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ABSTRACT
Within the framework of the high-order finite volume (FV) method, a high-order gas kinetic flux solver (GKFS) is developed in this work for
simulation of two-dimensional incompressible flows. Generally, in the conventional high-order FV method, the inviscid and viscous fluxes are
treated separately. However, different from the conventional high-order FV method, the high-order GKFS evaluates the inviscid and viscous
fluxes simultaneously from the local asymptotic solution to the Boltzmann equation, which consists of the equilibrium distribution function
and its substantial derivative at the cell interface. By introducing a difference scheme with the high-order accuracy in space to discretize the
substantial derivative, a high-order accurate local asymptotic solution to the Boltzmann equation can be obtained. The numerical flux of
the Navier–Stokes equations can then be calculated by the moments of the local asymptotic solution. Since this local asymptotic solution is
relatively simple, the numerical fluxes of the Navier–Stokes equations can be given explicitly for the high-order GKFS, which is the function
of the left and the right states and their first-order derivatives. Numerical results showed that the developed solver can achieve the desired
accuracy on both the quadrilateral mesh and the triangular mesh and its efficiency is higher than the second-order counterpart when achieving
comparable accuracy of solution.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0032488., s

I. INTRODUCTION

Due to its high accuracy, the high-order method has been an
important topic in the field of computational fluid dynamics (CFD).
It has wide application in direct numerical simulation (DNS),1–4

large eddy simulation (LES),5–8 aeroacoustics,9–11 etc. Nowadays,
many high-order methods have been developed to address the
challenging task of obtaining a high-order accurate, efficient, and
robust solution of the Euler and Navier–Stokes equations. Some of
the representative approaches include the high-order finite volume
(FV),12–14 the discontinuous Galerkin (DG),15–17 the correction pro-
cedure using reconstruction (CPR),18,19 the spectral volume (SV),20

the spectral difference (SD),21 and the weighted essential non-
oscillatory (WENO)22–25 methods. These methods have their advan-
tages and disadvantages, and they provide different mathematical

frameworks to discretize the Euler and Navier–Stokes equations on
structured or unstructured meshes.

Among the above-mentioned methods, the high-order FV
scheme is relatively intuitive and convenient for application on
unstructured meshes. In this method, the governing equation is
discretized by the FV scheme and the functional value at the con-
trol volume is represented by a high-order approximation, such as
the high-order Taylor series expansion,26 the moving least-squares
approximation,27 the compact least-squares reconstruction,28 and
the radial basis function interpolation.29 As a pioneering high-order
FV scheme, the k-exact method approximates the functional value
within each control volume by a modified Taylor series expan-
sion,26,30,31 which consists of the mean value and the spatial deriva-
tives of the function. Similar to the second-order FV scheme, in the
k-exact method, the mean value is updated directly by solving the
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governing equation. To determine the spatial derivatives at the cell
center, the modified Taylor series expansion needs to be integrated
over the current cell and its neighboring cells. The resultant equation
system connects the mean values of the current cell and its neighbor-
ing cells and the spatial derivatives at the center of the current cell.
Correspondingly, the spatial derivatives can be obtained by solving
the resulting equation system. Besides the k-exact method, a more
straightforward high-order FV method, i.e., the least square-based
finite difference-finite volume (LSFD-FV) method,32,33 is developed
recently. In this method, the functional value within each control
volume is approximated by a conventional Taylor series expansion,
which is based on the functional value and the spatial derivatives at
the cell center. The functional value is obtained from the solution
of the governing equation, and the spatial derivatives are calculated
by the least square-based finite difference (LSFD) scheme from the
functional values at the centers of the current cell and its neighboring
cells. Due to its easy application, the LSFD-FV method is used in the
present work to discretize the governing equation and approximate
the functional value at each control volume.

Apart from the spatial discretization, in the high-order FV
scheme, the calculation of numerical flux at the cell interface is
another important issue. In conventional Navier–Stokes solvers,34–36

the inviscid flux is usually calculated by the exact or approximate
Riemann solver and the viscous flux is evaluated in a different way,
which may cause degradation of accuracy or loss of consistency. Dif-
ferent from the conventional Navier–Stokes solvers, the gas kinetic
scheme (GKS),37–40 the gas kinetic flux solver (GKFS),41–44 and the
lattice Boltzmann flux solver (LBFS)45–48 evaluate the inviscid and
viscous fluxes simultaneously from the local solution to the Boltz-
mann equation at the cell interface. Specifically, the GKS calculates
both the inviscid and viscous fluxes from the local integral solution
to the Boltzmann equation at the cell interface and the GKFS and
LBFS utilize the local asymptotic solution to the Boltzmann equa-
tion for this purpose. More recently, the second-order GKS has been
extended to the high-order counterpart to improve accuracy.49–53

In the high-order GKS, the numerical flux at the cell interface can
achieve high-order accuracy in both space and time. However, since
the coefficients related to the high-order derivatives are introduced
into the local integral solution to the Boltzmann equation at the
cell interface, the expression of numerical flux becomes very com-
plicated and hard to be expressed explicitly. By applying the LBFS,
the corresponding high-order FV scheme has also been developed by
Liu et al.32,33 In their work, the second-order LBFS is utilized directly
to evaluate the numerical flux at the cell interface. Since the accuracy
of the second-order LBFS is with regards to the streaming distance,
which is usually smaller than the cell size, the overall accuracy of the
high-order FV scheme may not be affected significantly. However,
the streaming distance has to be chosen carefully to guarantee the
overall accuracy.

