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By direct measurements of the gas temperature, the Atacama Large Millimeter/sub-millimeter
Array (ALMA) has yielded a new diagnostic tool to study the solar chromosphere. Here we
present an overview of the brightness-temperature fluctuations from several high-quality and
high-temporal-resolution (i.e., 1 and 2 sec cadence) time series of images obtained during
the first two years of solar observations with ALMA, in Band 3 and Band 6, centred at
around 3 mm (100 GHz) and 1.25 mm (239 GHz), respectively. The various datasets represent
solar regions with different levels of magnetic flux. We perform Fast Fourier and Lomb-
Scargle transforms to measure both the spatial structuring of dominant frequencies and the
average global frequency distributions of the oscillations (i.e., averaged over the entire field of
view). We find that the observed frequencies significantly vary from one dataset to another,
which is discussed in terms of the solar regions captured by the observations (i.e., linked
to their underlying magnetic topology). While the presence of enhanced power within the
frequency range 3− 5 mHz is found for the most magnetically quiescent datasets, lower
frequencies dominate when there is significant influence from strong underlying magnetic
field concentrations (present inside and/or in the immediate vicinity of the observed field of
view). We discuss here a number of reasons which could possibly contribute to the power
suppression at around 5.5 mHz in the ALMA observations. However, it remains unclear how
other chromospheric diagnostics (with an exception of Hα line-core intensity) are unaffected
by similar effects, i.e., they show very pronounced 3-min oscillations dominating the dynamics
of the chromosphere, whereas only a very small fraction of all the pixels in the ten ALMA data
sets analysed here show peak power near 5.5 mHz.

1. Introduction
The solar chromosphere is historically known to be dominated by 3-min (≈ 5.5 mHz)
oscillations of acoustic/magneto-acoustic waves [1–5]. These oscillations have been shown to be
a consequence of a resonance at the chromospheric cut-off frequency [1, 6–8]. Acoustic (p-mode)
waves, which are excited in the upper layers of the turbulent convection zone [9], are found in
both quiet and magnetised regions (i.e., with considerably lower magnetic flux in the former),
though their amplitudes, and thus their power, are reduced in the latter [10–12]. It has been shown
that the power suppression (as well as its spatial extent) increases with the magnetic-field strength
and/or geometric height [13–17]. Such power suppression in the high chromosphere, also known
as “magnetic shadows”, are thought to be due to the interaction of p-mode oscillations with the
embedded magnetic fields (i.e., within the magnetic canopy [18, 19]). This interaction leads to
mode conversion at the acoustic-Alfvén equipartition layer, where the sound speed equals the
Alfvén speed (cs = vA), and where the purely acoustic waves (i.e., fast mode in the high-β regime;
the plasma-β is defined as the ratio of gas and magnetic pressures) can be converted to magneto-
acoustic waves (fast mode in the low-β regime) and vice versa [15, 20–22]. We note that a similar
process can cause an opposite effect at photospheric to mid-chromospheric heights, i.e., power
enhancements around magnetic-field concentrations, such as network patches (known as “power
halos”; [23–25]). Power halos have been explained as the effect of fast-mode reflection at the
magnetic canopy, due to the steep Alfvén speed gradient, resulting in power enhancements at
lower chromospheric heights [25, 26].

The pronounced 3-min fluctuations have often been observed in the line-of-sight velocity
and/or intensity signals, in both quiet and active regions, through chromospheric spectral lines
such as Ca II H & K [27–30], Ca II infrared triplet [30–33], Hα [34], He I 1083 nm [28, 35, 36],
and Mg II h & k [37]. In the quiet Sun, while the 3-min oscillations have been shown in many
observations of the low-to-mid chromosphere (or using relatively broad-band filters), a lack
of such fluctuations in intensity image sequences of Hα line-core observations have also been
reported [38]. Samanta et al. [38] showed, however, that the dominating 3-min oscillations could
be detected in the line-of-sight velocities of their Hα observations (i.e., also at the same spectral
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line position; the Hα line-core), but not in the intensity. In the latter, they found the dominant
periods (in the entire field-of-view) to be longer than five minutes. These authors found that
the presence of ubiquitous transient events in the chromosphere were contributing in the power
suppression at around 3-min periodicities, particularly, in the magnetised regions, since the
intensity fluctuations were mostly due to the appearance and disappearance of such events at
longer periods (i.e., 5-9 minutes). Yet, the mode conversion found to play a key role (over the
entire field-of-view) in the formation of magnetic shadows at periodicities around three minutes.

Moreover, longer-period internal-gravity waves, as well as various types of magneto-
hydrodynamic (MHD) waves of different periods and properties, have been observed throughout
the chromosphere at all spatial scales, e.g., [39–45]. Such magneto-acoustic-gravity (MAG) waves
are often considered as a prime means of transporting energy through the solar atmosphere,
thus, contributing to the excess heating of the solar chromosphere and beyond, where they
release their energy [46]. Furthermore, periods of the propagating MAG waves in the solar
chromosphere have been shown to be dependent on the inclination of the magnetic fields
(i.e., the cut-off period decreases with the field inclination [47–49]). Hence, the highly inclined
magnetic fields play a role in the propagation of long-period waves [50]. Thus, distributions of
the observed periods at various chromospheric heights are expected to, on one hand, depend on
the amount of the magnetic flux within the field of view (FOV) under study. On the other hand,
at chromospheric heights (and beyond), the distributions may be influenced by the intrusion of
highly inclined magnetic fields originating in neighbouring field-concentrations/active-regions
(the canopy effect; [18, 51]). It has been shown that the height of the magnetic canopy depends
on the strength of its underlying magnetic-field in the solar photosphere [52], ranging from the
middle photosphere to the high chromosphere and beyond. In addition, interactions between the
magnetic fields at various chromospheric heights (resulting in, e.g., magnetic-reconnection) may
also cause oscillations and instabilities [53].

