Northumbria Research Link

Citation: Brownstein, Callum G., Millet, Guillaume Y. and Thomas, Kevin (2021) Neuromuscular responses to fatiguing locomotor exercise. Acta Physiologica, 231 (2). e13533. ISSN 1748-1708

Published by: Wiley

URL: https://doi.org/10.1111/apha.13533 < https://doi.org/10.1111/apha.13533 >

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/45273/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

1		
2 3	1	Nouromuscular rosponsos to fatiguing locomotor ovorciso
4	T	Neuromuscular responses to fatiguing locomotor exercise
5 6 7 8	2	Dr. Callum G Brownstein ¹ , Prof. Guillaume Y Millet ^{1,2} , Dr. Kevin Thomas ³ .
9 10	3	¹ Université Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology,
11 12 12	4	Saint-Etienne, France
13 14 15	5	² Institut Universitaire de France (IUF)
16 17	6	³ Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
19	7	
20	, 8	
21	0	
23 24	9	Address for correspondence:
24 25 26 27	10	Dr. Callum BROWNSTEIN
28	11	Laboratoire Interuniversitaire de Biologie de la Motricité
29 30 31	12	Bâtiment IRMIS
32 33	13	10 rue de la Marandière
34	1/	12270 Saint Priest en Jarez
35 36	14	
37 38	15	France
39 40	16	04 77 42 18 83
41 42	17	Email: <u>callum.brownstein@univ-st-etienne.fr</u>
43 44	18	
45	19	
46 47	20	
48 49	21	
50		
51 52	22	
53 54	25	
55	24	
56 57	25	
58 59	26	
60	27	

Abstract

Over the last two decades, an abundance of research has explored the impact of fatiguing locomotor exercise on the neuromuscular system. Neurostimulation techniques have been implemented prior to and following locomotor exercise tasks of a wide variety of intensities, durations, and modes. These techniques have allowed for the assessment of alterations occurring within the central nervous system and the muscle, while techniques such as transcranial magnetic stimulation and spinal electrical stimulation have permitted further segmentalisation of locomotor exercise-induced changes along the motor pathway. To this end, the present review provides a comprehensive synopsis of the literature pertaining to neuromuscular responses to locomotor exercise. Sections of the review were divided to discuss neuromuscular responses to maximal, severe, heavy and moderate intensity, high-intensity intermittent exercise, and differences in neuromuscular responses between exercise modalities. During maximal and severe intensity exercise, alterations in neuromuscular function reside primarily within the muscle. Although post-exercise reductions in voluntary activation following maximal and severe intensity exercise are generally modest, several studies have observed alterations occurring at the cortical and/or spinal level. During prolonged heavy and moderate intensity exercise, impairments in contractile function are attenuated with respect to severe intensity exercise, but are still widely observed. While reductions in voluntary activation are greater during heavy and moderate intensity exercise, the specific alterations occurring within the central nervous system remain unclear. Further work utilising stimulation techniques during exercise and integrating new and emerging techniques such as high-density electromyography is warranted to provide further insight into neuromuscular responses to locomotor exercise.

 Key words: Cycling, fatigue, neurostimulation, neuromuscular physiology, running

The study of exercise-induced fatigue has captivated academics within the field of sport and

53 Introduction

exercise for centuries, with research into the topic dating back as far as the 18th century through the pioneering work of Alessandro Mosso, documented in his book La fatica. Today, fatigue remains the subject of considerable research attention, with over 3000 scientific publications on this topic in the last 20 years. Despite this interest, a strict definition of fatigue remains elusive, likely due to the numerous divisions within sport and exercise science providing definitions which best suit their individual discipline. Recent efforts have been made to provide a universal definition of fatigue, applicable to both athletic and clinical populations, which encompasses the interdependent physical and cognitive processes that occur with numerous chronic health conditions, and during and following strenuous exercise¹. To this end, Enoka and Duchateau¹ define fatigue as a debilitating symptom of tiredness and weakness, dictated by interactions between performance fatigability, which involves an acute exercise-induced reduction in force or power output of the involved muscles, and perceived fatigability, involving changes in sensations that accompany fatigue. The definition of fatigue as a sensation of tiredness and weakness, underpinned and/or modulated by a myriad of physiological and psychological processes, is used for the purposes of this review.

In sport and exercise science, considerable research has focused on the effect of fatiguing exercise on objective measures of performance, such as alterations in the force and/or power generating capacity of muscle (i.e. the 'performance fatigability' aspects)²⁻⁴. Such endeavours are logical given that the ability of the muscle to exert force is imperative to successful sporting performance. During high-intensity or prolonged exercise, the force generating capacity of the muscle is reduced ⁵. This reduction in muscle force during exercise, and the neurophysiological changes which accompany it, are integral contributors to fatigue and impaired exercise performance, and also possibly increase injury risk ^{6,7}. Consequently, understanding exercise-

induced impairments in muscle force generating capacity, and the mechanisms which elicitthese impairments, is a pertinent area of research.

Voluntary force is produced through a complex chain of events which occur throughout the neuromuscular pathway, from brain to muscle. As every step along this pathway is susceptible to change during fatiguing exercise, determining the alterations within the neuromuscular pathway that occur during exercise can facilitate understanding of the causes of reduced muscle force, and in turn exercise performance¹. Using peripheral nerve stimulation, it is possible to differentiate between the contribution of alterations within the muscle and central nervous system (CNS) to impaired neuromuscular function and force generating capacity during exercise. Peripheral contributors to reductions in muscle force involve disturbances at sites at or distal to the neuromuscular junction and can be assessed by measuring involuntary evoked responses to electrical stimulation on relaxed muscle. This technique offers a method to assess the manifestation of biochemical and histological changes occurring within muscle fibers through changes in the resting twitch force. Other methods, such as muscle biopsies and Ultrasound, can be used to provide further insight into biochemical and histological alterations occurring during locomotor exercise ^{8,24}. Central contributors to fatigue involve processes occurring proximal to the neuromuscular junction, resulting in an impairment in the capacity of the CNS to voluntarily activate the muscle, and can be examined through evoked responses to electrical or magnetic stimulation during submaximal and maximal voluntary contractions (MVCs)⁵. Moreover, exercise-induced alterations in the corticospinal tract, which represents the primary motor pathway for control of human movement, can be further segmented through the use of transcranial magnetic stimulation (TMS), with concurrent spinal stimulation enabling the differentiation between cortical and spinal components of the motor pathway ^{8,9}. Other techniques, such as the assessment of stretch-reflex responses following physical perturbations, can also be used to monitor natural reflex responses ¹⁰, though the application of

these methods in response to fatiguing locomotor exercise is limited. While many of these techniques permit the assessment of neuromuscular function at a segmented level, it should be noted that the peripheral and central contributors to impairments in neuromuscular function are not mutually exclusive. For example, changes occurring within the muscle influence the activation signal discharged by motor neurons during voluntary contractions, while sensory feedback is-transmitted from the muscle travels to various sites within the CNS, and can influence the behaviour of cortical and spinal neurons ^{1,11,12}.

A common approach when studying neuromuscular responses to fatiguing exercise is to deliver electrical and magnetic stimuli during fatiguing single-limb, isometric exercise protocols. While this approach is convenient because participants are not required to manoeuvre to the designated apparatus for the fatiguing task (i.e. the equipment used to measure isometric force), the 'real-world' applicability of the findings from these studies is questionable due to a lack of ecological validity. That is, the type of exercise being performed differs substantially from that performed in a sport and exercise environment, where dynamic, locomotor exercise is performed with multiple limbs, and the systemic and local responses are considerably different to that of isometric exercise. Given the well-established importance of task dependency in determining the aetiology of exercise-induced fatigue ¹³, extrapolations from findings using isometric exercise models in the context of locomotor activity should be made with caution ¹⁴, and there is a requirement to assess neuromuscular function in response to locomotor exercise itself. As such, a plethora of research over the last two decades have documented neuromuscular responses to locomotor exercise of varying intensities, durations and modes, both during and in the recovery period following exercise ¹⁵⁻¹⁷. While a number of reviews exist in the literature on corticospinal excitability during locomotor exercise ^{8,18}, neuromuscular function responses to repeated sprints ¹⁹ and extreme endurance exercise ²⁰, a comprehensive review of the literature describing neuromuscular responses to locomotor exercise is lacking.

An understanding of how locomotor exercise impacts the neuromuscular system has implications for those working with both athletic and clinical populations. Accordingly, the aim of this review is to summarise literature examining neuromuscular responses during and following fatiguing locomotor exercise, with a focus on the role of locomotor exercise intensity, duration, and mode on the modulation of neuromuscular function.

134 The role of exercise intensity and duration on neuromuscular responses to fatiguing 135 exercise

Research has demonstrated that the intensity and duration of locomotor exercise has a profound influence on the aetiology of impairments in neuromuscular function ²¹⁻²³. Exercise intensity during locomotor exercise can be categorised into distinct domains demarcated by physiological thresholds. Specifically, four intensity domains have so far been established; moderate (power output below lactate threshold), heavy (power output between lactate threshold and critical intensity, defined as the asymptote of the relationship between intensity and time, and the maximum sustainable exercise intensity), severe (power output above critical intensity that can be sustained until VO_{2max} is reached) and extreme (supra-severe intensity in which exercise intensity is so great that VO_{2max} cannot be reached before exhaustion)²⁴. Each intensity domain is characterised by differences in VO₂ kinetics, muscle metabolic, and blood acid-base responses ²⁵. In turn, the exercise intensity domain and the distinct physiological responses within these domains are proposed to influence the mechanisms responsible for impairments in neuromuscular function. In addition, many sporting activities are characterised by intermittent bouts of maximal or severe intensity exercise interspersed with periods of recovery or moderate and heavy intensity exercise, such as in team sports. Thus, this form of activity imposes a unique challenge to all physiological systems, including the neuromuscular

system, in that it is of prolonged duration, spans the four exercise intensity domains, and ischaracterised by substantial mechanical demands.

155 Neuromuscular responses to 'all-out' exercise

156 Muscle force generating capacity, voluntary activation and contractile function

Short-duration, maximum intensity exercise (30-60 s), in which there is maximum effort and a considerable decrease in performance, is referred to as 'all-out' exercise ²⁶. This form of exercise is commonplace during sprint interval training, which is regularly implemented as a means of improving health ²⁷ and sports performance ²⁸, as well as the Wingate 30 s test, and athletic events such as 400 m track running. Moreover, repeated sprint exercise, characterised by short maximal efforts (3-7 s) separated by brief recovery periods (< 60 s), is a common and effective training modality ²⁹, and is implicated in team sports such as basketball ³⁰. Despite the relatively brief nature of this mode of exercise, there is a substantial and progressive decrease in the force generating capacity of the muscle. Following a 30 s all out cycle sprint, Kruger et al. ³¹ found a 19% reduction in knee extensor maximum voluntary contraction (MVC). Similar results have been observed following running or cycling repeated sprint protocols, with reductions in MVC when measured within 30 s post-exercise ranging from 15-24% (Table 1). It is well-established that the decrease in performance during all-out exercise is due primarily to alterations occurring within the muscle. Indeed, following 30 s all-out cycling, Kruger et al. ³¹ and Fernandez-del Olmo et al. ³² reported a 50% and 41% reduction in peak twitch force (P_{tw}), respectively, indicating the presence of considerable impairments within the contractile machinery ³². The reduction in the ability of the muscle to produce force in response to neural input during all-out exercise is likely due to the reliance on anaerobic metabolism, the by-products of which are deleterious to contractile function. Specific mechanisms proposed to contribute to impaired contractile function include the accumulation

of inorganic phosphate (P_i) derived from the creatine kinase reaction, which has multiple roles in impaired contractile function³³, such as interference with Ca²⁺ release and sensitivity, reductions in specific force per cross-bridge and the rate of cross-bridge formation ^{34,35}. Accumulation of H⁺ ions occurring due to anaerobic glycolysis, and subsequent interference with the excitation-contraction coupling process is also a commonly cited mechanism^{26,36}.

Discrepancies exist in the literature regarding the effect of maximal intensity exercise on voluntary activation (VA). For example, following two 30 s all-out cycling tasks separated by 30 min, Fernandez-del-Olma et al. 32 found a 34% reduction in VA, whereas Kruger et al. 31 found no reduction in VA following a similar exercise task. Following repeated sprint exercise, some studies have reported no change in VA ^{37,38}, while many others reported significant decreases ranging between 3 and 11% ³⁹⁻⁴⁵ (Table 1). While these discrepancies could be related to differences in the exercise protocols (e.g. number or duration of sprint, exercise mode, between-sprint recovery duration), time to post-exercise neuromuscular assessment, and/or characteristics of the participants studied (sex, age, physical condition), the body of evidence would suggest short-duration, all-out exercise could inhibit the capacity of the CNS to activate muscle (Table 1).

In regards to the kinetics of change in neuromuscular function during repeated sprints, impairments in MVC, VA and Ptw have been shown to occur following just two sprints of a repeated sprint protocol ⁴³. Both Goodall *et al.* ⁴³ and Hureau *et al.* ³⁹ showed that most of the reduction in P_{tw} occurred during the first half of a repeat-sprint protocol, and reached a nadir around the mid stage. In contrast, impairments in VA were shown to be more pronounced during the later stages of the protocol ³⁹. These kinetics could be explained by the early utilisation of higher threshold fatigable motor units during the initial sprints causing the rapid reduction in Ptw, while the reduction in VA during the later stages could be due to a number of mechanisms (discussed below). In addition, root mean square EMG (EMG_{RMS}) normalised to

1		
2 3 4	202	the maximal muscle compound action potential (M_{max}) is progressively reduced throughout
5	203	repeated sprints, suggesting reduced $alpha(\alpha)$ -motoneuron output ^{39,46} . Accordingly, impaired
7 3	204	contractile function plays a particularly prominent role in reduced muscle force during the early
9 10 11	205	stages of repeated sprints, while reductions in VA become more apparent during the later
12 13	206	stages.
14 15		
16 17		
18 19		
20		
22		
23 24		
25 26		
27		
29		
30 31		
32 33		
34 25		
36		
37 38		
39 40		
41		
+2 43		
44 45		
46 47		
48 10		
50		
52		
53 54		
55		
57		
58 59		
50		

Acta
Ph
ysic
ĝ
ica

⊸
а
o
ē
_
0
đ,
_
Ν
ъ

	Author	Z	Exercise protocol	Exercise duration/distance	Muscle group	Time to post- exercise measure	Δ ΜΥС	ΔνΑ	ΔP_{tw}	A MEP	Δ СМЕР
	Leg cycling										
	Fernandez-del- Olmo <i>et al.</i> ³²	10	Wingate × 2 (30 min recovery)	30 s	KE	~1 min	↓ 17%	↓ 34%	↓41%	↑ @ 50 and 75% abs MVC	NQ
_	Kruger et al. 31	10	Wingate	30 s	KE	10 s	↓ 19%	\$	↓ 50%	NQ	NQ
	Hureau et al. 39	12	10 sprints (30 s recovery)	10 s	KE	30 s	↓ 19%	↓~11%	↓~55%	NQ	NQ
	Girard <i>et al.</i> ³⁸	12	10 sprints (30 s recovery) followed by 5 sprints (6 min recovery)	6 s	KE	3 min	↓ 11%	\$	↓~43%	\$	ŊŊ
	Girard <i>et al.</i> ³⁷	12	10 sprints (30 s recovery) followed by 5 sprints (6 min recovery)	6 s	KE	3 min	↓~14%	\$	↓~44%	QN	NQ
	Racinais et al. 40	9	10 sprints (30 s recovery)	6 s	KE	5 min	↓17%	↓ 3%	%6↑	ŊŊ	ŊŊ
	Pearcey et al. 41	8	10 sprints (180 s recovery)	10 s	KE	< 20 s	↓ 24%	↓ 7%	↓ 30%	ŊŊ	NQ
	Tomazin <i>et al</i> . 47	11	5 sprints (24 s recovery) × 4 sets (3 min between set recovery)	6 s	KE	30 s	↓ 15%	¢	↓ 39%	NQ	ŊŊ
	Monks <i>et al</i> . ⁴²	10	10 sprints (30/180 s recovery)	10 s	KE	< 10 s	↓27%	1 6%	↓ 39%	ŊŊ	NQ
	Running										
	Tomazin <i>et al</i> . ⁴⁸	11	100 m sprint	15 s	KE	30 s	\$	\$	↓ 10%	ŊŊ	NQ
	Tomazin <i>et al</i> . 48	11	200 m sprint	31 s	KE	30 s	\$	¢	↓ 20%	NQ	NQ
	Tomazin <i>et al</i> . 48	11	400 m sprint	71 s	KE	30 s	↓ 14%	¢	↓35%	ŊŊ	NQ
	Tomazin <i>et al</i> . 47	Ξ	5 sprints (24 s recovery) × 4 sets (3 min between-set recovery)	6 s	KE	30 s	↓ 20%	↓ 7%	↓ 36%	ŊŊ	NQ

Pag	
Ĩ	
ç	
5	
ge 11 of 125	

46	45	44	43	42	41	40	39	38	37	36	ω 5	34	ω	32	31	30	29	28	27	26	25 !	23	22	20	18 19	17	16	14	12	10 11	98	7 0	. U 1	ν⊿	2 1
																												C 10	210	208 209					
																														EF: elbow flexors; K cervicomedullary mc	Pearcey et al. 45	Arm cycling	Perrey et al. 44	Goodall <i>et al</i> . ⁴³	
																														E: knee tor evok	12		16	12	
																														extensors; MEP: motor evoked ced potential; VA: voluntary act	10 sprints (150 s recovery)		12 sprints (30 s recovery)	12 sprints (30 s recovery)	
																														potential; MVC: maxi ivation	10 s		40 m (5.7-6.7 s)	30 m (4-5 s)	
				11																										mal voluntary c	EF		PF	KE	
																														ontraction; NQ: not qu	< 5 s		2 min	< 2.5 min	
																														antified; PF: p	%6↑		↓ 11%	↓12%	
																														antar flexors	1 6%		↓ 3%	18%	
																														; P _{tw} : peak t	↓ 27%		↓ 13%	↓ 24%	
																														witch force; CM	↓ 19%		ŊŊ	€	
																														EP:	¢		NQ	NQ	

211 Central nervous system alterations during 'all-out' exercise

While the peripheral changes which contribute to impaired neuromuscular function during all-out exercise are well-established, the mechanisms which contribute to reductions in VA are less clear. A number of functional changes can occur within the CNS and contribute to impairments in VA and muscle force, including impairments in motor cortical output ⁴⁹, changes in the intrinsic properties of α -motoneurons ⁵⁰, altered reflex responses at the spinal cord ⁵¹, increases in group III/IV afferent firing ascending to supraspinal and spinal centres ⁴⁶, and alterations in descending neuromodulatory systems ⁵². While the invasive nature associated with directly assessing the activity of some these systems preclude their measurement in humans, indirect measures can provide insights into adjustments in the neuromuscular pathway that occur during maximal intensity exercise. Figure 1 depicts the neuromuscular pathway and the potential alterations within this pathway that contribute to or occur with reduced performance during maximal intensity exercise based on current evidence primarily derived from maximal cycling exercise.

Regarding cortical output, this is commonly estimated via the delivery of TMS over the motor cortex to estimate VA (VA_{TMS}). This technique involves delivering single-pulse TMS during a MVC, with an increase in the evoked superimposed force relative to an estimated resting twitch thought to be indicative of a decrease in cortical output. It should be noted that while VA_{TMS} is the most common method of estimating changes in maximal cortical output, it is associated with various limitations, such as activation of antagonist muscles, submaximal activation of the motoneuron pool, and accuracy of the estimated resting twitch ⁵³, and spinal influences on VA_{TMS} cannot be ruled out. Studies using this technique in response to maximal intensity exercise have provided mixed evidence, with some reporting a decrease ^{32,43} in VA_{TMS} while others report no change ^{38,54}. Thus, while there is some evidence that output from the motor cortex could be impaired during all-out exercise, the limitations in VA_{TMS} as well as the

Page 13 of 125

Acta Physiologica

conflicting findings in the literature preclude a definitive conclusion on the matter. The mechanism(s) which could reduce motor cortical output are unclear, but could relate to alterations in the properties of cortical neurons, or synaptic inputs acting at or upstream of the motor cortex ^{45,49,55}. While evidence regarding the activity of these neurons in response to maximal intensity exercise is scarce, Pearcey et al. 45 demonstrated a reduction in the motor evoked potential to cervicomedullary evoked potential (MEP/CMEP) ratio measured post-exercise and between bouts of repeated arm sprint cycling, indicative of a decrease in the excitability of motor cortical neurons. Although the relationship between MEP and voluntary activation is not entirely clear, a decrease in the excitability of motor cortical neurons responsible for producing descending drive would require a compensatory increase in neural drive into the cortex, and if such an increase is not possible (e.g. due to the maximal nature of all-out exercise), recruitment of α -motoneurons would be diminished and VA reduced. More studies utilising VA_{TMS} and cortical combined with spinal stimulation are required to elucidate the effects of all-out exercise on motor cortical output and excitability.

Alterations in α -motoneuron excitability can be assessed by measure the CMEP in response to all-out exercise. This measure is advantageous given that cortical projections to α -motoneurons lack conventional presynaptic inhibition, which can influence responses such as the H-reflex independently of altered motoneuron excitability ⁵⁶. Motoneuron excitability is influenced by the level of descending synaptic input, sensory input, monoaminergic input, and alterations in the intrinsic properties of α -motoneurons, all of which could be altered during fatiguing exercise ⁵. Only one study has assessed the CMEP in response to all-out exercise, with Pearcey et al.⁴⁵ demonstrating a 29% increase in CMEP amplitude when measuring responses during an isometric contraction following repeated arm-cycle sprinting. This increase in α -motoneuron excitability could be considered surprising given that studies have observed a decrease in spinal excitability during fatiguing isometric tasks (e.g. ^{50,57}), highlighting the

importance of task-dependency and contraction mode on the neuromuscular adjustments to fatiguing exercise. The authors posited that the increased excitability could be due to a decrease in voltage threshold for action potential, activation of persistent inward currents and the monoaminergic system during exercise, and/or the facilitatory effects of firing of group III/IV afferents on the biceps brachii ^{58,45}. It should be noted that when measured during ongoing voluntary contractions, CMEPs can be influenced by alterations in descending drive from the motor cortex, and thereby confound estimations of α -motoneuron excitability. Thus, further studies measuring CMEPs (or other methods of estimating α -motoneuron excitability such as measuring thoracic or lumbar evoked potentials) in the absence of ongoing descending drive (e.g. during the TMS evoked silent period ^{59,60}), and during more traditional forms of maximal intensity exercise (e.g. cycle sprints), are warranted to further understanding on the effect of maximal intensity locomotor exercise on α -motoneuron excitability.

Changes in motor cortical output and α -motoneuron excitability can occur in addition to, and/or secondary to alterations in input from sensory neurons. For example, projections from sensory neurons innervating skeletal muscle, including muscle spindles (group Ia/II), Golgi tendon organs (group Ib) and group III/IV afferents, can modulate the corticospinal pathway during exercise. The role of Golgi tendon organs during locomotor exercise is unknown, but are suggested to play a limited role in exercise-induced impairments in neuromuscular function ^{5,61}. During locomotor activity, group Ia afferents provide facilitatory feedback to α -motoneurons, and exercise-induced disfacilitation of these afferents has been suggested as a potential mechanism of impaired α -motoneuron firing rate and thereby VA ^{5,62}. The excitability of the spinal loop between muscle spindle afferents projecting to α -motoneurons can be assessed through the H-reflex, involving exogenous stimulation of the motor nerve to activate Ia afferents. The H-reflex can be influenced by numerous pre- and post-synaptic mechanisms, with exercise-induced reductions in H-reflex largely attributed to reduced Ia afferent discharge,

Page 15 of 125

Acta Physiologica

increased presynaptic inhibition onto Ia afferents, and decreased α -motoneuron excitability. Only one study has used this technique in response to maximal intensity repeated sprint cycling, consisting of 7×10 s sprints ⁵¹. The study assessed the effects of repeated sprints on pre-synaptic inhibition of the spinal reflex pathway by utilising stimulation of cutaneous afferents of the foot, which is known to reduce presynaptic inhibition of Ia afferents ⁶³. Concurrently, the study measured H-reflex amplitude with and without cutaneous stimulation to assess the effect of exercise-induced changes in pre-synaptic inhibition on spinal loop excitability. The results showed that delivering cutaneous stimulation attenuated the sprint induced reduction in H-reflex, possibly through reduced presynaptic inhibition of Ia afferents, whilst also attenuating the decline in power output throughout the sprints. These results suggest that disfacilitation from group Ia afferents, possibly owing to increased presynaptic inhibition, could be implicated in impaired α -motoneuron output during maximal intensity exercise.

Furthermore, the firing rate of group III and IV muscle afferents, which are mechano- and metabosensitive sensitive sensory receptors that project inhibitory and/or facilitatory feedback to cortical and spinal regions of the motor pathway, likely increases substantially during all-out exercise ⁶⁴. However, the role of these afferents on neuromuscular function during maximal intensity exercise is not entirely clear. Torres-Peralta et al. 65 had participants perform isokinetic sprints before an incremental exercise test to exhaustion. After the incremental test, the quadriceps were occluded for 10 or 60 s, and a second isokinetic sprint was performed immediately after the occlusion periods. Despite the presumably augmented build-up of metabolites and increased group III/IV afferent feedback elicited by 60 s of occlusion, peak power recovered and was higher than that after 10 s of occlusion. Thus, the authors suggested that the role if group III/IV afferent feedback on maximal sprint performance is negligible, and can be overcome by a strong central command. Hureau *et al.* ⁴⁶ had participants perform $10 \times$ 10 s cycle sprints, which were preceded by neuromuscular electrical stimulation (NMES) to

elicit metabolic disturbances in the quadriceps. Power output during the sprints, EMG activity, and post-exercise changes in Ptw where compared between the NMES and a control condition without NMES. It was shown that both power output and EMG activity were reduced in the NMES condition relative to control, while the post-exercise reduction in Ptw was consistent between conditions. Thus, the authors suggested that the metabolic disturbances caused increased group III/IV feedback, thereby reducing neural drive estimated through EMG in order to prevent peripheral homeostasis from deviating beyond tolerable limits. Thus, different interpretations exist on the role of group III/IV afferent feedback during maximal intensity exercise, precluding firm conclusions on the matter ¹⁶.

321 Neuromuscular responses to severe intensity, short-duration exercise

322 Muscle force generating capacity, voluntary activation and contractile function

Many sporting activities are characterised by short-duration, high-intensity locomotor exercise, such as middle-distance running (i.e. 800-5000 m) or track cycling events lasting ~2-20 min. The exercise intensity associated with these events falls within the 'severe' domain, i.e. above the maximum sustainable exercise intensity, or 'critical intensity'. Due to the rapid energy requirements associated with severe intensity exercise and the consequent generation of ATP from anaerobic pathways, exercise within this domain is associated with a progressive loss of muscle homeostasis, such as a reduction in pH and glycogen and an increase in P₁²³. These disturbances occurring at the peripheral level impair the capacity of the muscle to produce force in response to neural stimulation. Evidence suggests that disturbances within the muscle are the primary contributor to impairments in muscle force during severe-intensity exercise ^{21,22,66}. Reductions in Ptw range from 16-55% when measured post-exercise (Table 2). This large variability in the magnitude of P_{tw} decrease could be due to a number of factors. Namely, the time to post-exercise neuromuscular assessment ranges from < 10 s to 4 min, with longer

Acta Physiologica

durations often being required to manoeuvre participants to the neuromuscular testing apparatus. Kruger et al. ³¹ recently showed that P_{tw} recovered from -44% immediately post-exercise to -34% following 2 minutes of recovery after severe intensity exercise, likely due to the rapid recovery of metabolic factors thought to interfere with the excitation-contraction coupling 36 . Given that many studies take > 2 min to assess neuromuscular function, there is likely considerable underestimation of the effects of severe intensity exercise on P_{tw} , and Figure 2 highlights that studies with a shorter time to post-exercise neuromuscular assessment demonstrate higher reductions in P_{tw}.

Two other factors could contribute to the discrepancy in the level of reduced Ptw observed throughout the literature. Firstly, it is thought that the mechanisms contributing to the limit of tolerance, or the degree of fatigue which can be tolerated, could differ between individuals. Hodgson et al.⁶⁷ dichotomised a group of apparently homogenous individuals based on those who reached the limit of tolerance during ramp-incremental cycling with a knee-extension power reserve which exceeded the power produced at the limit of tolerance, and those without a power reserve. Those without a power reserve demonstrated exacerbated reductions in P_{tw} relative to those with a power reserve. Thus, it was suggested that task failure in individuals without a power reserve could be due to inhibitions in contractile function rendering them unable to achieve the required power output. In individuals with a power reserve, factors other than impaired contractile function might contribute to the limit of tolerance, or the willingness to tolerate a stronger symptom of fatigue might be lower than those without a power reserve. If disparate inter-individual mechanisms contributing to the limit of tolerance do exist, this could conceivably contribute to the variable reductions in Ptw between studies (Table 2) if some

individuals reach critical impairments in contractile function while others reach the limit oftolerance before these occur.

Secondly, the variable reductions in P_{tw} could be due to the considerable variance in the exercise intensity above critical power/speed between studies, with Table 2 displaying that task failure/completion occurred between 3 and 24 min. Conflicting evidence exists on whether the level of intensity above critical intensity influences the magnitude of reduction in Ptw at task failure. For example, Thomas et al. ²¹ demonstrated a greater reduction in Ptw at task failure when exercise was performed at a higher intensity (task failure at ~ 3 min) compared with a lower intensity (task failure at ~ 11 min) within the severe domain (33% vs 16% reduction in Ptw, respectively). In contrast, Schafer et al. ⁶⁸ found no difference in end exercise reduction in P_{tw} when the power output was set to deplete the W' within either 3 or 12 min (35% vs 31%) reduction in Ptw, respectively), though it should be noted in this study participants didn't necessarily exercise to volitional exhaustion. Furthermore, Black et al. 23 measured changes in a range of metabolic variables including PCr, lactate, K⁺ ATP, pH and glycogen (variables which are linked with the reduction in P_{tw} ³⁶), and found no difference in the change in any variable when exercise was performed at three different intensities within the severe domain (65, 75 and 85% of work-rate difference between gas exchange threshold and VO_{2max} , in which task failure occurred from 2.2 to 13.9 min), although peak twitch was not measured in the study. It has been proposed that a consistent magnitude of end-exercise alterations in metabolic variables (and thus Ptw) could exist due to a task specific 'individual critical threshold' of peripheral alterations in response to severe intensity locomotor exercise, beyond which the degree of associated sensory perceptions would not be tolerable ⁶⁹. Proponents of this theory suggested that the individual critical limit of altered metabolic homeostasis is mediated by group III/IV muscle afferents, which could reduce drive from the motor cortex through inhibitory feedback in response to metabolic stimuli. 70-72. Whether or not alterations within

the muscle are regulated to an unvarying "critical threshold" during locomotor exercise is debated ⁷³⁻⁷⁵, and numerous theories exist on exercise tolerance and the degree to which metabosensitive afferent feedback plays a role 76-78. Nevertheless, when considering the alterations within the neuromuscular system which occur during severe intensity exercise, it is clear that these primarily reside in the muscle.