In this work, we aim at extending the previous GKFS to the
high-order one and implement it in the framework of the LSFD-FV
method for simulation of incompressible flows. The local asymp-
totic solution to the Boltzmann equation used in GKFS consists of
the equilibrium distribution function and its substantial derivative
at the cell interface. In the previous GKFS,41,54 the substantial deriva-
tive is discretized by a second-order difference scheme, resulting in
a second-order flux solver in both space and time. To achieve the
high-order accuracy, a difference scheme with the second-order

accuracy in time and the fourth-order accuracy in space is utilized to
discretize the substantial derivative in this work. It is shown that the
numerical flux of the Navier–Stokes equations can be given explic-
itly for the high-order GKFS, which is the function of the left and
right states and their first-order derivatives. By applying the LSFD-
FV method, these variables can be easily calculated by the high-order
Taylor series expansion. In addition, to guarantee the temporal accu-
racy for simulation of unsteady problems, the multi-stage Runge–
Kutta method55 is adopted to discretize the governing equation
in time. For steady problems, the implicit lower–upper symmetric
Gauss–Seidel (LU-SGS) scheme56 is utilized. To validate the devel-
oped high-order GKFS, a series of incompressible flow benchmark
tests at various Reynolds numbers and/or with curved boundary are
provided.

II. NAVIER–STOKES EQUATIONS AND HIGH-ORDER
FINITE VOLUME DISCRETIZATION

In this work, we confine the study to the isothermal incom-
pressible flows, which are governed by the following weakly com-
pressible Navier–Stokes equations under the low Mach number
limit:

∂ρ
∂t

+∇ ⋅ (ρu) = 0, (1)

∂ρu
∂t

+∇ ⋅ (ρuu + pI) = ∇ ⋅ {μ[∇u + (∇u)T]}, (2)

where ρ, u, p, and μ are, respectively, the density, velocity, pressure,
and dynamic viscosity. The pressure is calculated by p = ρc2

s , where
cs is the sound speed, which will be defined in Eq. (18). I is the unit
tensor. For the two-dimensional (2D) case, Eqs. (1) and (2) can be
cast into a unified form as

∂W
∂t

+∇ ⋅ F = 0. (3)

Here, the conservative variable vector W and the flux vector F are
given by

W =
⎡⎢⎢⎢⎢⎢⎣

ρ
ρu
ρv

⎤⎥⎥⎥⎥⎥⎦
, F =

⎡⎢⎢⎢⎢⎢⎣

Fρ
Fρu
Fρv

⎤⎥⎥⎥⎥⎥⎦
. (4)

Here, u and v are, respectively, the velocity components expressed in
the x- and y-directions of the global Cartesian coordinate system.

To achieve the high-order accuracy, Eq. (3) is discretized by the
cell-centered high-order FV scheme,

d
dt
(∫

Ωi

WdΩ) = −
Nf

∑
j=1

nGQp

∑
k=1
(Fk ⋅ nA)jωk, (5)

where i is the index of the control volume, Ωi and Nf represent the
volume and the number of faces of the control volume i, respec-
tively, A denotes the area of the interface of the control volume,
n = (nx, ny) defines the unit normal vector of the cell interface in the
global Cartesian coordinate system, nGQp is the number of Gaussian
quadrature points on each cell interface, and ω is the corresponding
quadrature weight. For the fourth-order scheme used in this work,
nGQp = 2 is taken.

In the high-order LSFD-FV method,32,33 the conservative vari-
ables are approximated by a Taylor series expansion at the cell center
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with the designed order of accuracy. For the fourth-order scheme,
the following third-order polynomial is adopted:

W(x, y) =Wi +
∂W
∂x
∣i (x − xi) +

∂W
∂y
∣i (y − yi)

+
∂2W
∂x2 ∣i

(x − xi)2

2
+
∂2W
∂y2 ∣i

(y − yi)2

2

+
∂2W
∂x∂y

∣i (x − xi)(y − yi) +
∂3W
∂x3 ∣i

(x − xi)3

6

+
∂3W
∂y3 ∣i

(y − yi)3

6
+

∂3W
∂x2∂y

∣i
(x − xi)2(y − yi)

2

+
∂3W
∂y2∂x

∣i
(y − yi)2(x − xi)

2
. (6)

Here, the reference point (xi, yi) is the centroid of cell i. In Eq. (6),
the derivatives are unknown. To determine the derivatives at control
volume i, Eq. (6) is applied to the neighboring cells of cell i, which
yields

SidWi = ΔWi, (7)

where

Si =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

Δxi1 Δyi1 Δxi12

2
Δyi12

2 Δxi1Δyi1 Δxi13

6
Δyi13

6
Δxi12Δyi1

2
Δyi12Δxi1

2

Δxi2 Δyi2 Δxi22

2
Δyi22

2 Δxi2Δyi2 Δxi23

6
Δyi23

6
Δxi22Δyi2

2
Δyi22Δxi2

2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ΔxiNΔyiN ΔxiN 2

2
ΔyiN 2

2 ΔxiNΔyiN ΔxiN 3

6
ΔyiN 3

6
ΔxiN 2ΔyiN

2
ΔyiN 2ΔxiN

2

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

(8)

dWT
i = [

∂W
∂x

,
∂W
∂y

,
∂2W
∂x2 ,

∂2W
∂y2 ,

∂2W
∂x∂y

,
∂3W
∂x3 ,

∂3W
∂y3 ,

∂3W
∂x2∂y

,
∂3W
∂y2∂x

]
i
, (9)

ΔWT
i = [Wi1 −Wi,Wi2 −Wi, . . . ,WiN −Wi], (10)

and Δxij = xj − xi, Δyij = yj − yi, j = 1,. . ., N, where N is the num-
ber of the neighboring cells of cell i. To avoid ill-conditioned and
singular, N > 9 is usually adopted and the local scaling technique
and least square optimization are introduced to solve the equation
system (7).57 As a result, dWi can be approximated by the following
matrix form:

dWi = KiΔWi, (11)
where Ki is a 9 × N dimensional weighting coefficient matrix, which
is uniquely determined by the centroid of cell i and its neighboring
cells. Ki is calculated once and stored for the following computation
to save the computational effort.

