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Abstract—Dendritic cell algorithm (DCA) is a class of artificial
immune systems that was originally developed for anomaly
detection in networked systems and later as a general binary
classifier. Conventionally, in its life cycle, the DCA goes through
four phases including feature categorisation into artificial signals,
context detection of data items, context assignment, and finally
labeling of data items as either abnormal or normal class. During
the context detection phase, the DCA requires users to manually
pre-define the parameters used by its weighted function to process
the signals and data items. Notice that the manual derivation of
the parameters of the DCA cannot guarantee the optimal set of
weights being used, research attention has thus been attracted
to the optimisation of the parameters. This paper reports a
systematic comparative study between Genetic algorithm (GA)
and Particle Swarm Optimisation (PSO) on parameter optimi-
sation for DCA. In order to evaluate the performance of GA-
DCA and PSO-DCA, twelve publicly available datasets from UCI
machine learning repository were employed. The performance
results based on the computational time, classification accuracy,
sensitivity, F-measure, and precision show that, the GA-DCA
overall outperforms PSO-DCA for most of the datasets.

Index Terms—Dendritic cell algorithm, particles swarm op-
timisation, genetic algorithm, danger theory, artificial immune
systems.

I. INTRODUCTION

Artificial immune systems (AISs) are computational intel-
ligence models inspired by the principles and functioning of
natural human immune systems (HIS). Generally, AISs are
developed by exploiting the characteristics of HIS such as
scalability, memory, learning, adaptation, self-organisation and
robustness. In fact, AISs have been successfully applied to
different engineering and computation applications including
optimisation, anomaly detection, pattern recognition, industrial
control systems, data mining, IoTs, and etc [1], [2].

Over the past few decades, different AISs for anomaly
detection in networked systems have been developed; and they
can generally be divided into two generations of models [3].
The first generation AISs are abstracted from the theory of
self-nonself of HIS which articulates that, the immune system
has the ability to discriminate between own cells (one-self)
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which are tolerated and foreign cells (non-self) which are
eliminated [4]. Typical examples of the first generation of AISs
include Negative selection algorithm (NSA), Positive selection
algorithm (PSA), Immune network theory (INT) and Clonal
selection algorithm (CSA) [1], [2]. A number of limitations
have been identified for the first generation AIS algorithms,
such as scalability, high rate of false positives and requires
initial learning phase [3], [5].

The DCA was introduced to address the limitations of
the first generation, as a second generation AIS algorithm,
for anomaly detection in computer networks [6]. Briefly, the
DCA is abstracted from Danger theory (DT) of HIS and
the functioning of human dendritic cells (DCs) [6]. Since its
invention, the DCA has been successfully applied to a wide
range of anomaly detection applications with good perfor-
mances, such as intrusion detection, robotic, fault detection
in wind turbines, computer virus detection, amongst other [5].
This study therefore focuses on the optimisation of learning
parameters of the DCA.

Conventionally, in its life cycle, the DCA goes through
a number of phases including features categorisation into
artificial signals, context detection of data items, context
assignment and finally labeling of data into either normal
or abnormal class. In particular, the context detection phase
requires users to manually predefine the parameters used by
its weighted function for processing the signals and data items;
this can be a very difficult task and also often results in non-
optimal solutions [7]. Genetic algorithm has therefore been
recently used for parameters optimisation of the DCA, with
better performance demonstrated compared to the convention-
ally manual predefined values [7]. However, the performance
analysis of the GA supported DCA (GA-DCA) was conducted
by using only one publicly available dataset which may not
be sufficiently rigorous to evaluate the general optimisation
capability of GA for DCA on different binary classification
datasets.

This work therefore systematically studied the efficacy of
GA and particle swarm optimisation (PSO) on parameters
optimisation for DCA using a number of publicly available



binary classification datasets. The selection of GA and PSO
in this work were based on their ability to achieve the proper
balance between exploitation and exploration of search space
simply by setting well relatively fewer number of adjustable
parameters as compared to other metaheuristic optimisation
methods [8]. Briefly, GA is a population-based metaheuristic
search technique used to find the best optimal solutions to
optimisation problems by employing the bio-inspired operators
such as mutation, crossover, elitism, fitness evaluation and
selection [8]; the PSO is another population-based metaheuris-
tic search method that is abstracted by simulating the social
behavior of birds flocking or fish schooling [9].