Most of the chromospheric diagnostic discussed above suffer from non-local thermodynamic
equilibrium (non-LTE) formations, thus they are decoupled from the local conditions [54].
Alternatively, the continuum emissions at millimetre wavelengths where the Rayleigh–Jeans law
holds, are formed under LTE conditions that can be linearly correlated the gas temperatures at
various chromospheric heights (i.e., the recorded brightness temperatures are equivalent to the
gas temperatures).

In December 2016, the Atacama Large Millimeter/sub-millimeter Array (ALMA; [55]) started
regular observations of the solar chromosphere at millimetre wavelengths, providing new
capabilities (for studying, e.g., waves and oscillations), namely, direct measurements of the gas
temperature and stable observations at high temporal resolutions (i.e., 1− 2 sec cadences). These
particular aspects of ALMA observations thus represent a unique opportunity for the study of
heating mechanisms associated to waves. ALMA is a millimetre/submillimetre interferometer,
located at an elevation of about 5 km above sea level in the Atacama desert in northern Chile,
providing excellent atmospheric transmission over the wavelength range 0.3− 8 mm [56]. The
solar radiation in this range originates from the chromosphere [57–61]. ALMA is currently (i.e.,
September 2020) in its fourth year of solar science operations. Thus far, Band 3 (centred near
3 mm) and Band 6 (centred at ≈ 1.25 mm), with 1 sec and 2 sec sampling cadences, have been
provided for observing the Sun, both of which supposedly sample the mid-to-high chromosphere
[62–66]. Their precise formation heights are, however, not known to date and are predicted (from
numerical simulations and solar models) to span a large range between the low chromosphere
and the transition region [67]. Numerical simulations have predicted the importance of millimetre
observations in identifying upper chromospheric dynamics [68–70] and in the detection of 3-min
chromospheric oscillations at those wavelengths with, e.g., ALMA [71, 72]. However, Rutten [73]
speculated that such oscillations would be hidden due to the presence of the magnetic canopy and
as a result, an increase in opacity in the millimetre wavelengths at mid-to-high chromospheric
heights, acting as an “umbrella” obscuring the dynamics underneath (a similar effect to that seen
in Hα observations). Rutten [73] showed that fibrillar structures, which are thought to highlight
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the magnetic canopy in intensity images, e.g., in Hα imaging observations, may not be clearly
seen in ALMA observations due to their reduced lateral contrast (due to an insensitivity to
Doppler shifts) at those wavelengths. In Molnar et al. [74], it is pointed out that fibrillar structures,
similar to some of those visible in Hα line width, are also present in the ALMA 3 mm brightness
temperature, down to the 2 arcsec resolution of ALMA.

This paper presents an overview of the properties of (global) chromospheric fluctuations
observed at millimetre wavelengths with ALMA. The analysed datasets (across various solar
regions with different levels of magnetic flux) and their calibrations are briefly described in
Section 2. Section 3 summarises the approaches with which the power spectra are calculated,
as well as, the results for the several employed datasets. The discussion and concluding remarks
are presented in Section 4.

2. Data
We utilise ten different datasets in this article, acquired during the first two years of solar
observations with ALMA in Band 3 and 6, centred at around 3 mm (100 GHz) and 1.25 mm
(239 GHz), respectively. The time of observation for each dataset, the project’s identifier number,
cadence of the observations, the cosine of the heliocentric angle (µ), and the mean temperature
(averaged over the entire time series) are summarised in Table 1.

Table 1. Summary of the ALMA datasets employed in this study.

Data Date Project ID Band Cad. [sec] Obs. Time (UTC) µ Tmean [K]
D1 2016-12-22 2016.1.00423.S 3 2 14:19:31-15:07:07 0.99 7470± 480

D2 2017-04-22 2016.1.00050.S 3 2 17:20:25-17:54:54 0.92 9465± 1129

D3 2017-04-23 2016.1.01129.S 3 2 17:19:19-18:52:54 0.96 7026± 1564

D4 2017-04-27 2016.1.01532.S 3 2 14:19:52-15:31:17 0.78 7728± 1150

D5 2017-04-27 2016.1.00202.S 3 2 16:00:30-16:43:56 0.96 7420± 1333

D6 2018-04-12 2017.1.00653.S 3 1 15:52:28-16:24:41 0.90 7663± 625

D7 2017-04-18 2016.1.01129.S 6 2 14:22:01-15:09:15 0.76 7324± 954

D8 2017-04-22 2016.1.00050.S 6 2 15:59:07-16:43:26 0.92 7746± 859

D9 2018-04-12 2017.1.00653.S 6 1 13:58:58-14:32:27 0.88 5957± 352

D10 2018-08-23 2017.1.01672.S 6 1 16:24:27-17:18:05 0.97 6104± 497

The datasets were acquired using various array configurations of the 12 m and 7 m antennas
(depending on the observing programme/cycle). Each ALMA band consists of four so-called
spectral windows (or sub-bands) with 128 spectral channels each. In this study, we use the band-
averaged images which have the highest signal-to-noise ratio (S/N), compared to individual
channels or sub-band-averaged images.