To update the conservative variables W at the cell center, we
need to substitute Eqs. (6) into (5), which yields

d
dt
(ΩiWi + dWT

i Ci) = Ri, (12)

with

CT
i = [x1y0, x0y1,

x2y0

2
,
x0y2

2
, x1y1,

x3y0

6
,
x0y3

6
,
x2y1

2
,
x1y2

2
]
i
, (13)

where xnymi = ∫Ωi
(x − xi)n(y − yi)mdΩ. Ri is residual and equals to

the right-hand side of Eq. (5). Substituting Eqs. (11) into (12), we
have

d
dt

⎡⎢⎢⎢⎢⎣

⎛
⎝

Ωi −
9

∑
k=1

Ci
k

N

∑
j=1

K i
k,j
⎞
⎠
Wi +

N

∑
j=1
(

9

∑
k=1

Ci
kK

i
k,j)Wij

⎤⎥⎥⎥⎥⎦
= Ri. (14)

For the problem with the fixed mesh, by applying Eq. (12) to all
control volumes, the following matrix form can be obtained:

M
dW
dt
= R. (15)

Here, M is a sparse coefficient matrix formed by coefficients on the
left-hand side of Eq. (14). The conservative variables W at the cell
center can be updated by matching Eq. (15) in time. For unsteady
problems, the explicit temporal discretization with point iterative
method is used, and for steady problems, the implicit temporal
discretization with LU-SGS method is adopted. The details can be
found in Refs. 32 and 33.

III. HIGH ORDER GAS KINETIC FLUX SOLVER
Apart from the spatial discretization, the evaluation of residual

Ri is another important issue in constructing the high-order scheme.
As shown in Eq. (5), the key to calculate Ri is to evaluate the numer-
ical flux at the quadrature point of the cell interface. In this section,
a high-order GKFS will be developed to play the role.

A. Boltzmann equation and its connection
to Navier–Stokes equations

The GKFS uses the local asymptotic solution to the Boltz-
mann equation to calculate the flux of Navier–Stokes equations. In
this process, the fundamental is the connection between the Boltz-
mann equation and the Navier–Stokes equations. For simulation of
incompressible flows, the corresponding Boltzmann equation with
the Bhatnagar–Gross–Krook (BGK) collision model is given by

∂f
∂t

+ ξ ⋅ ∇f = g − f
τ

, (16)

where f is the gas distribution function that varies with the phys-
ical space x, the particle velocity space ξ, and the time t. g is the
equilibrium state given by

g = ρ( λ
π
)

D
2

e
−λ[

D
∑
i=1
(ξi−ui)2]

. (17)
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Here, ui is the macroscopic flow velocity in the ith direction of D-
dimensional space and λ = 1/(2RT), where R and T are the gas
constant and the temperature, respectively. For isothermal flows, RT
is taken as the square of the sound speed, i.e., RT = c2

s = u2
0/Ma2,

where u0 is the reference velocity and Ma is the Mach number. In
addition, the collision time scale τ can be written as

τ = μ
p
= μ
ρc2

s
. (18)

Like the lattice Boltzmann method (LBM),58–60 in this work, we
choose the normalized sound speed as cs = 1/

√
3 and the normalized

reference velocity as u0 = 0.1.
According to the Chapman–Enskog expansion analysis,61 the

Navier–Stokes equations can be recovered by the Boltzmann equa-
tion with the first-order expansion to the distribution function in
terms of the collision time scale,

f = g − τ(∂g
∂t

+ ξ ⋅ ∇g) + O(τ2). (19)

As a result, the numerical flux of the Navier–Stokes equations can be
calculated by

F = ⟨ξφα f ⟩, (20)

where ⟨ϕ⟩ = ∫ +∞
−∞ ϕdξ defines the integration of ϕ over the particle

velocity space. φα = (1, ξ)T is the moment vector.
For ease of application on the unstructured mesh, a local coor-

dinate system with x1-axis pointing to the normal direction and
x2-axis aligning with the tangential direction of the cell interface is
introduced. Supposing that the quadrature point of the cell interface
is located at x = 0, Eq. (19) can be rewritten as

f (0, ξ, t) = g(0, ξ, t) − τ (∂g
∂t

+ ξ ⋅ ∇g)∣
(0,ξ,t)

+ O(τ2). (21)

Substituting Eqs. (21) into (20), the numerical flux of the Navier–
Stokes equations at the quadrature point in the local coordinate
system can be computed by

F = ⟨ξ1φ̄α f ⟩, (22)

where φ̄α = (1, ξ1, ξ2)T is the moment vector and (ξ1, ξ2) are the
components of the particle velocity expressed in the local coordi-
nate system. Once F is obtained, the numerical flux in the global

Cartesian coordinate system can be calculated by

F ⋅ n =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 nx −ny
0 ny nx

⎤⎥⎥⎥⎥⎥⎦
F. (23)

It can be seen from Eq. (22) that, in GKFS, the key to calculate
the numerical flux of the Navier–Stokes equations is to evaluate the
distribution function at the cell interface.

B. High-order approximation of distribution function
at the cell interface

In the previous GKFS,32,33 the second-order difference scheme
is adopted to discretize the substantial derivative in Eq. (21). It
only has the second-order accuracy in space and time. To construct
the high-order GKFS, the distribution function f (0, ξ, t) has to be
approximated with high-order accuracy. In this work, the following
fourth-order difference scheme is introduced:

f (0, ξ, tn + Δtp) = g(0, ξ, tn + Δtp) +
τ

6Δtp
[2g(−3ξΔtp, ξ, tn)

− 9g(−2ξΔtp, ξ, tn) + 18g(−ξΔtp, ξ, tn)
− 5g(0, ξ, tn) − 6g(0, ξ, tn + Δtp)]
+O(τ2, τΔtp, τ∣ξ∣4Δt3

p), (24)

where Δtp is the virtual time step size used in the solution
reconstruction, which is determined by the following Courant–
Friedrichs–Lewy (CFL) condition:62

Δtp = σp
Ω

(Λx
c + Λy

c) + C(Λx
v + Λy

v)
. (25)

Here, σp is the associated CFL number, C = 4 is a constant, and
Λc and Λv are the convective spectral radii and the viscous spectral
radii, respectively. In the solution reconstruction, σp should be less
than one to satisfy the stability condition, which is different from the
CFL number used for the calculation of the time step size for solving
Eq. (15). Since |ξ|Δtp is proportional to the mesh spacing h, if Δtp > τ,
Eq. (24) has the second-order accuracy in time and the fourth-order
accuracy in space.