In this study, both GA-DCA and PSO-DCA methods firstly
apply feature selection process to the dataset. In contrast to
the original DCA which categorises the selected features into
three signals [6], this study uses the recent proposed work as
reported in [10] which takes all selected features as system
inputs as detailed in Section III. Then, the optimal set of
parameters associated with the selected features are effec-
tively searched by employing GA or PSO. The performance
evaluation and comparisons between GA-DCA and PSO-DCA
were conducted by using twelve binary classification datasets
available at the UCI machine learning repository [11]. The
results based on the computational time, classification accu-
racy, sensitivity, F-measure and precision demonstrate that, the
GA-DCA performs better on optimisation of the DCA for most
datasets compared to PSO-DCA. Additionally, GA-DCA was
least affected by the size of the dataset as it took relatively
less time to converge compared to PSO-DCA.

This paper is structured as follows. Section II provides a
literature review on biological underpinnings and the DCA
algorithm. Section III details the application of GA and PSO
on parameters optimisation of the DCA. Section IV reports
the experimentation process and performance comparison of
the results. Section V concludes this study and points out the
possible future studies.

II. BACKGROUND

This section reviews the underpinning danger theory, bio-
logical DCs and the DCA algorithm.

A. Danger Theory (DT)

DT articulates that, HIS relies not only on making a
discrimination between self-cells and foreign cells but rather
reacting to what might cause damage and things that might not
[12]. The recognition of danger is based on the type of antigen
detected. Antigen can be foreign molecules that are capable
of causing HIS to generate immune response (i.e.; tolerance
or elimination). In DT, the following three signals that are
emitted from the tissue associated with certain antigens are
used by HIS to discriminate between normal and abnormal
situations.

• Pathogen-Associated Molecular Pattern (PAMP) - is any
signal with a signature of abnormal behaviour which is
usually produced by bacteria or viruses. Detection of
PAMP is a confidence indicator of abnormality associated
with an antigen.

• Danger Signal (DS) – is produced by distressed cells
within the HIS and as a result it shows a degree of
abnormality but with lower confidence than PAMP.

• Safe Signal (SS) – is produced by healthy cells or when
cells die naturally and thus act as an indicator of normal
bahaviour within the HIS.

B. Biological Dendritic Cells (DCs)

In HIS, the DCs coordinate antigens presentation from the
external tissues (e.g. skin and lung) and the adaptive immune
system (i.e., blood cells) [12]. DCs produce co-stimulatory
molecules (csm) on their cell surface which limit the time
they spend sampling antigens in the tissue. Usually, DCs
exist in one of the following three states depending on the
concentrations of SS, PAMP or DS in HIS.

1) Immature DCs (iDCs): are in their pure state in the HIS
where they constantly collect antigens until they mature.

2) Full Mature DCs (mDCs): iDCs are transformed to mDCs
when they are exposed to a greater quantity of either
PAMP or DS than SS which causes immune reaction.

3) Semi-mature DCs (smDCs): iDCS are transformed to
smDCs when they expose to more SS than PAMP and
DS which causes immune tolerance.

C. Dendritic Cell Algorithm (DCA)

The inspiration from the DT and the behaviour of DCs has
led to the development of the DCA which is a population
based binary classification system. Firstly, feature selection
process is applied on the training data to select the most
informative features, and many feature selection approaches
have been proposed in the literature which can be readily used
here, such as [13], [14] This is followed by four phases of
the DCA, including signal categorisation, context detection,
context assignment and labeling as introduced below.

1) Signal Categorisation: The selected features are cate-
gorised into either PAMP, SS or DS based on their definitions
derived from the biological behavior, with more details avail-
able in [5], [6].