Although there is a small height difference between the sub-bands [75], the high S/N is of great
importance in the present study to identify potentially small-amplitude oscillations. In addition
to the interferometric images, full-disc total power (TP) maps were also recorded for each dataset
through single-dish observations (i.e. with the TP array in fast-scanning mode). These were used
to calibrate absolute brightness temperatures for the interferometric datasets [76]. The mean
brightness temperatures were then corrected based on the values provided by White et al. [59]. All
procedures were employed through the Solar ALMA Pipeline (SoAP; Szydlarski et al., in prep.).
For further details on the reduction procedures we refer the reader to Wedemeyer et al. [66]. We
note that the time series of images were recorded in several 8− 10 min blocks, with ∼ 1.5− 3 min
gaps in between for calibrations. Thus, these gaps must be taken into account when an entire
image sequence is analysed (see Section 3).

Furthermore, we make use of full-Stokes observations (of Fe I 617.3 nm) from the Helioseismic
and Magnetic Imager (HMI; [77]) on board the Solar Dynamics Observatory (SDO; [78]), in
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order to obtain the magnetic-field topology of the field-of-view (FOV) of the ALMA datasets.
The SDO images were spatially co-aligned with the corresponding ALMA images, at a selected
time during each image sequence. We use a combination of the 170 nm and 30.4 nm channels
(with different intensity weights) from the SDO’s Atmospheric Imaging Assembly (AIA; [79]) to
perform a precise spatial co-alignment with the ALMA images. The combined AIA 170/30.4 nm
image resulted in a similar scene to that observed in ALMA’s Band 3 and/or Band 6, hence,
facilitated the cross correlation of similar solar features in the alignment procedure. HMI’s full-
Stokes parameters were then inverted with the Milne–Eddington’s VFISV code [80] to infer
the full-vector photospheric magnetic fields. These are further used for non-force-free-field and
potential-field extrapolations (see Section 3). Table 2 summarises the photospheric magnetic-field
properties, as well as solar x and y coordinates of the centre of the observed FOVs, of the ten
datasets studied here. Magnetic flux and Blos were calculated for both the ALMA’s FOVs and
extended regions (which are larger by a factor of two compared to those of ALMA; see bottom-
left panels in Figures 1-10). The latter can provide information about the immediate vicinity of
the observed regions, which have influence on magnetic configurations at chromospheric heights
sampled by the ALMA observations. The magnetic fluxes within the extended FOVs of D6 and
D9 datasets are considerably (i.e., by 1− 3 orders of magnitude) smaller compared to the other
datasets (D5 has also a relatively low magnetic flux).

Table 2. Photospheric magnetic-field properties of the ALMA datasets (see Table 1) from SDO/HMI.

Data Solar Coordinates ALMA’s FOV Extended FOV
of centre of FOV Magnetic Flux Range of Blos Magnetic Flux Range of Blos

(x,y) [arcsec] [1018 Mx] (min,max) [G] [1018 Mx] (min,max) [G]
D1 (6,−2) 1.58× 101 (−284, 276) 3.32× 102 (−1164, 634)

D2 (−246, 267) 1.46× 103 (−1084, 59) 2.50× 103 (−1084, 534)

D3 (−54, 251) 2.72× 102 (−488, 65) 3.28× 103 (−2343, 216)

D4 (520, 276) 1.12× 103 (−823, 1240) 1.72× 103 (−913, 1240)

D5 (172,−207) 1.11× 102 (−82, 629) 1.23× 102 (−138, 629)

D6 (−128, 400) 5.5× 10−1 (−78, 110) 2.42× 101 (−225, 141)

D7 (−573, 230) 1.38× 102 (−37, 450) 1.80× 102 (−378, 450)

D8 (−255, 263) 5.01× 102 (−949, 48) 1.46× 103 (−1116, 81)

D9 (−175,−415) 6.57× 100 (−25, 132) 9.96× 100 (−63, 132)

D10 (68,−211) 2.45× 100 (−1066, 1069) 4.74× 102 (−1261, 1977)

3. Analysis and Results
To investigate the presence of oscillatory phenomena in our ALMA datasets, we perform Fourier
analysis on individual pixels from the entire FOV of each dataset. The time series were de-trended
(by subtracting a simple linear fit) and apodised (by using the Tukey window), prior to the
analysis. As a result, power spectra are calculated at each pixel. Here, we are primarily interested
in identifying the global oscillatory behaviours of the observations, therefore, an averaged power
spectrum over the entire FOV is also calculated (i.e., we take the average of all individual power
spectra from all pixels within the FOV of each dataset).

In order to compute the power spectra, we employ two different Fourier methods, namely, the
classical Fast Fourier Transform (FFT) and the Lomb-Scargle approach [81, 82]. While the former
method is often considered as the prime choice for such analyses, the Lomb-Scargle transform is
a well-known statistical technique for identifying oscillation frequencies in irregularly-sampled
signals. Thus, the Lomb-Scargle approach (which estimates a frequency spectrum based on a least
squares fit of sinusoids) allows us to accurately measure the oscillations present in the ALMA
observations and is unaffected by the data gaps (which are due to ALMA’s routine calibration
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requirements). Yet, for comparison (and for the power spectra k − ω diagrams), we also employ
the FFT, for which some approximations are necessary (i.e., the FFT is based on the assumption
that all samples are evenly spaced with time). Thus, the gaps are filled in by means of linear
(spline) interpolation into a time series with uniform temporal sampling prior to the FFT, whereas
the original time series (which include gaps/missing frames) are used for the Lomb-Scargle
transforms. The k − ω diagrams represent the average (FFT) power spectra in the wavenumber-
frequency domain, where the distribution of power is shown in both wavenumber (or spatial
scale) and frequency (or period) space. In addition, we calculate the peak-frequency maps (i.e.,
frequencies corresponding to the maximum power at all individual pixels) to investigate their
spatial distributions over the entire FOV. We note that such peak-frequency maps should be
interpreted with caution since they may suffer from an uncertainty at places where the power
spectra pose multiple peaks (at different frequencies) with small power differences. Hence, the
frequency of the absolute maximum power may not necessarily identify the significant frequency
at a pixel, but it can still be a representative of the major oscillation’s frequency.