In this work, tn denotes the current time level whose flow vari-
ables are known. As a result, the equilibrium states that the sur-
rounding points of the quadrature point can be approximated by the
Taylor series expansion as follows:

g(−3ξΔtp, ξ, tn) = H(ξ1)gL0 [1 − 3aL1ξ1Δtp − 3aL2ξ2Δtp +
9
2
bL11(ξ1Δtp)2 +

9
2
bL22(ξ2Δtp)2 + 9bL12ξ1ξ2Δt2

p −
9
2
cL111(ξ1Δtp)3

− 9
2
cL222(ξ2Δtp)3 − 27

2
cL112ξ

2
1ξ2Δt3

p −
27
2
cL122ξ1ξ2

2Δt
3
p] + (1 −H(ξ1))gR0 [1 − 3aR1 ξ1Δtp − 3aR2 ξ2Δtp

+
9
2
bR11(ξ1Δtp)2 +

9
2
bR22(ξ2Δtp)2 + 9bR12ξ1ξ2Δt2

p −
9
2
cR111(ξ1Δtp)3 − 9

2
cR222(ξ2Δtp)3 − 27

2
cR112ξ

2
1ξ2Δt3

p −
27
2
cR122ξ1ξ2

2Δt
3
p], (26)

g(−2ξΔtp, ξ, tn) = H(ξ1)gL0 [1 − 2aL1ξ1Δtp − 2aL2ξ2Δtp + 2bL11(ξ1Δtp)2 + 2bL22(ξ2Δtp)2 + 4bL12ξ1ξ2Δt2
p −

4
3
cL111(ξ1Δtp)3

− 4
3
cL222(ξ2Δtp)3 − 4cL112ξ

2
1ξ2Δt3

p − 4cL122ξ1ξ2
2Δt

3
p] + (1 −H(ξ1))gR0 [1 − 2aR1 ξ1Δtp − 2aR2 ξ2Δtp + 2bR11(ξ1Δtp)2

+ 2bR22(ξ2Δtp)2 + 4bR12ξ1ξ2Δt2
p −

4
3
cR111(ξ1Δtp)3 − 4

3
cR222(ξ2Δtp)3 − 4cR112ξ

2
1ξ2Δt3

p − 4cR122ξ1ξ2
2Δt

3
p], (27)
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g(−ξΔtp, ξ, tn) = H(ξ1)gL0 [1 − aL1ξ1Δtp − aL2ξ2Δtp +
1
2
bL11(ξ1Δtp)2 +

1
2
bL22(ξ2Δtp)2 + bL12ξ1ξ2Δt2

p −
1
6
cL111(ξ1Δtp)3 − 1

6
cL222(ξ2Δtp)3

− 1
2
cL112ξ

2
1ξ2Δt3

p −
1
2
cL122ξ1ξ2

2Δt
3
p] + (1 −H(ξ1))gR0 [1 − aR1 ξ1Δtp − aR2 ξ2Δtp +

1
2
bR11(ξ1Δtp)2 +

1
2
bR22(ξ2Δtp)2

+ bR12ξ1ξ2Δt2
p −

1
6
cR111(ξ1Δtp)3 − 1

6
cR222(ξ2Δtp)3 − 1

2
cR112ξ

2
1ξ2Δt3

p −
1
2
cR122ξ1ξ2

2Δt
3
p], (28)

with the notations

g(0, ξ, tn) = H(ξ1)gL0 + (1 −H(ξ1))gR0 ,

a1g0 =
∂g0

∂x1
, a2g0 =

∂g0

∂x2
, b11g0 =

∂2g0

∂x1∂x1
,

b22g0 =
∂2g0

∂x2∂x2
, b12g0 =

∂2g0

∂x1∂x2
,

c111g0 =
∂3g0

∂x1∂x1∂x1
, c222g0 =

∂3g0

∂x2∂x2∂x2
,

c112g0 =
∂3g0

∂x1∂x1∂x2
, c122g0 =

∂3g0

∂x1∂x2∂x2
.

The superscripts “L” and “R” denote, respectively, the variables at the
left and right sides of the cell interface. H(ξ1) is the Heaviside func-
tion, and H(ξ1) = 1 for ξ1 ≥ 0 and H(ξ1) = 0 for ξ1 < 0. Substituting
Eqs. (26)–(28) into (24), we have

f (0, ξ, tn + Δtp) = g(0, ξ, tn + Δtp) + τ/Δtp[g(0, ξ, tn)
− g(0, ξ, tn + Δtp)] − τ[gL0 (aL1ξ1 + aL2ξ2)H(ξ1)
+ gR0 (aR1 ξ1 + aR2 ξ2)(1 −H(ξ1))]. (29)

As a result, the numerical flux of the Navier–Stokes equations can be
calculated by substituting Eqs. (29) into (22), which yields

F = (1 − τ/Δtp)⟨ξ1φ̄αg(0, ξ, tn + Δtp)⟩
+ τ/Δtp⟨H(ξ1)ξ1φ̄αg

L
0 [1 − Δtp(aL1ξ1 + aL2ξ2)]⟩

+ τ/Δtp⟨(1 −H(ξ1))ξ1φ̄αg
R
0 [1 − Δtp(aR1 ξ1 + aR2 ξ2)]⟩. (30)

It can be seen that Eq. (30) only contains the first-order derivatives
of the equilibrium distribution function at the left and right sides of
the cell interface.