Impairments in VA are evident in response to severe intensity exercise, with reductions in postexercise voluntary activation range from 3-14% (Table 2). One study assessed the kinetics of change in neuromuscular function throughout constant load severe intensity exercise. Decorte et al. ⁷⁹ had participants perform intermittent bouts of 6 min cycling at ~80% peak power output, with 4 min recovery between cycling bouts during which neuromuscular function was assessed, and the task completed to exhaustion (occurring on average after 3 bouts of cycling). Their study demonstrated a curvilinear relationship between exercise duration and the decline in P_{tw}, such that most of the decline occurred in the first half of exercise. Concurrently, EMG_{RMS} increased considerably during the first half of exercise, indicative of a higher descending drive required to sustain force due to impairments within the muscle, an interpretation further supported by the positive association between the change in *rectus* femoris EMG_{RMS} and reduction in Q_{tw}. This progressive impairment in contractile function and requirement to activate a greater volume of muscle to maintain a given power output is also thought to be the primary contributor to the VO₂ slow component during severe intensity exercise ⁸⁰. Towards the latter stages of exercise (80% and 100% of total cycling duration), there was a plateau in EMG_{RMS}, concurrent with a significant decrease in voluntary activation. These results suggest that once either a certain level of impairment in contractile function or a level of increase in motor drive are reached, no additional increase in motor drive occurs. Whether this plateau in motor drive serves as a protective mechanism to prevent further, potentially harmful, alterations within the muscle, or if further increases in motor drive are

prevented by intrinsic changes along the motor pathway, is unclear ⁷⁹. Nevertheless, the results
indicate that, during constant-load severe intensity exercise, the impairment in VA widely
observed throughout the literature (Table 2) occur primarily during the latter stages of severe
intensity exercise, and could thus be implicated in task failure during constant load tasks ⁷⁹.

It should be noted that the kinetics of altered neuromuscular function likely differ between self-paced versus constant load exercise. For example, Azevedo et al. 81 recently characterised neuromuscular responses to a 4 km cycling time-trial, in which the pacing strategy was characterised by a fast-start, even paced, and end-spurt phase. Across three separate visits, neuromuscular function (MVC, VA and Ptw) was measured following these three phases. The results demonstrated that all three variables were reduced by 12%, 8% and 23%, respectively, following the fast-start phase, with no further reduction thereafter. The lack of further reduction in MVC, VA or P_{tw} could have been the result of the lower selected intensity during the middle phase, which likely fell below the critical intensity and thereby permitted repletion of work capacity and recovery of neuromuscular function ^{82,83}. It should be noted, however, that the delay between exercise cessation and neuromuscular testing might have limited the ability to capture further decrements in neuromuscular function following the end-spurt⁸¹.

Acta
Physi
ologica

426 427

 Table 2. Literature quantifying neuromuscular alterations pre-to-post severe intensity locomotor exercise. Studies utilising protocols which resulted in task-failure in < 30 min were considered "severe intensity".</th>

Author	Z	Exercise protocol	Exercise duration	Muscle group	Time to post- exercise measure		ΔνΑ	ΔP_{tw}	-
Leg cycling									
Thomas et al. ²¹	12	Power @ VO _{2max}	3 min	KE	2.5 min	↓~18%	↓ 3%	ڊن ڊن	3%
Schafer <i>et al.</i> 68	12	Power output predicted to deplete W' within 3 min based on power- time relationship	3 min	KE	60 s	J 20%	↓ 11%	↓ 35	%
Thomas et al. 22	13	4 km time-trial	6 min	KE	< 2.5 min	↓ 18%	↓ 7%	↓ 40	%
Temesi <i>et al</i> . 66	10	80% peak power output	6 min	KE	< 10 s	↓ 34%	18%	↓ 55	%
Ansdell et al. 84	10	4 km time trial	6 min	KE	< 1.5 min	↓ 21%	↓ 14%	↓ 34	%
Azevedo et al 81	11	4 km time trial	6 min	KE	1 min	↓ 13%	∜8 ↑	¢ 26	%
Amann <i>et al</i> . ⁸⁵	8	5 km time trial	7 min	KE	3 min	↓ 8%	NQ	↓ 32	%
Johnson <i>et al.</i> ⁷⁰	8	85% peak power output	7 min	KE	2 min	↓ 15%	↓ 5%	€~	%8
Weavil et al. ⁸⁶	8	80% peak power output	8 min	KE	36 s	↓ 14%	↓ 4%	↓ 43	%
Sidhu et al. 60	11	80% peak power output	8 min	KE	10 s - 3 min	↓ 11%	1 8%	J 30	%
Goodall et al. 87	9	$\sim 80\%$ peak power output	8 min	KE	< 2.5 min	↓ 17%	1 6%	¢ 19	%
Amann <i>et al.</i> ⁸⁸	8	5 km time trial	8 min	KE	2.5 min	↓ 14%	NQ	€ 1	%
Hureau et al. ⁸⁹	8	5 km time trial	8 min	KE	30 s	↓ ~13%	↓ ~7%	↓ ~4	1%
Amann <i>et al.</i> ⁹⁰	7	80% peak power output	9 min	KE	3 min	↓ 10%	\$	↓ 34	%
Blain <i>et al.</i> ⁹¹	8	5 km time-trial	9 min	KE	1 min	$\downarrow \sim \! 10\%$	$\downarrow 6\%$	↓ 319	~
Sidhu <i>et al</i> . ¹⁶	10	80% peak power output	9 min	KE	49 s	↓ 11%	↓ 14%	¢380	<u>~</u>
V man at al 31	10	5% above second ventilatory	10 min	KE	10 s	1 38%	18%	↓ 44º	~

4 4 4 4 4 3 3 8 3 3 3 3 3 3 2 2 8 2 7 6 2 2 2 2 3 8 7 6 5 4 3 2 ¹ 6 4 4 4 3 3 8 3 3 3 3 3 3 2 2 8 2 7 6 2 2 2 2 2 3 8 7 6 5 4 3 2 ¹

21

Page 21 of 125

Acta
Ph
ysic
ĝ
ica

Page 22 of 125	

4 4 4 4 4 4 0 3 8 7 6 3 4 3 3 2 2 8 7 6 5 4 4 5 4 4 6 9 8 8 7 6 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	24 25	23	21	19 20	17 18	15 16	12 13	9 10 11	8 7 6	ч	ΔWN
429 430 431	428										
voluntary activation	KE: knee extensors; N	Husmann <i>et al</i> . ⁹⁶	Rowing	Skof and Strojnik 95	Running	O'Leary et al. 94	O'Leary et al. 93	Schafer <i>et al.</i> ⁶⁸	Thomas <i>et al</i> . ²¹	Amann <i>et al</i> . ⁹²	
	MEP: mot	8		7		18	16	12	12	8	
	or evoked potential; MVC: maximal v	2000 m time trial		6 km time-trial		50% between lactate threshold and VO_{2max}	50% between lactate threshold and VO_{2max}	Power output predicted to deplete W' within 12 min based on power- time relationship	60% of differences between RCP and VO_{2max}	83% peak power output	threshold
	oluntary c	7 min		20 min		24 min	18 min	12 min	11 min	10 min	
	ontraction; N	KE		KE		KE	KE	KE	KE	KE	
22	VQ: not quantified; P _{tw} :	3 min		60 s		52 s	< 2 min	60 s	2.5 min	4 min	
n n n n n n n n n n n n n n n n n n n	peak twitch force; CN	↓ 20%		¢		↓ 21%	↓ 19%	↓ 15%	↓~16%	↓ 10%	
	MEP: cervic	↓ 18%		¢		↓ 7%	↓7%	↓ 12%	↓ 6%	\$	
	omedullary	¢		↓ 14%		J 37%	↓31%	↓ 31%	↓ 16%	↓36%	
	motor evo	NQ		NQ		\$		NQ	\$	NQ	
	ked potential; VA:	ŊŊ		NQ		ŊŊ		NQ	NQ	NQ	

Central nervous system alterations during severe intensity exercise

Central nervous system alterations during severe intensity exercise have been studied extensively., Figure 3 depicts alterations which occur throughout the neuromuscular pathway in response to severe intensity exercise based on current evidence. To assess specific alterations within the CNS occurring with severe intensity exercise, studies have implemented VA_{TMS}^{21,22} and the MEP/CMEP ratio ^{16,60,86} to assess motor cortical output and excitability, respectively, CMEP to assess α -motoneuron excitability ^{16,60,86}, and afferent blockade through intrathecal fentanyl to assess the effects of group III/IV afferent feedback on neuromuscular function ^{16,60,69,71,91}. Using VA_{TMS}, a number of studies have demonstrated reductions in the region of 5-8% ^{21,22,87,93,97}. This could indicate a modest impairment in motor cortical output in response to severe intensity exercise. An impairment in motor cortical output is plausible given the plateau in EMG_{RMS} throughout exercise in this domain as previously discussed ⁷⁹, i.e. the motor cortex could be unable to 'drive' the α -motoneurons to cause further increases in EMG_{RMS}, although it should be noted that VA_{TMS} provides only surrogate measures of cortical output. Impaired cortical output could be due, at least in part, to inhibition of motor cortical cells due to feedback from group III/IV afferents ^{16,98}. During exhaustive cycling exercise at 80% peak power output, Sidhu et al. ¹⁶ demonstrated that the MEP/CMEP amplitude ratio was increased by 25% when group III/IV afferent feedback was reduced with fentanyl-blockade, but was unchanged in the presence of continued afferent feedback in control conditions, thus indicating the inhibitory influence on the motor cortex during severe intensity exercise. Concurrently, the study showed no reduction in VA with reduced afferent feedback, with a 14% reduction in control conditions. To further explore the mechanisms by which group III/IV afferent feedback inhibits cortical excitability, Sidhu et al. 60 assessed the effect of afferent blockade on GABAB inhibitory intracortical interneurons. Both GABA_A and GABA_B inhibitory interneurons play an integral role in generating and shaping voluntary output from the motor cortex. These intracortical

1 2	
2 3 4	457
5 6	458
7 8 9	459
10 11	460
12 13	461
14 15 16	462
17 18	463
19 20	464
21 22 23	465
23 24 25	466
26 27	467
28 29	468
30 31 32	469
33 34	470
35 36	471
37 38 30	472
40 41	473
42 43	474
44 45 46	475
47 48	476
49 50	477
51 52 53	478
54 55	479
56 57	480
58 59 60	481

neurons have indirect projections onto corticospinal neurons, and can influence the excitability of the motor cortex through hyperpolarisation of corticospinal neurons elicited by inhibitory post-synaptic potentials (IPSPs) 99. By applying a paired-pulse TMS stimulus paradigm known as long-interval inhibition (LII) coupled with conditioned CMEPs during severe intensity cycling, Sidhu et al. 60 showed an increase in GABAB mediated inhibition which was abolished when group III/IV afferents were blocked. Thus, a potential mechanism by which severe intensity exercise inhibits the excitability of the motor cortex is through an increase in $GABA_B$ mediated inhibition as a result of group III/IV afferent feedback. Other severe-intensity exercise induced changes in intracortical inhibition, such as increases in GABA_A mediated short-interval intracortical inhibition (SICI), have been demonstrated ⁹³, though conflicting evidence exists ⁹⁴. However, the study of Sidhu et al. ⁶⁰ improved on previous study designs by measuring during post-exercise cycling at an EMG level matched to pre-exercise, as opposed to post-exercise measures taken during isometric contractions. To improve understanding of the effects of severe intensity exercise at the motor cortical level, more research is required assessing motor cortical output and excitability, intracortical inhibitory and facilitatory activity, with measures taken during or immediately following exercise given that these measures can recover rapidly after exercise cessation ¹⁰⁰. The assessment of other possible mechanisms which could contribute to altered cortical output in response to severe intensity exercise, such as alterations in brain neurotransmitters, is also warranted ¹⁰¹.

⁸ 476 Using spinal stimulation at the cervicomedullary level, a number of recent studies have ⁹ assessed the effects of severe intensity exercise at the α -motoneuron excitability ^{16,86}. In these ¹ studies, which utilised constant-load exercise at 80% peak power until task failure, no change ⁴ in α -motoneuron excitability was demonstrated between the beginning and end of exercise. ⁵ While this implies no effect of severe intensity exercise at the α -motoneuron level, in non-⁸ fatiguing circumstances, the same increase in EMG activity which occurs throughout severe

intensity exercise would cause an increase in spinal excitability ⁸⁶. This was aptly shown by Weavil *et al.* ⁸⁶, who found no change in MEP or CMEP during fatiguing cycling, but a ~40% increase in MEP and CMEP during a subsequent non-fatiguing trial when the EMG was set to increase by the same magnitude. Thus, while the net corticospinal excitability remains unchanged, these results indicated a disfacilitation of the corticospinal tract mediated at the spinal level.

If α -motoneurons are disfacilitation during severe intensity exercise, this does not appear to be related to increased group III/IV afferent feedback. In fact, Sidhu et al. 60 found that CMEP amplitude was increased during post-exercise cycling at a matched level of EMG relative to pre-exercise which did not occur when afferent feedback was reduced, suggesting that group III/IV afferents facilitate, rather than inhibit spinal α -motoneurons projecting to the knee extensors. Indeed, previous work has suggested that group III/IV afferent feedback can inhibit or facilitate α -motoneuron depending on the muscle group studied ⁵⁸. Furthermore, Sidhu *et al.* ⁶⁰ also measured CMEP during the silent period to mitigate the potential influence of changes in on-going descending drive on α -motoneuron excitability, but found no change in conditioned CMEPs during control conditions or when afferent feedback was reduced. The authors speculated that the facilitatory effects of group III/IV feedback on α -motoneuron excitability might only occur in the presence of descending drive.

⁴⁶ 500 The findings of Sidhu *et al.* ⁶⁰ appear contradictory to that of Weavil *et al.* ⁸⁶. That is, if α -⁴⁸ 501 motoneurons are disfacilitated during constant load severe intensity cycling exercise, but a ⁵⁰ 502 reduction in CMEP is not apparent due to the increased neural drive and EMG ⁸⁶, one might ⁵¹ 503 expect that CMEP would decrease when measured at the same EMG level. However, the ⁵⁴ 504 opposite was found by Sidhu *et al.* ⁶⁰, i.e. CMEPs increased. This result cannot be explained ⁵⁷ 505 by an increased descending drive at the same EMG level, since conditioned CMEPs exhibited ⁵⁹ no change ⁶⁰. One possible explanation is that Weavil *et al.* ⁸⁶ measured responses during

constant load cycling, while Sidhu et al. 60 had participants reduce their power output at post-exercise in order to achieve the same EMG level as pre-exercise. It is possible that processes which disfacilitate α -motoneuron excitability (such as changes in intrinsic properties, activation of serotonin 1A receptors, of neurotransmitter depletion^{16,86}) exhibited some recovery due to the decrease in intensity. This, coupled with the elevated facilitatory afferent feedback in the control trial, might have resulted in the increase α -motoneuron excitability at the same EMG level. Further studies measuring α -motoneuron excitability during severe intensity exercise, with both on-going descending drive and during the TMS evoked silent period, are warranted to provide further insight into the effects of severe intensity exercise on α -motoneuron excitability.

Alterations in spinal-loop excitability could also contribute to impaired neuromuscular function during severe intensity exercise, with reductions in H-reflex found to occur in an intensity-dependent manner ^{102,103}. Bulbulian and Darabos ¹⁰² found a 22% reduction in H-reflex amplitude relative to M_{max} measured in the gastrocnemius following 20 minutes of non-exhaustive treadmill running at 75% VO_{2max}, compared to a 13% reduction at 40% VO_{2max}. Similar reductions in H-reflex have been demonstrated following non-exhaustive high-intensity cycling exercise ¹⁰³. While the H-reflex alone cannot decipher between altered excitatory input from Ia afferents and a decrease in α -motoneuron excitability, evidence from fatiguing isometric contractions using microneurography show that muscle spindle afferent discharge is progressively reduced during sustained contractions ¹⁰⁴, and that the efficacy of Ia input to facilitate the α -motoneuron is impaired due to increased presynaptic inhibition ¹⁰⁵. During severe intensity exercise, presynaptic mechanisms, such as group III and IV afferent induced increases in presynaptic inhibition of Ia terminals, are likely given the metabolic disturbances and the proposed inputs of group III/IV afferents onto Ia afferent terminals ¹⁰⁶. However, challenges associated with measurement techniques preclude definitive conclusions

Acta Physiologica

on the role of Ia feedback in disfacilitating α -motoneurons and thereby contributing to impaired neuromuscular function.

In addition to measuring the specific effects on group III/IV afferent feedback on motor cortical and α -motoneuronal excitability discussed above, a plethora of studies have assessed the effects of group III/IV afferent feedback on neuromuscular function through more global responses such as EMG and Ptw ^{16,60,71,89,91}. These studies have demonstrated that group III/IV afferents constrain motoneuronal output (estimated through EMG) to active skeletal muscle, thereby limiting exercise-induced intramuscular alterations. For example, Blain et al. 91 had participants perform a 5 km cycling time trial under control conditions and with fentanyl induced impairment in afferent feedback. With reduced afferent feedback, it was demonstrated that motoneuron output (estimated through vastus lateralis EMG) was 21% higher when afferent feedback was reduced compared to control conditions. Due to the greater activation levels throughout cycling, intramuscular alterations such as P_i, H⁺ and ADP, concentrations, which are correlated reductions in P_{tw}¹⁰⁷, were all significantly higher compared with control conditions when measured through muscle biopsies following exercise. Consequently, the reduction in P_{tw} was substantially greater when feedback was reduced (52 vs 31% reduction compared with control condition). The increased motoneuron output and end-exercise level of reduced P_{tw} with afferent blockade are consistent findings throughout the literature ^{85,89,90,108}. Thus, it is suggested that, through metabosensitive firing of group III/IV afferent feedback, the level of metabolic disturbance is sensed within the CNS, and the drive to the muscle is subsequently regulated to prevent abnormal or interoperable deviations in muscle homeostasis

3 4 5 6 7 What is not entirely clear is how group III/IV constrains motoneuron output. It is unlikely to be a result of altered α -motoneuron excitability, given that reduced afferent feedback facilitates ⁶¹ or has no effect ¹⁷ on CMEP amplitude. However, given the inhibitory effects of group III/IV afferent feedback within ^{16,60} and potentially upstream of the motor cortex ⁹⁸, as well as their proposed inputs to Ia terminals ¹⁰⁶, motoneuron output could be constrained through the neurophysiological adjustments that group III/IV afferents elicit within the CNS. However, as well as having proposed non-nociceptive effects through alterations in CNS function and induction of the pressor reflex 85, group III/IV afferents also elicit nociceptive effects, which could also have implications for perception of effort during exercise. The increased level of effort associated with discomfort and increased cardiopulmonary response as a result of group III/IV feedback could impact how hard participants are willing to 'push' during exercise, and thereby influence motoneuron output. During exercise at a constant load of 80% peak power output, Amann et al.⁹⁰ demonstrated the rate of perceived exertion (RPE) was lower following the initial 3 minutes of the task when afferent feedback was reduced relative to control conditions. During self-paced exercise, the RPE remains similar between reduced afferent feedback and control conditions throughout exercise, but the power output is enhanced during the early stages of exercise with reduced afferent feedback ⁹¹. Thus, early during severe intensity exercise, nociceptive and cardiopulmonary feedback likely contributes to an increased sense of effort associated with the same power output ⁹⁰, or causes participants to choose a lower power output during self-paced tasks ⁹¹. Towards the latter stages of exercise, however, RPE is similar with and without reduced afferent feedback ⁹⁰. This is likely the result of the increased drive to the muscle occurring throughout exercise due to the lack of nociceptive feedback, thereby 'allowing' greater activation of muscle, and in turn causing greater disturbances within the muscle. As the muscle becomes less responsive, a greater level of drive is required to compensate for contractile impairment and sustain the same power output ⁹⁰, with

Acta Physiologica

2	
3 4	580
5	581
6 7	501
8	582
9 10	583
11 12	
13	584
14 15	595
16 17	707
18 19	586
20	587
21	588
23 24	589
25 26	590
27	591
28 29	502
30 31	552
32 33	595
34	594
35 36	595
37 38	596
39	597
40 41	598
42 43	599
44	600
45 46	601
47 48	602
49 50	602
51	005
52 53	604
54 55	605
56	606
57 58	607
59	608

60

this increase in efferent command emitting parallel messages (corollary discharge) to brain regions associated with perceptions of exertion, thereby increasing RPE ¹⁰⁹. Accordingly, in addition to the alterations along the neuromuscular pathway induced by group III/IV feedback, the nociceptive and cardiopulmonary signals evoked by these afferents likely influences the regulation of voluntary drive and perceptions of effort throughout exercise.

to per peries

609 Neuromuscular responses to sustained exercise below critical power

610 Muscle force generating capacity, voluntary activation and contractile function

Exercise between lactate threshold and critical intensity is classified as heavy intensity exercise, while exercise below lactate threshold is termed moderate intensity ^{23,24}. Heavy intensity exercise can be sustained for prolonged periods, with time to task failure ranging between ~40 min to 3 hours ^{23,110}. Moderate intensity exercise can be performed for durations well above 3-5 hours, and constitute the intensity at which ultra-endurance events are performed ^{20,77}. The neuromuscular responses measured in studies in which exercise lasted from > 30 min to 3 hours (likely falling predominantly within the heavy domain) and > 3 hours (predominantly within the moderate domain) are displayed in Tables 3 and 4, respectively. While variation exists in the literature, a comparison between the results from the studies in these tables suggests that the loss in muscle strength is greater with increasing exercise duration before reaching an eventual plateau above exercise lasting ~1000 min (Figure 4), a phenomenon previously highlighted by Millet when examining running-based exercise 77.

Within the heavy and moderate domains, energy supply is achieved through oxidative metabolism, rather than anaerobic pathways ^{25,111}. Consequently, alterations in muscle metabolism are much more limited than with exercise in the severe domain, with steady-state values of PCr, pH and P_i achieved within the first few minutes of exercise ^{23,25}. Nevertheless, impairments in contractile function have been widely observed following both moderate and severe intensity exercise (Tables 3 and 4). Following self-paced tasks, some of the reductions in P_{tw} could be a result of a "sprint-finish", in which intensity increases towards the latter stages of a race and thus fall within the severe domain, with associated metabolic changes which contribute to reduced Ptw²². For example, following a self-paced 20 km time trial lasting on average 32 min, Thomas et al. ²² showed a 31% reduction in P_{tw}, while in a separate study by the same group, the reduction in Ptw following a constant load task in which task-failure

Acta Physiologica

3 4 5 6 occurred at 42 min was just 11%²¹. Thus, the self-paced versus constant pace exercise challenges used across studies is another potential source of heterogeneity in results regarding neuromuscular responses to moderate and heavy intensity exercise (Tables 3 and 4). However, the magnitude of reduced P_{tw} observed by Thomas *et al.*²¹ following constant load exercise is consistent with other studies within the heavy domain, with Lepers et al. 112,113 and Racinais et al. ¹¹⁴ demonstrating reductions in Ptw of 9, 12 and 11%, respectively. Interestingly, this reduction in Ptw is lower than some studies assessing Ptw following more prolonged constant load moderate intensity exercise ^{115,116} (Figure 4C), suggesting a possible greater extent of impaired contractile function following more prolonged locomotor exercise, though heterogenous results exist throughout the literature (Table 4). It is thought that glycogen depletion is the primary contributor towards impaired contractile function following prolonged heavy and moderate intensity exercise ^{111,117}. Glycogen depletion could interfere with the excitation-contraction coupling through localised depletion of muscle glycogen at the t-tubular-sarcoplasmic reticulum (SR) junction ¹¹⁸. Indeed, following 4 h of glycogen depleting exercise, Gejl et al. ¹¹⁹ showed a persistent reduction in SR Ca²⁺ release after 4 h of recovery when participants were given only water, while participants given carbohydrates concurrently demonstrated recovery of SR Ca²⁺ release. Inhibition of SR Ca²⁺ release is thought to occur below critical levels of muscle glycogen (250-300 mmol·kg⁻¹) ¹²⁰, and values below these concentrations have been demonstrated following heavy and moderate intensity exercise ^{23,110}, including ultramarathon running ¹²¹. Another mechanism likely contributing to impaired contractile function include increased production of reactive oxygen and nitrogen species ¹²², which increase following prolonged exercise ¹²³ and interfere with Ca²⁺ release through redox modifications of ryanodine receptors ¹²⁴. Furthermore, following running based exercise involving repeated stretch shortening cycles, muscle damage induced myofibrillar disintegrity and disorganisation of sarcomeres likely occurs, leading to a reduced

ability of the contractile machinery to produce force ¹²⁵. Thus, while the magnitude of impaired contractile function is not as prominent following moderate and heavy intensity exercise compared to severe intensity, the consistently reduced P_{tw} across studies (Tables 3 and 4) suggests that alterations within the muscle contribute to reduced neuromuscular function within these domains.

Reductions in VA are substantial following moderate and heavy intensity exercise, and these appear to be exacerbated as exercise duration increases (Figure 4). This likely explains, minat least in part, the increased strength loss associated with longer duration exercise (Figure 4). Studies examining the kinetics of altered neuromuscular function during prolonged moderate duration exercise have shown that reduced VA occurs in the latter stages, with Place et al. 126 and Lepers et al. ¹¹⁶ demonstrating that VA was reduced only following 4 and 5 h of a 5 h or Review running and cycling task, respectively.

Acta
Phys
siolog
gica

678	677
were considered "heavy intensity".	Table 3. Literature assessing neuromuscular responses pre-to-post heavy intensity exercise. Studies in which exercise duration ranged from > 30 - 189 min

	679 680 681																	678
	KE: knee extensors evoked potential; V	Millet <i>et al.</i> ¹³¹	Other	Millet et al. 130	Petersen et al. 129	Petersen et al. 129	Saldanha <i>et al</i> . ¹²⁸	Racinais et al. 114	Running	Lepers et al. 113	Sahlin & Seger ¹²⁷	Thomas et al. 22	Thomas <i>et al</i> . ²¹	Lepers et al. 112	Thomas et al. 22	Leg cycling	Author	were considered
	;; MEP: 7A: volu	11		12	8	8	8	11		8	7	13	12	10	13		Z	1 "heav
	motor evoked potential; MV(intary activation	42.2 km (ski skating)		30 km race	42.2 km (marathon)	42.2 km (marathon)	75% VO _{2peak}	First ventilatory threshold		65% PPO	$\sim 75\%$ VO _{2max}	40 km time trial	Power output @ RCP	75% PPO	20 km time trial		Exercise protocol	vy intensity".
	C: maximal voluntary	149 min		189 min	154 min	154 min	120 min	90 min		120 min	85 min	66 min	42 min	33 min	32 min		Exercise duration/distance	
33	/ contraction; NQ: not	KE		KE	PF	KE	PF	PF		KE	KE	KE	KE	KE	KE		Muscle group	
	quantified; PF: plantar	< 5 min		< 3 min	30 min	30 min	< 5 min	5 min		Immediately	NQ	< 2.5 min	2.5 min	~1 min	< 2.5 min		Time to post- exercise measure	
	flexors; P _{tw} :]	18%		↓ 25%	↓ 18%	↓ 23%	↓ 17%	↓ 11%		↓ 12%	↓ 44%	↓ 16%	↓~17%	↓ 7%	↓ 15%		ΔΜΥС	
	peak twitch f	¢		18%	NQ	NQ	↓ 19%	↓2%		NQ	↓ 26%	↓ 10%	%6 †	↓ 1%	↓ 11%		ΔνΑ	
	force; CME	<u>†</u> 7%		1∼6%	\$	\$	\$	↓11%		↓12%	NQ	↓ 29%	↓ 11%	%6↑	↓31%		ΔP_{tw}	
	P: cervicomedu	NQ		ŊŊ	ŊQ	NQ	NQ	NQ		NQ	NQ	↓restingMEP	\$	NQ	↓restingMEP		Δ MEP	
	llary motor	NQ		NQ	NQ	NQ	NQ	NQ		NQ	NQ	NQ	NQ	NQ	NQ		A CM	

682 Table 4. Studies assessing neuromuscular responses pre-to-post moderate intensity exercise. Studies in which exercise duration was > 240 min were

683 considered "moderate intensity".