There are two common signal categorisation techniques
used with the DCA in the literature, including the manual
approach by relying on the expert knowledge of the problem
domain [6], and the automatic methods such as PCA [15],
fuzzy-rough set theory [16], GA shuffle mutation [17] or
fuzzy inference systems [18]–[20]. After signal categorisation
process, the DCA initialises a population of artificial DCs
(often 100) in a sampling pool which are responsible for data
items sampling [6]. Then, a pre-defined number of matured
DCs (often 10) are selected in each cycle to for information
aggregation.

2) Context Detection: Each DC in the sampling pool is
assigned a migration threshold in order to determine the lifes-
pan when sampling data items are taken from the data source.
The migration threshold is determined from the characteristic
behaviour of the dataset and the amount of data items the
DCs can sample per cycle; this is usually initialised in a
Gaussian distribution [15]. In this phase, the selected DCs
use a weighted summation function for sampling based on



three sets of pre-defined weights to process the input signals
to obtain three output context values termed as csm, mDC
and smDC:

Context[csm, smDC,mDC] =

m∑
d=1

∑3
i,j=1,1(cj ∗ w

j
i )∑3

i,j=1,1 w
j
i

,

(1)

where cj(j = 1, 2, 3), represents the PAMP, DS or SS signal
values; and wj

i (i, j = 1, 2, 3) represents the weights of csm,
mDC and smDC context, regarding PAMP, DS and SS. The
weights are usually either pre-defined or derived empirically
from the dataset.

Note that the DCs sample multiple data items overtime
and thus the three output context values for the sampled data
items are obtained in an incremental manner. Concurrently,
DCs continuously compare the cumulative csm values with
the assigned migration thresholds to determine its action next.
When the csm value of a DC exceeds the migration thresholds,
it ceases sampling data, migrated to either a smDC or mDC,
and moves to the context assignment phase; otherwise, it keep
sampling new data.

3) Context Assignment: In this phase, DCs use their cumu-
lative context values of mDC and smDC computed from the
detection phase to determine their contexts. If a DC has greater
cumulative mDC than smDC, it is assigned a binary value
of 1, and 0 otherwise. Then, all the data items that this DC has
sampled will also be assigned with this value. Finally, during
the labeling phase, this information is used to determine the
number of anomalous samples presented in the dataset, given
that those with a binary value of 1 are potentially anomalous,
otherwise very likely normal. Note that, once the DCs have
completed their life cycle in DCA, they are reset and returned
to the sampling population in order to maintain the population
size.

4) Label Assignment: The processed data items by DCs
are analysed by deriving the Mature Context Antigen Value
(MCAV ) per data item. Firstly, the anomaly threshold is
computed from the training dataset by taking the ratio of the
total number of anomaly class’s data samples to the total
number of data items present. Then, the MCAV value is
determined from the ratio of the number of times a data item
is presented in the mDC (i.e., anomaly) context to the total
number of presentation in DCs. If a data item has the MCAV
value greater than the anomaly threshold, it is classified into
the anomaly class, otherwise classified as normal.

III. DCA PARAMETERS OPTIMISATION USING GA AND
PSO

The DCA system with parameters optimisation is illustrated
in Figure 1. Feature selection is firstly employed to select the
most informative features from the dataset. In contrast to the
original DCA which categorises the selected features into three
signals of either PAMP, SS or DS, this study uses the recent
proposed approach as reported in [10] which takes all selected
features as system inputs as briefed in Section III-A. This
amendment is made based on the finding that the direct use
of features will not comprise the performance of the DCA

system, but improve system efficiency. Of course, this revision
makes the determination of the weights very difficult as many
more weights are required, but this can be readily solvable with
the support of the automatic parameter optimisaion techniques.
In particular, the optimal set of parameters associated with
the selected features are effectively searched by employing
the GA or PSO during context detection phase as detailed in
Sections III-B and III-C, respectively. The last two phases of
the optimised GA-DCA or PSO-DCA are exactly the same as
the original DCA version, and thus this section focuses only on
the optimisation of the parameters using GA and PSO during
the context detection phase.

