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Abstract 

Lignosulfonates are commonly used in concrete as superplasticisers. Their presence can affect 

crystallisation and carbonation kinetics of calcium hydroxide (CH), which is an important phase in 

hydrated cement since it plays a crucial role in the durability and performance of concrete. In this 

work, lime pastes were produced by slaking quicklime in distilled water. Ca lignosulfonate (CaLS) 

was added to them, either before or after the slaking process to investigate the effects of temperature 

on the CaLS-CH interaction. All samples were characterised at 0 and 6 months from slaking with the 

aim of investigating the effects of CaLS on CH crystallisation. Scanning electron microscopy and X-

ray diffraction were used to investigate CH crystal size and morphology, whereas microchemical 

analyses contributed to the investigation of the chemistry of pore solutions. Results suggest that the 

addition of CaLS (both, during and after slaking) affects the CH crystals habit and size, which, in 

turn, can have an effect on the reactivity of CH and, consequently, on the properties of fresh and 

hardened concrete. 

 

 

1. Introduction 

Calcium hydroxide (CH) is currently used in several industrial processes, including in construction where it 

has been used since antiquity as a binder in lime mortars and plasters [1]. CH is also a major component (15-

25% wt) of hydrated Portland cement and its presence is vital in reinforced concrete structures to maintain an 

appropriate high pH to preserve reinforcement bars from corrosion [2], [3]. Changes in morphology of CH 

crystals can result in changes in reactivity, mechanical and rheological properties of the mixture, and can 

significantly affect the durability of cement and concrete [3], [4]. One of the factors that can play a role in 

modifying CH crystals is the presence of organic compounds that can affect CH nucleation and growth and 

consequently its reactivity towards CO2 [4]. During concrete manufacturing, a wide variety of chemicals are 

routinely used to modify the properties of the mixture. In particular, plasticisers and water-reducers are 

commonly used to obtain cement pastes of high fluidity at low w/b ratios [5]. Among these, lignosulfonates 

(highly-soluble polymers obtained as by-products of the wood pulping industry) are largely employed [6]. 

Some studies [4], [7]–[10] have shown that the presence of lignosulfonates in solution influences the 

crystallisation process of CH through mechanisms that have not been completely elucidated yet. In this work, 

the effect of CaLS on the morphology of CH crystals in lime pastes are investigated to provide further insight 

on the mechanism underlying the lignosulfonates action on CH crystallisation. 

 

2. Materials and Methods 

In this work, 3 lime putties were prepared and analysed: a control putty (referred to as ‘C’ hereafter), prepared 

by slaking CaO in water at 1:3 mass ratio; a CaLS-modified putty (‘LS-1’ hereafter), prepared by slaking CaO 

in a 1.5% aqueous solution of CaLS at 1:3 mass ratio; a modified putty prepared by adding a quota of CaLS 
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(1.5% w/v of water as for the previous batch) to a putty obtained as for the control, immediately after the 

slaking process. To produce all the putties, ‘Calbux Granular 15’ CaO (CL90 type) with nominal particle size 

<15 mm was supplied by Tarmac Buxton Lime (UK). Microstructural and mineralogical characterisation of 

CaO is reported in [12]. Calcium lignosulfonate (80% pure with 15% reducing sugars) from Sigma-Aldrich 

and ethanol >99.8% from Fisher Scientific were used in these experiments. The putties and their supernatant 

solutions were characterised using a variety of analytical techniques when fresh and after 6 months of ageing 

(i.e. storage under water). Prior to each analysis, a sample from each putty was collected from the core of the 

batch and quenched in ethanol. For microstructural analysis a quote of each quenched putty was transferred 

onto a metal stab, vacuum-dried for 1 hour at 50°C, Pt-coated, and observed with a Tescan Mira3 Scanning 

Electron Microscope (SEM) in high-vacuum mode. For mineralogical analysis samples were prepared as 

described in [18] and analysed with a Rigaku SmartLab X-ray diffractometer (XRD), with Cu-Kα radiation, 

parallel beam geometry, 10°-90° 2 scan range, 0.5° scan step, at 50kV and 40mA. The estimation of CH 

platelets abundance was calculated as in [18]. The mean crystallite size was estimated from the XRD data 

using the Halder-Wagner method [19] implemented in the Rigaku SmartLab Studio II software package. The 

particle size distribution (PSD) of the putties was measured via laser diffraction using a Mastersizer 3000 

(Malvern Panalytical). Agglomeration was limited through sonication and by using ethanol as dispersant. The 

total Ca concentration in the supernatant solutions was estimated by using a Perkin Elmer Optima 8000 

Inductively Coupled Plasma - Optical Emission Spectrometer (ICP-OES). For this analysis a sample of each 

solution was filtered through a 0.1 µm PTFE syringe filter and diluted (x100 or x1000) in a 2% H2NO3 solution. 