Author	Z	Exercise protocol	Exercise	Muscle group	Time to post-	Δ ΜΥС	ΔVA	$\Delta \ P_{tw}$	A MEP	A CMEP
			duration/distance		exercise measure					
Leg cycling										
Jubeau <i>et al</i> . ¹¹⁵	10	45% PPO	240 min	KE	< 3 min	↓ 25%	↓ 13%	↓28%	\rightarrow	NQ
Lepers et al. 116	9	55% PPO	300 min	KE	Immediately	↓ 18%	1 6%	↓ 16%	NQ	NQ
Running										
Ross et al. 132	9	42.2 km (marathon)	208 min	PF	< 20 min	↓ 18%	↓14%	↓71%	↓restingMEP	NQ
Millet et al. 130	11	140 km race	278 min	KE	15 min	%6↑	\$	\$	NQ	NQ
Place et al. 126	9	55% MAV	300 min	KE	Immediately	↓ 28%	$\downarrow 16\%$	† 18%	NQ	ŊŊ
Gauche et al. ¹³³	22	55 km trail run	413 min	KE	60 min	↓ 37%	$\downarrow 2\%^{CAR}$	NS	NQ	NQ
Millet et al. 134	9	65 km ultramarathon	511 min	KE	< 2 min	↓ 30%	↓ 20%	† 25%	NQ	NQ
Martin <i>et al</i> . ¹³⁵	12	Treadmill running	19 h (149km)	KE	ŊŊ	↓ 40%	↓ 33%	↓ 25%	NQ	NQ
Martin <i>et al.</i> ¹³⁵	12	Treadmill running	19 h (149 km)	PF	ŊŊ	↓ 30%	↓ 15%	↓ 23%	NQ	NQ
Giandolini <i>et al.</i> 136	23	110 km mountain ultra- marathon	20 h	KE	57 min	↓ 36%	↓ 18%	↓ 11%	NQ	NQ
Giandolini <i>et al.</i> 136	23	110 km mountain ultra- marathon	20 h	PF	57 min	↓ 28%	↓ 10%	↓ 17%	NQ	NQ
Temesi <i>et al.</i> ¹⁷	25	110 km mountain ultra- marathon	20 h	KE	61 min	↓ 34%	↓ 26%	↓ 10%	\rightarrow	ŊŊ
Temesi <i>et al.</i> ¹³⁷	20	110 km mountain ultra- marathon	20 h	KE	58 min	↓ 38%	↓24%	↓ 10%	\rightarrow	ŊŊ

P
g
Ф
ω
сł
<u> </u>
25

46	45	44	43	42	41	40	39	38	37	36	3	34	щ	32	31	30	29	28	27	25 26	24	23	22	19 20 21	18	16	14 15	11 12	9 9 10	7 6 7	ω4π	2 1
																	069		689	889	087	1	686	684 685								
																								CAR: central activ flexors; P _{tw} : peak t	Saugy et al. 140	Saugy et al. 140	Besson <i>et al.</i> ¹³⁹	Besson <i>et al.</i> ¹³⁹	Millet <i>et al.</i> ¹³⁸	Millet <i>et al.</i> ¹³⁸	Temesi <i>et al.</i> ¹³⁷	
																								ation rat witch fo	15	15	17	17	22	22	20	
																								io; KE: knee extensors; MA ^v rce; CMEP: cervicomedullar	330 trail run	330 trail run	169 km mountain ultra- marathon	169 km mountain ultra- marathon	166 km mountain ultra- marathon	166 km mountain ultra- marathon	110 km mountain ultra- marathon	
																								V: maximum aerob y motor evoked po	122 h	122 h	44 h	44 h	38 h	38 h	20 h	
																								ic velocity; MEP: motential; VA: voluntar	PF	KE	PF	KE	PF	KE	PF	
				35																				otor evoked potential;] y activation	$\sim 30 \min$	$\sim 30 \min$	23 min	24 min	20 min	20 min	80 min	
																								MVC: maximal vo	↓ 26%	↓ 24%	↓ 34%	↓ 32%	↓ 39%	↓ 35%	↓ 26%	
																								luntary cont	↓26%	↓ 20%	↓ 19%	↓23%	1 6%	↓ 19%	%6↑	
																								raction; NQ	↓ 19%	↓ 24%	↓ 23%	↓24%	J 20%	↓ 22%	↓ 16%	
																								: not quantifie	NQ	NQ	NQ	ŊŊ	NQ	NQ	NQ	
																								d; PF: plantar	NQ	NQ	NQ	NQ	NQ	NQ	NQ	
Central nervous system alterations during moderate and heavy intensity exercise

Overall, little research exists examining specific alterations within the CNS in response to moderate or heavy intensity exercise. Studies have demonstrated reductions in VA_{TMS} within both domains ^{17,21,115}, possibly indicating impaired motor cortical output. The impact of prolonged exercise on the excitability of the motor pathway is unclear. When measured with the muscle at rest, studies have demonstrated reductions in MEP amplitude following prolonged exercise ranging from 20 km cycling ²², marathon running ¹³², and a simulated Tour de France ¹⁴¹. However, changes in MEP amplitude at rest might not reflect alterations in corticospinal excitability that occur during contractions. When corticospinal excitability has been assessed pre- and post-prolonged exercise during isometric contractions, conflicting findings exist, with studies reporting an increase ¹⁷, decrease ^{132,141}, or no change in MEP amplitude ^{21,22,142}. Similarly conflicting results have been shown for the silent period, with no change ¹¹⁵ or an increase ¹⁷ being reported. The conflicting findings could be the result of the substantial heterogeneity in the exercise challenges, such as the modalities and the duration of the task, as well as methodological differences such as stimulation intensities and the contraction intensities at which corticospinal excitability is measured, both of which can influence the change in MEP in response to exercise ^{17,143}. No research to date has utilised spinal stimulation to assess the effect of prolonged exercise on α -motoneuron excitability, and this represents an area for future research. Racinais et al. ¹¹⁴ demonstrated a 61% reduction in H-reflex amplitude following 90 min of non-exhaustive running exercise. Avela et al. 62 observed similar reductions in H-reflex amplitude following marathon running, whilst also displaying reductions in the EMG response and passive stretch-resisting force following a natural stretch reflex evoked through sudden changes in muscle length. However, whether this was due to altered Ia excitatory input or impaired α -motoneuron excitability is unclear. Further

work is required to elucidate the effects of prolonged exercise within the moderate and heavyexercise domains on the corticospinal pathway at both the supraspinal and spinal level.

718 Neuromuscular responses to high-intensity intermittent exercise

While an increasing number of studies have assessed neuromuscular responses to continuous locomotor exercise during tasks such as cycling and running, many team sports, such as association football (soccer), rugby league, and hockey, are characterised by bouts of highintensity exercise interspersed with prolonged periods of low-to-moderate intensity activity. In addition, team sport players also complete numerous dynamic actions throughout competitive matches, such as jumping, changing direction, tackling and/or kicking, which are often performed with incomplete recovery ¹⁴⁴. Consequently, high-intensity intermittent team sports are associated with a high physiological and neuromuscular demand, resulting in substantial fatigue and impairments in neuromuscular function¹⁴⁵. During team sports such as soccer and hockey, fatigue manifests through transient reductions in work-rate following the most demanding periods of a match, and cumulative reductions in work-rate towards the end of a match ¹⁴⁴. In addition, fatigue is thought to increase the risk of sustaining an injury during match-play, as players are more susceptible to sustaining injuries towards the latter stages of a match ⁶. In order to better understand the physiology underpinning fatigue experienced during match-play, studies have examined the neuromuscular responses to simulated and competitive high-intensity intermittent team sport activity.

⁵¹ 735 Using a simulated soccer match protocol designed to replicate the physiological demands of
⁵² 736 soccer match-play, Goodall *et al.* ¹⁴⁵ investigated neuromuscular function before, at half-time
⁵⁵ 737 (i.e. 45 min), full-time (i.e. 90 min) and following a period of extra time (i.e. 120 min). An
⁵⁷ 738 interesting finding from this study was that while the simulated soccer match induced
⁵⁹ 739 reductions in MVC and impairments in both contractile function and VA, the reduction in

contractile function demonstrated a plateau after half-time (Figure 5). It was hypothesised that this plateau was due to the early fatigue of higher threshold motor units, which are more susceptible to fatigue, within the first half. In the second half, the lower reduction in contractile function was suggested to be a result of the recruitment of more fatigue-resistant motor units, which exert a smaller reduction in the size of evoked twitch responses. In contrast to the nadir in contractile function, impairments in VA increased progressively, with a VA lower at half-time compared with pre-match, and lower at the end of extra-time compared with half-time. These impairments in neuromuscular function were concurrent with increases in perceptions of effort and impairments in voluntary physical performance (sprint speed and jump height) measured in a companion study ¹⁴⁶.

Numerous other studies have assessed neuromuscular function following a range of competitive and simulated high intensity intermittent team sport protocols (Table 5). Following simulated ¹⁴⁷ and competitive soccer match-play ^{15,148}, studies have demonstrated impairments in P_{tw} and VA of around 14% and 8%, respectively ^{15,148}, resulting in a 11-14% reduction in knee extensor MVC. These impairments occurred concurrently with decreases in jump height, reactive strength and sprint speed ^{15,147}. The mechanisms of impaired contractile function following match-play likely relate to the considerable muscle damage elicited by the numerous eccentric actions associated with match-play ¹⁴⁹, glycogen depletion, with glycogen levels reported to fall below concentrations at which Ca²⁺ handling is impaired ^{119,150}, and increases in reactive oxygen and nitrogen species, with measures of oxidative stress increased following a single match ¹⁴⁹, possibly inhibiting Ca²⁺ handling ¹²². The mechanisms of impaired VA are less clear, with the limited number of studies examining corticospinal and intracortical responses following simulated ^{145,147} and competitive match-play ¹⁵ showing no changes post-exercise, though further research is required to assess the effect of high-intensity intermittent exercise on spinal reflex pathways and α -motoneuronal excitability. Thus, during prolonged

high-intensity intermittent exercise such as soccer match-play, neuromuscular function is
impaired both at the peripheral and central level, with peripheral disturbances more prevalent
in the earlier stages of exercise, and impairments in VA more apparent as exercise progresses.
These disruptions in neuromuscular function likely contribute to the decline in physical
performance known to occur following the most demanding periods of match-play and towards
the end of a match.

to per per perez

Acta
Ph
/sio
Ìg
ica

Τ
а
Q
ē
4
Ò
<u>đ</u>
_
N
01

771	Table 5. Studies asso	essing	neuromuscular resp	onses pre-to-post]	high-intensity	intermittent team	sport exer	cise.			
	Author	Z	Exercise protocol	Exercise duration/distance	Muscle group	Time to post- exercise measure	Δ ΜΥС	ΔνΑ	ΔP_{tw}	Δ ΜΕΡ	A CMEP
	Soccer										
	Brownstein et al. 15	16	Competitive match	90 min	KE	10-60 min	↓ 14%	↓ 7%	↓ 14%	\$	ŊŊ
	Rampinini <i>et al</i> . ¹⁴⁸	20	Competitive match	90 min	KE	40 min	↓ 11%	1 8%	18%	NQ	ŊŊ
	Thomas <i>et al.</i> ¹⁴⁷	15	Simulated match	90 min	KE	< 2.5 min	↓ 16%	∜6 ↑	↓ 14%	\$	ŊŊ
	Goodall <i>et al.</i> ¹⁴⁵	10	Simulated match	120 min	KE	< 2.5 min	↓ 27%	↓ 18%	↓ 23%	\$	ŊŊ
	Rugby league										
	Murphy et al. ¹⁵¹	9	Competitive match	80 min	KE	< 10 min	↓ 11%	\$	↓ 34%	ŊŊ	NQ
	Skein <i>et al.</i> ¹⁵²	11	Competitive match	80 min	KE	NQ	∜8 ↑	\$	NQ	ŊŊ	NQ
	Duffield et al. ¹⁵³	11	Competitive match	80 min	KE	NQ	∜8 ↑	\$	↓ 15%	ŊŊ	NQ
	Pointon & Duffield ¹⁵⁴	10	Simulated match	60 min	KE	< 10 min	↓~13%	↓~7%	↓21%	ŊŊ	ŊŊ
	Basketball										
	Ansdell et al. 155	10	Simulated match	60 min	KE	75 s	↓ 15%	NQ	↓ 13%	NQ	ŊŊ
	Intermittent sprint pr	otocol									
	Minett et al. ¹⁵⁶	9	Intermittent sprints	70 min	KE	< 10 min	↓~16%	↓~4%car	NQ	NQ	ŊŊ
	Pointon et al. 157	10	Intermittent sprints	60 min	KE	< 10 min	↓~25%	↓~11%	↓21%	NQ	NQ

773 KE: knee extensors; MEP: motor evoked potential; MVC: maximal voluntary contraction; NQ: not quantified; P_{tw}: peak twitch force; CMEP: cervicomedullary motor evoked potential; VA: voluntary activation

775

Conclusions on the role of exercise intensity on neuromuscular responses to locomotor

exercise The above synopsis of the current literature pertaining to neuromuscular responses to maximal, severe, heavy, moderate and high-intensity intermittent intensity locomotor exercise, provides insight into the challenge imposed on the neuromuscular system during fatiguing locomotor activity. Across the exercise domains, there are both commonalities and differences in neuromuscular responses which warrant discussion. Overall, the reduction in muscle force generating capacity is similarly reduced following exhaustive maximal, severe and heavy intensity exercise ^{21,31}. Reductions in MVC are more pronounced following long-duration moderate intensity exercise, which appears to be related to exercise duration (Figure 3). However, different neuromuscular mechanisms are likely to contribute to declines in MVC between domains. While VA has been shown to be reduced following exercise across all domains, possibly due in part to impaired motor cortical output, these reductions are more substantial following prolonged moderate and heavy intensity exercise. For example, Thomas et al. ²¹ demonstrated a 9% reduction in VA following 42 min of cycling at the power output associated at the respiratory compensation point, compared to a 3% reduction at the power output associated with VO_{2max} , with a similarly greater magnitude of reduced VA following prolonged compared with short-duration self-paced cycling ²². As indicated in previous sections, reductions in VA appear to occur in a dose-response manner based on the duration of exercise. What is unclear at present is which mechanisms contribute to the exacerbated reduction in VA following prolonged exercise. While increases in group III/IV afferent feedback have been suggested to contribute to impaired VA in response to severe intensity exercise ¹⁶, the firing rate of these afferents are less likely to increase below critical intensities given that there is a lower build-up of metabolites or, in the case of cycling, markers of muscle damage to which these afferents are sensitive ¹⁵⁸. The greater reduction in

 VA_{TMS} following prolonged heavy intensity exercise compared with short-duration severe intensity exercise ^{21,22} would suggest that impaired cortical output could be an important contributor. However, the mechanisms contributing to impaired VA_{TMS} are not well understood. Exacerbated increases in core temperature ¹⁵⁹ and alterations in neurotransmitter concentrations ¹⁰¹ have both been suggested, however comparisons between these potential contributors across domains has not been made.

Similarly, no evidence exists comparing the effects of exercise within different domains on α -motoneuron responses to exercise. Following maximal intensity arm cycling exercise, one study observed an increase in α -motoneuron excitability ⁴⁵. During severe intensity exercise, it is suggested that a-motoneurons are disfacilitated ⁸⁶, while another study suggests a fatigue-induced facilitation of α -motoneurons ⁶⁰. No evidence exists on the effect of prolonged moderate or heavy intensity exercise on α -motoneuron excitability. Thus, the precise effects of different intensities of locomotor exercise on α -motoneuron excitability is unclear, and more research is required to better understand these responses.

Contractile function is also impaired following exercise within all domains. The magnitude and the mechanisms of this reduction, however, differ. Impairments in contractile function are greater following maximal and severe intensity exercise compared with moderate and heavy intensity exercise ^{21,22,31}. For example, Kruger et al. ³¹ found a 50% reduction in P_{tw} following a 30 s of all-out cycling, a 44% reduction following 10 min of severe intensity exercise, and a 14% reduction following 90 min of moderate intensity exercise. The mechanisms contributing to impairments in contractile function following maximal and severe intensity exercise are likely relate to a build-up of metabolites associated with high anaerobic energy turnover. In contrast, the reduction in P_{tw} following prolonged exercise is thought to be related to glycogen depletion ¹¹⁹, increased production of reactive oxygen and nitrogen species ¹²², and, following running-based exercise, muscle damage ¹²⁵. Accordingly, the distinct metabolic responses

Acta Physiologica

between exercise domains causes impaired contractile function through different mechanisms and to different degrees.

Finally, there are similarities across all domains with respect to the kinetics of altered neuromuscular function. For example, during repeated sprint ⁴³, constant load severe intensity ⁷⁹, high-intensity intermittent ¹⁴⁵, and prolonged constant load moderate intensity exercise ¹¹⁶, impaired contractile function is demonstrated during the first half of exercise, before impaired VA becomes more evident during the latter half. During repeated sprint exercise, motoneuron output estimated through EMG is progressively reduced ³⁹, while EMG is increased before plateauing during severe intensity exercise ⁷⁹. Thus, the nadir in reduction P_{tw} commonly observed during exercise within these domains could be due to the reduced or plateaued recruitment of muscle during the later stages of exercise, causing no further decrements in contractile function.

To better understand the effects of different intensities of locomotor exercise on neuromuscular function, more research is required, similar to that of Thomas et al. 21,22, to compare neuromuscular responses at a segmented level between different exercise domains. Furthermore, although challenging, studies should attempt to deliver stimulations to probe the excitability of the corticospinal tract, both at the cortical and spinal level, during the task itself ^{16,60,86}. Finally, due to the rapid recovery of contractile and CNS following exercise ^{31,160}, studies should attempt to rapidly deliver stimulations upon exercise cessation in situations where neuromuscular function is being assessed post-exercise. This can be achieved using custom-built exercise ergometers which permit immediate neuromuscular assessments without the requirement to manoeuvre between exercise and testing apparatus ^{31,66,161}.

The effect of exercise modality on neuromuscular responses to locomotor exercise

One of the central themes surrounding research into the neuromuscular responses to fatiguing exercise is task-dependency. In addition to the influence of exercise intensity and duration discussed earlier, exercise modality, or the type of locomotor exercise being performed, can have a profound influence on the demands placed on the neuromuscular system ¹³⁰. Exercise modality can influence the contraction type in the prime movers involved in locomotor exercise, as well as contraction duration or time under tension, the active skeletal muscle mass, mechanical efficiency and muscle recruitment strategy. All of these factors can in turn influence the metabolic and mechanical stress imposed on the muscle, and the mechanisms underpinning decrements in neuromuscular function during exercise.

While several different modes of locomotor exercise exist (e.g. running, cycling, rowing, skiing), systematic comparisons delineating the neuromuscular responses to different exercise modes are scarce. However, studies by Lepers et al. ¹¹⁶ and Place et al. ¹²⁶ assessed the neuromuscular responses to cycling and running exercise, respectively, at the same relative intensity (55% maximal aerobic power or velocity) and duration (5 h). Comparisons between the results of those studies show that, despite the similar exercise intensity and duration, the reduction in knee extensor strength was greater following running (28%) compared with cycling exercise (18%). The greater reduction in MVC was likely due to the greater reduction in VA following running (16%) compared with cycling (8%). In a study directly comparing cycling and running exercise, Tomazin *et al.* 47 had participants perform three sets of five \times six second repeated sprints on both a treadmill and a cycle ergometer, on separate occasions. The study found that the reduction in MVC was greater during and following running sprints compared with cycling. In addition, the reduction in MVC was accompanied by a reduction in VA throughout the running protocol which was not seen during cycling. Following ~3 h of running ¹³⁰ and skiing exercise ¹³¹, a significant reduction in VA (8%) was only observed

following running based exercise. Thus, it appears that alterations to CNS function and consequent impairments in muscle strength are greater following running-based exercise compared with other locomotor exercise modes. This is likely a result of the muscle damage associated with running based exercise, and the lower mechanical demands imposed during exercise such as cycling and skiing. Specifically, running involves multiple stretch shortening cycles and associated eccentric contractions, likely to elicit considerable muscle damage, whereas cycling and skiing impose a high metabolic stress but a substantially lower mechanical stress. In turn, muscle damage could elicit reductions in VA through reduced sensitivity of muscle spindles and disfacilitation of α -motoneurons from Ia afferents ⁶², and/or increased inhibitory feedback from group III/IV afferents which are sensitive to various markers of muscle damage ¹⁶². Furthermore, muscle damage elicited by eccentric exercise protocols have been shown to elicit substantial impairments in VA when measured immediately post-exercise ¹⁵⁸, further suggesting that muscle damage sustained during running contributes to the greater reduction in VA compared with cycling.

At the peripheral level, studies have reported a greater reduction in contractile function during and following cycling compared with running 116,126,163 . For example, following 5 × 6 s cycling and running sprints, Rampinini et al.¹⁶³ demonstrated a significantly greater reduction in knee extensor peak twitch force following cycling (~55% reduction) compared with running (~35%). Similarly, Lepers et al. ¹¹⁶ found a significant reduction in knee extensor peak twitch during every hour throughout 5 h of cycling, whereas Place et al. ¹²⁶ showed a potentiation of quadriceps contractile properties throughout 5 h of running exercise. The higher disturbances at the peripheral level in response to cycling could be a consequence of the differences in the involved muscle mass. For example, during weight supported sports such as cycling, the overall active muscle mass involved is lower than during running, with force primarily generated from the quadriceps. It has been demonstrated throughout the literature that during tasks involving

3 4 5 6 7 lower active muscle mass, the reduction in twitch force is higher ^{164,165}. This is likely because during tasks involving a higher muscle mass, there is a greater sensory input (e.g. from group III/IV afferents) from the involved muscle mass, as well as a greater disruption to homeostasis in other physiological systems (e.g. cardiovascular, respiratory) ⁷³. Consequently, there is a greater contribution to fatigue and the limit of tolerance from multiple physiological systems, whereas during cycling the more local, less diffuse signal from the lower muscle mass permits greater disturbances within the muscle to be tolerated ⁷³. Moreover, running and cycling comprise different types of muscle contraction, with implications for the metabolic cost of exercise and thereby the neuromuscular responses. For example, during running, $\sim 60\%$ of the time taken to complete one stride is spent in the support phase (i.e. foot contact with the ground) for speeds between 12 and 23 km/h¹⁶⁶. In turn, around 34% of the support phase comprised eccentric muscle action, which has implications for the metabolic demand of running both due to the lower metabolic cost of eccentric contractions, and the higher efficiency of subsequent concentric contractions due to the "preloading" of muscle during the eccentric phase (i.e. through the stretch-shortening cycle)¹⁶⁷. Furthermore, the greater central deficit during running exercise possibly related to Ia disfacilitation (see above) could also limit alterations in contractile function. During cycling exercise, there is a high intramuscular tension throughout the majority of the pedal revolution, requiring high force generating of the quadriceps, and consequently greater recruitment of type II motor units. The high intramuscular pressure could also lead to partial occlusion of femoral artery blood flow, thereby reducing oxygen delivery and leading to greater metabolic disturbances ¹⁶⁸. Thus, there are several potential explanations to the greater impairment in Ptw found after cycling versus running based exercise. Overall, there remains limited evidence comparing neuromuscular responses to different modes of locomotor exercise, and research in this area could provide useful information for athletes and practitioners when devising training programmes.

926	
927	Conclusions and future research
928	The present review provides a synopsis of literature, conducted primarily over the last two
929	decades, pertaining to alterations in neuromuscular function in response to fatiguing locomotor
930	exercise. The plethora of research which now exists in this area has clearly demonstrated the
931	integral importance of task-dependency on alterations within the neuromuscular system. It is
932	well established that neuromuscular function during exercise above critical intensity is
933	primarily limited by disturbances in metabolic homeostasis and consequent impairments in
934	contractile function. More prolonged exercise below critical intensity causes considerable
935	reductions in the capacity of the nervous system to activate muscle, though the precise
936	alterations within the central nervous system contributing to this reduction are still unclear.
937	During repeated sprint, constant load severe intensity, high-intensity intermittent, and
938	prolonged constant load moderate intensity exercise, impaired contractile function is
939	demonstrated during the first half of exercise, before impaired voluntary activation becomes
940	more evident during the latter half. Primarily, studies have utilised electrical nerve stimulation
941	at rest and during maximal voluntary contractions to determine the effects of locomotor
942	exercise at the peripheral and central level respectively. To further investigate alterations
943	within the nervous system many studies have additionally utilised transcranial magnetic
944	stimulation to assess the excitability of the corticospinal pathway electrical stimulation of
045	descending spinal tracts to assess a motoneuron excitability and perve stimulation to assess
945	uescending spinal fracts to assess u-motoneuron excitability, and herve stimulation to assess
946	spinal loop excitability at lest of during isometric contractions prior to and following locomotor
947	exercise. While these studies have provided valuable insight into how various types of
948	locomotor exercise impact the neuromuscular system, one limitation of this approach is that
949	measuring responses during isometric contractions deviates from the locomotor exercise task
950	itself, and thus hinders understanding of neuromuscular alterations that occur during the task.
	 926 927 928 929 930 931 932 933 934 935 940 941 942 943 944 945 946 947 948 949 950

For example, while prolonged exercise elicits substantial reductions in voluntary activation of muscle during a maximal voluntary contraction, the relevance of this reduction to exercise performance during submaximal intensity tasks is unclear, and has been questioned ⁷⁴. Measuring the force generating capacity of muscle during isometric contractions also deviates from the types of contractions performed during dynamic locomotor exercise, and indeed measures of neuromuscular function during isometric contractions are not interchangeable with those measured during dynamic assessments ¹⁶⁹. Moreover, the delay between exercise cessation and commencing neuromuscular assessments represents a significant general limitation when studying neuromuscular responses to locomotor exercise. To overcome these limitations, studies over the last decade have developed methodologies allowing them to deliver transcranial magnetic and electrical spinal stimulation during the locomotor exercise task itself ^{60,86}. This represents an important advancement in the field, and future research should seek to employ similar techniques to better understand how various locomotor exercise challenges influence the nervous system during exercise. New and emerging methodologies, such as high-density surface EMG, have the potential to provide further insight into exerciseinduced alterations in nervous system function, though incorporating these techniques in response to locomotor exercise is a challenging prospect. Overall, while considerable advancements have been made in the last two decades, more work is required to provide further insight into locomotor exercise induced alterations in neuromuscular function, particularly within the central nervous system.

Page 49 of 125

1		
2	075	
4	975	Table and Figure Legends
5		
0 7	976	Table 1. Literature quantifying neuromuscular alterations pre-to-post maximal intensity
8	077	locomotor avaraisa
9 10	577	locomotor exercise.
10		
12	978	Table 2. Literature quantifying neuromuscular alterations pre-to-post severe intensity
13	979	locomotor exercise. Studies utilising protocols which resulted in task-failure in < 30 min were
15	575	locomotor excreme. Studies utilising protocols which resulted in task fundre in 350 mill were
16	980	considered "severe intensity".
17 18		
19	981	Table 3. Literature assessing neuromuscular responses pre-to-post heavy intensity exercise.
20		
21 22	982	Studies in which exercise duration ranged from $> 30 - 189$ min were considered "heavy
23		
24	983	intensity".
25 26		
27	984	Table 4. Studies assessing neuromuscular responses pre-to-post moderate intensity exercise.
28	0.05	
29 30	985	Studies in which exercise duration was > 240 min were considered moderate intensity .
31		
32	986	Table 5. Studies assessing neuromuscular responses pre-to-post high-intensity intermittent
33 34	087	team sport exercise
35	507	
36 37	000	E' 1 Denne de la constructione in a construction de la construction de
38	988	Figure 1. Proposed alterations in neuromuscular function occurring during maximal intensity
39	989	exercise Adapted from Taylor <i>et al.</i> ⁶¹
40 41		
42	000	Figure 2 Palationship between time to post everyise assessment and reduction in knee
43	990	Figure 2. Relationship between time to post-exercise assessment and reduction in knee
44 45	991	extensor maximum voluntary contraction (MVC; A), voluntary activation (VA; B) and peak
46		
47	992	twitch force (P_{tw} ; C) as a percentage of pre-exercise 16,21,22,31,60,66,68,70,84,86,87,89,91,93,94,96 . The R ²
48 49	002	is deviced from the localithmic class ansauted on each manh
50	993	is derived from the logarithmic slope presented on each graph.
51 52		
53	994	Figure 3. Proposed alterations in neuromuscular function occurring during severe intensity
54	005	evercise. Adapted from Taylor at al^{-61}
55 56	555	exercise. Adapted from Taylor et al.
57	000	Figure 4. Deletionship between as butter in large entering in 1. 1. 1. (
58	996	rigure 4. Relationship between reduction in knee extensor maximal voluntary contraction
59 60	997	(MVC: A), voluntary activation (VA: B) and peak twitch force $(P_{twith} C)$ as a percentage of pre-

1 ว		
2 3 4	998	exercise relative to the duration of exercise. Note that the figure pertains only to longer duration
5 6 7	999	with a minimum duration of 30 min $^{17,21,22,113-116,126-128,135-140}$. * outlier 127 .
, 8 9	1000	Figure 5. Maximum voluntary contraction (A), potentiated knee-extensor twitch force (B) and
10 11 12	1001	voluntary activation measured with motor nerve (VA), and motor cortical (VA $_{TMS}$) stimulation
13 14	1002	(c) at pre-exercise, half time (HT), full time (FT), and following extra time (ET) of a simulated
15 16	1003	soccer match. $P = < 0.05$ vs. the pre-exercise value, $\dagger = P < 0.05$ vs. HT, $\ddagger = P < 0.05$ vs. FT.
17 18 19	1004	From Goodall <i>et al</i> . ¹⁴⁵ .
20 21 22	1005	Conflict of Interest
23 24 25	1006	The authors have no conflicts of interest.
26 27 28	1007	
29 30 31	1008	
32 33 34	1009	
35 36 37	1010	
38 39 40	1011	
41 42 43	1012	
44 45 46	1013	
47 48 49	1014	
50 51 52	1015	
52 53 54	1016	
56 57 58	1017	
59 60	1018	