According to the definition of the expansion coefficients a1 and
a2, the following relationships can be obtained:

⟨a1φ̄αg0⟩ = (∂ρ/∂x1,∂ρu1/∂x1,∂ρu2/∂x1)T , (31)

⟨a2φ̄αg0⟩ = (∂ρ/∂x2,∂ρu1/∂x2,∂ρu2/∂x2)T , (32)

with
a1 = a1,0 + a1,1ξ1 + a1,2ξ2,
a2 = a2,0 + a2,1ξ1 + a2,2ξ2.

Here, the derivatives of conservative variables in the local coordi-
nate system can be calculated from those in the global Cartesian
coordinate system as follows:

∂ρu1

∂x
= ∂ρu

∂x
nx +

∂ρv
∂x

ny,
∂ρu1

∂y
= ∂ρu

∂y
nx +

∂ρv
∂y

ny, (33)

∂ρu2

∂x
= ∂ρv

∂x
nx −

∂ρu
∂x

ny,
∂ρu2

∂y
= ∂ρv

∂y
nx −

∂ρu
∂y

ny, (34)

∂ψ
∂x1
= ∂ψ

∂x
nx +

∂ψ
∂y

ny,
∂ψ
∂x2
= ∂ψ

∂y
nx −

∂ψ
∂x

ny. (35)

In Eq. (35), ψ represents either ρ, ρu1, or ρu2. Since the expan-
sion coefficients aL1 , aL2 and aR1 , aR2 have similar expressions, in
Eqs. (31) and (32), the superscripts “L” and “R” have been omitted
for simplicity. As a result, for any expansion coefficient ϕ, it can be
computed by

⟨ϕφ̄αg0⟩ = (h0,h1,h2)T , (36)

with

ϕ = ϕ0 + ϕ1ξ1 + ϕ2ξ2, (37)

where (h0, h1, h2)T is the right-hand side of Eqs. (31) or (32). Follow-
ing the derivations given in Refs. 38 and 61, the expansion coefficient
ϕ can be expressed as

ϕ2 = 2λ(h2 − u2h0)/ρ, (38)

ϕ1 = 2λ(h1 − u1h0)/ρ, (39)

ϕ0 = h0/ρ − u1ϕ1 − u2ϕ2. (40)

In addition, the equilibrium distribution functions gL0 and gR0 can be
calculated from the conservative variables at the left and right sides
of the cell interface, respectively. Applying Eq. (6) or the first-order
derivatives of Eq. (6), both the conservative variables and their first-
order derivatives at the left and right sides of the cell interface can be
obtained by interpolation from the cell center.

The equilibrium distribution function at the cell interface
g(0, ξ, tn + Δtp) can be calculated by applying the compatibility
condition to Eq. (29), which yields

W = ⟨H(ξ1)φ̄αg
L
0 [1 − Δtp(aL1ξ1 + aL2ξ2)]⟩

+ ⟨(1 −H(ξ1))φ̄αg
R
0 [1 − Δtp(aR1 ξ1 + aR2 ξ2)]⟩, (41)

where W = ⟨φ̄αg(0, ξ, tn + Δtp)⟩ is the conservative variable vector
at the quadrature point of the cell interface at the time level tn + Δtp.
Since gL0 , gR0 , aL1 , aL2 , aR1 , and aR2 have been determined previously, W
can be obtained from Eq. (41) and g(0, ξ, tn + Δtp) can be calculated
by substituting W into Eq. (17).
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C. Conservative variables and numerical fluxes
at the cell interface

In this section, the expressions of W and F will be given explic-
itly for the convenience of application. At first, some coefficients of
the integral used in Eqs. (30) and (41) are introduced as follows:

βL0 = [
1
2
erfc(−

√
λu1)]

L
, βL1 = uL1βL0 +

⎡⎢⎢⎢⎢⎣

1
2
e−λu

2
1

√
πλ

⎤⎥⎥⎥⎥⎦

L

,

βL2 = uL1βL1 +
1

2λL
βL0 , βL3 = uL1βL2 +

2
2λL

βL1 , βL4 = uL1βL3 +
3

2λL
βL2 ,

βR0 = [
1
2
erfc(
√
λu1)]

R
, βR1 = uR1βR0 −

⎡⎢⎢⎢⎢⎣

1
2
e−λu

2
1

√
πλ

⎤⎥⎥⎥⎥⎦

R

,

βR2 = uR1βR1 +
1

2λR
βR0 , βR3 = uR1βR2 +

2
2λR

βR1 , βR4 = uR1βR3 +
3

2λR
βR2 ,

γ1 = u1, γ2 = u2
1 +

1
2λ

, γ3 = u1γ2 +
2

2λ
γ1,

χ1 = u2, χ2 = u2
2 +

1
2λ

, χ3 = u2χ2 +
2

2λ
χ1.

Note that the expressions of coefficients without superscript can be
used for both the left and right sides of the cell interface. As a result,
the three components of W expressed in the local coordinate system
can be written as

W(1) = ρLβL0 + ρRβR0 − Δtp(ρLh̵L0 + ρRh̵R0), (42)

W(2) = ρLβL1 + ρRβR1 − Δtp(ρLh̵L1 + ρRh̵R1), (43)

W(3) = ρLβL0χL1 + ρRβR0 χ
R
1 − Δtp(ρLh̵L2 + ρRh̵R2), (44)

where

h̵0 = a1,0β1 + a1,1β2 + a1,2β1χ1 + a2,0β0χ1 + a2,1β1χ1 + a2,2β0χ2,

h̵1 = a1,0β2 + a1,1β3 + a1,2β2χ1 + a2,0β1χ1 + a2,1β2χ1 + a2,2β1χ2,

h̵2 = a1,0β1χ1 + a1,1β2χ1 + a1,2β1χ2 + a2,0β0χ2 + a2,1β1χ2 + a2,2β0χ3.