A. Context Detection

A recent study shows the DCA can perform competitively
without categorising the features into either PAMP, SS or DS
by [10]. Briefly, suppose that u features have been selected
during the feature selection process, the migration threshold
for a DC is th, and m data instances have been sampled by a
DC overtime; its cumulative value of csm, denoted as csmc,
is determined by using a generalised weighted summation
function:

csmc =

m∑
d=1

∑u
j=1(xj ∗ wj

csm)∑u
j=1 w

j
csm

, (2)

where xj is the normalised value of selected features j, wj
csm

is the weight of attribute j regarding the csm. The weight
wj

csm is determined during the training process using GA or
PSO in this work as discussed in the next Subsection III-B
and III-C.

As soon as the csmc value of the DC exceeds its assigned
th, it ceases sampling data items, migrates to the mature DC
pool, and then computes the cumulative smDCc and mDCc:

smDCc =

m∑
d=1

∑u
j=1(xj ∗ wj

smDC)∑u
j=1 w

j
smDC

, (3)

mDCc =

m∑
d=1

∑u
j=1(xj ∗ wj

mDC)∑u
j=1 w

j
mDC

. (4)

Equations 2, 3, and 4 take very different set of weights,
which can be summarised as:

W =

w1
smDC w2

smDC ..wj
smDC ..wu

smDC

w1
mDC w2

mDC ..wj
mDC ..wu

mDC

w1
csm w2

csm ..wj
csm ..wu

csm

 . (5)

B. Parameters Optimisation Using GA

GA is a family of computational models inspired by natural
evolution which heuristically search for optimal or near-
optimal solutions for optimisation problems [21]. GA has been
employed for parameters optimisation in machine learning
models, such as neural networks [21], DCA weights generation
[7] and rule base optimisation in fuzzy inference systems [22]–
[24] with significant performances, in addition to its traditional
use such as job shop planning and scheduling [25]. GA starts
by randomly initialising a population of individuals (each
representing a potential solution) in a pool for a given problem.



Figure 1: Parameters optimisation of the DCA by using GA/PSO

Then, it uses the techniques inspired by evolutionary biology,
such as selection, mutation and crossover to evlove the indi-
viduals. Gradually, more effective individuals are evolved over
a number of iterations until a specified level of performance
or maximum number of iterations is reached.

In this work, the main GA steps to optimise the parameters
of the DCA as expressed in Equation 5 are summerised below.

1) Individual representation: In this work, an individual (I)
within a population is designated as a possible solution that
contains all the weights in Equation 5.

2) Initialisation of individual’s parameters: The population
P = {I1, I2, ..., IN} is randomly initialised from a Gaussian
distribution with a mean of 0 and a standard deviation of 5.
Here, N is the size of population which is a problem-specific
modifiable parameter, with a value between 10 and 50 being
commonly used [22].

3) Objective function: In this work, GA used the classi-
fication accuracy of the DCA as the objective function to
determine the fitness of individuals.

4) Selection: The fitness proportionate selection method is
adopted in this work for selecting individuals who reproduce.
Therefore, the probability of an individual to become a parent
is proportional to its fitness.

5) Reproduction: The single point crossover and mutation
operations were applied to increase the likelihood of obtaining
the global optimal solution while reducing the probability of
stagnation.

6) Iteration and termination: The GA converges when
the classification performance of the DCA exceeds the pre-
specified threshold of the optimum accuracy or the pre-defined
maximum number of iterations is reached. Subsequently, when
GA terminates, the optimal weights are taken from the fittest
individual in the current population. From this, the DCA can
perform validation using this set of weights.