1			
2			
3	1019	Refer	ences
4	1015	Iterer	
5			
6	1020	1.	Enoka RM, Duchateau J. Translating Fatigue to Human Performance. Medicine and science in
/ 0	1021		sports and exercise. 2016;48(11):2228-2238.
o Q	1022	2.	Halson SL. Monitoring training load to understand fatigue in athletes. Sports medicine
9 10	1023		(Auckland, NZ). 2014;44 Suppl 2(Suppl 2):S139-147.
11	1024	3.	Thorpe RT, Strudwick AJ, Buchheit M, Atkinson G, Drust B, Gregson W. Monitoring Fatigue
12	1025		During the In-Season Competitive Phase in Elite Soccer Players. International journal of
13	1026		sports physiology and performance. 2015;10(8):958-964.
14	1027	4.	Coutts AJ, Slattery KM, Wallace LK. Practical tests for monitoring performance, fatigue and
15	1028		recovery in triathletes. Journal of science and medicine in sport. 2007;10(6):372-381.
16	1029	5.	Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. <i>Physiological reviews</i> .
17	1030		2001;81(4):1725-1789.
18	1031	6.	Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional
19	1032		football: the UEFA injury study. British journal of sports medicine. 2011;45(7):553-558.
20	1033	7.	Dugan SA, Frontera WR. Muscle fatigue and muscle injury. <i>Physical medicine and</i>
22	1034		rehabilitation clinics of North America. 2000;11(2):385-403.
23	1035	8.	Weavil JC. Amann M. Corticospinal excitability during fatiguing whole body exercise.
24	1036	-	Progress in brain research, 2018:240:219-246.
25	1037	9.	McNeil CJ. Butler JE. Taylor JL. Gandevia SC. Testing the excitability of human motoneurons.
26	1038	•	Frontiers in human neuroscience, 2013:7:152.
27	1039	10.	Nicol C. Avela J. Komi PV. The stretch-shortening cycle : a model to study naturally occurring
28	1040	201	neuromuscular fatigue. Sports medicine (Auckland, NZ), 2006:36(11):977-999.
29	1041	11	Martin PG, Weerakkody N, Gandevia SC, Taylor II, Group III and IV muscle afferents
50 31	1042		differentially affect the motor cortex and motoneurones in humans. <i>The Journal of</i>
32	1043		nhysiology 2008:586(5):1277-1289
33	1044	12	Amann M. Significance of Group III and IV muscle afferents for the endurance exercising
34	1044	12.	human. Clinical and experimental pharmacology & physiology 2012;39(9):831-835
35	1046	13	Enoka RM, Mechanisms of muscle fatigue: Central factors and task dependency. Journal of
36	1047	15.	electromyography and kinesiology : official journal of the International Society of
37	1047		Electronhysiological Kinesiology 1995:5(3):141-149
38	1040	14	Sidbu SK Cresswell AG Carroll TL Corticospinal responses to sustained locomotor exercises:
39	1050	14.	moving beyond single-joint studies of central fatigue. Sports medicine (Auckland, NZ)
40 ∕/1	1050		2013:43(6):437-449
42	1051	15	Brownstein CG. Dent IP. Parker P. et al. Etiology and Recovery of Neuromuscular Fatigue
43	1052	15.	following Competitive Soccer Match-Dlay, Frontiers in physiology, 2017;8:831
44	1053	16	Sidbu SK, Weavil IC, Mangum TS, et al. Group III/IV locomotor muscle afferents alter motor
45	1055	10.	cortical and corticosninal excitability and promote central fatigue during cycling exercise
46	1055		Clinical neurophysiology : official journal of the International Federation of Clinical
47	1057		Neurophysiology 2017:128(1):44-55
48	1058	17	Temesi I Runn T Martin V et al Central fatigue assessed by transcranial magnetic
49 50	1050	17.	stimulation in ultratrail running. Medicine and science in sports and eversise
50 51	1055		
52	1061	18	Gruet M. Temesi I. Runn T. Lewy P. Millet GY. Verges S. Stimulation of the motor cortex and
53	1062	10.	corticospinal tract to assess human muscle fatigue Neuroscience 2012:221:224 200
54	1062	10	Colling RW Dearcey GED Ruckle NCM Dower KE Putton DC Neuromuscular fatigue during
55	1067	19.	commis bw, realized GEF, buckle NCW, rower KE, bullon DC. Neuronnuscular idligue during
56	1065		nepeated sprint exercise, underlying physiology and methodological considerations. Applied
57	1065		אראט און
58	1000		2010,40(11).1100-1170.
59 60			
00			

1			
2			
3	1067	20.	Millet GY, Martin V, Temesi J. The role of the nervous system in neuromuscular fatigue
4	1068		induced by ultra-endurance exercise. Applied physiology, nutrition, and metabolism =
5	1069		Physiologie appliquee, nutrition et metabolisme. 2018;43(11):1151-1157.
0	1070	21.	Thomas K, Elmeua M, Howatson G, Goodall S. Intensity-Dependent Contribution of
, 8	1071		Neuromuscular Fatigue after Constant-Load Cycling. Medicine and science in sports and
9	1072		exercise. 2016;48(9):1751-1760.
10	1073	22.	Thomas K, Goodall S, Stone M, Howatson G, St Clair Gibson A, Ansley L. Central and
11	1074		peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. <i>Medicine and science</i>
12	1075		in sports and exercise. 2015:47(3):537-546.
13	1076	23.	Black MI. Jones AM. Blackwell JR. et al. Muscle metabolic and neuromuscular determinants
14	1077	-	of fatigue during cycling in different exercise intensity domains. <i>Journal of applied physiology</i>
15	1078		(Bethesda, Md : 1985). 2017:122(3):446-459.
16 17	1079	24.	Burnley M. Vanhatalo A. Jones AM. Distinct profiles of neuromuscular fatigue during muscle
17 18	1080		contractions below and above the critical torque in humans. <i>Journal of applied physiology</i>
19	1081		(Bethesda Md · 1985) 2012·113(2)·215-223
20	1082	25.	Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC, Muscle metabolic responses to
21	1083	_0.	exercise above and below the "critical power" assessed using 31P-MRS. American journal of
22	1084		nhysiology Regulatory integrative and comparative nhysiology 2008-294(2):R585-593
23	1085	26	Bishon DL Eatigue during intermittent-sprint exercise. <i>Clinical and experimental</i>
24	1086	20.	nharmacology & nhysiology 2012:39(9):836-841
25	1087	27	Whyte LL Gill IM Cathcart AL Effect of 2 weeks of sprint interval training on health-related
26 27	1088	27.	outcomes in sedentary overweight/obese men. Metabolism: clinical and experimental
27 28	1089		2010:59(10):1421-1428
20 29	1005	28	Gibala ML Little IP, van Essen M, et al. Short-term sprint interval versus traditional
30	1000	20.	endurance training: similar initial adaptations in human skeletal muscle and exercise
31	1091		nerformance. The Journal of physiology 2006:575(Pt 3):901-911
32	1002	20	Taylor Macherson T. Spears Weston M. The effects of repeated-sprint training on field-
33	1093	25.	hased fitness measures: a meta-analysis of controlled and non-controlled trials. Sports
34	1094		medicine (Auckland, NZ) 2015:45(6):881-891
35	1095	30	Conte D. Eavero T.G. Lupo C. Erancioni F.M. Canzanica L. Tessitore A. Time-motion analysis of
30 27	1090	50.	Italian elite women's baskethall games: individual and team analyses. <i>Journal of strength</i>
32	1097		and conditioning research 2015;29(1):144-150
39	1000	21	Kruger BL Aboodarda SL Jaimes LM Samozino P. Millet GV Cycling Performed on an
40	1100	51.	Innovative Ergometer at Different Intensities-Durations in Men: Neuromuscular Fatigue and
41	1100		Recovery Kinetics Applied physiology putrition and metabolism = Physiologie appliquee
42	1101		nutrition et metabolisme 2019
43	1102	37	Fernandez-del-Olmo M. Rodriguez FA. Marquez G. et al. Isometric knee extensor fatigue
44	1103	52.	following a Wingate test: nerinheral and central mechanisms. Scandingvian journal of
45	1105		medicine & science in snorts 2013-23(1):57-65
40 47	1105	22	Allen DG Trajanovska S The multiple roles of phosphate in muscle fatigue. Frontiers in
47	1100	55.	nhusiology 2012-2-1/63
49	1109	3/	Vauel RL Arsac I.M. Thiaudiere F. Canioni P. Manier G. Effect of creatine supplementation on
50	1100	54.	nhosphocreating resynthesis inorganic phosphate accumulation and nH during intermittent
51	1110		maximal exercise Journal of sports sciences 2002:20(5):427-437
52	1110	25	Indexinal exercise. Journal of sports sciences. 2002,20(5).427-457.
53	1112	55.	contractile properties during fatiguing contractions of the human anterior tibialis muscle
54	1112		The Journal of physiology 2000-587(Pt 17)-1320-1329
55 54	111 <i>1</i>	36	Allen DG Lamh GD Westerhlad H. Skeletal muscle fatigue: collular mechanisms
50 57	1115	50.	Dhusiological reviews, 2008-88/1)-287-222
58	1113		1 11y31010y1cul 1 Eviews. 2000,00(11.201-332.
59			
60			

1			
2			
3	1116	37.	Girard O, Bishop DJ, Racinais S. Hot conditions improve power output during repeated
4 5	1117		cycling sprints without modifying neuromuscular fatigue characteristics. European journal of
6	1118		applied physiology. 2013;113(2):359-369.
7	1119	38.	Girard O, Bishop DJ, Racinais S. Neuromuscular adjustments of the quadriceps muscle after
8	1120		repeated cycling sprints. <i>PloS one</i> . 2013;8(5):e61793.
9	1121	39.	Hureau TJ, Ducrocq GP, Blain GM. Peripheral and Central Fatigue Development during All-
10	1122		Out Repeated Cycling Sprints. Medicine and science in sports and exercise. 2016;48(3):391-
11	1123		401.
12	1124	40.	Racinais S, Bishop D, Denis R, Lattier G, Mendez-Villaneuva A, Perrey S. Muscle
13	1125		deoxygenation and neural drive to the muscle during repeated sprint cycling. Medicine and
14 15	1126		science in sports and exercise. 2007;39(2):268-274.
16	1127	41.	Pearcey GE, Murphy JR, Behm DG, Hay DC, Power KE, Button DC. Neuromuscular fatigue of
17	1128		the knee extensors during repeated maximal intensity intermittent-sprints on a cycle
18	1129		ergometer. Muscle & nerve. 2015;51(4):569-579.
19	1130	42.	Monks MR, Compton CT, Yetman JD, Power KE, Button DC. Repeated sprint ability but not
20	1131		neuromuscular fatigue is dependent on short versus long duration recovery time between
21	1132		sprints in healthy males. Journal of science and medicine in sport. 2017;20(6):600-605.
22	1133	43.	Goodall S, Charlton K, Howatson G, Thomas K. Neuromuscular fatigability during repeated-
23	1134		sprint exercise in male athletes. Medicine and science in sports and exercise. 2015;47(3):528-
24 25	1135		536.
26	1136	44.	Perrey S, Racinais S, Saimouaa K, Girard O. Neural and muscular adjustments following
27	1137		repeated running sprints. European journal of applied physiology. 2010;109(6):1027-1036.
28	1138	45.	Pearcey GE, Bradbury-Squires DJ, Monks M, Philpott D, Power KE, Button DC. Arm-cycling
29	1139		sprints induce neuromuscular fatigue of the elbow flexors and alter corticospinal excitability
30	1140		of the biceps brachii. Applied physiology, nutrition, and metabolism = Physiologie appliquee,
31	1141		nutrition et metabolisme. 2016;41(2):199-209.
32 22	1142	46.	Hureau TJ, Olivier N, Millet GY, Meste O, Blain GM. Exercise performance is regulated during
33 34	1143		repeated sprints to limit the development of peripheral fatigue beyond a critical threshold.
35	1144		Experimental physiology. 2014;99(7):951-963.
36	1145	47.	Tomazin K, Morin JB, Millet GY. Etiology of Neuromuscular Fatigue After Repeated Sprints
37	1146		Depends on Exercise Modality. International journal of sports physiology and performance.
38	1147		2017;12(7):878-885.
39	1148	48.	Tomazin K, Morin JB, Strojnik V, Podpecan A, Millet GY. Fatigue after short (100-m), medium
40	1149		(200-m) and long (400-m) treadmill sprints. European journal of applied physiology.
41 42	1150		2012;112(3):1027-1036.
43	1151	49.	Taylor JL, Todd G, Gandevia SC. Evidence for a supraspinal contribution to human muscle
44	1152		fatigue. Clinical and experimental pharmacology & physiology. 2006;33(4):400-405.
45	1153	50.	McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL. Behaviour of the motoneurone pool in a
46	1154		fatiguing submaximal contraction. The Journal of physiology. 2011;589(Pt 14):3533-3544.
47	1155	51.	Pearcey GEP, Noble SA, Munro B, Zehr EP. Spinal Cord Excitability and Sprint Performance
48	1156		Are Enhanced by Sensory Stimulation During Cycling. Frontiers in human neuroscience.
49 50	1157		2017;11:612.
50	1158	52.	Cotel F, Exley R, Cragg SJ, Perrier JF. Serotonin spillover onto the axon initial segment of
52	1159		motoneurons induces central fatigue by inhibiting action potential initiation. <i>Proceedings of</i>
53	1160		the National Academy of Sciences of the United States of America. 2013;110(12):4774-4779.
54	1161	53.	Todd G, Taylor JL, Gandevia SC. Measurement of voluntary activation based on transcranial
55	1162		magnetic stimulation over the motor cortex. Journal of applied physiology (Bethesda, Md :
56	1163	_	<i>1985).</i> 2016;121(3):678-686.
57	1164	54.	Peyrard A, Willis SJ, Place N, Millet GP, Borrani F, Rupp T. Neuromuscular evaluation of arm-
58	1165		cycling repeated sprints under hypoxia and/or blood flow restriction. <i>European journal of</i>
59 60	1166		applied physiology. 2019;119(7):1533-1545.

1			
2			
4	1167	55.	Butler JE, Taylor JL, Gandevia SC. Responses of human motoneurons to corticospinal
5	1168		stimulation during maximal voluntary contractions and ischemia. The Journal of
6	1169		neuroscience : the official journal of the Society for Neuroscience. 2003;23(32):10224-10230.
7	1170	56.	Nielsen J, Petersen N. Is presynaptic inhibition distributed to corticospinal fibres in man? The
8	11/1		Journal of physiology. 1994;477(Pt 1):47-58.
9	1172	57.	McNeil CJ, Giesebrecht S, Khan SI, Gandevia SC, Taylor JL. The reduction in human
10	1173		motoneurone responsiveness during muscle fatigue is not prevented by increased muscle
11	1174		spindle discharge. The Journal of physiology. 2011;589(Pt 15):3731-3738.
12	1175	58.	Martin PG, Smith JL, Butler JE, Gandevia SC, Taylor JL. Fatigue-sensitive afferents inhibit
14	1176		extensor but not flexor motoneurons in humans. The Journal of neuroscience : the official
15	11//		journal of the Society for Neuroscience. 2006;26(18):4796-4802.
16	11/8	59.	Finn HT, Rouffet DM, Kennedy DS, Green S, Taylor JL. Motoneuron excitability of the
17	11/9		quadriceps decreases during a fatiguing submaximal isometric contraction. <i>Journal of</i>
18	1180	<u> </u>	applied physiology (Bethesda, Md : 1985). 2018;124(4):970-979.
19	1181	60.	Sidhu SK, Weavil JC, Thurston TS, et al. Fatigue-related group III/IV muscle afferent feedback
20	1182		facilitates intracortical inhibition during locomotor exercise. J Physiol. 2018;596(19):4789-
21	1183	~ ~	
23	1184	61.	Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL. Neural Contributions to Muscle
24	1185		Fatigue: From the Brain to the Muscle and Back Again. <i>Medicine and science in sports and</i>
25	1186		exercise. 2016;48(11):2294-2306.
26	1187	62.	Avela J, Kyrolainen H, Komi PV, Rama D. Reduced reflex sensitivity persists several days after
27	1188		long-lasting stretch-shortening cycle exercise. Journal of applied physiology (Bethesda, Md :
28	1189		<i>1985).</i> 1999;86(4):1292-1300.
29	1190	63.	Hagbarth KE. Excitatory and inhibitory skin areas for flexor and extensor motoneurons. Acta
30 31	1191	~ •	physiologica Scandinavica Supplementum. 1952;26(94):1-58.
32	1192	64.	Mense S, Craig AD, Jr. Spinal and supraspinal terminations of primary afferent fibers from
33	1193	C -	the gastrocnemius-soleus muscle in the cat. <i>Neuroscience</i> . 1988;26(3):1023-1035.
34	1194	65.	Torres-Peralta R, Morales-Alamo D, Gonzalez-Izal M, et al. Task Failure during Exercise to
35	1195		Exhaustion in Normoxia and Hypoxia is Due to Reduced Muscle Activation Caused by Central
36	1196		Mechanisms While Muscle Metaboreflex Does Not Limit Performance. Frontiers in
37	1197	~~	physiology. 2016;6(414).
38	1198	66.	Temesi J, Mattioni Maturana F, Peyrard A, Piucco T, Murias JM, Millet GY. The relationship
39 40	1199		between oxygen uptake kinetics and neuromuscular fatigue in high-intensity cycling
41	1200	C7	exercise. European journal of applied physiology. 2017;117(5):969-978.
42	1201	67.	Hodgson MD, Keir DA, Copitnorne DB, Rice CL, Kowalchuk JM. Power reserve following
43	1202		ramp-incremental cycling to exhaustion: implications for muscle fatigue and function.
44	1203	60	Journal of applied physiology (Bethesda, Md : 1985). 2018;125(2):304-312.
45	1204	68.	Schafer LU, Hayes M, Dekerle J. The magnitude of neuromuscular fatigue is not intensity
46	1205		dependent when cycling above critical power but relates to aerobic and anaerobic
47	1206	60	capacities. Experimental physiology. 2019;104(2):209-219.
48 40	1207	69.	Amann M. Central and peripheral fatigue: interaction during cycling exercise in humans.
49 50	1208	70	Medicine and science in sports and exercise. 2011;43(11):2039-2045.
51	1209	70.	Johnson MA, Sharpe GR, Williams NC, Hannah R. Locomotor muscle fatigue is not critically
52	1210		regulated after prior upper body exercise. Journal of applied physiology (Bethesda, Md :
53	1211	74	1985). 2015;119(7):840-850.
54	1212	/1.	Amann IVI, Venturelli M, IVes SJ, et al. Peripheral fatigue limits endurance exercise via a
55	1213		sensory reedback-mediated reduction in spinal motoneuronal output. <i>Journal of applied</i>
56	1214	70	pnysiology (Bethesda, Ma : 1985). 2013;115(3):355-364.
57	1215	72.	Noakes ID, St Clair Gibson A, Lambert EV. From catastrophe to complexity: a novel model of
50 50	1216		integrative central neural regulation of effort and fatigue during exercise in humans. British
60	121/		journal of sports mealcine. 2004;38(4):511-514.

1			
2 3	1210	72	Themas K. Coodall S. Howatson C. Derformance Estimability Is Not Degulated to A. Derinharal
4	1210	75.	Critical Threshold Evercise and sport sciences reviews 2018:46(4):240-246
5	1210	74	Marcora S. Counterpoint: Afferent feedback from fatigued locomotor muscles is not an
6	1221	,	important determinant of endurance exercise performance. <i>Journal of applied physiology</i>
/ Q	1222		(Bethesda, Md : 1985). 2010:108(2):454-456: discussion 456-457.
9	1223	75.	Amann M. Secher NH. Point: Afferent feedback from fatigued locomotor muscles is an
10	1224		important determinant of endurance exercise performance. J Appl Physiol (1985).
11	1225		2010:108(2):452-454: discussion 457: author reply 470.
12	1226	76.	Marcora SM. Stajano W. The limit to exercise tolerance in humans: mind over muscle?
13	1227		European journal of applied physiology. 2010;109(4):763-770.
14	1228	77.	Millet GY. Can neuromuscular fatigue explain running strategies and performance in ultra-
15	1229		marathons?: the flush model. Sports medicine (Auckland, NZ). 2011;41(6):489-506.
10	1230	78.	Hureau TJ, Romer LM, Amann M. The 'sensory tolerance limit': A hypothetical construct
18	1231		determining exercise performance? <i>European journal of sport science</i> . 2018;18(1):13-24.
19	1232	79.	Decorte N, Lafaix PA, Millet GY, Wuyam B, Verges S. Central and peripheral fatigue kinetics
20	1233		during exhaustive constant-load cycling. Scandinavian journal of medicine & science in
21	1234		sports. 2012;22(3):381-391.
22	1235	80.	Keir DA, Copithorne DB, Hodgson MD, Pogliaghi S, Rice CL, Kowalchuk JM. The slow
23 24	1236		component of pulmonary O2 uptake accompanies peripheral muscle fatigue during high-
24 25	1237		intensity exercise. Journal of applied physiology (Bethesda, Md : 1985). 2016;121(2):493-
26	1238		502.
27	1239	81.	Azevedo RA, Cruz R, Couto P, et al. Characterization of performance fatigability during a self-
28	1240		paced exercise. Journal of applied physiology (Bethesda, Md : 1985). 2019;127(3):838-846.
29	1241	82.	Felippe LC, Melo TG, Silva-Cavalcante MD, et al. Relationship between recovery of
30	1242		neuromuscular function and subsequent capacity to work above critical power. European
31 22	1243		journal of applied physiology. 2020;120(6):1237-1249.
33	1244	83.	Skiba PF, Chidnok W, Vanhatalo A, Jones AM. Modeling the expenditure and reconstitution
34	1245		of work capacity above critical power. <i>Medicine and science in sports and exercise</i> .
35	1246		2012;44(8):1526-1532.
36	1247	84.	Ansdell P, Thomas K, Howatson G, Amann M, Goodall S. Deception Improves Time Trial
37	1248		Performance in Well-trained Cyclists without Augmented Fatigue. Medicine and science in
38	1249	<u></u>	sports and exercise. 2018;50(4):809-816.
39 40	1250	85.	Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Opioid-mediated muscle
41	1251		afferents inhibit central motor drive and limit peripheral muscle fatigue development in
42	1252	06	numans. The Journal of physiology. 2009;587(1):271-283.
43	1253	86.	weavil JC, Sidnu SK, Mangum TS, Richardson RS, Amann M. Fatigue diminishes
44	1254		
45	1255	07	2010,110(4).1745-1751. Goodall S. Gonzalaz Alanso I. Ali I. Poss E7. Romar I.M. Supraspinal fatigue after permovis
46 47	1250	07.	and hypoxic exercise in hymans. <i>J Physiol</i> 2012;590(11):2767-2782
47 48	1257	88	Amann M. Eldridge MW. Lovering AT. Stickland MK. Pegelow DE. Demosey IA. Arterial
49	1250	00.	avigenation influences central motor output and evercise performance via effects on
50	1255		nerinheral locomotor muscle fatigue in humans. The Journal of physiology. 2006;575(Pt
51	1261		3)·937-952
52	1262	89	Hureau TL Weavil IC Thurston TS et al. Pharmacological attenuation of group III/IV muscle
53	1263		afferents improves endurance performance when oxygen delivery to locomotor muscles is
54 55	1264		preserved, Journal of applied physioloay (Bethesda, Md : 1985), 2019.
55 56	1265	90.	Amann M. Blain GM. Proctor LT. Sebranek JJ. Pegelow DF. Demosev JA. Implications of group
57	1266		III and IV muscle afferents for high-intensity endurance exercise performance in humans.
58	1267		The Journal of physiology. 2011;589(Pt 21):5299-5309.
59			
60			

1 ว			
2	1268	91.	Blain GM, Mangum TS, Sidhu SK, et al. Group III/IV muscle afferents limit the intramuscular
4	1269	•	metabolic perturbation during whole body exercise in humans. <i>The Journal of physiology</i> .
5	1270		2016;594(18):5303-5315.
0 7	1271	92.	Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy
8	1272		humans and imposes a limitation to exercise performance. The Journal of physiology.
9	1273		2008;586(1):161-173.
10	1274	93.	O'Leary TJ, Morris MG, Collett J, Howells K. Central and peripheral fatigue following non-
11	1275		exhaustive and exhaustive exercise of disparate metabolic demands. Scandinavian journal of
12	1276		medicine & science in sports. 2016;26(11):1287-1300.
13 14	1277	94.	O'Leary TJ, Collett J, Morris MG. High-intensity exhaustive exercise reduces long-interval
15	1278		intracortical inhibition. Experimental brain research. 2018;236(12):3149-3158.
16	1279	95.	Skof B, Strojnik V. Neuromuscular fatigue and recovery dynamics following prolonged
17	1280		continuous run at anaerobic threshold. British journal of sports medicine. 2006;40(3):219-
18	1281		222; discussion 219-222.
19	1282	96.	Husmann F, Gube M, Felser S, et al. Central Factors Contribute to Knee Extensor Strength
20	1283		Loss after 2000-m Rowing in Elite Male and Female Rowers. <i>Medicine and science in sports</i>
21	1284		and exercise. 2017;49(3):440-449.
23	1285	97.	O'Leary IJ, Collett J, Howells K, Morris MG. Endurance capacity and neuromuscular fatigue
24	1286		following high- vs moderate-intensity endurance training: A randomized trial. Scandinavian
25	1287	00	Journal of medicine & science in sports. 2017;27(12):1648-1661.
26	1288	98.	Gandevia SC, Allen GM, Butler JE, Taylor JL. Supraspinal factors in numan muscle fatigue:
27	1289		evidence for suboplimal output from the motor cortex. The Journal of physiology. 1996;490 (
28 20	1290	00	PLZ/PLZ/.529-530.
29 30	1291	99.	inhibition and facilitation in the human mater sortey. The Journal of physiology
31	1292		
32	1293	100	Hunter SK McNeil CL Butler IE Gandevia SC Taylor II. Short-interval cortical inhibition and
33	1294	100.	intracortical facilitation during submaximal voluntary contractions changes with fatigue
34	1296		Experimental hrain research 2016-234(9):2541-2551
35	1297	101	Klass M. Roelands B. Levenez M. et al. Effects of noradrenaline and donamine on supraspinal
30 37	1298	101.	fatigue in well-trained men. <i>Medicine and science in sports and exercise</i> , 2012:44(12):2299-
38	1299		2308.
39	1300	102.	Bulbulian R. Darabos BL. Motor neuron excitability: the Hoffmann reflex following exercise
40	1301	-	of low and high intensity. <i>Medicine and science in sports and exercise</i> . 1986;18(6):697-702.
41	1302	103.	Motl RW, O'Connor P J, Dishman RK. Effects of cycling exercise on the soleus H-reflex and
42	1303		state anxiety among men with low or high trait anxiety. <i>Psychophysiology</i> . 2004;41(1):96-
43 44	1304		105.
44 45	1305	104.	Macefield G, Hagbarth KE, Gorman R, Gandevia SC, Burke D. Decline in spindle support to
46	1306		alpha-motoneurones during sustained voluntary contractions. The Journal of physiology.
47	1307		1991;440:497-512.
48	1308	105.	Duchateau J, Balestra C, Carpentier A, Hainaut K. Reflex regulation during sustained and
49	1309		intermittent submaximal contractions in humans. The Journal of physiology. 2002;541(Pt
50	1310		3):959-967.
51 52	1311	106.	Rossi A, Decchi B, Ginanneschi F. Presynaptic excitability changes of group Ia fibres to muscle
53	1312		nociceptive stimulation in humans. <i>Brain research</i> . 1999;818(1):12-22.
54	1313	107.	Fitts RH. The cross-bridge cycle and skeletal muscle fatigue. Journal of applied physiology
55	1314		(Bethesda, Md : 1985). 2008;104(2):551-558.
56	1315	108.	Sidhu SK, Weavil JC, Venturelli M, et al. Spinal mu-opioid receptor-sensitive lower limb
57	1316		muscle atterents determine corticospinal responsiveness and promote central fatigue in
58 50	1317		upper limb muscle. The Journal of physiology. 2014;592(22):5011-5024.
60			

1 2			
3 4	1318 1319	109.	de Morree HM, Klein C, Marcora SM. Perception of effort reflects central motor command during movement execution. <i>Psychophysiology</i> , 2012;49(9):1242-1253
5 6 7	1320 1321 1322	110.	Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. <i>Journal of applied physiology (Bethesda, Md</i> : 1985), 1986;61(1):165-172
8 9 10 11	1322 1323 1324 1325	111.	Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical Power: An Important Fatigue Threshold in Exercise Physiology. <i>Medicine and science in sports and exercise</i> . 2016:48(11):2320-2334
12 13 14	1326 1327 1328	112.	Lepers R, Theurel J, Hausswirth C, Bernard T. Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes. <i>Journal of science and medicine in sport</i> 2008:11(4):381-389
15 16 17	1329 1330 1331	113.	Lepers R, Hausswirth C, Maffiuletti N, Brisswalter J, van Hoecke J. Evidence of neuromuscular fatigue after prolonged cycling exercise. <i>Medicine and science in sports and exercise</i> . 2000:32(11):1880-1886
18 19 20	1332 1333	114.	Racinais S, Girard O, Micallef JP, Perrey S. Failed excitability of spinal motoneurons induced by prolonged running exercise. <i>Journal of neurophysiology</i> , 2007;97(1):596-603
21 22	1334 1335	115.	Jubeau M, Rupp T, Perrey S, et al. Changes in voluntary activation assessed by transcranial magnetic stimulation during prolonged cycling exercise. <i>PloS one</i> , 2014;9(2):e89157
23 24 25	1336 1337	116.	Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY. Neuromuscular fatigue during a long-duration cycling exercise. <i>Journal of applied physiology (Bethesda, Md : 1985)</i> .
26 27 28	1338 1339 1340	117.	Burnley M, Jones AM. Power-duration relationship: Physiology, fatigue, and the limits of human performance. <i>European journal of sport science</i> . 2018;18(1):1-12.
29 30	1341 1342	118.	Ortenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. <i>The Journal of physiology</i> . 2013;591(18):4405-4413.
31 32 33	1343 1344 1345	119.	Gejl KD, Hvid LG, Frandsen U, Jensen K, Sahlin K, Ortenblad N. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. <i>Med Sci Sports Exerc.</i> 2014;46(3):496-505.
34 35 36	1346 1347	120.	Ørtenblad N, Nielsen J, Saltin B, Holmberg HC. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. <i>The Journal of physiology</i> . 2011;589(Pt 2):711-725
37 38 39	1348 1349 1350	121.	Noakes TD, Lambert EV, Lambert MI, McArthur PS, Myburgh KH, Benade AJ. Carbohydrate ingestion and muscle glycogen depletion during marathon and ultramarathon racing.
40 41 42 43	1351 1352 1353 1354	122.	European journal of applied physiology and occupational physiology. 1988;57(4):482-489. Cheng AJ, Yamada T, Rassier DE, Andersson DC, Westerblad H, Lanner JT. Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery. J Physiol. 2016;594(18):5149-5160
44 45 46 47	1355 1356 1357	123.	Mrakic-Sposta S, Gussoni M, Moretti S, et al. Effects of Mountain Ultra-Marathon Running on ROS Production and Oxidative Damage by Micro-Invasive Analytic Techniques. <i>PloS one.</i> 2015;10(11):e0141780.
48 49 50	1358 1359 1360	124.	Cheng AJ, Place N, Westerblad H. Molecular basis for exercise-induced fatigue: the importance of strictly controlled cellular Ca2+ handling. <i>Cold Spring Harb Perspect Med.</i> 2017.
51 52 53 54 55	1361 1362 1363 1364	125.	Skurvydas A, Mamkus G, Kamandulis S, Dudoniene V, Valanciene D, Westerblad H. Mechanisms of force depression caused by different types of physical exercise studied by direct electrical stimulation of human quadriceps muscle. <i>European journal of applied</i> <i>physiology.</i> 2016;116(11-12):2215-2224.
56 57 58 59 60	1365 1366 1367	126.	Place N, Lepers R, Deley G, Millet GY. Time course of neuromuscular alterations during a prolonged running exercise. <i>Medicine and science in sports and exercise</i> . 2004;36(8):1347-1356.