Furthermore, we aim to compare the spatial distribution of the peak-frequency maps (and the
observed average power spectra) with the magnetic topology of the mid-to-upper chromosphere,
for which we perform magnetohydrostatic (MHS) and potential-field extrapolations of the surface
magnetic fields from SDO/HMI. The MHS non-force-free field extrapolations which take into
account plasma forces [83–85] can more reliably return the magnetic topology within the mixed
plasma-β in the upper photosphere and chromosphere, compared to the traditional force-free
extrapolations (which are limited to the low plasma-β in the solar corona [86, 87]). Deviations
from the non-force-free fields occur above ≈ 2 Mm. However, for the most magnetically quiescent
datasets (i.e., D5, D6, and D9), with the small amount of magnetic flux in their extended FOVs,
the MHS model could not be applied reliably. Thus, magnetic configurations for these datasets
were approximated using the potential-field extrapolations, as a special case with α= 0 of a
linear force-free field using a Fast-Fourier-Transform [88]. The extrapolations are performed
in considerably larger FOVs, compared to those of ALMA, and are extended to much larger
geometric heights (i.e. up to ≈ 14 Mm), though we are primarily interested in the field topology
within the ALMA’s FOVs and up to the geometric heights corresponding to the mid-to-high
chromosphere (i.e., 1500-2500 km). The larger extents reduce possible effects of the sides and top
boundaries.

We note that due to uncertainty in the exact heights of formation of the ALMA observations,
the comparison of the magnetic topology of the mid-to-high chromosphere and the oscillatory
behaviours in the ALMA datasets are performed qualitatively. In addition, due to the fact that the
magnetic configuration in the high chromosphere is largely affected by the inclined/horizontal
fields from neighbouring field concentrations/active regions, no quantitative separations in each
dataset between, e.g., network and internetwork regions, are provided.

In the following, we present each dataset, along with their oscillatory and magnetic-topology
properties, in separate figures (i.e., in Figures 1-10). Each figure consists six panels organised as,

• Upper left: a brightness temperature map (sampled by the ALMA Band 3 or Band 6) of
each dataset, as noted in the figure’s caption. In the lower-left corner of each brightness-
temperature map, the shape and angle of ALMA’s (synthesised) beam has been depicted.
The beam is a representative of point spread function (PSF) of the interferometric array, i.e.,
an elliptical Gaussian whose size and orientation angle depend on the maximum baseline of
the array and the angle of the Sun with respect to the north celestial pole (i.e., the ‘position
angle’), respectively. Thus, the beam size is a measure of the spatial resolution and its
shape varies during the day, though its variation within, e.g., one hour is very small (see
Wedemeyer et al. [66] for further details). Thus, it is more elongated when the observations
are made away from the local noon. This may have some visual effects on the structures
seen in the images (in the spatial domain), so should be kept in mind, otherwise, it has no
influence on the oscillatory properties.

• Upper right: the k − ω power spectrum, using FFT with the data gaps interpolated.
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• Middle left: the spatially averaged brightness-temperature power spectra from FFT (dash-
dotted black line) and Lomb-Scargle (solid red line) approaches. The FFT power spectra were
calculated from the gaps-interpolated dataset, with its original length, whereas, the Lomb-
Scargle power spectra were obtained from the original data (with gaps), padded with zeros
(at one end) to increase the length of the time series by a factor of 4. The padding increases
the frequency resolution.

• Middle right: the peak-frequency map (from Lomb-Scargle transform), for frequencies
larger than 1 mHz. The latter criterion is to focus on dominant frequencies which are
important in terms of wave propagation throughout the solar chromosphere, rather than
the slow variations which could be ascribed to the intrinsic evolution of the magnetic fields.
To facilitate the comparison of these maps across all datasets, each peak-frequency map is
plotted using the same frequency range of 1− 7 mHz (i.e., the most common range in all
datasets).

• Bottom left: the SDO/HMI magnetogram (i.e., the line-of-sight component of the
photospheric magnetic fields) acquired at the same time as the brightness-temperature
image shown in the upper-left panel. For clarity, this magnetogram is shown for a FOV
which is larger (by a factor of 2) compared to that of ALMA; the ALMA’s FOV is marked
with the dashed square.

• Bottom right: top view of the field-extrapolated cube at chromospheric heights (for ALMA’s
FOV). The colours indicate the magnetic-field inclination angles, from vertical (blue) to
horizontal (red). The vertical scales are quintupled for better visibility.

Each dataset (figure) is described separately in the following subsections. Possible
interpretations/speculations of these observations are discussed in Section 4.