Similarly, the three components of F can be computed by

F(1) = ρu1, (45)

F(2) = (1 − τ/Δtp)ργ2 + τ/Δtp(ρLβL2 + ρRβR2) − τ(ρLλ̄L1 + ρRλ̄R1),
(46)

F(3) = (1 − τ/Δtp)ργ1χ1+τ/Δtp(ρLβL1χL1 + ρRβR1 χ
R
1 )−τ(ρLλ̄L2 + ρRλ̄R2),

(47)

where

λ̄1 = a1,0β3 + a1,1β4 + a1,2β3χ1 + a2,0β2χ1 + a2,1β3χ1 + a2,2β2χ2,

λ̄2 = a1,0β2χ1 + a1,1β3χ1 + a1,2β2χ2 + a2,0β1χ2 + a2,1β2χ2 + a2,2β1χ3.

Note that, in Eqs. (45)–(47), the flow variables without superscripts
“L” and “R” are determined from W. Comparatively, the expres-
sions of the numerical flux of the Navier–Stokes equations given by
the high-order GKFS are more concise than those of the high-order
GKS.49–53

IV. NUMERICAL EXAMPLES
In this section, the performance of the present high-order

GKFS is validated by several test examples, including the decaying
vortex flow, the lid-driven cavity flow, the polar cavity flow, the flow
around a circular cylinder, and the flow around a NACA0012 airfoil.
Unless otherwise stated, the implicit temporal discretization with
LU-SGS method is used to solve Eq. (15). All the computations were
carried out on a workstation with a processor of Intel(R) Xeon(R)
E5-2687 CPU@3.0 GHz. For convenience, the second-order GKFS
and the high-order GKFS are abbreviated as “2O GKFS” and “HO
GKFS,” respectively.

A. Case 1: Decaying vortex flow
The numerical accuracy of the developed solver is first exam-

ined by simulating the decaying vortex flow, which has analytical
solutions as follows:

ρ(x, y, t) = ρ0 −
ρ0u2

0

4c2
s
[cos(2πx/L) + cos(2πy/L)]e−4π2u0t/(ReL),

u(x, y, t) = −u0 cos(πx/L)sin(πy/L)e−2π2u0t/(ReL),

v(x, y, t) = u0 sin(πx/L)cos(πy/L)e−2π2u0t/(ReL),

(48)

where ρ0 and u0 are the reference density and velocity. The Reynolds
number is set as Re = ρ0u0L/μ = 100 and the computational domain
is taken as [−L, L] × [−L, L]. Initially, the values of density and veloc-
ity in the computational domain are assigned by Eq. (48) at time t =
0. The periodic boundary condition is imposed on four boundaries.
The relative error of u-velocity at time t = 0.2 L/u0 is measured by the
L2 norm to validate the convergence order numerically. In the simu-
lation, the three-stage Runge–Kutta method is used for the temporal
discretization. The u-velocity contours and v-velocity contours cal-
culated by the high-order GKFS with a mesh size of h = 1/20 are
shown in Fig. 1, where the periodic distribution of the flow field is
observed.

First, the accuracy of GKFS on the regular quadrilateral mesh
and the regular triangular mesh is tested. Four mesh sizes of h = 1/10,
1/20, 1/40, and 1/80 are considered. The virtual time step size used
in the solution reconstruction is taken as Δtp = 0.2h sin(θ), where θ
is the minimum interior angle among the left and right side cells of
the interface. This setting is the same as the high-order FV scheme
of Liu et al.32 and also satisfies the constraint of Eq. (25). It can be
seen from Figs. 2 and 3 that the desired accuracy can be achieved by
the high-order GKFS for both the quadrilateral mesh and the trian-
gular mesh. At the same time, as compared with the second-order
GKFS, the high-order GKFS has a smaller relative error. Second,
the effect of the virtual time step size on the accuracy of the high-
order GKFS is investigated on the quadrilateral mesh. The results of
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FIG. 1. u-velocity contours (left) and v-velocity contours (right) for decaying vortex flow calculated by the HO GKFS with a mesh size of h = 1/20.

FIG. 2. Accuracy test for 2O GKFS and HO GKFS on the regular quadrilateral mesh.

FIG. 3. Accuracy test for 2O GKFS and HO GKFS on the regular triangular mesh.
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FIG. 4. Accuracy test for HO GKFS and HO LBFS with different virtual time step sizes of flux reconstruction.

FIG. 5. Computational mesh for lid-driven cavity flow.

Δtp = 0.2h and Δtp = 0.4h, which correspond to the CFL numbers
of σp = 0.24 and σp = 0.48, are compared in Fig. 4. Clearly, the
accuracy of the high-order GKFS is not affected by the virtual time
step size Δtp. However, for the high-order FV scheme of Liu et al.,32

which is labeled “HO LBFS,” the order of accuracy degrades as Δtp is
increased. The reason is that Δtp = 0.4h will lead to the extrapolation
for the HO LBFS, while the constraint of Eq. (25) is still satisfied for
the HO GKFS.

B. Case 2: Lid-driven cavity flow
The second test case is the lid-driven cavity flow, which is used

to compare the accuracy and efficiency of the high-order GKFS with
the second-order one. The dynamic similarity of this test example
depends on the Reynolds number, which is defined as Re= ρ0u0L/μ,
where ρ0 is the reference density, u0 is the velocity of the top lid,
and L is the length of the square cavity. In the simulation, both
the uniform quadrilateral mesh and the non-uniform triangular
mesh shown in Fig. 5 are adopted, and the Reynolds number is
taken as 1000. The streamlines of this test case are shown in Fig. 6,

FIG. 6. Streamlines for lid-driven cavity flow calculated by the HO GKFS on a
uniform quadrilateral mesh with 3600 cells.
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FIG. 7. Comparison of velocity profiles for lid-driven cavity flow obtained by the HO GKFS with different virtual time step sizes of flux reconstruction.