C. Parameters Optimisation Using PSO

PSO is a population based stochastic and metaheuristic
optimisation method which is developed by simulating the
social behavior of bird flocking (i.e.; birds randomly searching
for food in an area) [9]. PSO starts by initialising a population

of random particles (i.e., potential solutions) and searches
for optimal or near optimal solutions by going through a
number of iterations. Each iteration updates the velocity and
position of particles. However, unlike GA, PSO does not use
crossover and mutation evolution operators, thus, diversifica-
tion of solutions lies on the velocity of particles, direction
of particles and the best regions in the search space. In fact,
PSO has been successfully exploited for weights optimisation
in artificial neural network, rule base optimisation in fuzzy
inference systems, function optimisation, amongst other [26].

In PSO, the possible solutions (i.e.; particles) move through
search space by following the best particle in the current
iteration. Thus, two best values are used to update the position
of particles in every iteration. The first best value is the best
fitness value that a particle has achieved so far, called personal
best (pbest); and the second one is called the global best value
(gbest), which is the best fitness value of the best particle in
the current iteration.

After determining the two best values, each particle updates
its velocity (Vi(t+ 1)) and position (Xi(t+ 1)) using:

Vi(t+ 1) =

ωVi(t) + c1r1[pbest−Xi(t)] + c2r2[gbest−Xi(t)],
(6)

Xi(t+ 1) = Xi(t) + Vi(t+ 1), (7)

where, i is an index of a particle; ω is the inertia coefficient;
c1 and c2 are acceleration coefficients (0 ≤ c1, c2 ≤ 2); r1 and
r2 are random values (0 ≤ r1, r2 ≤ 1) which are regenerated
every time along with velocity updates; Vi(t) is the velocity of
a particle at time t; Xi(t) is the position (value) of a particle
at time t; pbest is the particle’s individual best position at time
t; gbest is the swarm’s best particle in the current iteration at
time t.

In this work, the parameters used by the PSO are detailed
below:

1) Particle representation: In this work, a particle (P ) within
a swarm is a designated solution that comprises of all the
parameters of Equations 2, 3 and 4 in the DCA, as summarised
in Equation 5.

2) Initialisation of particle’s parameters: The swarm S =
{P1, P2, ..., PM} is initialised with random numbers from



a Gaussian distribution with a mean of 0 and a standard
deviation of 5. Here, M is the total number of particles in the
swarm which is adjustable depending on a specific application,
with a value between 10 and 30 being widely used [8]. Note
that, the greater the initialised number of particles are used
in the swarm, the more diverse the solutions are, as it allows
bigger regions of the search space to be visited per iteration.

3) Objective function: In PSO, each particle computes its
fitness value by using the objective function to be optimised.
In this work, the objective function of each particle is the
classification accuracy led by the DCA.

4) Acceleration coefficients: The acceleration coefficients
c1 and c2, and the random values r1 and r2, regulate the
interaction among particles and the best particle in the swarm,
as well as stochastic influence on the overall velocity of a
particle. The parameter c1 is the cognitive component which
represents how much confidence a particle has in itself and
hence influencing it to return to its individual best values in
the search space; whereas, c2 is the social component which
represents the confidence a particle has in its peers and thus
influences the particle movement towards the best values the
swarm has covered so far. Low values for c1 and c2 allow the
particles to explore the search space far from the best regions
before being pulled back towards the best solutions [9].

Parameters r1 and r2 are random coefficients which are
updated every time when the velocity is updated. Additionally,
in PSO, it is common to define an upper and lower bounds for
the velocity parameters for limiting the particles from ’flying’
out of solution space [9].

5) Inertia component: The inertia component (ω) helps
to maintain the steady movement of particles in the same
direction. Lower value of ω speeds up convergence while
higher value encourages exploration of the search space. The
value of inertia is usually set between 0.8 and 1.2 [9].

6) Neighborhood size: The neighborhood size sets the
degree of interaction between the particles interaction within
the swarm. If the neighborhood size is smaller, the particles
interact less between each other, and vice versa. A large
neighborhood size enables faster convergence but it is more
susceptible to local optimal solutions. In contrast, a small
neighborhood size usually leads to slower convergence but it
has more reliable convergence towards a globally optimised
solutions. In this work, in order to benefit the advantages of
both large and small neighborhood sizes, the PSO algorithm
starts the search operation with a small neighborhood size
and then gradually increases the neighborhood size for later
iterations.