(a) D1 dataset: ALMA Band 3, 2016 December 22nd (Figure 1)
The dataset (also appeared in Wedemeyer et al. [66] and Eklund et al. [89]) samples a relatively
quiet area at solar disc centre, with a few small network patches of opposite polarities, mostly
located towards the top of the FOV, but also with some weaker magnetic patches located close
to the centre of the FOV (as seen in the HMI magnetogram). These are observed as excess
brightness temperatures in ALMA’s Band 3 images. However, there are large field concentrations
in the immediate vicinity of the ALMA’s FOV, e.g., close to the bottom-right corner. Thus, the
ALMA’s FOV is largely influenced by the horizontal fields (i.e., the magnetic canopy) rooted in
the neighbouring active regions. The magnetic topology seems to have some complexities at a
few locations within the FOV, which is likely due to the interaction of the horizontal fields with
the more vertical ones originating from the small network patches within the FOV.

The k − ω diagram and the mean power spectra show a clear lack of prominent chromospheric
3-min oscillations (cf. see Figure 2 of Jess et al. [90] for a clear power enhancement at 3 min). Most
of the power is concentrated at very low frequencies (lower than 1 mHz) and at relatively large
spatial scales (i.e., larger than 14 arcsec), with only very small enhancements at various higher
frequencies (which are not significant). While such low frequencies dominate the entire FOV, there
also exist higher frequencies, up to 7 mHz, within parts of the FOV, mostly around the centre with
frequencies in the range of 3− 7 mHz. No clear relationship between their spatial locations and
the chromospheric magnetic topology is found.

(b) D2 dataset: ALMA Band 3, 2017 April 22nd (Figure 2)
This observation (which is also used in Guevara Gómez et al. [91]) samples a plage region, with
strong magnetic-field concentrations covering the majority of the FOV (organised in an inverse
c-shape) in the photosphere. As a result, the magnetic topology at chromospheric heights largely
represents the vertical/near-vertical fields, but also more inclined/horizontal fields towards the
edges of the FOV and within the areas between the centre and left edge of the FOV. A clear lack of
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Figure 1. Top left : A brightness-temperature map from the ALMA’s Band-3 observations from 2016 December 22nd

(i.e., D1 dataset). The blue ellipse on the bottom-left corner of the panel represents the beam size of the observations.

Top right : k − ω power spectra from the Fourier transform. The dashed and dotted-dashed lines mark the 3- and 5-

min periodicities, respectively. Middle left : Spatially averaged brightness-temperature power spectra from Fast Fourier

(dash-dotted black line) and Lomb-Scargle (solid red line) transforms. The purple and yellow stripes have been depicted

to mark period ranges corresponding to the 3 and 5 min windows (each with a width of 1 min), respectively. Middle

right : Dominant-frequency map (i.e., frequencies corresponding to the largest power at each pixel) from the Lomb-

Scargle approach, for frequencies longer than 1 mHz. Bottom left : Line-of-sight photospheric magnetic fields (Blos)

from SDO/HMI with a factor of two larger field-of-view than that of ALMA. The range of Blos values has been indicated

in the upper left corner. The ALMA’s field-of-view is marked with the dashed square. Bottom right : Top view of field

extrapolation of the surface magnetic field (from SDO/HMI) at the chromosphere heights (for the ALMA’s field-of-view).

The colours represent inclination, from vertical (blue) to horizontal (red). The vertical scales are quintupled for better

visibility.
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dominant frequencies larger than 2 mHz is observed over the entire FOV (i.e., much of the power
is concentrated in frequencies smaller than 1− 2 mHz and in spatial scales larger than 31 arcsec).
However, there are small areas with dominant frequencies around 3 mHz that seem to coincide
with more vertical-field regions.

(c) D3 dataset: ALMA Band 3, 2017 April 23rd (Figure 3)
The observation (which was also appeared in Molnar et al. [74]) was made in the immediate
vicinity of a sunspot and includes a few (strong) magnetic concentrations within the FOV, mostly
between the centre and right edge. The magnetic canopies from the sunspot and neighbouring
plage regions cover the majority of ALMA’s FOV in the chromosphere with horizontal fields,
although there is an exception around the strong plage patch where some near-vertical fields
have changed the magnetic structuring. Only around this area some higher frequencies in the
range of 3− 6 mHz can be observed in the peak-frequency map. However, the power spectra
indicate dominant low frequencies (<1 mHz), mostly on spatial scales on the order of 20 arcsec or
larger.

(d) D4 dataset: ALMA Band 3, 2017 April 27th (Figure 4)
This dataset represents large enhanced-network patches (of the same polarity) close to the centre
of ALMA’s FOV, towards the left edge and the upper-left corner. This has, therefore, created
vertical/near-vertical fields at chromospheric heights in those photospheric network locations,
and more horizontal fields (i.e., the magnetic canopy) towards the right and bottom and over
the internetwork areas. No sign of significant high frequencies (higher than 1− 2 mHz) is found.
There are higher frequencies, up to ≈ 5 mHz in a few pixels in various (random) locations, but
these are in a minority over the entire FOV. Most of the low frequencies are also concentrated in
larger structures, with the peaks of the power spectra corresponding to spatial scales larger than
40 arcsec (see the k − ω diagram).

(e) D5 dataset: ALMA Band 3, 2017 April 27th (Figure 5)
The observations (previously appeared in Loukitcheva et al. [65] and Martínez-Sykora et al.
[67]) were made in a relatively quiet region, where a tilted question-mark-shaped network patch
is observed in the photospheric magnetogram (towards the right edge of ALMA’s FOV). The
chromospheric fields are closer to vertical in the spatial locations above the photospheric network
patches, while the horizontally oriented magnetic canopy, mostly rooted in the network patch,
covers the remainder of the FOV. Some of the magnetic fields return to the solar surface, which
are visible towards the left edge, particularly at the upper- and lower-left corners of the ALMA’s
FOV. Although the power spectra show much of their power at frequencies lower than 2 mHz
(mostly on spatial scales larger than 21 arcsec), there are also some small power enhancements
at around 3− 4 mHz. The peak-frequency map also shows more concentrations of 3− 6 mHz
oscillations towards the upper- and lower-left corners, i.e., where the magnetic canopy connects
to the solar surface on its weaker-field side (i.e., opposite to the stronger network patch location).