FIG. 8. Comparison of velocity profiles for lid-driven cavity flow obtained by the 2O GKFS and the HO GKFS on a uniform quadrilateral mesh with 3600 cells.

FIG. 9. Comparison of velocity profiles for lid-driven cavity flow obtained by the 2O GKFS on different triangular meshes. Note that “CV” means the number of control volumes,
and this abbreviation is also used in the following figures.
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FIG. 10. Comparison of velocity profiles for lid-driven cavity flow obtained by the HO GKFS on different triangular meshes.

FIG. 11. Comparison of convergence histories of the 2O GKFS and the HO GKFS. When achieving comparable results, the numbers of control volumes (CV) of the 2O GKFS
and the HO GKFS, are respectively 10 000 and 3600 for the quadrilateral mesh and 9902 and 2694 for the triangular mesh.

which consist of a primary vortex at the center of the cavity and two
secondary vortexes at the bottom left and bottom right corners of
the cavity.

First, the effect of the virtual time step size on the accuracy
of the high-order GKFS is investigated on the uniform quadrilat-
eral mesh with 6400 cells. Three CFL numbers for calculation of
Δtp is tested, i.e., σp = 0.5, 0.7, and 0.9. It can be seen from Fig. 7
that the velocity profiles along the vertical and horizontal central
lines agree well with the benchmark data63 and are barely affected
by the virtual time step size. Second, the accuracy of the high-order
GKFS is compared with the second-order GKFS on the same mesh.
As shown in Fig. 8, the high-order GKFS can obtain more accurate
results than the second-order scheme on a uniform quadrilateral
mesh with 3600 cells. Figures 9 and 10 depict the mesh conver-
gence studies of the second-order GKFS and the high-order GKFS
on the non-uniform triangular meshes, respectively. It is found that
the high-order GKFS can achieve the comparable results of the

benchmark data63 on a triangular mesh with 2694 control volumes,
while the second-order GKFS requires a refined mesh with 9902
control volumes. In Fig. 11, we compare the convergence histo-
ries of the second-order GKFS and the high-order GKFS. Appar-
ently, the high-order GKFS converges faster than the second-order
counterpart when achieving comparable results. Furthermore, the

TABLE I. Comparison of the computational mesh and CPU time (seconds) of the 2O
GKFS and the HO GKFS for lid-driven cavity flow when achieving comparable results.

Control CPU Speed-up
Mesh Scheme volumes time ratio

Quadrilateral 2O GKFS 10 000 205.093 . . .
HO GKFS 3600 95.250 2.153

Triangular 2O GKFS 9902 224.046 . . .
HO GKFS 2694 62.312 3.596

Phys. Fluids 33, 017107 (2021); doi: 10.1063/5.0032488 33, 017107-10

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 12. Computational mesh for polar
cavity flow (left) and streamlines calcu-
lated by the HO GKFS (right).

FIG. 13. Comparison of radial and azimuthal velocity distributions for polar cavity flow at θ = 0 on the uniform quadrilateral mesh with 60 × 60 cells (left) and 80 × 80 cells
(right).

FIG. 14. Comparison of radial and azimuthal velocity distributions for polar cavity flow at θ = 0 (left) and the CPU time of the 2O GKFS and the HO GKFS (right) when
achieving comparable results.
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FIG. 15. Comparison of pressure coefficient distribution along the cylindrical
surface calculated by the 2O GKFS and the HO GKFS.

computational mesh and the central processing unit (CPU) time of
these two solvers are tabulated in Table I. The speed-up ratio of 3.596
can be achieved for the high-order GKFS on the triangular mesh
when achieving comparable results.

C. Case 3: Polar cavity flow
In this section, the accuracy and efficiency of the high-order

GKFS on the curved boundary are validated by the polar cavity
flow.64 As shown in Fig. 12, the computational domain of this test
example is a sector with the angle of one radian and symmetric
with respect to the x-axis. The radius of the inner arc and the
outer arc is Ri = 1 and Ro = 2, respectively. The inner arc is mov-
ing with the azimuthal velocity u0 and the other boundaries are
fixed. The Reynolds number is defined as Re = ρ0u0(Ro − Ri)/μ and
set as 1000 in the present simulation. The computational domain
is discretized by the uniform quadrilateral mesh with different
sizes.

The streamlines obtained by the high-order GKFS on a mesh
with 60 × 60 cells are shown in Fig. 12, which are in line with the
result of Tavakoli et al.64 In Fig. 13, the simulation results of the
second-order GKFS and the high-order GKFS are compared. It can
be found that the results of the high-order GKFS are closer to the
benchmark data64 than the second-order one on the same grid and
the high-order GKFS can provide accurate results on a mesh with
80 × 80 cells. As displayed in Fig. 14, a fine mesh with 120 × 120
cells is required for the second-order GKFS to achieve such results.
Accordingly, the high-order GKFS requires less CPU time to obtain
comparable results than the second-order counterpart. As shown in
Fig. 14, the CPU time of these two solvers is about 400 s and 640 s,
respectively.

D. Case 4: Flow around a circular cylinder
To validate the performance of the high-order GKFS for simu-

lation of external flows, the flow around a circular cylinder is tested
in this section. First, the inviscid flow around a circular cylinder is
solved on an O-type grid with 48 × 48 quadrilateral cells. The far-
field boundary is taken 30D away from the geometrical center of the
cylinder, where D is the diameter of the cylinder, and the height of
the cell adjacent to the wall is set as 0.03D. The pressure coefficient
distribution along the cylindrical surface is depicted in Fig. 15. As
compared with the second-order GKFS, the result of the high-order
GKFS is closer to the analytical data. The pressure contoursobtained
by these two solvers are shown in Fig. 16. It can be found that the
symmetry of the solutions is well captured by the high-order GKFS.