7) Iteration and termination: Just like GA, PSO terminates
when the classification performance of the DCA exceeds the
pre-specified threshold of the maximum optimum accuracy
or the pre-defined maximum number of iterations is attained.
Subsequently, when the PSO terminates, the optimal param-
eters are taken from the best particle in the current swarm.
From this, the DCA performs validation using the optimal set
of weights.

IV. EXPERIMENTAL VALIDATION AND COMPARATIVE
STUDY

This section describes the setup of experiments, processes,
and results analysis. All experiments were implemented in Java
under NetBeans IDE 8.2. Then, the performance comparison
were performed by using an HP workstation with Intelr

XeonTM E5-16030 v4 CPU @3.70 GHz and 32GB RAM. Each
experiment was repeated ten times to ensure that the recorded
result is the optimal or near optimal.

A. Benchmark Datasets

The datasets used to evaluate the performances of GA-
DCA and PSO-DCA were adopted from the UCI machine
learning repository [11]. Table I presents the properties of
these datasets. Note that, where the testing set is not provided,
ten-fold cross-validation was used.

Table I: Benchmark Datasets

Dataset #Samples #Features

Mammographic Mass (MM) 961 6
Pima Indians Diabetes (PID) 768 8
Blood Transfusion Service Center (BTSC) 748 5
Wisconsin Breast Cancer (WBC) 699 9
Ionosphere (IONO) 351 34
Liver Disorders (LD) 345 7
Haberman’s Survival (HS) 306 4
Statlog (Heart) (STAT) 270 13
Sonor (SN) 208 61
Spambase (SB) 4601 58

In addition to this, as DCA was invested for network se-
curity, two larger and more complex benchmarked datasets in
the field of network intrusion detection were used to compare
the performances of GA-DCA and PSO-DCA:

KDD99 Dataset: an intrusion detection dataset, 41 features,
494,021 records of training set (i.e.; 97,278 normal and
396,743 anomalous), and 311,029 records in the testing
set (i.e.; 60,593 normal and 250,436 anomalous) [27].

UNSW NB15 Dataset: an intrusion detection dataset, 49 at-
tributes, 175,341 records of training set (i.e.; 56,000
normal and 119,341 anomalous), and 82,332 records in
the testing set (37,000 normal and 45,332 anomalous)
[28].

1) Dataset Pre-processing: The information gain method
was exploited in this work to select the most informative fea-
tures from each dataset [29]. Then, each selected feature was
normalised by applying the simple min-max normalisation.

2) DCs Sampling: In each DCA cycle, 10 matured DCs
were used to process the data items. The migration thresholds
of DCs were initialised in a Gaussian distribution with a mean
of 5.0 and standard deviation of 1.0. The anomaly threshold
of each dataset was computed by taking the ratio of the total
number of anomaly samples to the total number of samples
presented in the dataset.



3) Parameters of GA and PSO: In this study, the parameter
values used for the GA were; mutation rate of 0.1, crossover
rate of 0.95, 100 number of iterations, and 20 individuals in
a population.

The parameter values and coefficients used for the PSO
include 100 number of iterations, 20 individuals in a swarm, c1
= c2 = 2.0, 0 ≤ r1, r2 ≤ 1, initial velocity V0 = 0, maximum
velocity Vmax = 10 and ω = 0.95. The selection of these
parameters values was made based on their commonality in
many studies [9].

4) Measurement metrics: The performances of GA-DCA
and PSO-DCA were firstly compared via accuracy, sensitivity
and specificity. Generally, higher sensitivity means higher per-
centage of the true positive generated by the DCA. Likewise,
parameters with higher specificity usually lead to more true
negative results from the DCA. Accuracy, Sensitivity and
specificity are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP
,

(8)

where TP, FP, TN, and FN refer to true positive, false positive,
true negative and false negative, respectively.

