prograde bed388

and narrow fjord: Figure 6) does not suggest that grounded ice calving will force rapid unstable retreat in389

the future. Hence, PG may be geometrically constrained from becoming sensitive to calving in the future.390
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