(f) D6 dataset: ALMA Band 3, 2018 April 12th (Figure 6)
This observation (also studied in Alissandrakis et al. [92]) represents the most quiescent solar
region amongst our sample. ALMA’s FOV (and its immediate vicinity) includes several small
magnetic concentrations, which seem to form some relatively weak network and internetwork
areas. These have formed some relatively low-lying magnetic canopies whose spatial extents
are also relatively small, when compared to the larger chromospheric canopies originating in
stronger/larger field concentrations (which reside mostly in the mid-to-high chromosphere).
Although the fields from these small concentrations may also reach the higher chromosphere,
they are less dense compared to those from stronger fields. More importantly, no strong/large
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Figure 2. Same as Figure 1, but for ALMA’s Band-3 observations from 2017 April 22nd (i.e., D2 dataset).
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Figure 3. Same as Figure 1, but for ALMA’s Band-3 observations from 2017 April 23rd (i.e., D3 dataset).
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Figure 4. Same as Figure 1, but for ALMA’s Band-3 observations from 2017 April 27th (i.e., D4 dataset).
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Figure 5. Same as Figure 1, but for ALMA’s Band-3 observations from 2017 April 27th (i.e., D5 dataset).
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magnetic fields were located close to the observed FOV, thus, no intrusion of horizontal fields
is observed in the field geometries obtained from the extrapolations. The power spectra show a
clear enhancement at around 3− 5 mHz, and the peak-frequency map reveals frequencies up to
7 mHz (also up to 9 mHz in a few pixels), mostly on top of the photospheric internetwork regions
(i.e., on the relatively short and horizontally oriented field lines). At the locations of more vertical
fields, lower frequencies (on the order of 1− 2 mHz) are observed.

(g) D7 dataset: ALMA Band 6, 2017 April 18th (Figure 7)
The FOV is largely influenced by two strong magnetic regions (at the base of the photosphere),
one located close to the upper-right corner, the other towards the lower half of the FOV. The
field geometries in the mid-to-high chromosphere are populated by slightly inclined and near-
vertical fields from the network patches within the FOV, with some horizontal fields close to the
left/upper-left edge (some coming in from neighbouring magnetic concentrations). The magnetic
topology is rather complex, with an inclined spiral-shape configuration near the centre of the
FOV towards the lower-left corner. From the peak-frequency map, small areas with dominant
frequencies of 3− 5 mHz are seen close to the root of the spiral configuration. Similar frequencies
are also found in a very small area in the upper-left corner, where an intrusion of horizontal field
canopy is observed (i.e., a very cool area, compared to the rest of the FOV). Otherwise, in the
majority of the FOV (as also seen from the power spectra), much of the power is in the very
low-frequency regime (also mostly concentrated in spatial scales larger than 14 arcsec).

(h) D8 dataset: ALMA Band 6, 2017 April 22nd (Figure 8)
This dataset (also appeared in da Silva Santos et al. [93] and Chintzoglou et al. [94]) samples the
same plage region as in D2, but here, in Band 6 with a smaller FOV, observed about 80 min
earlier than D2/Band-3 (see Table 1). Thus, the field geometries (at around the mid-to-high
chromosphere) is also very similar to that of D2, i.e., vertical and near-vertical fields in about half
of the FOV, as well as horizontal fields originating in both the plage region within the ALMA’s
FOV and in those in its immediate vicinity. Similar to D2, although at a different wavelength, the
FOV is mostly dominated by low frequencies, smaller than 2 mHz, with only a few insignificant
power enhancements within the range of 2− 5 mHz (mostly in structures larger than 15 arcsec).
The peak frequencies around 4 mHz are seen at various spatial locations, but mostly around the
more vertical fields at chromospheric heights.

(i) D9 dataset: ALMA Band 6, 2018 April 12th (Figure 9)
This observation samples a very quiet (extended) region (i.e., both in ALMA’s FOV and its
surrounding areas), with only a few, relatively small, field concentrations. This has, consequently,
resulted in relatively less dense magnetic canopies whose spatial extents are smaller than those
rooted in larger/stronger field concentrations. A very clear power enhancement is found around
3− 6 mHz frequencies, with peak frequencies reaching to higher values of up to 8.3 mHz in
several places (the scale of the peak-frequency map is limited to 1− 7 mHz, for the sake of
comparison among different datasets).