The performances of GA-DCA and PSO-DCA were also
evaluated using precision, recall and F-measure to further
investigate the quality of the generated optimal set of pa-
rameters, especially for imbalance datasets. Note that, high
accuracy usually indicates that the generated set of optimal
weights by GA or PSO are better only when the dataset has
similar numbers of samples for all classes and all classes are
of the same level of importance. F-measure is more effective
than accuracy for performance evaluation when a dataset is
imbalanced. The precision, recall and F-measure are computed
as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F −measure =
2 ∗Recall ∗ Precision

Recall + Precision
.

(9)

B. Results and Discussion

This section presents the experimental results and discusses
the performances of GA-DCA and PSO-DCA.

1) Performance on Accuracy, Sensitivity and Specificity:
The classification accuracy, sensitivity and specificity for

both GA-DCA and PSO-DCA are summarised in Table II,
with the best performances highlighted in bold. Note that,
the comparisons between the pre-defined weights [6] and GA-
DCA optimised were performed in the previous work of [7],
[10], [17].

It is clear from Table II that, GA-DCA produced higher
overall classification accuracy on eight out of the ten utilsied

benchmark datasets while PSO-DCA performed better only on
two datasets. Likewise, GA-DCA led overall higher sensitivity
performances on seven datasets, better than PSO-DCA which
performed better only on three datasets. The highest and
lowest sensitivity produced by the GA-DCA are 99.18% on
the Heart Statlog datset (STAT), and 95.18% on the Blood
Transfusion dataset (BTSC), respectively, while the PSO-DCA
produced highest and lowest sensitivity of 100.0% on Blood
Transfusion Service Centre (BTSC) and 84.37% on Liver
Disorders (LD), respectively. Although the performances of
PSO-DCA regarding specificity for majority of the datasets are
comparable to those of the GA-PSO, GA-DCA outperformed
the PSO-DCA on four datasets and produced similar or no
significantly different performances on the rest of the datasets.
Therefore, the GA-DCA is more preferable in terms of clas-
sification accuracy, sensitivity and specificity when compared
to PSO-DCA. Furthermore, it is clear that GA is applicable
for optimising the parameters of the DCA with effective
classification performances.

Both GA-DCA and PSO-DCA methods are applicable to
datasets with larger number of samples with good classifi-
cation performances. PSO-DCA produced a superior perfor-
mance on UNSW NB15 dataset while GA-DCA outperformed
the PSO-DCA on the KDD99 dataset based on the three
metrics. As an example, the validation process of the testing
accuracy for the Liver Disorders (LD) dataset over 100 itera-
tions under GA-DCA and PSO-DCA is illustrated in Figure 2.
Notice that, up to iteration 58, both GA-DCA and PSO-DCA
had reached the similar accuracy of about 92.0%; however,
GA-DCA subsequently managed to jump to an approximate
high accuracy of 98.55% from about iteration 80, whilst PSO-
DCA stagnated and converged with the optimal accuracy of
92.31%.

Figure 2: LD dataset validation over 100 iterations

2) Performance on F-measure, precision and recall: The
performances on F-measure, precision and recall for GA-DCA
and PSO-DCA for all datasets are summarised in Table III with
the best performances shown in bold font.

Once more, it can be observed that GA-DCA outperformed



Table II: Accuracy, Sensitivity and Specificity

Dataset
GA-DCA (%) PSO-DCA (%)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
MM 97.09 97.04 94.57 95.11 95.11 92.05
PID 98.05 97.66 98.0 91.54 90.13 88.4
BTSC 97.46 95.18 96.67 99.73 100.0 99.65
WBC 96.83 96.31 97.40 96.35 96.67 92.21
IONO 98.02 98.91 100.0 97.44 97.65 99.11
LD 98.55 97.56 100.0 92.31 95.45 100.0
HS 96.41 97.67 100.0 95.10 84.37 100.0
STAT 99.26 99.18 100.0 98.15 98.0 100.0
SN 97.12 97.44 93.81 96.15 96.19 100.0
SB 97.17 96.65 95.34 99.89 99.91 100.0
KDD99 95.33 93.18 98.30 96.65 94.40 98.80
UNSW NB15 92.56 90.48 94.30 89.34 88.0 94.50