1			
2			
3	1368	127.	Sahlin K, Seger JY. Effects of prolonged exercise on the contractile properties of human
4	1369		quadriceps muscle. European journal of applied physiology and occupational physiology.
5	1370		1995;71(2-3):180-186.
7	1371	128.	Saldanha A, Nordlund Ekblom MM, Thorstensson A. Central fatigue affects plantar flexor
, 8	1372		strength after prolonged running. Scandinavian journal of medicine & science in sports.
9	1373		2008;18(3):383-388.
10	1374	129.	Petersen K, Hansen CB, Aagaard P, Madsen K. Muscle mechanical characteristics in fatigue
11	1375		and recovery from a marathon race in highly trained runners. <i>European journal of applied</i>
12	1376		physiology. 2007;101(3):385-396.
13	1377	130.	Millet GY, Martin V, Lattier G, Ballay Y, Mechanisms contributing to knee extensor strength
14	1378		loss after prolonged running exercise. Journal of applied physiology (Bethesda, Md : 1985).
15	1379		2003:94(1):193-198.
16 17	1380	131.	Millet GY. Martin V. Maffiuletti NA. Martin A. Neuromuscular fatigue after a ski skating
17 18	1381		marathon. Canadian journal of applied physiology = Revue canadienne de physiologie
19	1382		annliquee 2003·28(3)·434-445
20	1383	132	Ross FZ Middleton N, Shave R, George K, Nowicky A, Corticomotor excitability contributes to
21	1384	152.	neuromuscular fatigue following marathon running in man. Experimental physiology
22	1385		
23	1386	133	Gauche F. Leners R. Rahita G. et al. Vitamin and mineral supplementation and
24	1387	155.	neuromuscular recovery after a running race. Medicine and science in sports and evercise
25	1288		
26	1200	12/	Millet GV Leners P. Maffiuletti NA. Pahault N. Martin V. Lattier G. Alterations of
2/	1200	134.	nouromuscular function after an ultramarathon Journal of anniad physiology (Pethecda, Md
28 20	1201		
30	1202	125	. 1985). 2002,92(2).480-492. Martin V. Karbarya H. Mascanniar I.A. et al. Control and paripheral contributions to
31	1392	135.	Martin V, Kernerve H, Messonnier LA, et al. Central and peripheral contributions to
32	1292		(Detheads, Add: 1005), 2010;100(5);1224-11(1edullilli Tull, Journal of upplied physiology
33	1394	120	(Belliesuu, Mu : 1985). 2010;108(5):1224-1233. Ciandelini M. Cimenez D. Temesi I. et al. Effect of the Estimus Induced by a 110 km
34	1395	136.	Glandolimi M, Gimenez P, Temesi J, et al. Effect of the Fatigue induced by a 110-km
35	1396		Oltramaration on Tiblai Impact Acceleration and Lower Leg Kinematics. Plos one.
36	1397	107	2016;11(3):e0151687.
37	1398	137.	Temesi J, Arnai PJ, Rupp T, et al. Are Females More Resistant to Extreme Neuromuscular
38	1399	120	Fatigue? Medicine and science in sports and exercise. 2015;47(7):1372-1382.
39 40	1400	138.	Millet GY, Tomazin K, Verges S, et al. Neuromuscular consequences of an extreme mountain
41	1401	120	ultra-marathon. Plos one. 2011;6(2):e17059.
42	1402	139.	Besson T, Rossi J, Mallour TLR, et al. Fatigue and Recovery following Single- versus
43	1403		Multistage Ultramaration Running. <i>Medicine and science in sports and exercise.</i> 2020.
44	1404	140.	Saugy J, Place N, Millet GY, Degache F, Schena F, Millet GP. Alterations of Neuromuscular
45	1405		Function after the World's Most Challenging Mountain Ultra-Marathon. Plos one.
46	1406		2013;8(6):665596.
47	1407	141.	Ross EZ, Gregson W, Williams K, Robertson C, George K. Muscle contractile function and
48	1408		neural control after repetitive endurance cycling. <i>Medicine and science in sports and</i>
49 50	1409		exercise. 2010;42(1):206-212.
51	1410	142.	Hollge J, Kunkel M, Ziemann U, Tergau F, Geese R, Reimers CD. Central fatigue in sports and
52	1411		daily exercises. A magnetic stimulation study. International journal of sports medicine.
53	1412		1997;18(8):614-617.
54	1413	143.	Aboodarda SJ, Fan S, Coates K, Millet GY. The short-term recovery of corticomotor responses
55	1414		in elbow flexors. <i>BMC neuroscience</i> . 2019;20(1):9.
56	1415	144.	Mohr M, Krustrup P, Bangsbo J. Fatigue in soccer: a brief review. <i>Journal of sports sciences</i> .
57	1416		2005;23(6):593-599.
58			
59 60			
00			

1 2			
3	1417	145.	Goodall S, Thomas K, Harper LD, et al. The assessment of neuromuscular fatigue during 120
4 5	1418		min of simulated soccer exercise. European journal of applied physiology. 2017;117(4):687-
5	1419		697.
7	1420	146.	Harper LD, Hunter R, Parker P, et al. Test-Retest Reliability of Physiological and Performance
8	1421		Responses to 120 Minutes of Simulated Soccer Match Play. Journal of strength and
9	1422		conditioning research. 2016;30(11):3178-3186.
10	1423	147.	Thomas K, Dent J, Howatson G, Goodall S. Etiology and Recovery of Neuromuscular Fatigue
11	1424		after Simulated Soccer Match Play. Medicine and science in sports and exercise.
12 13	1425		2017;49(5):955-964.
14	1426	148.	Rampinini E, Bosio A, Ferraresi I, Petruolo A, Morelli A, Sassi A. Match-related fatigue in
15	1427		soccer players. Medicine and science in sports and exercise. 2011;43(11):2161-2170.
16	1428	149.	Ispiriidis I, Fatouros IG, Jamurtas AZ, et al. Time-course of changes in inflammatory and
17	1429		performance responses following a soccer game. <i>Clinical journal of sport medicine : official</i>
18	1430	150	Journal of the Canadian Academy of Sport Medicine. 2008;18(5):423-431.
19 20	1431	150.	Krustrup P, Ortenblad N, Nielsen J, et al. Maximal voluntary contraction force, SR function
20	1432		Europagn journal of annliad physiology, 2011;111(12):2007, 2005
22	1455	151	European journal of applied physiology. 2011,111(12).2987-2995.
23	1434	151.	ingestion on recovery from competitive rugby league matches. <i>Journal of strength and</i>
24	1435		conditioning research 2013:27(5):1304-1312
25	1430	152	Skein M. Duffield R. Minett GM. Snape A. Murnhy A. The effect of overnight sleen
26	1438	192.	deprivation after competitive rugby league matches on postmatch physiological and
27 28	1439		perceptual recovery. International journal of sports physiology and performance.
29	1440		2013:8(5):556-564.
30	1441	153.	Duffield R. Murphy A. Snape A. Minett GM. Skein M. Post-match changes in neuromuscular
31	1442		function and the relationship to match demands in amateur rugby league matches. Journal
32	1443		of science and medicine in sport. 2012;15(3):238-243.
33	1444	154.	Pointon M, Duffield R. Cold water immersion recovery after simulated collision sport
34 35	1445		exercise. Medicine and science in sports and exercise. 2012;44(2):206-216.
36	1446	155.	Ansdell P, Dekerle J. Sodium bicarbonate supplementation delays neuromuscular fatigue
37	1447		without changes in performance outcomes during a basketball match simulation protocol.
38	1448		Journal of strength and conditioning research. 2017.
39	1449	156.	Minett GM, Duffield R, Billaut F, Cannon J, Portus MR, Marino FE. Cold-water immersion
40	1450		decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in
41 42	1451		the heat. Scandinavian journal of medicine & science in sports. 2014;24(4):656-666.
43	1452	157.	Pointon M, Duffield R, Cannon J, Marino FE. Cold water immersion recovery following
44	1453		intermittent-sprint exercise in the heat. <i>European journal of applied physiology</i> .
45	1454		2012;112(7):2483-2494.
46	1455	158.	Goodall S, Thomas K, Barwood M, et al. Neuromuscular changes and the rapid adaptation
47	1456		following a bout of damaging eccentric exercise. Acta physiologica (Oxford, England).
48 70	1457	450	
49 50	1458	159.	Goodall S, Charlton K, Highett C, et al. Augmented supraspinal fatigue following constant-
51	1459		load cycling in the heat. Scandinavian journal of medicine & science in sports. 2015;25 Suppl
52	1460	160	1.104-172. Drownstein CC, Souron D, Dover N, Singh D, Langle T, Millet CV, Disperste kinetics of change
53	1401	160.	in reconnects to electrical stimulation at the therasis and lumbar level during fatiguing
54	1402		isometric knee extension lournal of applied physiology (Bethesda, Md · 1025) 2010
55 56	1464	161	Dovle-Baker D. Temesi I. Medvsky MF. Holash RI. Millet GV. An Innovative Ergometer to
57	1465	101.	Measure Neuromuscular Fatigue Immediately after Cycling Medicine and science in sports
58	1466		and exercise. 2018:50(2):375-387.
59			
60			

1			
2			
3	1467	162.	Endoh T, Nakajima T, Sakamoto M, Komiyama T. Effects of muscle damage induced by
4	1468		eccentric exercise on muscle fatigue. Medicine and science in sports and exercise.
5	1469		2005;37(7):1151-1156.
7	1470	163.	Rampinini E, Connolly DR, Ferioli D, La Torre A, Alberti G, Bosio A. Peripheral neuromuscular
י 8	1471		fatigue induced by repeated-sprint exercise: cycling vs. running. The Journal of sports
9	1472		medicine and physical fitness, 2016:56(1-2):49-59.
10	1473	164	Rossman MI Garten RS Venturelli M Amann M Richardson RS The role of active muscle
11	1474		mass in determining the magnitude of nerinheral fatigue during dynamic exercise. American
12	1/75		iournal of nhysiology Regulatory integrative and comparative nhysiology
13	1475		$2014.206(12) \cdot P024.040$
14	1470	165	2014,500(12).N354-340. Reseman ML Venturalli M. McDaniel I. Amann M. Richardson RS. Mussle mass and
15	1477	105.	Rossinan Ivij, ventureni Ivi, ivicDanierij, Annanin Ivi, Richardson RS. Iviuscie mass anu
16	1478		peripheral fatigue: a potential role for afferent feedback? Acta physiologica (Oxford,
17	1479		England). 2012;206(4):242-250.
18	1480	166.	Nelson RC, Dillman CJ, Lagasse P, Bickett P. Biomechanics of overground versus treadmill
19	1481		running. <i>Medicine and science in sports</i> . 1972;4(4):233-240.
20	1482	167.	Carter H, Jones AM, Barstow TJ, Burnley M, Williams CA, Doust JH. Oxygen uptake kinetics in
21	1483		treadmill running and cycle ergometry: a comparison. Journal of applied physiology
22	1484		(Bethesda, Md : 1985). <mark>2000;</mark> 89(3):899-907.
23 24	1485	168.	Edwards RH, Hill DK, McDonnell M. Myothermal and intramuscular pressure measurements
24 25	1486		during isometric contractions of the human quadriceps muscle. The Journal of physiology.
25	1487		1972;224(2):58P-59P.
27	1488	169.	Kruger RL, Aboodarda SJ, Jaimes LM, MacIntosh BR, Samozino P, Millet GY. Fatigue and
28	1489		recovery measured with dynamic properties versus isometric force: effects of exercise
29	1490		intensity. The Journal of experimental biology. 2019;222(Pt 9).
30			
31	1491		
32	1/02		
33	1492		
34			
35			
36			
3/ 20			
38 20			
29 10			
40 41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52 52			
55 51			
55			
56			
57			
58			
59			
60			

1		
2 3	1	Neuromuscular responses to fatiguing locomotor exercise
4	T	Neuromuscular responses to fatiguing locomotor exercise
5 6 7 8	2	Dr. Callum G Brownstein ¹ , Prof. Guillaume Y Millet ^{1,2} , Dr. Kevin Thomas ³ .
9 10	3	¹ Université Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology,
11 12 13	4	Saint-Etienne, France
14 15	5	² Institut Universitaire de France (IUF)
16 17 18	6	³ Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
19	7	
20	, 8	
21	0	
23	9	Address for correspondence:
24 25		
26	10	Dr. Callum BROWNSTEIN
27 28 29	11	Laboratoire Interuniversitaire de Biologie de la Motricité
30 31	12	Bâtiment IRMIS
32 33 34	13	10 rue de la Marandière
35 36	14	42270 Saint Priest en Jarez
37 38	15	France
39 40	16	04 77 42 18 83
41 42	17	Email: callum.brownstein@univ-st-etienne.fr
43	18	
44 45	10	
46	19	
47 48	20	
49 50	21	
51	22	
52 53	23	
54	24	
55 56	25	
57	26	
58 59 60	20	

Abstract

Over the last two decades, an abundance of research has explored the impact of fatiguing locomotor exercise on the neuromuscular system. Neurostimulation techniques have been implemented prior to and following locomotor exercise tasks of a wide variety of intensities, durations, and modes. These techniques have allowed for the assessment of alterations occurring within the central nervous system and the muscle, while techniques such as transcranial magnetic stimulation and spinal electrical stimulation have permitted further segmentalisation of locomotor exercise-induced changes along the motor pathway. To this end, the present review provides a comprehensive synopsis of the literature pertaining to neuromuscular responses to locomotor exercise. Sections of the review were divided to discuss neuromuscular responses to maximal, severe, heavy and moderate intensity, high-intensity intermittent exercise, and differences in neuromuscular responses between exercise modalities. During maximal and severe intensity exercise, alterations in neuromuscular function reside primarily within the muscle. Although post-exercise reductions in voluntary activation following maximal and severe intensity exercise are generally modest, several studies have observed alterations occurring at the cortical and/or spinal level. During prolonged heavy and moderate intensity exercise, impairments in contractile function are attenuated with respect to severe intensity exercise, but are still widely observed. While reductions in voluntary activation are greater during heavy and moderate intensity exercise, the specific alterations occurring within the central nervous system remain unclear. Further work utilising stimulation techniques during exercise and integrating new and emerging techniques such as high-density electromyography is warranted to provide further insight into neuromuscular responses to locomotor exercise.

 Key words: Cycling, fatigue, neurostimulation, neuromuscular physiology, running

The study of exercise-induced fatigue has captivated academics within the field of sport and

53 Introduction

exercise for centuries, with research into the topic dating back as far as the 18th century through the pioneering work of Alessandro Mosso, documented in his book La fatica. Today, fatigue remains the subject of considerable research attention, with over 3000 scientific publications on this topic in the last 20 years. Despite this interest, a strict definition of fatigue remains elusive, likely due to the numerous divisions within sport and exercise science providing definitions which best suit their individual discipline. Recent efforts have been made to provide a universal definition of fatigue, applicable to both athletic and clinical populations, which encompasses the interdependent physical and cognitive processes that occur with numerous chronic health conditions, and during and following strenuous exercise¹. To this end, Enoka and Duchateau¹ define fatigue as a debilitating symptom of tiredness and weakness, dictated by interactions between performance fatigability, which involves an acute exercise-induced reduction in force or power output of the involved muscles, and perceived fatigability, involving changes in sensations that accompany fatigue. The definition of fatigue as a sensation of tiredness and weakness, underpinned and/or modulated by a myriad of physiological and psychological processes, is used for the purposes of this review.

In sport and exercise science, considerable research has focused on the effect of fatiguing exercise on objective measures of performance, such as alterations in the force and/or power generating capacity of muscle (i.e. the 'performance fatigability' aspects)²⁻⁴. Such endeavours are logical given that the ability of the muscle to exert force is imperative to successful sporting performance. During high-intensity or prolonged exercise, the force generating capacity of the muscle is reduced ⁵. This reduction in muscle force during exercise, and the neurophysiological changes which accompany it, are integral contributors to fatigue and impaired exercise performance, and also possibly increase injury risk ^{6,7}. Consequently, understanding exercise-

induced impairments in muscle force generating capacity, and the mechanisms which elicitthese impairments, is a pertinent area of research.

Voluntary force is produced through a complex chain of events which occur throughout the neuromuscular pathway, from brain to muscle. As every step along this pathway is susceptible to change during fatiguing exercise, determining the alterations within the neuromuscular pathway that occur during exercise can facilitate understanding of the causes of reduced muscle force, and in turn exercise performance¹. Using peripheral nerve stimulation, it is possible to differentiate between the contribution of alterations within the muscle and central nervous system (CNS) to impaired neuromuscular function and force generating capacity during exercise. Peripheral contributors to reductions in muscle force involve disturbances at sites at or distal to the neuromuscular junction and can be assessed by measuring involuntary evoked responses to electrical stimulation on relaxed muscle. This technique offers a method to assess the manifestation of biochemical and histological changes occurring within muscle fibers through changes in the resting twitch force. Other methods, such as muscle biopsies and Ultrasound, can be used to provide further insight into biochemical and histological alterations occurring during locomotor exercise ^{8,24}. Central contributors to fatigue involve processes occurring proximal to the neuromuscular junction, resulting in an impairment in the capacity of the CNS to voluntarily activate the muscle, and can be examined through evoked responses to electrical or magnetic stimulation during submaximal and maximal voluntary contractions (MVCs)⁵. Moreover, exercise-induced alterations in the corticospinal tract, which represents the primary motor pathway for control of human movement, can be further segmented through the use of transcranial magnetic stimulation (TMS), with concurrent spinal stimulation enabling the differentiation between cortical and spinal components of the motor pathway ^{8,9}. Other techniques, such as the assessment of stretch-reflex responses following physical perturbations, can also be used to monitor natural reflex responses ¹⁰, though the application of

these methods in response to fatiguing locomotor exercise is limited. While many of these techniques permit the assessment of neuromuscular function at a segmented level, it should be noted that the peripheral and central contributors to impairments in neuromuscular function are not mutually exclusive. For example, changes occurring within the muscle influence the activation signal discharged by motor neurons during voluntary contractions, while sensory feedback transmitted from the muscle travels to various sites within the CNS, and can influence the behaviour of cortical and spinal neurons ^{1,11,12}.

A common approach when studying neuromuscular responses to fatiguing exercise is to deliver electrical and magnetic stimuli during fatiguing single-limb, isometric exercise protocols. While this approach is convenient because participants are not required to manoeuvre to the designated apparatus for the fatiguing task (i.e. the equipment used to measure isometric force), the 'real-world' applicability of the findings from these studies is questionable due to a lack of ecological validity. That is, the type of exercise being performed differs substantially from that performed in a sport and exercise environment, where dynamic, locomotor exercise is performed with multiple limbs, and the systemic and local responses are considerably different to that of isometric exercise. Given the well-established importance of task dependency in determining the aetiology of exercise-induced fatigue ¹³, extrapolations from findings using isometric exercise models in the context of locomotor activity should be made with caution ¹⁴, and there is a requirement to assess neuromuscular function in response to locomotor exercise itself. As such, a plethora of research over the last two decades have documented neuromuscular responses to locomotor exercise of varying intensities, durations and modes, both during and in the recovery period following exercise ¹⁵⁻¹⁷. While a number of reviews exist in the literature on corticospinal excitability during locomotor exercise ^{8,18}, neuromuscular function responses to repeated sprints ¹⁹ and extreme endurance exercise ²⁰, a comprehensive review of the literature describing neuromuscular responses to locomotor exercise is lacking.

An understanding of how locomotor exercise impacts the neuromuscular system has implications for those working with both athletic and clinical populations. Accordingly, the aim of this review is to summarise literature examining neuromuscular responses during and following fatiguing locomotor exercise, with a focus on the role of locomotor exercise intensity, duration, and mode on the modulation of neuromuscular function.

134 The role of exercise intensity and duration on neuromuscular responses to fatiguing 135 exercise

Research has demonstrated that the intensity and duration of locomotor exercise has a profound influence on the aetiology of impairments in neuromuscular function ²¹⁻²³. Exercise intensity during locomotor exercise can be categorised into distinct domains demarcated by physiological thresholds. Specifically, four intensity domains have so far been established; moderate (power output below lactate threshold), heavy (power output between lactate threshold and critical intensity, defined as the asymptote of the relationship between intensity and time, and the maximum sustainable exercise intensity), severe (power output above critical intensity that can be sustained until VO_{2max} is reached) and extreme (supra-severe intensity in which exercise intensity is so great that VO_{2max} cannot be reached before exhaustion)²⁴. Each intensity domain is characterised by differences in VO₂ kinetics, muscle metabolic, and blood acid-base responses ²⁵. In turn, the exercise intensity domain and the distinct physiological responses within these domains are proposed to influence the mechanisms responsible for impairments in neuromuscular function. In addition, many sporting activities are characterised by intermittent bouts of maximal or severe intensity exercise interspersed with periods of recovery or moderate and heavy intensity exercise, such as in team sports. Thus, this form of activity imposes a unique challenge to all physiological systems, including the neuromuscular

system, in that it is of prolonged duration, spans the four exercise intensity domains, and ischaracterised by substantial mechanical demands.

155 Neuromuscular responses to 'all-out' exercise

156 Muscle force generating capacity, voluntary activation and contractile function

Short-duration, maximum intensity exercise (30-60 s), in which there is maximum effort and a considerable decrease in performance, is referred to as 'all-out' exercise ²⁶. This form of exercise is commonplace during sprint interval training, which is regularly implemented as a means of improving health ²⁷ and sports performance ²⁸, as well as the Wingate 30 s test, and athletic events such as 400 m track running. Moreover, repeated sprint exercise, characterised by short maximal efforts (3-7 s) separated by brief recovery periods (< 60 s), is a common and effective training modality ²⁹, and is implicated in team sports such as basketball ³⁰. Despite the relatively brief nature of this mode of exercise, there is a substantial and progressive decrease in the force generating capacity of the muscle. Following a 30 s all out cycle sprint, Kruger et al. ³¹ found a 19% reduction in knee extensor maximum voluntary contraction (MVC). Similar results have been observed following running or cycling repeated sprint protocols, with reductions in MVC when measured within 30 s post-exercise ranging from 15-24% (Table 1). It is well-established that the decrease in performance during all-out exercise is due primarily to alterations occurring within the muscle. Indeed, following 30 s all-out cycling, Kruger et al. ³¹ and Fernandez-del Olmo et al. ³² reported a 50% and 41% reduction in peak twitch force (P_{tw}), respectively, indicating the presence of considerable impairments within the contractile machinery ³². The reduction in the ability of the muscle to produce force in response to neural input during all-out exercise is likely due to the reliance on anaerobic metabolism, the by-products of which are deleterious to contractile function. Specific mechanisms proposed to contribute to impaired contractile function include the accumulation

of inorganic phosphate (P_i) derived from the creatine kinase reaction, which has multiple roles in impaired contractile function³³, such as interference with Ca²⁺ release and sensitivity, reductions in specific force per cross-bridge and the rate of cross-bridge formation ^{34,35}. Accumulation of H⁺ ions occurring due to anaerobic glycolysis, and subsequent interference with the excitation-contraction coupling process is also a commonly cited mechanism^{26,36}.

Discrepancies exist in the literature regarding the effect of maximal intensity exercise on voluntary activation (VA). For example, following two 30 s all-out cycling tasks separated by 30 min, Fernandez-del-Olma et al. 32 found a 34% reduction in VA, whereas Kruger et al. 31 found no reduction in VA following a similar exercise task. Following repeated sprint exercise, some studies have reported no change in VA ^{37,38}, while many others reported significant decreases ranging between 3 and 11% ³⁹⁻⁴⁵ (Table 1). While these discrepancies could be related to differences in the exercise protocols (e.g. number or duration of sprint, exercise mode, between-sprint recovery duration), time to post-exercise neuromuscular assessment, and/or characteristics of the participants studied (sex, age, physical condition), the body of evidence would suggest short-duration, all-out exercise could inhibit the capacity of the CNS to activate muscle (Table 1).

In regards to the kinetics of change in neuromuscular function during repeated sprints, impairments in MVC, VA and Ptw have been shown to occur following just two sprints of a repeated sprint protocol ⁴³. Both Goodall *et al.* ⁴³ and Hureau *et al.* ³⁹ showed that most of the reduction in P_{tw} occurred during the first half of a repeat-sprint protocol, and reached a nadir around the mid stage. In contrast, impairments in VA were shown to be more pronounced during the later stages of the protocol ³⁹. These kinetics could be explained by the early utilisation of higher threshold fatigable motor units during the initial sprints causing the rapid reduction in Ptw, while the reduction in VA during the later stages could be due to a number of mechanisms (discussed below). In addition, root mean square EMG (EMG_{RMS}) normalised to

the maximal muscle compound action potential (M_{max}) is progressively reduced throughout repeated sprints, suggesting reduced alpha(α)-motoneuron output ^{39,46}. Accordingly, impaired contractile function plays a particularly prominent role in reduced muscle force during the early stages of repeated sprints, while reductions in VA become more apparent during the later stages.

for peer peries

Acta
Ph
ysic
ĝ
ica

Author	Z	Exercise protocol	Exercise duration/distance	Muscle group	Time to post- exercise measure	Δ ΜVC	ΔVA	ΔP_{tw}	A MEP	ΔC
Leg cycling										
Fernandez-del- Olmo <i>et al.</i> ³²	10	Wingate × 2 (30 min recovery)	30 s	KE	~1 min	↓ 17%	↓ 34%	↓41%	↑ @ 50 and 75% abs MVC	NQ
Kruger et al. 31	10	Wingate	30 s	KE	10 s	↓ 19%	¢	↓ 50%	NQ	NQ
Hureau <i>et al</i> . ³⁹	12	10 sprints (30 s recovery)	10 s	KE	30 s	↓ 19%	↓~11%	↓~55%	NQ	NQ
Girard <i>et al.</i> ³⁸	12	10 sprints (30 s recovery) followed by 5 sprints (6 min recovery)	6 s	KE	3 min	↓ 11%	\$	↓~43%	¢	NQ
Girard <i>et al.</i> ³⁷	12	10 sprints (30 s recovery) followed by 5 sprints (6 min recovery)	6 s	KE	3 min	↓~14%	\$	↓~44%	NQ	NQ
Racinais et al. 40	9	10 sprints (30 s recovery)	6 s	KE	5 min	↓ 17%	↓ 3%	%6↑	ŊŊ	NQ
Pearcey et al. 41	8	10 sprints (180 s recovery)	10 s	KE	< 20 s	↓ 24%	↓ 7%	↓ 30%	ŊŊ	NQ
Tomazin <i>et al</i> . 47	11	5 sprints (24 s recovery) × 4 sets (3 min between set recovery)	6 s	KE	30 s	↓ 15%	¢	↓ 39%	NQ	NQ
Monks <i>et al</i> . ⁴²	10	10 sprints (30/180 s recovery)	10 s	KE	< 10 s	↓ 27%	↓ 6%	↓ 39%	NQ	NQ
Tomazin <i>et al</i> . ⁴⁸	11	100 m sprint	15 s	KE	30 s	\$	\$	↓10%	ŊŊ	NQ
Tomazin <i>et al.</i> 48	11	200 m sprint	31 s	KE	30 s	¢	\$	↓20%	NQ	NQ
Tomazin <i>et al</i> . ⁴⁸	11	400 m sprint	71 s	KE	30 s	↓ 14%	\$	↓35%	ŊŊ	NQ
Tomazin <i>et al</i> . 47	Ξ	5 sprints (24 s recovery) × 4 sets (3 min between-set recovery)	6 s	KE	30 s	↓ 20%	↓ 7%	↓ 36%	NQ	NQ

age 71 of 125	70
ge 71 of 125	<u>a</u>
e 71 of 125	Q
71 of 125	Ð
1 of 125	7
of 125	-
f 125	0
125	-h
25	<u> </u>
ъ	N
	С

46	45	44	43	42	41	40	39	38	37	36	ω	34	33	32	3	30	29	28	27	26	25	24 24	22	20	19	18	16	14 15	13 i	17 17	800	70	רט ת	ы 4	2 1
																													210	208 209					
																														EF: elbow flexors; K cervicomedullary mc	Pearcey et al. 45	Arm cycling	Perrey et al. 44	Goodall <i>et al.</i> ⁴³	
																														E: knee tor evol	12		16	12	
																														extensors; MEP: motor evoked ced potential; VA: voluntary act	10 sprints (150 s recovery)		12 sprints (30 s recovery)	12 sprints (30 s recovery)	
																														potential; MVC: maxi ivation	10 s		40 m (5.7-6.7 s)	30 m (4-5 s)	
				11																										mal voluntary c	EF		PF	KE	
																														ontraction; NQ: not qu	< 5 s		2 min	< 2.5 min	
																														antified; PF: pl	%6↑		↓ 11%	↓ 12%	
																														antar flexors	1 6%		↓ 3%	18%	
																														; P _{tw} : peak t	J 27%		↓13%	↓ 24%	
																														witch force; CM	↓ 19%		NQ	\$	
																														EP:	\$		NQ	NQ	
211 Central nervous system alterations during 'all-out' exercise

While the peripheral changes which contribute to impaired neuromuscular function during all-out exercise are well-established, the mechanisms which contribute to reductions in VA are less clear. A number of functional changes can occur within the CNS and contribute to impairments in VA and muscle force, including impairments in motor cortical output ⁴⁹, changes in the intrinsic properties of α -motoneurons ⁵⁰, altered reflex responses at the spinal cord ⁵¹, increases in group III/IV afferent firing ascending to supraspinal and spinal centres ⁴⁶, and alterations in descending neuromodulatory systems ⁵². While the invasive nature associated with directly assessing the activity of some these systems preclude their measurement in humans, indirect measures can provide insights into adjustments in the neuromuscular pathway that occur during maximal intensity exercise. Figure 1 depicts the neuromuscular pathway and the potential alterations within this pathway that contribute to or occur with reduced performance during maximal intensity exercise based on current evidence primarily derived from maximal cycling exercise.