(j) D10 dataset: ALMA Band 6, 2018 August 23rd (Figure 10)
ALMA’s FOV includes a few strong field concentrations, i.e., small pores (in the photosphere),
mostly around the lower edges, but is more significantly influenced by a large pore just
outside the FOV and close to the lower-right corner. Thus, the FOV is very much covered
at chromospheric heights by the canopy rooted in the large and small pores. Some field
re-configurations are also observed in two small areas, which seem to partly coincide with
higher peak frequencies of 3− 5 mHz. Otherwise, the FOV is dominated by low frequencies of
1− 2 mHz (mostly at spatial scales larger than 9 arcsec), but also with some power enhancements
within 2− 3 mHz.
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Figure 6. Same as Figure 1, but for ALMA’s Band-3 observations from 2018 April 12th (i.e., D6 dataset).
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Figure 7. Same as Figure 1, but for ALMA’s Band-6 observations from 2017 April 18th (i.e., D7 dataset).
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Figure 8. Same as Figure 1, but for ALMA’s Band-6 observations from 2017 April 22nd (i.e., D8 dataset).
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Figure 9. Same as Figure 1, but for ALMA’s Band-6 observations from 2018 April 12th (i.e., D9 dataset).
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Figure 10. Same as Figure 1, but for ALMA’s Band-6 observations from 2018 August 23rd (i.e., D10 dataset).
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4. Discussion and Conclusion
We have studied temperature fluctuations in the solar chromosphere from ALMA (in both
Band 3 and Band 6), in a variety of solar regions with different magnetic field strengths and
configurations. In addition to the classical FFT technique, we also analysed the non-uniformly
sampled image-sequences through the use of Lomb-Scargle approaches. We find, however,
that classical FFT and Lomb-Scargle approaches offer similar power spectra at the detected
frequencies. We also computed the magnetic field configurations at chromospheric heights, using
field extrapolations of the photospheric vector magnetic fields from SDO/HMI. Since the precise
formation heights of the ALMA observations are still unknown, one-to-one correlations between
the magnetic field geometries and the peak-frequency maps are not straightforward, thus they
have only been compared qualitatively (i.e., the field geometries at around 1500− 2500 km,
corresponding to the mid-to-high chromosphere, are compared with the ALMA observations in
Band 3 and Band 6).

The dominant frequencies of the observed oscillations seem to largely depend on the magnetic-
field geometries present in the (mid-to-upper) chromosphere, which are derived from the
photospheric magnetic configurations within both the observed FOVs and their immediate
vicinities. Figure 11 summarises the mean Lomb-Scargle power spectra (averaged over each
entire FOV) for the ten datasets studied here. Only two datasets (i.e., D6 and D9) show clear
power enhancements within the frequency range 3− 5 mHz, with a peak at around 4 mHz,
whereas the other eight power spectra are peaked at very low frequencies, with occasional small
power enhancements at various higher frequencies. The latter high-frequency enhancements
(up to 7 mHz) are associated with relatively small numbers of pixels within the FOVs (see the
peak-frequency maps in Figures 1–10). We note that although the D6 and D9 datasets were
coincidentally observed on the same date, this cannot be the reason for the appearance of power
enhancements at around 4 mHz. Instead, this is most likely due to these observations sampling
the quietest solar region in our sample. In fact, it was found that these two quiet datasets (i.e.,
D6 and D9) had smaller surface mean magnetic fluxes, by 1− 3 orders of magnitude (averaged
over their entire FOVs; also, similar flux ratios at chromospheric heights), compared to the other
eight observational fields of view (see Table 2). Furthermore, the D6 and D9 datasets have the
largest oscillatory power compared to the other image sequences. As can be seen in Figure 11,
this is evidenced by datasets D6 and D9 showing prominent spectral power excesses in the range
of 3− 5 mHz, in addition to the largest frequency-integrated power (ranked number 2 and 3 of
the 10 datasets), suggesting that these particular datasets have heightened wave energies across
the entire frequency spectrum. These findings are consistent with previous coronal studies [95],
where the largest velocity wave power was found to be correlated with low magnetic flux regions,
and in particular, at frequencies larger than 3 mHz.

There have only been a few studies focusing on the dominant frequencies of oscillations in
the upper chromosphere. From narrow-band Hα line-core image sequences, Krishna Prasad et al.
[17] found that the oscillatory power of intensity fluctuations (in the high chromosphere), within
an evolving active region, was greatly suppressed within the frequency range of 4− 8 mHz (i.e.,
lack of dominant 3-min oscillations), with some increases found in the 2.7− 4.0 mHz range, and
a larger power enhancement at even lower frequencies (i.e., within 1.7− 2.7 mHz). This could
be explained by the umbrella effect, where the magnetic canopy covers most of the oscillations
in the sub-canopy heights. De Pontieu et al. [96] reported 3-min oscillations in narrow-band Hα
line-core time-series of images above two sunspots and in dense plage regions, 5-min fluctuations
in adjacent to dense plage regions, and longer periodicities in more inclined-field areas (i.e.,
the majority of the FOV). Such 3− 5 min oscillations were attributed to dynamic fibrils in and
around plage regions. Dynamic fibrils and spicules have also been identified in ALMA Band 6
observations [94].

In the present work, while the power suppression at frequencies larger than 2 mHz may
suggest the presence of such umbrella/canopy effects in the eight datasets with large amounts
of magnetic flux, the observations demonstrating significant power enhancements at around
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Figure 11. Lomb-Scargle power spectra from the ten ALMA datasets D1–D10, as illustrated in Figures 1–10.

3− 5 mHz in the two most quiescent datasets are in agreement with the propagation of such
oscillations throughout the chromosphere. In addition, the magnetic-field inclinations have been
shown to play a key role, at different atmospheric heights, in guiding or suppressing the
oscillations [24]. A wide distribution of the inclination angles, from vertical to horizontal fields,
were observed at chromospheric heights in the datasets under study. Furthermore, the p-mode
oscillatory power in the high chromosphere can be suppressed by the presence of strong magnetic
fields [17], which is the case in each of the eight datasets. Magneto-acoustic waves have also been
shown to considerably dissipate their energy by the mid-chromosphere in small, vertical flux
concentrations, such as pores, thus, they are much diminished by the high chromosphere [97–100].
These energy damping waves were, however, observed in relatively small magnetic structures
and is likely not responsible for the lack of global oscillatory power at high chromospheric heights,
sampled by ALMA observations. Indeed, the global 3-min oscillations have also been observed in
the high chromosphere and transition region [101]. It is worth noting that high-frequency MHD
waves (on the order of 9− 17 mHz) have also been detected in small-scale structures in ALMA’s
Band 3 observations (i.e., in the D2 dataset presented here; [91]). Thus, many of the high-frequency
oscillations (up to 9 mHz) we observed in small areas within the FOV of our datasets (see peak-
frequency maps in Figures 1–10), could also be due to various types of MHD waves which have
vastly been observed in the mid-to-high chromosphere at small scales [42, 43, 102, 103].