Table III: F-measure, Precision and Recall

Dataset
GA-DCA (%) PSO-DCA (%)

F-measure Precision Recall F-measure Precision Recall
MM 97.16 97.29 97.04 95.23 95.35 95.11
PID 97.86 98.07 97.66 91.49 92.89 90.13
BTSC 96.73 98.33 95.18 99.44 98.88 100.0
WBC 96.63 96.95 96.31 96.07 95.48 96.67
IONO 98.46 98.02 98.91 97.21 96.78 97.65
LD 98.77 100.0 97.56 88.98 83.33 95.45
HS 95.39 93.21 97.67 91.53 100.0 84.37
STAT 99.25 99.33 99.18 98.16 98.33 98.0
SN 97.17 96.91 97.44 96.29 96.40 96.19
SB 97.16 97.67 96.65 99.88 99.86 99.91
KDD99 96.89 97.82 95.56 97.25 98.78 94.18
UNSW NB15 93.96 99.13 89.21 91.64 96.30 90.15

PSO-DCA based on the F-measure on eight out of ten utilised
datasets except for two datasets namely BTSC and Spambase.
The highest and lowest F-measure led by the GA-DCA are
99.26% on the Heart Statlog dataset (STAT), and 95.39% on
the Haberman’s Survival dataset (HS) respectively; the highest
and lowest F-measure led by the PSO-DCA are 99.88% on
BTSC, and 88.98% on Liver Disorders (LD), respectively.
Similarly, the performances of the GA-DCA on precision and
recall for seven datasets were better than that of the PSO-DCA.
Therefore, from these results on F-measure, precision and
recall, the GA-DCA is notably a better choice than PSO-DCA
for parameters optimisation of the DCA when applied to bi-
nary classification datasets which are significantly imbalanced.
Whilst the PSO-DCA has produced better performance than
GA-DCA on UNSW NB15 dataset, GA-DCA outperformed
the PSO-DCA on the KDD99 dataset.

3) Performance on computational time: The training time
consumed by GA and PSO to generate the optimal set of
parameters of the DCA is shown in Figure 3. For fair compar-
ison, both approaches were allowed to run over 100 number of
iterations, with 20 individuals/particles per iteration. Clearly,
it can be noticed that GA converged faster than PSO-DCA for

all datasets. This further signifies that the GA is more effective
for parameters optimisation for the DCA. The higher time
consumption observed on PSO can be explained by the fact
that, it has to evaluate all particles in every iteration and move
them towards the best regions in the search space and there
are many particles, but GA only needs to select two parents
for reproduction in each iteration. Additionally, the size of
the dataset has a significant impact on the computational
performances of both GA-DCA and PSO-DCA, although, GA-
DCA is generally less affected.

V. CONCLUSION

This study compared the performances of GA and PSO on
parameters optimisation for the DCA in order to discover an
efficient method to support DCA during its context detection
phase. GA-DCA and PSO-DCA methods were evaluated using
twelve publicly available binary classification datasets in the
UCI machine learning repository. The performance results
based on accuracy, sensitivity, F-measure and precision indi-
cate that, DCA parameters optimisation by using GA produced
better results compared to PSO. The PSO is more affected by
stagnation and converge to local optimal solution compared to



Figure 3: Performance comparison on the training time in seconds

GA when used to train the DCA, as evidenced by the lower
accuracy led by the PSO-DCA. Additionally, the relatively bet-
ter F-measure result generated by GA-DCA shows its power
in dealing with imbalance datasets. Time-wise, GA takes less
training time than PSO to optimise the DCA, or in other
words, the GA-DCA is less sensitive to the size of the dataset
compared to PSO. The possible future work would further
compare the performance of GA with other metaheuristic
optimisation algorithms such as simulated annealing, artificial
bee colony optimization, ant colony optimisation, to fully
investigate the potential of optimisation algorithms for DCA
enhancement.
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