Regarding cortical output, this is commonly estimated via the delivery of TMS over the motor cortex to estimate VA (VA_{TMS}). This technique involves delivering single-pulse TMS during a MVC, with an increase in the evoked superimposed force relative to an estimated resting twitch thought to be indicative of a decrease in cortical output. It should be noted that while VA_{TMS} is the most common method of estimating changes in maximal cortical output, it is associated with various limitations, such as activation of antagonist muscles, submaximal activation of the motoneuron pool, and accuracy of the estimated resting twitch ⁵³, and spinal influences on VA_{TMS} cannot be ruled out. Studies using this technique in response to maximal intensity exercise have provided mixed evidence, with some reporting a decrease ^{32,43} in VA_{TMS} while others report no change ^{38,54}. Thus, while there is some evidence that output from the motor cortex could be impaired during all-out exercise, the limitations in VA_{TMS} as well as the

Page 73 of 125

Acta Physiologica

conflicting findings in the literature preclude a definitive conclusion on the matter. The mechanism(s) which could reduce motor cortical output are unclear, but could relate to alterations in the properties of cortical neurons, or synaptic inputs acting at or upstream of the motor cortex ^{45,49,55}. While evidence regarding the activity of these neurons in response to maximal intensity exercise is scarce, Pearcey et al. 45 demonstrated a reduction in the motor evoked potential to cervicomedullary evoked potential (MEP/CMEP) ratio measured post-exercise and between bouts of repeated arm sprint cycling, indicative of a decrease in the excitability of motor cortical neurons. Although the relationship between MEP and voluntary activation is not entirely clear, a decrease in the excitability of motor cortical neurons responsible for producing descending drive would require a compensatory increase in neural drive into the cortex, and if such an increase is not possible (e.g. due to the maximal nature of all-out exercise), recruitment of α -motoneurons would be diminished and VA reduced. More studies utilising VA_{TMS} and cortical combined with spinal stimulation are required to elucidate the effects of all-out exercise on motor cortical output and excitability.

Alterations in α -motoneuron excitability can be assessed by measure the CMEP in response to all-out exercise. This measure is advantageous given that cortical projections to α -motoneurons lack conventional presynaptic inhibition, which can influence responses such as the H-reflex independently of altered motoneuron excitability ⁵⁶. Motoneuron excitability is influenced by the level of descending synaptic input, sensory input, monoaminergic input, and alterations in the intrinsic properties of α -motoneurons, all of which could be altered during fatiguing exercise ⁵. Only one study has assessed the CMEP in response to all-out exercise, with Pearcey et al. ⁴⁵ demonstrating a 29% increase in CMEP amplitude when measuring responses during an isometric contraction following repeated arm-cycle sprinting. This increase in α -motoneuron excitability could be considered surprising given that studies have observed a decrease in spinal excitability during fatiguing isometric tasks (e.g. ^{50,57}), highlighting the

importance of task-dependency and contraction mode on the neuromuscular adjustments to fatiguing exercise. The authors posited that the increased excitability could be due to a decrease in voltage threshold for action potential, activation of persistent inward currents and the monoaminergic system during exercise, and/or the facilitatory effects of firing of group III/IV afferents on the biceps brachii ^{58,45}. It should be noted that when measured during ongoing voluntary contractions, CMEPs can be influenced by alterations in descending drive from the motor cortex, and thereby confound estimations of α -motoneuron excitability. Thus, further studies measuring CMEPs (or other methods of estimating α -motoneuron excitability such as measuring thoracic or lumbar evoked potentials) in the absence of ongoing descending drive (e.g. during the TMS evoked silent period ^{59,60}), and during more traditional forms of maximal intensity exercise (e.g. cycle sprints), are warranted to further understanding on the effect of maximal intensity locomotor exercise on α -motoneuron excitability.

Changes in motor cortical output and α -motoneuron excitability can occur in addition to, and/or secondary to alterations in input from sensory neurons. For example, projections from sensory neurons innervating skeletal muscle, including muscle spindles (group Ia/II), Golgi tendon organs (group Ib) and group III/IV afferents, can modulate the corticospinal pathway during exercise. The role of Golgi tendon organs during locomotor exercise is unknown, but are suggested to play a limited role in exercise-induced impairments in neuromuscular function ^{5,61}. During locomotor activity, group Ia afferents provide facilitatory feedback to α -motoneurons, and exercise-induced disfacilitation of these afferents has been suggested as a potential mechanism of impaired α -motoneuron firing rate and thereby VA ^{5,62}. The excitability of the spinal loop between muscle spindle afferents projecting to α -motoneurons can be assessed through the H-reflex, involving exogenous stimulation of the motor nerve to activate Ia afferents. The H-reflex can be influenced by numerous pre- and post-synaptic mechanisms, with exercise-induced reductions in H-reflex largely attributed to reduced Ia afferent discharge,

increased presynaptic inhibition onto Ia afferents, and decreased α -motoneuron excitability. Only one study has used this technique in response to maximal intensity repeated sprint cycling, consisting of 7×10 s sprints ⁵¹. The study assessed the effects of repeated sprints on pre-synaptic inhibition of the spinal reflex pathway by utilising stimulation of cutaneous afferents of the foot, which is known to reduce presynaptic inhibition of Ia afferents ⁶³. Concurrently, the study measured H-reflex amplitude with and without cutaneous stimulation to assess the effect of exercise-induced changes in pre-synaptic inhibition on spinal loop excitability. The results showed that delivering cutaneous stimulation attenuated the sprint induced reduction in H-reflex, possibly through reduced presynaptic inhibition of Ia afferents, whilst also attenuating the decline in power output throughout the sprints. These results suggest that disfacilitation from group Ia afferents, possibly owing to increased presynaptic inhibition, could be implicated in impaired α -motoneuron output during maximal intensity exercise.

Furthermore, the firing rate of group III and IV muscle afferents, which are mechano- and metabosensitive sensitive sensory receptors that project inhibitory and/or facilitatory feedback to cortical and spinal regions of the motor pathway, likely increases substantially during all-out exercise ⁶⁴. However, the role of these afferents on neuromuscular function during maximal intensity exercise is not entirely clear. Torres-Peralta et al. 65 had participants perform isokinetic sprints before an incremental exercise test to exhaustion. After the incremental test, the quadriceps were occluded for 10 or 60 s, and a second isokinetic sprint was performed immediately after the occlusion periods. Despite the presumably augmented build-up of metabolites and increased group III/IV afferent feedback elicited by 60 s of occlusion, peak power recovered and was higher than that after 10 s of occlusion. Thus, the authors suggested that the role if group III/IV afferent feedback on maximal sprint performance is negligible, and can be overcome by a strong central command. Hureau *et al.* ⁴⁶ had participants perform $10 \times$ 10 s cycle sprints, which were preceded by neuromuscular electrical stimulation (NMES) to

elicit metabolic disturbances in the quadriceps. Power output during the sprints, EMG activity, and post-exercise changes in Ptw where compared between the NMES and a control condition without NMES. It was shown that both power output and EMG activity were reduced in the NMES condition relative to control, while the post-exercise reduction in Ptw was consistent between conditions. Thus, the authors suggested that the metabolic disturbances caused increased group III/IV feedback, thereby reducing neural drive estimated through EMG in order to prevent peripheral homeostasis from deviating beyond tolerable limits. Thus, different interpretations exist on the role of group III/IV afferent feedback during maximal intensity exercise, precluding firm conclusions on the matter ¹⁶.

321 Neuromuscular responses to severe intensity, short-duration exercise

322 Muscle force generating capacity, voluntary activation and contractile function

Many sporting activities are characterised by short-duration, high-intensity locomotor exercise, such as middle-distance running (i.e. 800-5000 m) or track cycling events lasting ~2-20 min. The exercise intensity associated with these events falls within the 'severe' domain, i.e. above the maximum sustainable exercise intensity, or 'critical intensity'. Due to the rapid energy requirements associated with severe intensity exercise and the consequent generation of ATP from anaerobic pathways, exercise within this domain is associated with a progressive loss of muscle homeostasis, such as a reduction in pH and glycogen and an increase in P₁²³. These disturbances occurring at the peripheral level impair the capacity of the muscle to produce force in response to neural stimulation. Evidence suggests that disturbances within the muscle are the primary contributor to impairments in muscle force during severe-intensity exercise ^{21,22,66}. Reductions in Ptw range from 16-55% when measured post-exercise (Table 2). This large variability in the magnitude of P_{tw} decrease could be due to a number of factors. Namely, the time to post-exercise neuromuscular assessment ranges from < 10 s to 4 min, with longer

Acta Physiologica

durations often being required to manoeuvre participants to the neuromuscular testing apparatus. Kruger et al. ³¹ recently showed that P_{tw} recovered from -44% immediately post-exercise to -34% following 2 minutes of recovery after severe intensity exercise, likely due to the rapid recovery of metabolic factors thought to interfere with the excitation-contraction coupling 36 . Given that many studies take > 2 min to assess neuromuscular function, there is likely considerable underestimation of the effects of severe intensity exercise on P_{tw} , and Figure 2 highlights that studies with a shorter time to post-exercise neuromuscular assessment demonstrate higher reductions in P_{tw}.

Two other factors could contribute to the discrepancy in the level of reduced Ptw observed throughout the literature. Firstly, it is thought that the mechanisms contributing to the limit of tolerance, or the degree of fatigue which can be tolerated, could differ between individuals. Hodgson et al.⁶⁷ dichotomised a group of apparently homogenous individuals based on those who reached the limit of tolerance during ramp-incremental cycling with a knee-extension power reserve which exceeded the power produced at the limit of tolerance, and those without a power reserve. Those without a power reserve demonstrated exacerbated reductions in P_{tw} relative to those with a power reserve. Thus, it was suggested that task failure in individuals without a power reserve could be due to inhibitions in contractile function rendering them unable to achieve the required power output. In individuals with a power reserve, factors other than impaired contractile function might contribute to the limit of tolerance, or the willingness to tolerate a stronger symptom of fatigue might be lower than those without a power reserve. If disparate inter-individual mechanisms contributing to the limit of tolerance do exist, this could conceivably contribute to the variable reductions in Ptw between studies (Table 2) if some

individuals reach critical impairments in contractile function while others reach the limit oftolerance before these occur.

Secondly, the variable reductions in P_{tw} could be due to the considerable variance in the exercise intensity above critical power/speed between studies, with Table 2 displaying that task failure/completion occurred between 3 and 24 min. Conflicting evidence exists on whether the level of intensity above critical intensity influences the magnitude of reduction in Ptw at task failure. For example, Thomas et al. ²¹ demonstrated a greater reduction in Ptw at task failure when exercise was performed at a higher intensity (task failure at ~ 3 min) compared with a lower intensity (task failure at ~ 11 min) within the severe domain (33% vs 16% reduction in Ptw, respectively). In contrast, Schafer et al. ⁶⁸ found no difference in end exercise reduction in P_{tw} when the power output was set to deplete the W' within either 3 or 12 min (35% vs 31%) reduction in Ptw, respectively), though it should be noted in this study participants didn't necessarily exercise to volitional exhaustion. Furthermore, Black et al. 23 measured changes in a range of metabolic variables including PCr, lactate, K⁺ ATP, pH and glycogen (variables which are linked with the reduction in P_{tw} ³⁶), and found no difference in the change in any variable when exercise was performed at three different intensities within the severe domain (65, 75 and 85% of work-rate difference between gas exchange threshold and VO_{2max} , in which task failure occurred from 2.2 to 13.9 min), although peak twitch was not measured in the study. It has been proposed that a consistent magnitude of end-exercise alterations in metabolic variables (and thus Ptw) could exist due to a task specific 'individual critical threshold' of peripheral alterations in response to severe intensity locomotor exercise, beyond which the degree of associated sensory perceptions would not be tolerable ⁶⁹. Proponents of this theory suggested that the individual critical limit of altered metabolic homeostasis is mediated by group III/IV muscle afferents, which could reduce drive from the motor cortex through inhibitory feedback in response to metabolic stimuli. 70-72. Whether or not alterations within

the muscle are regulated to an unvarying "critical threshold" during locomotor exercise is debated ⁷³⁻⁷⁵, and numerous theories exist on exercise tolerance and the degree to which metabosensitive afferent feedback plays a role 76-78. Nevertheless, when considering the alterations within the neuromuscular system which occur during severe intensity exercise, it is clear that these primarily reside in the muscle.

Impairments in VA are evident in response to severe intensity exercise, with reductions in postexercise voluntary activation range from 3-14% (Table 2). One study assessed the kinetics of change in neuromuscular function throughout constant load severe intensity exercise. Decorte et al. ⁷⁹ had participants perform intermittent bouts of 6 min cycling at ~80% peak power output, with 4 min recovery between cycling bouts during which neuromuscular function was assessed, and the task completed to exhaustion (occurring on average after 3 bouts of cycling). Their study demonstrated a curvilinear relationship between exercise duration and the decline in P_{tw}, such that most of the decline occurred in the first half of exercise. Concurrently, EMG_{RMS} increased considerably during the first half of exercise, indicative of a higher descending drive required to sustain force due to impairments within the muscle, an interpretation further supported by the positive association between the change in *rectus* femoris EMG_{RMS} and reduction in Q_{tw}. This progressive impairment in contractile function and requirement to activate a greater volume of muscle to maintain a given power output is also thought to be the primary contributor to the VO₂ slow component during severe intensity exercise ⁸⁰. Towards the latter stages of exercise (80% and 100% of total cycling duration), there was a plateau in EMG_{RMS}, concurrent with a significant decrease in voluntary activation. These results suggest that once either a certain level of impairment in contractile function or a level of increase in motor drive are reached, no additional increase in motor drive occurs. Whether this plateau in motor drive serves as a protective mechanism to prevent further, potentially harmful, alterations within the muscle, or if further increases in motor drive are

prevented by intrinsic changes along the motor pathway, is unclear ⁷⁹. Nevertheless, the results
indicate that, during constant-load severe intensity exercise, the impairment in VA widely
observed throughout the literature (Table 2) occur primarily during the latter stages of severe
intensity exercise, and could thus be implicated in task failure during constant load tasks ⁷⁹.

It should be noted that the kinetics of altered neuromuscular function likely differ between self-paced versus constant load exercise. For example, Azevedo et al. 81 recently characterised neuromuscular responses to a 4 km cycling time-trial, in which the pacing strategy was characterised by a fast-start, even paced, and end-spurt phase. Across three separate visits, neuromuscular function (MVC, VA and Ptw) was measured following these three phases. The results demonstrated that all three variables were reduced by 12%, 8% and 23%, respectively, following the fast-start phase, with no further reduction thereafter. The lack of further reduction in MVC, VA or P_{tw} could have been the result of the lower selected intensity during the middle phase, which likely fell below the critical intensity and thereby permitted repletion of work capacity and recovery of neuromuscular function ^{82,83}. It should be noted, however, that the delay between exercise cessation and neuromuscular testing might have limited the ability to capture further decrements in neuromuscular function following the end-spurt⁸¹.

- 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49

Acta
Physi
ologica

426 427

 Table 2. Literature quantifying neuromuscular alterations pre-to-post severe intensity locomotor exercise. Studies utilising protocols which resulted in task-failure in < 30 min were considered "severe intensity".</th>

Author	Z	Exercise protocol	Exercise duration	Muscle group	Time to post- exercise measure	ΔΜΥϹ	ΔνΑ	ΔP_{tw}	A MEP
Leg cycling									
Thomas et al. 21	12	Power @ VO _{2max}	3 min	KE	2.5 min	↓ ~18%	↓ 3%	↓ 33%	\$
Schafer <i>et al.</i> 68	12	Power output predicted to deplete W' within 3 min based on power- time relationship	3 min	KE	60 s	↓ 20%	↓ 11%	↓ 35%	ŊŊ
Thomas et al. 22	13	4 km time-trial	6 min	KE	< 2.5 min	↓ 18%	↓ 7%	↓40%	\$
Temesi et al. 66	10	80% peak power output	6 min	KE	< 10 s	↓ 34%	18%	↓ 55%	NQ
Ansdell et al. 84	10	4 km time trial	6 min	KE	< 1.5 min	↓ 21%	↓ 14%	↓ 34%	NQ
Azevedo et al 81	11	4 km time trial	6 min	KE	1 min	↓ 13%	18%	↓26%	NQ
Amann et al. ⁸⁵	8	5 km time trial	7 min	KE	3 min	18%	NQ	↓ 32%	NQ
Johnson <i>et al.</i> ⁷⁰	8	85% peak power output	7 min	KE	2 min	↓ 15%	↓ 5%	↓~38%	NQ
Weavil et al. ⁸⁶	8	80% peak power output	8 min	KE	36 s	↓ 14%	↓ 4%	↓43%	¢
Sidhu et al. 60	11	80% peak power output	8 min	KE	10 s - 3 min	↓ 11%	18%	↓ 30%	¢
Goodall et al. 87	9	~80% peak power output	8 min	KE	< 2.5 min	↓ 17%	1 6%	↓ 19%	¢
Amann et al. 88	8	5 km time trial	8 min	KE	2.5 min	↓ 14%	NQ	↓35%	NQ
Hureau <i>et al</i> . ⁸⁹	8	5 km time trial	8 min	KE	30 s	↓ ~13%	↓ ~7%	↓~41%	NQ
Amann <i>et al.</i> ⁹⁰	7	80% peak power output	9 min	KE	3 min	↓ 10%	€	↓ 34%	NQ
Blain et al. 91	8	5 km time-trial	9 min	KE	1 min	↓ ~10%	1 6%	↓31%	¢
Sidhu et al. ¹⁶	10	80% peak power output	9 min	KE	49 s	↓ 11%	↓ 14%	↓ 38%	¢
Kruger <i>et al.</i> ³¹	10	5% above second ventilatory	10 min	KE	10 s	↓ 38%	∜8 ↑	↓ 44%	NQ

21

Page 81 of 125

Acta
Ρ
3
S.
ō
ō
Q
<u> </u>
ш

P
<u>ő</u>
e
ñ
ç
\rightarrow
5

όνύπ	ωŢ	512	<u>+</u>	4	300	37	36	ω 5	ω 4 4	32	31	30	27 28	26	25	23	21 22	19 20	17 18	15 16	12 14	9 10 11	8 7 6	υ	Δ W N –
												431	430)	428 429										
														ţ	KE: knee extensors;] voluntary activation	Husmann <i>et al</i> . ⁹⁶	Rowing	Skof and Strojnik	Running	O'Leary <i>et al</i> . ⁹⁴	O'Leary et al. 93	Schafer <i>et al.</i> ⁶⁸	Thomas <i>et al.</i> ²¹	Amann <i>et al.</i> ⁹²	
															MEP: mo	8		7		18	16	12	12	8	
															tor evoked potential; MVC: maximal v	2000 m time trial		6 km time-trial		50% between lactate threshold and VO_{2max}	50% between lactate threshold and VO_{2max}	Power output predicted to deplete W' within 12 min based on power- time relationship	60% of differences between RCP and VO_{2max}	83% peak power output	threshold
															oluntary c	7 min		20 min		24 min	18 min	12 min	11 min	10 min	
															ontraction;	KE		KE		KE	KE	KE	KE	KE	
		22													NQ: not quantified; Ptw:	3 min		60 s		52 s	< 2 min	60 s	2.5 min	4 min	
															peak twitch force; CN	↓ 20%		¢		↓ 21%	J 19%	↓ 15%	↓~16%	↓ 10%	
															IEP: cervic	↓ 18%		\$		↓ 7%	J7%	↓ 12%	↓ 6%	\$	
															omedullar	\$		↓14%		↓ 37%	↓31%	J 31%	↓ 16%	↓36%	
															y motor ev	NQ		NQ		¢		NQ	\$	NQ	
															oked potential; VA:	ŊŊ		NQ		ŊŊ		NQ	ŊŊ	NQ	

Central nervous system alterations during severe intensity exercise

Central nervous system alterations during severe intensity exercise have been studied extensively. Figure 3 depicts alterations which occur throughout the neuromuscular pathway in response to severe intensity exercise based on current evidence. To assess specific alterations within the CNS occurring with severe intensity exercise, studies have implemented VA_{TMS}^{21,22} and the MEP/CMEP ratio ^{16,60,86} to assess motor cortical output and excitability, respectively, CMEP to assess α -motoneuron excitability ^{16,60,86}, and afferent blockade through intrathecal fentanyl to assess the effects of group III/IV afferent feedback on neuromuscular function ^{16,60,69,71,91}. Using VA_{TMS}, a number of studies have demonstrated reductions in the region of 5-8% ^{21,22,87,93,97}. This could indicate a modest impairment in motor cortical output in response to severe intensity exercise. An impairment in motor cortical output is plausible given the plateau in EMG_{RMS} throughout exercise in this domain as previously discussed ⁷⁹, i.e. the motor cortex could be unable to 'drive' the α -motoneurons to cause further increases in EMG_{RMS}, although it should be noted that VA_{TMS} provides only surrogate measures of cortical output. Impaired cortical output could be due, at least in part, to inhibition of motor cortical cells due to feedback from group III/IV afferents ^{16,98}. During exhaustive cycling exercise at 80% peak power output, Sidhu et al. ¹⁶ demonstrated that the MEP/CMEP amplitude ratio was increased by 25% when group III/IV afferent feedback was reduced with fentanyl-blockade, but was unchanged in the presence of continued afferent feedback in control conditions, thus indicating the inhibitory influence on the motor cortex during severe intensity exercise. Concurrently, the study showed no reduction in VA with reduced afferent feedback, with a 14% reduction in control conditions. To further explore the mechanisms by which group III/IV afferent feedback inhibits cortical excitability, Sidhu et al. 60 assessed the effect of afferent blockade on GABAB inhibitory intracortical interneurons. Both GABA_A and GABA_B inhibitory interneurons play an integral role in generating and shaping voluntary output from the motor cortex. These intracortical

1 ว	
2 3 4	45
5 6	458
7 8	459
9 10 11	460
12 13	463
14 15	462
16 17 18	463
19 20	464
21 22	46
23 24 25	46
25 26 27	46
28 29	468
30 31 32	469
32 33 34	470
35 36	47:
37 38	472
39 40 41	473
42 43	474
44 45	47
46 47 48	476
49 50	47
51 52	478
53 54	479
55 56 57	480
58 59	48
60	.0.

457	neurons have indirect projections onto corticospinal neurons, and can influence the excitability
458	of the motor cortex through hyperpolarisation of corticospinal neurons elicited by inhibitory
459	post-synaptic potentials (IPSPs) 99. By applying a paired-pulse TMS stimulus paradigm known
460	as long-interval inhibition (LII) coupled with conditioned CMEPs during severe intensity
461	cycling, Sidhu et al. 60 showed an increase in GABA _B mediated inhibition which was abolished
462	when group III/IV afferents were blocked. Thus, a potential mechanism by which severe
463	intensity exercise inhibits the excitability of the motor cortex is through an increase in GABA_{B}
464	mediated inhibition as a result of group III/IV afferent feedback. Other severe-intensity
465	exercise induced changes in intracortical inhibition, such as increases in GABA _A mediated
466	short-interval intracortical inhibition (SICI), have been demonstrated ⁹³ , though conflicting
467	evidence exists ⁹⁴ . However, the study of Sidhu et al. ⁶⁰ improved on previous study designs
468	by measuring during post-exercise cycling at an EMG level matched to pre-exercise, as
469	opposed to post-exercise measures taken during isometric contractions. To improve
470	understanding of the effects of severe intensity exercise at the motor cortical level, more
471	research is required assessing motor cortical output and excitability, intracortical inhibitory and
472	facilitatory activity, with measures taken during or immediately following exercise given that
473	these measures can recover rapidly after exercise cessation ¹⁰⁰ . The assessment of other
474	possible mechanisms which could contribute to altered cortical output in response to severe
475	intensity exercise, such as alterations in brain neurotransmitters, is also warranted ¹⁰¹ .

⁸ 476 Using spinal stimulation at the cervicomedullary level, a number of recent studies have assessed the effects of severe intensity exercise at the α -motoneuron excitability ^{16,86}. In these studies, which utilised constant-load exercise at 80% peak power until task failure, no change in α -motoneuron excitability was demonstrated between the beginning and end of exercise. While this implies no effect of severe intensity exercise at the α -motoneuron level, in nonfatiguing circumstances, the same increase in EMG activity which occurs throughout severe

intensity exercise would cause an increase in spinal excitability ⁸⁶. This was aptly shown by Weavil *et al.* ⁸⁶, who found no change in MEP or CMEP during fatiguing cycling, but a ~40% increase in MEP and CMEP during a subsequent non-fatiguing trial when the EMG was set to increase by the same magnitude. Thus, while the net corticospinal excitability remains unchanged, these results indicated a disfacilitation of the corticospinal tract mediated at the spinal level.

If α -motoneurons are disfacilitation during severe intensity exercise, this does not appear to be related to increased group III/IV afferent feedback. In fact, Sidhu et al. 60 found that CMEP amplitude was increased during post-exercise cycling at a matched level of EMG relative to pre-exercise which did not occur when afferent feedback was reduced, suggesting that group III/IV afferents facilitate, rather than inhibit spinal α -motoneurons projecting to the knee extensors. Indeed, previous work has suggested that group III/IV afferent feedback can inhibit or facilitate α -motoneuron depending on the muscle group studied ⁵⁸. Furthermore, Sidhu *et al.* ⁶⁰ also measured CMEP during the silent period to mitigate the potential influence of changes in on-going descending drive on α -motoneuron excitability, but found no change in conditioned CMEPs during control conditions or when afferent feedback was reduced. The authors speculated that the facilitatory effects of group III/IV feedback on α -motoneuron excitability might only occur in the presence of descending drive.

⁴⁶ 500 The findings of Sidhu *et al.* ⁶⁰ appear contradictory to that of Weavil *et al.* ⁸⁶. That is, if α -⁴⁸ 501 motoneurons are disfacilitated during constant load severe intensity cycling exercise, but a ⁵⁰ 502 reduction in CMEP is not apparent due to the increased neural drive and EMG ⁸⁶, one might ⁵¹ 503 expect that CMEP would decrease when measured at the same EMG level. However, the ⁵⁴ 504 opposite was found by Sidhu *et al.* ⁶⁰, i.e. CMEPs increased. This result cannot be explained ⁵⁷ 505 by an increased descending drive at the same EMG level, since conditioned CMEPs exhibited ⁵⁹ no change ⁶⁰. One possible explanation is that Weavil *et al.* ⁸⁶ measured responses during

constant load cycling, while Sidhu et al. 60 had participants reduce their power output at post-exercise in order to achieve the same EMG level as pre-exercise. It is possible that processes which disfacilitate α -motoneuron excitability (such as changes in intrinsic properties, activation of serotonin 1A receptors, of neurotransmitter depletion^{16,86}) exhibited some recovery due to the decrease in intensity. This, coupled with the elevated facilitatory afferent feedback in the control trial, might have resulted in the increase α -motoneuron excitability at the same EMG level. Further studies measuring α -motoneuron excitability during severe intensity exercise, with both on-going descending drive and during the TMS evoked silent period, are warranted to provide further insight into the effects of severe intensity exercise on α -motoneuron excitability.

Alterations in spinal-loop excitability could also contribute to impaired neuromuscular function during severe intensity exercise, with reductions in H-reflex found to occur in an intensity-dependent manner ^{102,103}. Bulbulian and Darabos ¹⁰² found a 22% reduction in H-reflex amplitude relative to M_{max} measured in the gastrocnemius following 20 minutes of non-exhaustive treadmill running at 75% VO_{2max}, compared to a 13% reduction at 40% VO_{2max}. Similar reductions in H-reflex have been demonstrated following non-exhaustive high-intensity cycling exercise ¹⁰³. While the H-reflex alone cannot decipher between altered excitatory input from Ia afferents and a decrease in α -motoneuron excitability, evidence from fatiguing isometric contractions using microneurography show that muscle spindle afferent discharge is progressively reduced during sustained contractions ¹⁰⁴, and that the efficacy of Ia input to facilitate the α -motoneuron is impaired due to increased presynaptic inhibition ¹⁰⁵. During severe intensity exercise, presynaptic mechanisms, such as group III and IV afferent induced increases in presynaptic inhibition of Ia terminals, are likely given the metabolic disturbances and the proposed inputs of group III/IV afferents onto Ia afferent terminals ¹⁰⁶. However, challenges associated with measurement techniques preclude definitive conclusions

Acta Physiologica

on the role of Ia feedback in disfacilitating α -motoneurons and thereby contributing to impaired neuromuscular function.