We cannot completely rule out that the lack of prominent 3-min oscillations is the result
of the waves not displaying temperature fluctuations at these frequencies as the waves
propagate through the FOV in the upper chromosphere. Under adiabatic conditions, temperature
fluctuations are to be expected for magneto-acoustic oscillations (i.e., temperature changes with
pressure at constant entropy; [104]). However, in isothermal atmospheres (where the density
and pressure changes take place at constant temperature) the associated wave rarefactions
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and compressions have a timescale (∼ 1/ω) to exchange heat in order to maintain a constant
temperature. Isothermal conditions have been found in the solar corona [105], so the possibility
of such plasma conditions in the high chromosphere cannot be ruled out. Moreover, it has
been suggested that ALMA observations may also have some (small) contributions from coronal
heights [66].

Although gravity waves have been suggested to not reach high chromospheric heights (i.e.,
they are reflected back to the lower atmospheric levels by the magnetic canopy as slow magneto-
acoustic waves; [106]), the dominant low frequencies of 1− 2 mHz that we find here could also
perfectly align with such waves that were previously observed in the lower chromosphere [39].
We cannot, however, verify here the nature of the waves represented by the low-frequency ALMA
oscillations.

Considering that all chromospheric diagnostics (except Hα intensity) show very pronounced
3-min oscillations dominating the dynamics of the chromosphere, the fact that only a very small
fraction of all the pixels in the ten datasets analysed here show peak power near 5.5 mHz may
be considered a surprise, in particular since 1-D simulations predicted a very strong, highly
nonlinear response in mm temperature brightness to the 3-min oscillations [68, 71]. Why do the
1-D hydrodynamic simulations work remarkably well in reproducing other diagnostics such as,
e.g., the temporal evolution of the Ca II H and K line profile [3], but seem to completely fail in
reproducing the mm response to these oscillations? Magnetic fields are certainly an important
factor, but they should be a similarly important factor for other diagnostics. We should note that
the 3− 5 min fluctuations have previously been reported in mm observations (at 85 GHz) from
the 10-element Berkeley-Illinois-Maryland Array [107] (with spatial resolution of ≈ 10 arcsec), and
from observations with ALMA Band 3 [108]. In both studies, the authors applied a high-pass filter
to the data by subtracting a third-order polynomial fit from the time series. For short time series
of just 10 min as that used by Patsourakos et al. [108], this filters out oscillations below ∼3 mHz,
leaving a power peak at around 4 mHz. It has less of an effect for the 30 min long series studied
by White et al. [107]. In the present study, the signal de-trending was performed by subtracting a
simple linear fit, i.e., we did not filter out lower frequencies to visually “enhance” power at higher
frequencies. Also, as illustrated in Figure 12, contemporaneous AIA 160 nm series (co-aligned to
the ALMA observations) show a very different distribution in the peak power compared to the
ALMA series, with a strong oscillatory signal in the 3− 5 mHz range. Perhaps the answer to this
conundrum lies in the great similarity of the ALMA 3 mm brightness temperature maps to Hα
line width maps, which show a remarkable degree of correlation [74]. In part, this correlation is
driven by significant variations in the height of formation of Hα and the 3 mm continuum. Such a
strong temporal modulation in the height of formation of the mm continuum could easily destroy
the oscillatory signal. We also note that no power enhancement is observed in any of AIA 30.4 nm
time series (sampling the transition region) corresponding to the ten ALMA datasets.

To summarise, we have analysed the global (average) oscillatory behaviour of temperature
fluctuations in ten different ALMA observations (each with different compositions and levels of
magnetic flux), recorded in Band 3 and Band 6. We have found a lack of dominant chromospheric
oscillations within the frequency range 3− 7 mHz in eight datasets, while there are clear power
enhancements at around 4 mHz in the other two (which are the most magnetically quiescent
datasets). From field extrapolations of the photospheric magnetic fields, we found that the former
datasets were largely influenced by the strong magnetic fields originating within the observed
FOVs and/or their immediate vicinities. While we discussed above various possible scenarios to
explain these oscillatory behaviours, we conjecture that the lack of 3-min (5.5 mHz) oscillations
may be a result of (a) the “umbrella” effect due to the magnetic canopy, (b) power suppression in
the presence of strong magnetic fields, (c) significant variations in the height of formation, or (d)
waves not displaying temperature fluctuations at these frequencies. A larger number of datasets
from ALMA and/or observations of the high chromosphere at other wavelengths (i.e., from other
instruments) can help provide a better overall picture and clarify the dependency of the oscillation
properties on the magnetic geometries.

Data Accessibility. The observational data are all publicly available at data archives of ALMA and NASA’s
Solar Dynamics Observatory.
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Figure 12. Lomb-Scargle power spectra from the SDO/AIA 160 nm time-series of images, corresponding to the ten

ALMA datasets D1–D10. To facilitate comparison, the power spectra are plotted with the same line styles and colours as

in Figure 11.
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