Second, the viscous flow around a circular cylinder is simu-
lated. In this test case, the flow pattern is governed by the Reynolds
number Re = ρ0u0D/μ, where ρ0 and u0 are the free stream den-
sity and velocity, respectively. In the simulation, Re = 20 and 40 are
considered. The same computational domain of the inviscid case is
used but discretized by an O-type grid with 120 × 100 quadrilat-
eral cells. The height of the cell adjacent to the wall is set as 0.01D.
The pressure coefficient distribution around the cylindrical surface
at Re = 40 is depicted in Fig. 17 and compared with the results of
He and Doolen.65 Good agreement is observed and the results of

FIG. 16. Pressure contours calculated by
the 2O GKFS (left) and the HO GKFS
(right).
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FIG. 17. Comparison of pressure coefficient distribution along the cylindrical
surface at Re = 40 calculated by the 2O GKFS and the HO GKFS.

the high-order GKFS are slightly better than the second-order one.
The comparison of the drag coefficient, the recirculation length, and
the separation angle with reference data66–68 is made in Table II. In
this table, the results calculated by the high-order GKFS with a fine
mesh (240× 200 quadrilateral cells) are taken as the benchmark data.
It is found that the results of the high-order GKFS with 120 × 100
quadrilateral cells are closer to the benchmark data than those of the
second-order scheme, especially for the recirculation length.

E. Case 5: Flow around a NACA0012 airfoil
The last test case is the flow around a NACA0012 airfoil. In

the simulation, the chord length-based Reynolds number is taken
as 500 and the angle of attack is set as 0○. Two meshes are used
to validate the superiority of the high-order GKFS. As shown in
Fig. 18, the coarse mesh has 120 points on the airfoil surface and

TABLE II. Comparison of the drag coefficient, recirculation length, and separation
angle for the flow around a circular cylinder at Re = 20 and 40.

Re References Cd Ls/D θs

20 Dennis and Chang66 2.05 0.94 43.7
Shu et al.67 2.062 0.935 42.94

Yang et al.68 2.059 0.921 43.73
2O GKFS 2.065 0.896 43.38
HO GKFS 2.051 0.922 43.51

HO GKFS (fine mesh) 2.053 0.934 43.69

40 Dennis and Chang66 1.52 2.35 53.8
Shu et al.67 1.530 2.240 52.69

Yang et al.68 1.540 2.229 53.71
2O GKFS 1.550 2.092 53.46
HO GKFS 1.537 2.221 53.72

HO GKFS (fine mesh) 1.537 2.294 53.80

6664 triangular cells, and the fine mesh has 200 points on the airfoil
surface and 20 674 triangular cells. The far-field boundary is taken
20 times of chord length away from the airfoil. The pressure con-
tours and u-velocity contours of this test case are shown in Fig. 19,
where the symmetric distribution of the flow field about the x-axis is
observed due to the zero angle of attack.

The pressure coefficient and skin friction coefficient distribu-
tions along the airfoil surface are depicted in Fig. 20. Also displayed
in this figure are the results of Hafez et al.69 and Khorasanizade
and Sousa.70 It can be found that the results of the second-order
GKFS with the coarse mesh have some oscillations, which can be
suppressed by using the fine mesh. In contrast, for the high-order
GKFS, the results of the coarse mesh match well with those of the
second-order GKFS with the fine mesh and the reference data.69,70

This test case shows that the high-order GKFS can provide more
accurate results than the second-order counterpart on a relatively
coarse mesh.

FIG. 18. Computational mesh for flow around a NACA0012 airfoil: left: coarse mesh; right: fine mesh.
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FIG. 19. Pressure contours (left) and u-velocity contours (right) for flow around a NACA0012 airfoil calculated by the HO GKFS on a fine mesh.

FIG. 20. Comparison of pressure coefficient distribution (left) and skin friction coefficient distribution (right) for flow around a NACA0012 airfoil.

V. CONCLUSIONS

This work presents a high-order GKFS for simulation of incom-
pressible flows on the unstructured mesh. In this method, the local
asymptotic solution to the Boltzmann equation with high-order
accuracy is used to calculate the inviscid and viscous fluxes of the
Navier–Stokes equations simultaneously. This local asymptotic solu-
tion has the second-order accuracy in time and the fourth-order
accuracy in space. Since the time step size of the solution recon-
struction is independent of the time step size of solving the Navier–
Stokes equations, the temporal accuracy of the numerical flux may
not affect the overall accuracy of the high-order GKFS. As com-
pared with the high-order GKS,49–53 the developed high-order GKFS
is a bit simple and the expression of the numerical flux of the
Navier–Stokes equations can be given concisely.

Five test cases including the decaying vortex flow, the lid-driven
cavity flow, the polar cavity flow, the flow around a circular cylinder,
and the flow around a NACA0012 airfoil are simulated to validate

the accuracy and efficiency of the high-order GKFS on the quadri-
lateral mesh and the triangular mesh. It is shown that the high-order
GKFS can achieve the desired accuracy on both meshes. At the same
time, the accuracy of the high-order GKFS is not affected by the vir-
tual time step size used in the solution reconstruction, while for the
high-order FV scheme of Liu et al.,32 the order of accuracy degrades
as the virtual time step size is increased to violate the requirement of
interpolation for the solution reconstruction. As compared with the
second-order GKFS, the high-order scheme can provide comparable
results with less computational time.

Since the weakly compressible Navier–Stokes equations under
the low Mach number limit are used in this work, the present
method can only be used to simulate isothermal incompressible
flows. To extend its application to compressible flows as well as non-
isothermal flows, the energy equation should be involved and the
equilibrium distribution function should be changed accordingly.
Like the high-order GKFS for isothermal incompressible flows, the
formulation of the high-order GKFS for compressible flows can
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also be given explicitly, but it is a little bit more complicated than
the incompressible one. The details of the high-order GKFS for
compressible flows will be presented in future work.
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