In addition to measuring the specific effects on group III/IV afferent feedback on motor cortical and α -motoneuronal excitability discussed above, a plethora of studies have assessed the effects of group III/IV afferent feedback on neuromuscular function through more global responses such as EMG and Ptw ^{16,60,71,89,91}. These studies have demonstrated that group III/IV afferents constrain motoneuronal output (estimated through EMG) to active skeletal muscle, thereby limiting exercise-induced intramuscular alterations. For example, Blain et al. 91 had participants perform a 5 km cycling time trial under control conditions and with fentanyl induced impairment in afferent feedback. With reduced afferent feedback, it was demonstrated that motoneuron output (estimated through vastus lateralis EMG) was 21% higher when afferent feedback was reduced compared to control conditions. Due to the greater activation levels throughout cycling, intramuscular alterations such as P_i, H⁺ and ADP, concentrations, which are correlated reductions in P_{tw}¹⁰⁷, were all significantly higher compared with control conditions when measured through muscle biopsies following exercise. Consequently, the reduction in P_{tw} was substantially greater when feedback was reduced (52 vs 31% reduction compared with control condition). The increased motoneuron output and end-exercise level of reduced P_{tw} with afferent blockade are consistent findings throughout the literature ^{85,89,90,108}. Thus, it is suggested that, through metabosensitive firing of group III/IV afferent feedback, the level of metabolic disturbance is sensed within the CNS, and the drive to the muscle is subsequently regulated to prevent abnormal or interoperable deviations in muscle homeostasis

3 4 5 6 7 What is not entirely clear is how group III/IV constrains motoneuron output. It is unlikely to be a result of altered α -motoneuron excitability, given that reduced afferent feedback facilitates ⁶¹ or has no effect ¹⁷ on CMEP amplitude. However, given the inhibitory effects of group III/IV afferent feedback within ^{16,60} and potentially upstream of the motor cortex ⁹⁸, as well as their proposed inputs to Ia terminals ¹⁰⁶, motoneuron output could be constrained through the neurophysiological adjustments that group III/IV afferents elicit within the CNS. However, as well as having proposed non-nociceptive effects through alterations in CNS function and induction of the pressor reflex 85, group III/IV afferents also elicit nociceptive effects, which could also have implications for perception of effort during exercise. The increased level of effort associated with discomfort and increased cardiopulmonary response as a result of group III/IV feedback could impact how hard participants are willing to 'push' during exercise, and thereby influence motoneuron output. During exercise at a constant load of 80% peak power output, Amann et al.⁹⁰ demonstrated the rate of perceived exertion (RPE) was lower following the initial 3 minutes of the task when afferent feedback was reduced relative to control conditions. During self-paced exercise, the RPE remains similar between reduced afferent feedback and control conditions throughout exercise, but the power output is enhanced during the early stages of exercise with reduced afferent feedback ⁹¹. Thus, early during severe intensity exercise, nociceptive and cardiopulmonary feedback likely contributes to an increased sense of effort associated with the same power output ⁹⁰, or causes participants to choose a lower power output during self-paced tasks ⁹¹. Towards the latter stages of exercise, however, RPE is similar with and without reduced afferent feedback ⁹⁰. This is likely the result of the increased drive to the muscle occurring throughout exercise due to the lack of nociceptive feedback, thereby 'allowing' greater activation of muscle, and in turn causing greater disturbances within the muscle. As the muscle becomes less responsive, a greater level of drive is required to compensate for contractile impairment and sustain the same power output ⁹⁰, with

Acta Physiologica

2	
3 4	580
5	581
6 7	501
8	582
9 10	583
11 12	
13	584
14 15	595
16 17	767
18 19	586
20	587
22	588
23 24	589
25 26	590
27	591
28 29	502
30 31	552
32 33	595
34	594
35 36	595
37 38	596
39	597
40 41	598
42 43	599
44	600
45 46	601
47 48	602
49 50	602
51	005
52 53	604
54 55	605
56	606
57 58	607
59	608

60

this increase in efferent command emitting parallel messages (corollary discharge) to brain regions associated with perceptions of exertion, thereby increasing RPE ¹⁰⁹. Accordingly, in addition to the alterations along the neuromuscular pathway induced by group III/IV feedback, the nociceptive and cardiopulmonary signals evoked by these afferents likely influences the regulation of voluntary drive and perceptions of effort throughout exercise.

to per peries

609 Neuromuscular responses to sustained exercise below critical power

610 Muscle force generating capacity, voluntary activation and contractile function

Exercise between lactate threshold and critical intensity is classified as heavy intensity exercise, while exercise below lactate threshold is termed moderate intensity ^{23,24}. Heavy intensity exercise can be sustained for prolonged periods, with time to task failure ranging between ~40 min to 3 hours ^{23,110}. Moderate intensity exercise can be performed for durations well above 3-5 hours, and constitute the intensity at which ultra-endurance events are performed ^{20,77}. The neuromuscular responses measured in studies in which exercise lasted from > 30 min to 3 hours (likely falling predominantly within the heavy domain) and > 3 hours (predominantly within the moderate domain) are displayed in Tables 3 and 4, respectively. While variation exists in the literature, a comparison between the results from the studies in these tables suggests that the loss in muscle strength is greater with increasing exercise duration before reaching an eventual plateau above exercise lasting ~1000 min (Figure 4), a phenomenon previously highlighted by Millet when examining running-based exercise 77.

Within the heavy and moderate domains, energy supply is achieved through oxidative metabolism, rather than anaerobic pathways ^{25,111}. Consequently, alterations in muscle metabolism are much more limited than with exercise in the severe domain, with steady-state values of PCr, pH and P_i achieved within the first few minutes of exercise ^{23,25}. Nevertheless, impairments in contractile function have been widely observed following both moderate and severe intensity exercise (Tables 3 and 4). Following self-paced tasks, some of the reductions in P_{tw} could be a result of a "sprint-finish", in which intensity increases towards the latter stages of a race and thus fall within the severe domain, with associated metabolic changes which contribute to reduced Ptw²². For example, following a self-paced 20 km time trial lasting on average 32 min, Thomas et al. ²² showed a 31% reduction in P_{tw}, while in a separate study by the same group, the reduction in Ptw following a constant load task in which task-failure

Acta Physiologica

3 4 5 6 occurred at 42 min was just 11%²¹. Thus, the self-paced versus constant pace exercise challenges used across studies is another potential source of heterogeneity in results regarding neuromuscular responses to moderate and heavy intensity exercise (Tables 3 and 4). However, the magnitude of reduced P_{tw} observed by Thomas et al. ²¹ following constant load exercise is consistent with other studies within the heavy domain, with Lepers et al. 112,113 and Racinais et al. ¹¹⁴ demonstrating reductions in Ptw of 9, 12 and 11%, respectively. Interestingly, this reduction in Ptw is lower than some studies assessing Ptw following more prolonged constant load moderate intensity exercise ^{115,116} (Figure 4C), suggesting a possible greater extent of impaired contractile function following more prolonged locomotor exercise, though heterogenous results exist throughout the literature (Table 4). It is thought that glycogen depletion is the primary contributor towards impaired contractile function following prolonged heavy and moderate intensity exercise ^{111,117}. Glycogen depletion could interfere with the excitation-contraction coupling through localised depletion of muscle glycogen at the t-tubular-sarcoplasmic reticulum (SR) junction ¹¹⁸. Indeed, following 4 h of glycogen depleting exercise, Gejl et al. ¹¹⁹ showed a persistent reduction in SR Ca²⁺ release after 4 h of recovery when participants were given only water, while participants given carbohydrates concurrently demonstrated recovery of SR Ca²⁺ release. Inhibition of SR Ca²⁺ release is thought to occur below critical levels of muscle glycogen (250-300 mmol·kg⁻¹) ¹²⁰, and values below these concentrations have been demonstrated following heavy and moderate intensity exercise ^{23,110}, including ultramarathon running ¹²¹. Another mechanism likely contributing to impaired contractile function include increased production of reactive oxygen and nitrogen species ¹²², which increase following prolonged exercise ¹²³ and interfere with Ca²⁺ release through redox modifications of ryanodine receptors ¹²⁴. Furthermore, following running based exercise involving repeated stretch shortening cycles, muscle damage induced myofibrillar disintegrity and disorganisation of sarcomeres likely occurs, leading to a reduced

ability of the contractile machinery to produce force ¹²⁵. Thus, while the magnitude of impaired contractile function is not as prominent following moderate and heavy intensity exercise compared to severe intensity, the consistently reduced P_{tw} across studies (Tables 3 and 4) suggests that alterations within the muscle contribute to reduced neuromuscular function within these domains.

Reductions in VA are substantial following moderate and heavy intensity exercise, and these appear to be exacerbated as exercise duration increases (Figure 4). This likely explains, at least in part, the increased strength loss associated with longer duration exercise (Figure 4). Studies examining the kinetics of altered neuromuscular function during prolonged moderate duration exercise have shown that reduced VA occurs in the latter stages, with Place et al. ¹²⁶ and Lepers et al. ¹¹⁶ demonstrating that VA was reduced only following 4 and 5 h of a 5 h running and e perez cycling task, respectively.

Acta
Physi
iologi
G

678	677
were considered "heavy intensity".	Table 3. Literature assessing neuromuscular responses pre-to-post heavy intensity exercise. Studies in which exercise duration ranged from > 30 - 189 min

	679 680 681																	678
	KE: knee extensors evoked potential; V	Millet <i>et al.</i> ¹³¹	Other	Millet et al. 130	Petersen et al. 129	Petersen et al. 129	Saldanha <i>et al</i> . ¹²⁸	Racinais et al. 114	Running	Lepers et al. 113	Sahlin & Seger ¹²⁷	Thomas et al. 22	Thomas et al. ²¹	Lepers et al. 112	Thomas et al. 22	Leg cycling	Author	were considered
	;; MEP: 7A: volu	11		12	8	8	8	11		8	7	13	12	10	13		Z	1 "heav
	motor evoked potential; MV(intary activation	42.2 km (ski skating)		30 km race	42.2 km (marathon)	42.2 km (marathon)	75% VO _{2peak}	First ventilatory threshold		65% PPO	$\sim 75\%$ VO _{2max}	40 km time trial	Power output @ RCP	75% PPO	20 km time trial		Exercise protocol	vy intensity".
	C: maximal voluntary	149 min		189 min	154 min	154 min	120 min	90 min		120 min	85 min	66 min	42 min	33 min	32 min		Exercise duration/distance	
33	/ contraction; NQ: not	KE		KE	PF	KE	PF	PF		KE	KE	KE	KE	KE	KE		Muscle group	
	quantified; PF: plantar	< 5 min		< 3 min	30 min	30 min	< 5 min	5 min		Immediately	NQ	< 2.5 min	2.5 min	~1 min	< 2.5 min		Time to post- exercise measure	
	flexors; P _{tw} :]	18%		↓ 25%	↓ 18%	↓ 23%	↓ 17%	↓ 11%		↓ 12%	↓ 44%	↓ 16%	↓~17%	↓ 7%	↓ 15%		ΔΜΥС	
	peak twitch f	¢		18%	NQ	NQ	↓ 19%	↓2%		NQ	↓ 26%	↓ 10%	%6 †	↓ 1%	↓ 11%		ΔνΑ	
	force; CME	<u>†</u> 7%		1∼6%	\$	\$	\$	↓ 11%		↓12%	NQ	↓ 29%	↓ 11%	%6↑	↓31%		ΔP_{tw}	
	P: cervicomedu	NQ		ŊŊ	NQ	NQ	NQ	NQ		NQ	NQ	↓restingMEP	\$	NQ	↓restingMEP		Δ MEP	
	llary motor	NQ		NQ	NQ	NQ	NQ	NQ		NQ	NQ	NQ	NQ	NQ	NQ		A CM	

Page 93 of 125

682 Table 4. Studies assessing neuromuscular responses pre-to-post moderate intensity exercise. Studies in which exercise duration was > 240 min were

683 considered "moderate intensity".

					1					
Autnor	7	Exercise protocol	Exercise duration/distance	Muscie group	time to post- exercise measure		ΔΥΑ	ΔF_{tw}	A MEP	
Leg cycling										
Jubeau <i>et al</i> . ¹¹⁵	10	45% PPO	240 min	KE	< 3 min	↓ 25%	↓ 13%	↓ 28%	\rightarrow	NQ
Lepers et al. 116	9	55% PPO	300 min	KE	Immediately	↓ 18%	$\uparrow 6\%$	↓ 16%	NQ	NQ
Running										
Ross et al. 132	9	42.2 km (marathon)	208 min	PF	< 20 min	↓ 18%	↓ 14%	↓71%	↓restingMEP	NQ
Millet et al. 130	11	140 km race	278 min	KE	15 min	%6↑	¢	\$	NQ	NQ
Place et al. 126	9	55% MAV	300 min	KE	Immediately	↓ 28%	↓ 16%	$\uparrow 18\%$	NQ	NQ
Gauche et al. ¹³³	22	55 km trail run	413 min	KE	60 min	↓ 37%	$\downarrow 2\%^{CAR}$	NS	NQ	NQ
Millet et al. 134	9	65 km ultramarathon	511 min	KE	< 2 min	↓ 30%	↓ 20%	† 25%	NQ	NQ
Martin <i>et al.</i> ¹³⁵	12	Treadmill running	19 h (149km)	KE	ŊŊ	↓ 40%	↓ 33%	↓ 25%	NQ	NQ
Martin <i>et al.</i> ¹³⁵	12	Treadmill running	19 h (149 km)	PF	ŊŊ	↓ 30%	↓ 15%	↓ 23%	ŊŊ	NQ
Giandolini <i>et al.</i> 136	23	110 km mountain ultra- marathon	20 h	KE	57 min	↓ 36%	↓ 18%	↓ 11%	NQ	NQ
Giandolini <i>et al.</i> 136	23	110 km mountain ultra- marathon	20 h	PF	57 min	↓ 28%	↓ 10%	↓ 17%	NQ	NQ
Temesi <i>et al.</i> ¹⁷	25	110 km mountain ultra- marathon	20 h	KE	61 min	↓ 34%	↓ 26%	↓ 10%	\rightarrow	NQ
Temesi <i>et al.</i> ¹³⁷	20	110 km mountain ultra- marathon	20 h	KE	58 min	↓ 38%	↓24%	↓ 10%	\rightarrow	NQ

4 4 4 4 4 3 3 8 3 3 3 3 3 3 2 2 8 2 7 6 2 2 2 2 3 8 7 6 5 4 3 2 ¹ 6 4 4 4 3 3 8 3 3 3 3 3 3 2 2 8 2 7 6 2 2 2 2 2 3 8 7 6 5 4 3 2 ¹

0
تە
g
Ð
S
σī
0
т
_
N
ί.

46	45	44	43	42	41	40	39	38	37	36	3	34	щ	32	31	30	29	28	27	25 26	24	23	22	19 20 21	18	16	14 15	11 12	9 9 10	7 6 7	ω4π	2 1
																	069		689	889	087	1	686	684 685								
																								CAR: central activ flexors; P _{tw} : peak t	Saugy et al. 140	Saugy et al. 140	Besson <i>et al.</i> ¹³⁹	Besson <i>et al.</i> ¹³⁹	Millet <i>et al.</i> ¹³⁸	Millet <i>et al.</i> ¹³⁸	Temesi <i>et al.</i> ¹³⁷	
																								ation rat witch fo	15	15	17	17	22	22	20	
																								io; KE: knee extensors; MA ^v rce; CMEP: cervicomedullar	330 trail run	330 trail run	169 km mountain ultra- marathon	169 km mountain ultra- marathon	166 km mountain ultra- marathon	166 km mountain ultra- marathon	110 km mountain ultra- marathon	
																								V: maximum aerob y motor evoked pc	122 h	122 h	44 h	44 h	38 h	38 h	20 h	
																								ic velocity; MEP: metential; VA: voluntar	\mathbf{PF}	KE	PF	KE	PF	KE	PF	
				35																				otor evoked potential;] y activation	$\sim 30 \min$	$\sim 30 \min$	23 min	24 min	20 min	20 min	80 min	
																								MVC: maximal vo	↓ 26%	↓ 24%	↓ 34%	↓ 32%	↓ 39%	↓ 35%	↓ 26%	
																								luntary cont	↓26%	↓ 20%	↓ 19%	↓23%	1 6%	↓ 19%	%6↑	
																								raction; NQ	↓ 19%	↓ 24%	↓ 23%	↓24%	J 20%	↓ 22%	↓ 16%	
																								: not quantifie	NQ	NQ	NQ	ŊŊ	NQ	NQ	NQ	
																								d; PF: plantar	NQ	NQ	NQ	NQ	NQ	NQ	NQ	

691 Central nervous system alterations during moderate and heavy intensity exercise

Overall, little research exists examining specific alterations within the CNS in response to moderate or heavy intensity exercise. Studies have demonstrated reductions in VA_{TMS} within both domains ^{17,21,115}, possibly indicating impaired motor cortical output. The impact of prolonged exercise on the excitability of the motor pathway is unclear. When measured with the muscle at rest, studies have demonstrated reductions in MEP amplitude following prolonged exercise ranging from 20 km cycling ²², marathon running ¹³², and a simulated Tour de France ¹⁴¹. However, changes in MEP amplitude at rest might not reflect alterations in corticospinal excitability that occur during contractions. When corticospinal excitability has been assessed pre- and post-prolonged exercise during isometric contractions, conflicting findings exist, with studies reporting an increase ¹⁷, decrease ^{132,141}, or no change in MEP amplitude ^{21,22,142}. Similarly conflicting results have been shown for the silent period, with no change ¹¹⁵ or an increase ¹⁷ being reported. The conflicting findings could be the result of the substantial heterogeneity in the exercise challenges, such as the modalities and the duration of the task, as well as methodological differences such as stimulation intensities and the contraction intensities at which corticospinal excitability is measured, both of which can influence the change in MEP in response to exercise ^{17,143}. No research to date has utilised spinal stimulation to assess the effect of prolonged exercise on α -motoneuron excitability, and this represents an area for future research. Racinais et al. ¹¹⁴ demonstrated a 61% reduction in H-reflex amplitude following 90 min of non-exhaustive running exercise. Avela et al. 62 observed similar reductions in H-reflex amplitude following marathon running, whilst also displaying reductions in the EMG response and passive stretch-resisting force following a natural stretch reflex evoked through sudden changes in muscle length. However, whether this was due to altered Ia excitatory input or impaired α -motoneuron excitability is unclear. Further

work is required to elucidate the effects of prolonged exercise within the moderate and heavyexercise domains on the corticospinal pathway at both the supraspinal and spinal level.

718 Neuromuscular responses to high-intensity intermittent exercise

While an increasing number of studies have assessed neuromuscular responses to continuous locomotor exercise during tasks such as cycling and running, many team sports, such as association football (soccer), rugby league, and hockey, are characterised by bouts of highintensity exercise interspersed with prolonged periods of low-to-moderate intensity activity. In addition, team sport players also complete numerous dynamic actions throughout competitive matches, such as jumping, changing direction, tackling and/or kicking, which are often performed with incomplete recovery ¹⁴⁴. Consequently, high-intensity intermittent team sports are associated with a high physiological and neuromuscular demand, resulting in substantial fatigue and impairments in neuromuscular function¹⁴⁵. During team sports such as soccer and hockey, fatigue manifests through transient reductions in work-rate following the most demanding periods of a match, and cumulative reductions in work-rate towards the end of a match ¹⁴⁴. In addition, fatigue is thought to increase the risk of sustaining an injury during match-play, as players are more susceptible to sustaining injuries towards the latter stages of a match ⁶. In order to better understand the physiology underpinning fatigue experienced during match-play, studies have examined the neuromuscular responses to simulated and competitive high-intensity intermittent team sport activity.

⁵¹ 735 Using a simulated soccer match protocol designed to replicate the physiological demands of
⁵² 736 soccer match-play, Goodall *et al.* ¹⁴⁵ investigated neuromuscular function before, at half-time
⁵⁵ 737 (i.e. 45 min), full-time (i.e. 90 min) and following a period of extra time (i.e. 120 min). An
⁵⁷ 738 interesting finding from this study was that while the simulated soccer match induced
⁵⁹ 739 reductions in MVC and impairments in both contractile function and VA, the reduction in

contractile function demonstrated a plateau after half-time (Figure 5). It was hypothesised that this plateau was due to the early fatigue of higher threshold motor units, which are more susceptible to fatigue, within the first half. In the second half, the lower reduction in contractile function was suggested to be a result of the recruitment of more fatigue-resistant motor units, which exert a smaller reduction in the size of evoked twitch responses. In contrast to the nadir in contractile function, impairments in VA increased progressively, with a VA lower at half-time compared with pre-match, and lower at the end of extra-time compared with half-time. These impairments in neuromuscular function were concurrent with increases in perceptions of effort and impairments in voluntary physical performance (sprint speed and jump height) measured in a companion study ¹⁴⁶.

Numerous other studies have assessed neuromuscular function following a range of competitive and simulated high intensity intermittent team sport protocols (Table 5). Following simulated ¹⁴⁷ and competitive soccer match-play ^{15,148}, studies have demonstrated impairments in P_{tw} and VA of around 14% and 8%, respectively ^{15,148}, resulting in a 11-14% reduction in knee extensor MVC. These impairments occurred concurrently with decreases in jump height, reactive strength and sprint speed ^{15,147}. The mechanisms of impaired contractile function following match-play likely relate to the considerable muscle damage elicited by the numerous eccentric actions associated with match-play ¹⁴⁹, glycogen depletion, with glycogen levels reported to fall below concentrations at which Ca²⁺ handling is impaired ^{119,150}, and increases in reactive oxygen and nitrogen species, with measures of oxidative stress increased following a single match ¹⁴⁹, possibly inhibiting Ca²⁺ handling ¹²². The mechanisms of impaired VA are less clear, with the limited number of studies examining corticospinal and intracortical responses following simulated ^{145,147} and competitive match-play ¹⁵ showing no changes post-exercise, though further research is required to assess the effect of high-intensity intermittent exercise on spinal reflex pathways and α -motoneuronal excitability. Thus, during prolonged

high-intensity intermittent exercise such as soccer match-play, neuromuscular function is
impaired both at the peripheral and central level, with peripheral disturbances more prevalent
in the earlier stages of exercise, and impairments in VA more apparent as exercise progresses.
These disruptions in neuromuscular function likely contribute to the decline in physical
performance known to occur following the most demanding periods of match-play and towards
the end of a match.

to per per perez

Acta
Phy
/sio
g
ica

7772 7773 7774 7775 7776																
KE: knee extensors; MEP: m voluntary activation	Pointon <i>et al.</i> ¹⁵⁷	Minett et al. 156	Intermittent sprint pr	Ansdell <i>et al.</i> ¹⁵⁵	Basketball	Pointon & Duffield ¹⁵⁴	Duffield et al. ¹⁵³	Skein et al. ¹⁵²	Murphy et al. ¹⁵¹	Rugby league	Goodall <i>et al.</i> ¹⁴⁵	Thomas et al. 147	Rampinini <i>et al.</i> ¹⁴⁸	Brownstein et al. 15	Soccer	Author
otor evc	10	9	otocol	10		10	11	11	9		10	15	20	16		N
sked potential; MVC: n	Intermittent sprints	Intermittent sprints		Simulated match		Simulated match	Competitive match	Competitive match	Competitive match		Simulated match	Simulated match	Competitive match	Competitive match		Exercise protocol
naximal voluntary cont	60 min	70 min		60 min		60 min	80 min	80 min	80 min		120 min	90 min	90 min	90 min		Exercise duration/distance
traction; NQ: not 40	KE	KE		KE		KE	KE	KE	KE		KE	KE	KE	KE		Muscle group
quantified; P _{tw} : peak	< 10 min	< 10 min		75 s		< 10 min	NQ	NQ	< 10 min		< 2.5 min	< 2.5 min	40 min	10-60 min		Time to post- exercise measure
twitch force;	↓~25%	↓~16%		↓ 15%		↓~13%	18%	%8 †	↓ 11%		↓ 27%	↓ 16%	↓ 11%	↓ 14%		Δ ΜΥС
CMEP: cerv	↓~11%	↓~4%car		NQ		↓ ~7%	\$	\$	\$		↓ 18%	%6 †	1 8%	1 7%		ΔVA
/icomedull:	↓21%	NQ		↓ 13%		↓21%	↓ 15%	NQ	↓ 34%		↓ 23%	↓ 14%	18%	↓ 14%		ΔP_{tw}
try motor evo	NQ	NQ		NQ		ŊŊ	ŊŊ	ŊŊ	NQ		\$	\$	NQ	\$		A MEP
ked potentia	NQ	NQ		NQ		NQ	NQ	NQ	NQ		NQ	NQ	NQ	NQ		A CME

exercise

Conclusions on the role of exercise intensity on neuromuscular responses to locomotor

The above synopsis of the current literature pertaining to neuromuscular responses to maximal,

severe, heavy, moderate and high-intensity intermittent intensity locomotor exercise, provides

insight into the challenge imposed on the neuromuscular system during fatiguing locomotor activity. Across the exercise domains, there are both commonalities and differences in neuromuscular responses which warrant discussion. Overall, the reduction in muscle force generating capacity is similarly reduced following exhaustive maximal, severe and heavy intensity exercise ^{21,31}. Reductions in MVC are more pronounced following long-duration moderate intensity exercise, which appears to be related to exercise duration (Figure 3). However, different neuromuscular mechanisms are likely to contribute to declines in MVC between domains. While VA has been shown to be reduced following exercise across all domains, possibly due in part to impaired motor cortical output, these reductions are more substantial following prolonged moderate and heavy intensity exercise. For example, Thomas et al.²¹ demonstrated a 9% reduction in VA following 42 min of cycling at the power output associated at the respiratory compensation point, compared to a 3% reduction at the power output associated with VO_{2max} , with a similarly greater magnitude of reduced VA following prolonged compared with short-duration self-paced cycling ²². As indicated in previous sections, reductions in VA appear to occur in a dose-response manner based on the duration of exercise. What is unclear at present is which mechanisms contribute to the exacerbated reduction in VA following prolonged exercise. While increases in group III/IV afferent feedback have been suggested to contribute to impaired VA in response to severe intensity exercise ¹⁶, the firing rate of these afferents are less likely to increase below critical intensities given that there is a lower build-up of metabolites or, in the case of cycling, markers of muscle damage to which these afferents are sensitive ¹⁵⁸. The greater reduction in

 VA_{TMS} following prolonged heavy intensity exercise compared with short-duration severe intensity exercise ^{21,22} would suggest that impaired cortical output could be an important contributor. However, the mechanisms contributing to impaired VA_{TMS} are not well understood. Exacerbated increases in core temperature ¹⁵⁹ and alterations in neurotransmitter concentrations ¹⁰¹ have both been suggested, however comparisons between these potential contributors across domains has not been made.

Similarly, no evidence exists comparing the effects of exercise within different domains on α -motoneuron responses to exercise. Following maximal intensity arm cycling exercise, one study observed an increase in α -motoneuron excitability ⁴⁵. During severe intensity exercise, it is suggested that a-motoneurons are disfacilitated ⁸⁶, while another study suggests a fatigue-induced facilitation of α -motoneurons ⁶⁰. No evidence exists on the effect of prolonged moderate or heavy intensity exercise on α -motoneuron excitability. Thus, the precise effects of different intensities of locomotor exercise on α -motoneuron excitability is unclear, and more research is required to better understand these responses.

Contractile function is also impaired following exercise within all domains. The magnitude and the mechanisms of this reduction, however, differ. Impairments in contractile function are greater following maximal and severe intensity exercise compared with moderate and heavy intensity exercise ^{21,22,31}. For example, Kruger et al. ³¹ found a 50% reduction in P_{tw} following a 30 s of all-out cycling, a 44% reduction following 10 min of severe intensity exercise, and a 14% reduction following 90 min of moderate intensity exercise. The mechanisms contributing to impairments in contractile function following maximal and severe intensity exercise are likely relate to a build-up of metabolites associated with high anaerobic energy turnover. In contrast, the reduction in P_{tw} following prolonged exercise is thought to be related to glycogen depletion ¹¹⁹, increased production of reactive oxygen and nitrogen species ¹²², and, following running-based exercise, muscle damage ¹²⁵. Accordingly, the distinct metabolic responses

between exercise domains causes impaired contractile function through different mechanisms and to different degrees.

Finally, there are similarities across all domains with respect to the kinetics of altered neuromuscular function. For example, during repeated sprint ⁴³, constant load severe intensity ⁷⁹, high-intensity intermittent ¹⁴⁵, and prolonged constant load moderate intensity exercise ¹¹⁶, impaired contractile function is demonstrated during the first half of exercise, before impaired VA becomes more evident during the latter half. During repeated sprint exercise, motoneuron output estimated through EMG is progressively reduced ³⁹, while EMG is increased before plateauing during severe intensity exercise ⁷⁹. Thus, the nadir in reduction P_{tw} commonly observed during exercise within these domains could be due to the reduced or plateaued recruitment of muscle during the later stages of exercise, causing no further decrements in contractile function.

To better understand the effects of different intensities of locomotor exercise on neuromuscular function, more research is required, similar to that of Thomas et al. 21,22, to compare neuromuscular responses at a segmented level between different exercise domains. Furthermore, although challenging, studies should attempt to deliver stimulations to probe the excitability of the corticospinal tract, both at the cortical and spinal level, during the task itself ^{16,60,86}. Finally, due to the rapid recovery of contractile and CNS following exercise ^{31,160}, studies should attempt to rapidly deliver stimulations upon exercise cessation in situations where neuromuscular function is being assessed post-exercise. This can be achieved using custom-built exercise ergometers which permit immediate neuromuscular assessments without the requirement to manoeuvre between exercise and testing apparatus ^{31,66,161}.

851 The effect of exercise modality on neuromuscular responses to locomotor exercise

One of the central themes surrounding research into the neuromuscular responses to fatiguing exercise is task-dependency. In addition to the influence of exercise intensity and duration discussed earlier, exercise modality, or the type of locomotor exercise being performed, can have a profound influence on the demands placed on the neuromuscular system ¹³⁰. Exercise modality can influence the contraction type in the prime movers involved in locomotor exercise, as well as contraction duration or time under tension, the active skeletal muscle mass, mechanical efficiency and muscle recruitment strategy. All of these factors can in turn influence the metabolic and mechanical stress imposed on the muscle, and the mechanisms underpinning decrements in neuromuscular function during exercise.

While several different modes of locomotor exercise exist (e.g. running, cycling, rowing, skiing), systematic comparisons delineating the neuromuscular responses to different exercise modes are scarce. However, studies by Lepers et al. ¹¹⁶ and Place et al. ¹²⁶ assessed the neuromuscular responses to cycling and running exercise, respectively, at the same relative intensity (55% maximal aerobic power or velocity) and duration (5 h). Comparisons between the results of those studies show that, despite the similar exercise intensity and duration, the reduction in knee extensor strength was greater following running (28%) compared with cycling exercise (18%). The greater reduction in MVC was likely due to the greater reduction in VA following running (16%) compared with cycling (8%). In a study directly comparing cycling and running exercise, Tomazin *et al.* 47 had participants perform three sets of five \times six second repeated sprints on both a treadmill and a cycle ergometer, on separate occasions. The study found that the reduction in MVC was greater during and following running sprints compared with cycling. In addition, the reduction in MVC was accompanied by a reduction in VA throughout the running protocol which was not seen during cycling. Following ~3 h of running ¹³⁰ and skiing exercise ¹³¹, a significant reduction in VA (8%) was only observed

following running based exercise. Thus, it appears that alterations to CNS function and consequent impairments in muscle strength are greater following running-based exercise compared with other locomotor exercise modes. This is likely a result of the muscle damage associated with running based exercise, and the lower mechanical demands imposed during exercise such as cycling and skiing. Specifically, running involves multiple stretch shortening cycles and associated eccentric contractions, likely to elicit considerable muscle damage, whereas cycling and skiing impose a high metabolic stress but a substantially lower mechanical stress. In turn, muscle damage could elicit reductions in VA through reduced sensitivity of muscle spindles and disfacilitation of α -motoneurons from Ia afferents ⁶², and/or increased inhibitory feedback from group III/IV afferents which are sensitive to various markers of muscle damage ¹⁶². Furthermore, muscle damage elicited by eccentric exercise protocols have been shown to elicit substantial impairments in VA when measured immediately post-exercise ¹⁵⁸, further suggesting that muscle damage sustained during running contributes to the greater reduction in VA compared with cycling.