 

3. Results and discussion 

3.1 SEM analysis 

Selected SEM images of all putties are reported in Figure 2, showing that CH crystals in all putties are varied 

in size and shape. In the fresh control putty (Figure 2a), crystals display short rod-like (about 0.5 µm), 

hexagonal platelet (about 1 µm), bipyramidal, and nanogranular shape. In the aged control, the nanogranular 

crystals seem more abundant. These textural features are typical of CH crystals formed upon lime slaking in 

water [15]. In sample LS-1 (CaLS solution), CH crystals display a regular hexagonal plate-like habit (0.1-1 

µm size) with largely overdeveloped basal {001} and small vertical {100} faces (Figure 2b). Smaller crystals 

also display a regular platelet-like shape. Very few nanogranular crystals are visible. The aged LS-1 shows a 

similar microstructure. The fresh LS-2 (CaLS solid, Figure 2c) has a microstructure similar to the aged control: 

hexagonal platelets (0.5-1 µm size) and abundant nanogranular crystals. In the aged LS-2, the nanogranular 

crystals seem more abundant. 

 

 
Figure 2. SEM images of the putties: (a) control; (b) LS-1 putty slaked in CaLS solution; (c) LS-2 putty with 

addition of solid CaLS. The first and second rows show fresh and aged samples, respectively. 
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Overall, the microstructure of CaLS-modified putties shows various µm-sized crystals with a clear tabular 

shape and with significantly overdeveloped {00.1} basal faces. These results are in agreement with previous 

studies [9], [10] which attribute this morphological change the preferential absorption of CaLS onto the {001} 

basal CH faces. Arguably, such adsorption occurs via interaction of the sulfonate moieties of CaLS with the 

CaOH2
+ species that cover the surface of basal CH faces, analogously to the reaction between pectin 

carboxylate groups and CaOH2
+ proposed in a previous work by Rodriguez-Navarro et al. [16]. 

 

3.2 XRD analysis 

The quantitative phase analysis of the putties showed that CH was expectedly the main phase in all putties. 

Some traces (<3%) of calcite and monohydrocalcite were detected in the fresh LS-2 putty, likely formed upon 

carbonation in air during sample preparation. The platelets abundance (A001) and mean crystallite size of the 

putties are shown in Table 1. A001 increases with ageing in all samples and the values of both CaLS-modified 

putties are similar to the control. The observed increase with ageing is in agreement with literature and with 

the known morphological evolution of CH under water [13]. However, our SEM images show a clear platelet 

habit assumed by CH in Ca-LS modified putties which is not reflected by an increase in A001 value. Our XRD 

data also show a crystallite size reduction in the CaLS-modified putties compared to the control sample, which 

is in agreement with results of other researchers [8], [9]. As regards the ageing, our results do not support 

previous work where crystallite size reduction has been reported [13], [17], whereas they are in agreement 

with the known Ostwald’s ripening mechanism, which predicts an increase of big particles overtime at the 

expense of the smaller [18]. 

 

Table 2. Calculations from XRD data of mineralogical characteristics of the putties. 

Parameter 
Fresh Aged 

C LS-1 LS-2 C LS-1 LS-2 

A001 0.70 0.58 0.74 0.88 0.69 0.78 

Crystallite Size (nm) 35 19 24 36 19 30 

 

3.3 Supernatant solutions analysis 

The total Ca concentration in the supernatant solutions are reported in Table 2. Results show that in all CaLS-

modified samples the Ca concentration is close to the control, also regardless of the ageing time. This suggests 

that the presence of CaLS does not (or to a very limited extent) raise Ca solubility, e.g. by complex formation, 

unlike other organic compounds such as sucrose [19]. 

 

Table 2. Results of the microchemical analyses of the supernatant solutions. 

Parameter 
Fresh Aged 

C LS-1 LS-2 C LS-1 LS-2 

[Ca] (mg/L) 937 970 1010 797 873 948 

 

4. Conclusions 

From these results we can draw the following conclusions: i) the addition of CaLS to lime pastes produces 

visible changes in the morphology of CH crystals, which exhibit a tabular shape with overdeveloped basal 

faces in place of the rod-shape habit usually visible in a pure lime putty; ii) crystallite size is smaller in CaLS-

modified systems than in pure CH system, suggesting that the additive plays a role in the nucleation stage of 

CH; iii) the interaction mechanism of CaLS with CH is most likely preferential adsorption onto CH crystals’ 

basal faces rather than complex formation; iv) CaLS addition seems to inhibit the formation of nanogranular 

crystals upon ageing, unlike what is usually observed in a pure lime putty. Further research should elucidate 

whether CaLS addition to lime pastes affects the carbonation kinetics, which is a crucial aspect when CH has 

the role of buffering cement in reinforced concrete. 
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