At the peripheral level, studies have reported a greater reduction in contractile function during and following cycling compared with running 116,126,163 . For example, following 5 × 6 s cycling and running sprints, Rampinini et al.¹⁶³ demonstrated a significantly greater reduction in knee extensor peak twitch force following cycling (~55% reduction) compared with running (~35%). Similarly, Lepers et al. ¹¹⁶ found a significant reduction in knee extensor peak twitch during every hour throughout 5 h of cycling, whereas Place et al. ¹²⁶ showed a potentiation of quadriceps contractile properties throughout 5 h of running exercise. The higher disturbances at the peripheral level in response to cycling could be a consequence of the differences in the involved muscle mass. For example, during weight supported sports such as cycling, the overall active muscle mass involved is lower than during running, with force primarily generated from the quadriceps. It has been demonstrated throughout the literature that during tasks involving

3 4 5 6 7 lower active muscle mass, the reduction in twitch force is higher ^{164,165}. This is likely because during tasks involving a higher muscle mass, there is a greater sensory input (e.g. from group III/IV afferents) from the involved muscle mass, as well as a greater disruption to homeostasis in other physiological systems (e.g. cardiovascular, respiratory) ⁷³. Consequently, there is a greater contribution to fatigue and the limit of tolerance from multiple physiological systems, whereas during cycling the more local, less diffuse signal from the lower muscle mass permits greater disturbances within the muscle to be tolerated ⁷³. Moreover, running and cycling comprise different types of muscle contraction, with implications for the metabolic cost of exercise and thereby the neuromuscular responses. For example, during running, $\sim 60\%$ of the time taken to complete one stride is spent in the support phase (i.e. foot contact with the ground) for speeds between 12 and 23 km/h¹⁶⁶. In turn, around 34% of the support phase comprised eccentric muscle action, which has implications for the metabolic demand of running both due to the lower metabolic cost of eccentric contractions, and the higher efficiency of subsequent concentric contractions due to the "preloading" of muscle during the eccentric phase (i.e. through the stretch-shortening cycle)¹⁶⁷. Furthermore, the greater central deficit during running exercise possibly related to Ia disfacilitation (see above) could also limit alterations in contractile function. During cycling exercise, there is a high intramuscular tension throughout the majority of the pedal revolution, requiring high force generating of the quadriceps, and consequently greater recruitment of type II motor units. The high intramuscular pressure could also lead to partial occlusion of femoral artery blood flow, thereby reducing oxygen delivery and leading to greater metabolic disturbances ¹⁶⁸. Thus, there are several potential explanations to the greater impairment in Ptw found after cycling versus running based exercise. Overall, there remains limited evidence comparing neuromuscular responses to different modes of locomotor exercise, and research in this area could provide useful information for athletes and practitioners when devising training programmes.

1 2		
3 4 5	926	
6 7	927	Conclusions and future research
8 9 10	928	The present review provides a synopsis of literature, conducted primarily over the last two
11 12	929	decades, pertaining to alterations in neuromuscular function in response to fatiguing locomotor
13 14 15	930	exercise. The plethora of research which now exists in this area has clearly demonstrated the
16 17	931	integral importance of task-dependency on alterations within the neuromuscular system. It is
18 19	932	well established that neuromuscular function during exercise above critical intensity is
20 21	933	primarily limited by disturbances in metabolic homeostasis and consequent impairments in
22 23 24	934	contractile function. More prolonged exercise below critical intensity causes considerable
25 26	935	reductions in the capacity of the nervous system to activate muscle, though the precise
27 28	936	alterations within the central nervous system contributing to this reduction are still unclear.
29 30 31	937	During repeated sprint, constant load severe intensity, high-intensity intermittent, and
32 33	938	prolonged constant load moderate intensity exercise, impaired contractile function is
34 35	939	demonstrated during the first half of exercise, before impaired voluntary activation becomes
36 37	940	more evident during the latter half. Primarily, studies have utilised electrical nerve stimulation
38 39 40	941	at rest and during maximal voluntary contractions to determine the effects of locomotor
41 42	942	exercise at the peripheral and central level, respectively. To further investigate alterations
43 44	943	within the nervous system, many studies have additionally utilised transcranial magnetic
45 46 47	944	stimulation to assess the excitability of the corticospinal pathway, electrical stimulation of
48 49	945	descending spinal tracts to assess α -motoneuron excitability, and nerve stimulation to assess
50 51	946	spinal loop excitability at rest or during isometric contractions prior to and following locomotor
52 53	947	exercise. While these studies have provided valuable insight into how various types of
54 55 56	948	locomotor exercise impact the neuromuscular system, one limitation of this approach is that
57 58	949	measuring responses during isometric contractions deviates from the locomotor exercise task
59 60	950	itself, and thus hinders understanding of neuromuscular alterations that occur during the task.
For example, while prolonged exercise elicits substantial reductions in voluntary activation of muscle during a maximal voluntary contraction, the relevance of this reduction to exercise performance during submaximal intensity tasks is unclear, and has been questioned ⁷⁴. Measuring the force generating capacity of muscle during isometric contractions also deviates from the types of contractions performed during dynamic locomotor exercise, and indeed measures of neuromuscular function during isometric contractions are not interchangeable with those measured during dynamic assessments ¹⁶⁹. Moreover, the delay between exercise cessation and commencing neuromuscular assessments represents a significant general limitation when studying neuromuscular responses to locomotor exercise. To overcome these limitations, studies over the last decade have developed methodologies allowing them to deliver transcranial magnetic and electrical spinal stimulation during the locomotor exercise task itself ^{60,86}. This represents an important advancement in the field, and future research should seek to employ similar techniques to better understand how various locomotor exercise challenges influence the nervous system during exercise. New and emerging methodologies, such as high-density surface EMG, have the potential to provide further insight into exerciseinduced alterations in nervous system function, though incorporating these techniques in response to locomotor exercise is a challenging prospect. Overall, while considerable advancements have been made in the last two decades, more work is required to provide further insight into locomotor exercise induced alterations in neuromuscular function, particularly within the central nervous system.

 Page 109 of 125

1		
2 3 4 5	975	Table and Figure Legends
6 7	976	Table 1. Literature quantifying neuromuscular alterations pre-to-post maximal intensity
8 9 10 11 12 13 14 15	977	locomotor exercise.
	978	Table 2. Literature quantifying neuromuscular alterations pre-to-post severe intensity
	979	locomotor exercise. Studies utilising protocols which resulted in task-failure in < 30 min were
16 17 18	980	considered "severe intensity".
18 19 20	981	Table 3. Literature assessing neuromuscular responses pre-to-post heavy intensity exercise.
21 22	982	Studies in which exercise duration ranged from $> 30 - 189$ min were considered "heavy
23 24 25	983	intensity".
26 27	984	Table 4. Studies assessing neuromuscular responses pre-to-post moderate intensity exercise.
28 29 30	985	Studies in which exercise duration was > 240 min were considered "moderate intensity".
31 32 33	986	Table 5. Studies assessing neuromuscular responses pre-to-post high-intensity intermittent
34 35	987	team sport exercise.
36 37 38	988	Figure 1. Proposed alterations in neuromuscular function occurring during maximal intensity
39 40 41	989	exercise. Adapted from Taylor <i>et al.</i> ⁶¹ .
42 43	990	Figure 2. Relationship between time to post-exercise assessment and reduction in knee
44 45 46	991	extensor maximum voluntary contraction (MVC; A), voluntary activation (VA; B) and peak
47 48	992	twitch force (P_{tw} ; C) as a percentage of pre-exercise 16,21,22,31,60,66,68,70,84,86,87,89,91,93,94,96 . The R ²
49 50 51	993	is derived from the logarithmic slope presented on each graph.
52 53	994	Figure 3. Proposed alterations in neuromuscular function occurring during severe intensity
54 55 56	995	exercise. Adapted from Taylor et al. ⁶¹ .
57 58	996	Figure 4. Relationship between reduction in knee extensor maximal voluntary contraction
59 60	997	(MVC; A), voluntary activation (VA; B) and peak twitch force (P_{tw} ; C) as a percentage of pre-

1 ว		
2 3 4	998	exercise relative to the duration of exercise. Note that the figure pertains only to longer duration
5 6 7	999	with a minimum duration of 30 min $^{17,21,22,113-116,126-128,135-140}$. * outlier 127 .
8 9	1000	Figure 5. Maximum voluntary contraction (A), potentiated knee-extensor twitch force (B) and
10 11 12	1001	voluntary activation measured with motor nerve (VA), and motor cortical (VA _{TMS}) stimulation
13 14	1002	(c) at pre-exercise, half time (HT), full time (FT), and following extra time (ET) of a simulated
15 16	1003	soccer match. $P = < 0.05$ vs. the pre-exercise value, $\dagger = P < 0.05$ vs. HT, $\ddagger = P < 0.05$ vs. FT.
17 18 19	1004	From Goodall <i>et al</i> . ¹⁴⁵ .
20 21 22	1005	Conflict of Interest
23 24 25	1006	The authors have no conflicts of interest.
26 27 28	1007	
20 29 30	1008	
32 33	1009	
34 35 36 37	1010	
38 39	1011	
40 41 42	1012	
43 44 45	1013	
46 47 48	1014	
49 50 51	1015	
52 53 54	1016	
55 56 57	1017	
58 59 60	1018	

1			
2			
3	1019	Refer	ences
4			
5			
6	1020	1.	Enoka RM, Duchateau J. Translating Fatigue to Human Performance. Medicine and science in
7	1021		sports and exercise. 2016;48(11):2228-2238.
8	1022	2.	Halson SL. Monitoring training load to understand fatigue in athletes. Sports medicine
9	1023		(Auckland, NZ), 2014:44 Suppl 2(Suppl 2):S139-147.
10	1024	3	Thorne RT Strudwick AL Buchheit M Atkinson G Drust B Gregson W Monitoring Fatigue
11	1024	5.	During the In-Season Competitive Dhase in Elite Soccer Davers International journal of
12	1025		constantiational portermanae 2015:10/8/058.064
13	1020		Sports physiology unu perjormunce. 2015,10(6).956-964.
14	1027	4.	Courts AJ, Slattery KW, Wallace LK. Practical tests for monitoring performance, ratigue and
15 16	1028		recovery in triathletes. <i>Journal of science and medicine in sport</i> . 2007;10(6):372-381.
10	1029	5.	Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. <i>Physiological reviews</i> .
18	1030		2001;81(4):1725-1789.
19	1031	6.	Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional
20	1032		football: the UEFA injury study. British journal of sports medicine. 2011;45(7):553-558.
21	1033	7.	Dugan SA, Frontera WR. Muscle fatigue and muscle injury. Physical medicine and
22	1034		rehabilitation clinics of North America. 2000;11(2):385-403.
23	1035	8.	Weavil JC. Amann M. Corticospinal excitability during fatiguing whole body exercise.
24	1036	•.	Progress in brain research 2018:240:219-246
25	1037	q	McNeil CL Butler IE Taylor IL Gandevia SC Testing the excitability of human motoneurons
26	1028	5.	Erontiers in human neuroscience 2013:7:152
27	1030	10	Nicol C. Avola I. Komi DV. The stratch chartoning cycle : a model to study naturally accurring
28	1039	10.	NICOLC, Avera J, Komi PV. The stretch-shortening cycle. a model to study haturally occurring
29	1040		neuromuscular fatigue. Sports medicine (Auckiana, NZ). 2006;36(11):977-999.
30	1041	11.	Martin PG, Weerakkody N, Gandevia SC, Taylor JL. Group III and IV muscle afferents
31	1042		differentially affect the motor cortex and motoneurones in humans. The Journal of
32	1043		physiology. 2008;586(5):1277-1289.
33	1044	12.	Amann M. Significance of Group III and IV muscle afferents for the endurance exercising
34	1045		human. Clinical and experimental pharmacology & physiology. 2012;39(9):831-835.
35	1046	13.	Enoka RM. Mechanisms of muscle fatigue: Central factors and task dependency. Journal of
36	1047		electromyography and kinesiology : official journal of the International Society of
3/ 20	1048		Electrophysiological Kinesiology. 1995;5(3):141-149.
20	1049	14.	Sidhu SK. Cresswell AG. Carroll TJ. Corticospinal responses to sustained locomotor exercises:
29 40	1050		moving beyond single-joint studies of central fatigue Sports medicine (Auckland NZ)
40 //1	1051		2013·43(6)·437-449
47 47	1051	15	Brownstain CG. Dent ID. Darker D. et al. Etiology and Recovery of Neuromuscular Estigue
43	1052	15.	following Compatitive Soccer Match Play, Frontiers in physiology 2017;9:921
44	1055	16	Sidbu SK, Maguil IC, Maggum TS, et al. Croup III/IV lacemeter muscle afferente alter meter
45	1054	10.	Sidiu SK, weavingt, wangun is, et al. Group in/w loconolor muscle anerents alter motor
46	1055		cortical and corticospinal excitability and promote central ratigue during cycling exercise.
47	1056		Clinical neurophysiology : official journal of the International Federation of Clinical
48	1057		Neurophysiology. 2017;128(1):44-55.
49	1058	17.	Temesi J, Rupp T, Martin V, et al. Central fatigue assessed by transcranial magnetic
50	1059		stimulation in ultratrail running. Medicine and science in sports and exercise.
51	1060		2014;46(6):1166-1175.
52	1061	18.	Gruet M, Temesi J, Rupp T, Levy P, Millet GY, Verges S. Stimulation of the motor cortex and
53	1062		corticospinal tract to assess human muscle fatigue. Neuroscience. 2013;231:384-399.
54	1063	19.	Collins BW, Pearcey GEP, Buckle NCM, Power KE, Button DC. Neuromuscular fatigue during
55	1064		repeated sprint exercise: underlying physiology and methodological considerations. Applied
56	1065		physiology, nutrition, and metabolism = Physiologie appliauee, nutrition et metabolisme.
5/	1066		2018·43(11)·1166-1175
20 50	1000		
59 60			
00			

1			
2			
5 4	1067	20.	Millet GY, Martin V, Temesi J. The role of the nervous system in neuromuscular fatigue
5	1068		induced by ultra-endurance exercise. Applied physiology, nutrition, and metabolism =
6	1069		Physiologie appliquee, nutrition et metabolisme. 2018;43(11):1151-1157.
7	1070	21.	Thomas K, Elmeua M, Howatson G, Goodall S. Intensity-Dependent Contribution of
8	10/1		Neuromuscular Fatigue after Constant-Load Cycling. Medicine and science in sports and
9	1072	~~	exercise. 2016;48(9):1751-1760.
10	1073	22.	I nomas K, Goodall S, Stone M, Howatson G, St Clair Gibson A, Ansley L. Central and
11	1074		peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. <i>Medicine and science</i>
13	1075	22	In sports and exercise. 2015;47(3):537-546.
14	1076	23.	Black MI, Jones AM, Blackwell JR, et al. Muscle metabolic and neuromuscular determinants
15	1077		of fatigue during cycling in different exercise intensity domains. <i>Journal of applied physiology</i>
16	1078	24	(Bethesda, Ma : 1985). 2017;122(3):446-459.
17	1079	24.	Burniey M, Vannatalo A, Jones AM. Distinct profiles of neuromuscular fatigue during muscle
18	1080		Contractions below and above the critical torque in numans. <i>Journal of applied physiology</i>
19	1081	25	(Bethesda, Ma : 1985). 2012;113(2):215-223.
20	1082	25.	Jones AM, Wilkerson DP, Dimenna F, Fullord J, Poole DC. Muscle metabolic responses to
22	1083		exercise above and below the critical power assessed using 31P-IVIRS. American journal of
23	1084	26	physiology Regulatory, Integrative and comparative physiology. 2008;294(2):R585-593.
24	1085	20.	bishop DJ. Faligue during intermittent-sprint exercise. <i>Clinical and experimental</i>
25	1000	77	phumucology & physiology. 2012,59(9).850-841.
26	1087	27.	whyte LJ, Gill JW, Cathcart AJ. Effect of 2 weeks of sprint interval training on nealth-related
27	1000		
28 20	1009	20	2010,33(10).1421-1420. Cibala ML Little ID van Essan M et al. Short term sprint interval versus traditional
30	1090	20.	oldala WJ, Little JP, vali Esseli W, et al. Short-term sprint interval versus traditional
31	1091		performance. The Journal of physiology 2006:E75 (Dt 2):001,011
32	1092	20	Taylor I. Macharson T. Spaars I. Wester M. The effects of repeated sprint training on field
33	1095	29.	hased fitness measures: a meta-analysis of controlled and non-controlled trials. Sports
34	1094		medicine (Auckland NZ) 2015:45(6):981-901
35	1095	20	Conte D. Eavero T.G. Luno C. Erancioni EM. Capranica L. Tessitore A. Time-motion analysis of
36 27	1090	50.	Italian elite women's haskethall games; individual and team analyses. <i>Journal of strength</i>
57 38	1097		and conditioning research 2015;29(1):144-150
39	1000	21	Kruger RL Aboodarda SL Jaimes LM Samozino P. Millet GV Cycling Performed on an
40	1100	51.	Innovative Ergometer at Different Intensities-Durations in Men. Neuromuscular Fatigue and
41	1100		Recovery Kinetics Annlied physiology nutrition and metabolism = Physiologie annliquee
42	1101		nutrition et metabolisme 2019
43	1102	32	Fernandez-del-Olmo M. Rodriguez FA. Marquez G. et al. Isometric knee extensor fatigue
44	1104	52.	following a Wingate test: peripheral and central mechanisms. Scandingvian journal of
45	1105		medicine & science in sports 2013:23(1):57-65
40 47	1106	33	Allen DG Trajanovska S The multiple roles of phosphate in muscle fatigue. <i>Frontiers in</i>
48	1107	55.	physiology, 2012:3:463.
49	1108	34	Youel RL Arsac LM Thiaudiere F. Canioni P. Manier G. Effect of creatine supplementation on
50	1109	511	phosphocreatine resynthesis inorganic phosphate accumulation and pH during intermittent
51	1110		maximal exercise. <i>Journal of sports sciences</i> , 2002:20(5):427-437.
52	1111	35.	Jones DA, Turner DL, McIntyre DB. Newham DJ. Energy turnover in relation to slowing of
53	1112		contractile properties during fatiguing contractions of the human anterior tibialis muscle
54 55	1113		The Journal of physiology, 2009:587(Pt 17):4329-4338.
55 56	1114	36.	Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms.
57	1115	201	Physiological reviews. 2008:88(1):287-332.
58			, <u>.</u>
59			
60			

52

1			
2			
3	1116	37.	Girard O, Bishop DJ, Racinais S. Hot conditions improve power output during repeated
4	1117		cycling sprints without modifying neuromuscular fatigue characteristics. European journal of
5	1118		applied physiology. 2013;113(2):359-369.
7	1119	38.	Girard O, Bishop DJ, Racinais S. Neuromuscular adjustments of the quadriceps muscle after
, 8	1120		repeated cycling sprints. PloS one. 2013;8(5):e61793.
9	1121	39.	Hureau TJ, Ducrocq GP, Blain GM. Peripheral and Central Fatigue Development during All-
10	1122		Out Repeated Cycling Sprints. <i>Medicine and science in sports and exercise</i> . 2016;48(3):391-
11	1123		401.
12	1124	40.	Racinais S, Bishop D, Denis R, Lattier G, Mendez-Villaneuva A, Perrey S. Muscle
13	1125		deoxygenation and neural drive to the muscle during repeated sprint cycling. <i>Medicine and</i>
14	1126		science in sports and exercise. 2007;39(2):268-274.
15	1127	41.	Pearcey GE, Murphy JR, Behm DG, Hay DC, Power KE, Button DC. Neuromuscular fatigue of
10	1128		the knee extensors during repeated maximal intensity intermittent-sprints on a cycle
18	1129		ergometer. Muscle & nerve. 2015;51(4):569-579.
19	1130	42.	Monks MR, Compton CT, Yetman JD, Power KE, Button DC. Repeated sprint ability but not
20	1131		neuromuscular fatigue is dependent on short versus long duration recovery time between
21	1132		sprints in healthy males. Journal of science and medicine in sport. 2017;20(6):600-605.
22	1133	43.	Goodall S, Charlton K, Howatson G, Thomas K. Neuromuscular fatigability during repeated-
23	1134		sprint exercise in male athletes. <i>Medicine and science in sports and exercise</i> . 2015;47(3):528-
24	1135		536.
25 26	1136	44.	Perrey S, Racinais S, Saimouaa K, Girard O. Neural and muscular adjustments following
27	1137		repeated running sprints. European journal of applied physiology. 2010;109(6):1027-1036.
28	1138	45.	Pearcey GE, Bradbury-Squires DJ, Monks M, Philpott D, Power KE, Button DC. Arm-cycling
29	1139		sprints induce neuromuscular fatigue of the elbow flexors and alter corticospinal excitability
30	1140		of the biceps brachii. Applied physiology, nutrition, and metabolism = Physiologie appliquee,
31	1141		nutrition et metabolisme. 2016;41(2):199-209.
32	1142	46.	Hureau TJ, Olivier N, Millet GY, Meste O, Blain GM. Exercise performance is regulated during
33 34	1143		repeated sprints to limit the development of peripheral fatigue beyond a critical threshold.
35	1144		Experimental physiology. 2014;99(7):951-963. 🔨
36	1145	47.	Tomazin K, Morin JB, Millet GY. Etiology of Neuromuscular Fatigue After Repeated Sprints
37	1146		Depends on Exercise Modality. International journal of sports physiology and performance.
38	1147		2017;12(7):878-885.
39	1148	48.	Tomazin K, Morin JB, Strojnik V, Podpecan A, Millet GY. Fatigue after short (100-m), medium
40	1149		(200-m) and long (400-m) treadmill sprints. European journal of applied physiology.
41 42	1150		2012;112(3):1027-1036.
42 43	1151	49.	Taylor JL, Todd G, Gandevia SC. Evidence for a supraspinal contribution to human muscle
44	1152		fatigue. Clinical and experimental pharmacology & physiology. 2006;33(4):400-405.
45	1153	50.	McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL. Behaviour of the motoneurone pool in a
46	1154		fatiguing submaximal contraction. The Journal of physiology. 2011;589(Pt 14):3533-3544.
47	1155	51.	Pearcey GEP, Noble SA, Munro B, Zehr EP. Spinal Cord Excitability and Sprint Performance
48	1156		Are Enhanced by Sensory Stimulation During Cycling. Frontiers in human neuroscience.
49 50	1157		2017;11:612.
50 51	1158	52.	Cotel F, Exley R, Cragg SJ, Perrier JF. Serotonin spillover onto the axon initial segment of
52	1159		motoneurons induces central fatigue by inhibiting action potential initiation. <i>Proceedings of</i>
53	1160		the National Academy of Sciences of the United States of America. 2013;110(12):4774-4779.
54	1161	53.	Todd G, Taylor JL, Gandevia SC. Measurement of voluntary activation based on transcranial
55	1162		magnetic stimulation over the motor cortex. Journal of applied physiology (Bethesda, Md :
56	1163	_	<i>1985</i>). 2016;121(3):678-686.
57	1164	54.	Peyrard A, Willis SJ, Place N, Millet GP, Borrani F, Rupp T. Neuromuscular evaluation of arm-
58	1165		cycling repeated sprints under hypoxia and/or blood flow restriction. <i>European journal of</i>
59 60	1166		applied physiology. 2019;119(7):1533-1545.

1			
2			
4	1167	55.	Butler JE, Taylor JL, Gandevia SC. Responses of human motoneurons to corticospinal
5	1168		stimulation during maximal voluntary contractions and ischemia. The Journal of
6	1169		neuroscience : the official journal of the Society for Neuroscience. 2003;23(32):10224-10230.
7	1170	56.	Nielsen J, Petersen N. Is presynaptic inhibition distributed to corticospinal fibres in man? The
8	11/1		Journal of physiology. 1994;477(Pt 1):47-58.
9	1172	57.	McNeil CJ, Giesebrecht S, Khan SI, Gandevia SC, Taylor JL. The reduction in human
10	1173		motoneurone responsiveness during muscle fatigue is not prevented by increased muscle
11	1174		spindle discharge. The Journal of physiology. 2011;589(Pt 15):3731-3738.
12	1175	58.	Martin PG, Smith JL, Butler JE, Gandevia SC, Taylor JL. Fatigue-sensitive afferents inhibit
14	1176		extensor but not flexor motoneurons in humans. The Journal of neuroscience : the official
15	11//		journal of the Society for Neuroscience. 2006;26(18):4796-4802.
16	11/8	59.	Finn HT, Rouffet DM, Kennedy DS, Green S, Taylor JL. Motoneuron excitability of the
17	11/9		quadriceps decreases during a fatiguing submaximal isometric contraction. <i>Journal of</i>
18	1180	<u> </u>	applied physiology (Bethesda, Md : 1985). 2018;124(4):970-979.
19	1181	60.	Sidhu SK, Weavil JC, Thurston TS, et al. Fatigue-related group III/IV muscle afferent feedback
20	1182		facilitates intracortical inhibition during locomotor exercise. J Physiol. 2018;596(19):4789-
21	1183	~ ~	
23	1184	61.	Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL. Neural Contributions to Muscle
24	1185		Fatigue: From the Brain to the Muscle and Back Again. Medicine and science in sports and
25	1186		exercise. 2016;48(11):2294-2306.
26	1187	62.	Avela J, Kyrolainen H, Komi PV, Rama D. Reduced reflex sensitivity persists several days after
27	1188		long-lasting stretch-shortening cycle exercise. Journal of applied physiology (Bethesda, Md :
28	1189		<i>1985).</i> 1999;86(4):1292-1300.
29	1190	63.	Hagbarth KE. Excitatory and inhibitory skin areas for flexor and extensor motoneurons. Acta
30 31	1191	~ •	physiologica Scandinavica Supplementum. 1952;26(94):1-58.
32	1192	64.	Mense S, Craig AD, Jr. Spinal and supraspinal terminations of primary afferent fibers from
33	1193	C-	the gastrocnemius-soleus muscle in the cat. <i>Neuroscience</i> . 1988;26(3):1023-1035.
34	1194	65.	Torres-Peralta R, Morales-Alamo D, Gonzalez-Izal M, et al. Task Failure during Exercise to
35	1195		Exhaustion in Normoxia and Hypoxia is Due to Reduced Muscle Activation Caused by Central
36	1196		Mechanisms While Muscle Metaboreflex Does Not Limit Performance. Frontiers in
37	1197	~~	physiology. 2016;6(414).
38	1198	66.	Temesi J, Mattioni Maturana F, Peyrard A, Piucco T, Murias JM, Millet GY. The relationship
39 40	1199		between oxygen uptake kinetics and neuromuscular fatigue in high-intensity cycling
41	1200	C7	exercise. European journal of applied physiology. 2017;117(5):969-978.
42	1201	67.	Hodgson MD, Keir DA, Copitnorne DB, Rice CL, Kowalchuk JM. Power reserve following
43	1202		ramp-incremental cycling to exhaustion: implications for muscle fatigue and function.
44	1203	60	Journal of applied physiology (Bethesda, Md : 1985). 2018;125(2):304-312.
45	1204	68.	Schafer LU, Hayes M, Dekerle J. The magnitude of neuromuscular fatigue is not intensity
46	1205		dependent when cycling above critical power but relates to aerobic and anaerobic
47	1206	60	capacities. Experimental physiology. 2019;104(2):209-219.
48 40	1207	69.	Amann M. Central and peripheral fatigue: interaction during cycling exercise in humans.
49 50	1208	70	Medicine and science in sports and exercise. 2011;43(11):2039-2045.
51	1209	70.	Johnson MA, Sharpe GR, Williams NC, Hannah R. Locomotor muscle fatigue is not critically
52	1210		regulated after prior upper body exercise. Journal of applied physiology (Bethesda, Md :
53	1211	74	1985). 2015;119(7):840-850.
54	1212	/1.	Amann IVI, Venturelli M, IVes SJ, et al. Peripheral fatigue limits endurance exercise via a
55	1213		sensory reedback-mediated reduction in spinal motoneuronal output. <i>Journal of applied</i>
56	1214	70	pnysiology (Bethesda, Ma : 1985). 2013;115(3):355-364.
57	1215	72.	Noakes ID, St Clair Gibson A, Lambert EV. From catastrophe to complexity: a novel model of
50 50	1216		integrative central neural regulation of effort and fatigue during exercise in humans. British
60	121/		journal of sports mealcine. 2004;38(4):511-514.

1			
2	1718	72	Thomas K. Goodall S. Howatson G. Performance Eatigability Is Not Regulated to A. Perinheral
4	1218	75.	Critical Threshold Exercise and sport sciences reviews 2018:46(4):240-246
5	1220	74	Marcora S. Counterpoint: Afferent feedback from fatigued locomotor muscles is not an
6	1220	, 4.	important determinant of endurance exercise performance. <i>Journal of applied physiology</i>
/ 0	1222		(Bethesda, Md : 1985), 2010:108(2):454-456: discussion 456-457.
o Q	1223	75	Amann M. Secher NH. Point: Afferent feedback from fatigued locomotor muscles is an
10	1224	/ 3.	important determinant of endurance exercise performance. J Appl Physiol (1985).
11	1225		2010:108(2):452-454: discussion 457: author reply 470.
12	1226	76.	Marcora SM. Stajano W. The limit to exercise tolerance in humans: mind over muscle?
13	1227		European journal of applied physiology. 2010:109(4):763-770.
14	1228	77.	Millet GY. Can neuromuscular fatigue explain running strategies and performance in ultra-
15	1229		marathons?: the flush model. Sports medicine (Auckland, NZ), 2011:41(6):489-506.
16 17	1230	78.	Hureau TJ. Romer LM. Amann M. The 'sensory tolerance limit': A hypothetical construct
17	1231	-	determining exercise performance? <i>European journal of sport science</i> . 2018;18(1):13-24.
19	1232	79.	Decorte N. Lafaix PA. Millet GY. Wuyam B. Verges S. Central and peripheral fatigue kinetics
20	1233	-	during exhaustive constant-load cycling. Scandinavian journal of medicine & science in
21	1234		sports. 2012;22(3):381-391.
22	1235	80.	Keir DA, Copithorne DB, Hodgson MD, Pogliaghi S, Rice CL, Kowalchuk JM. The slow
23	1236		component of pulmonary O2 uptake accompanies peripheral muscle fatigue during high-
24	1237		intensity exercise. Journal of applied physiology (Bethesda, Md : 1985). 2016;121(2):493-
25 26	1238		502.
20 27	1239	81.	Azevedo RA, Cruz R, Couto P, et al. Characterization of performance fatigability during a self-
28	1240		paced exercise. Journal of applied physiology (Bethesda, Md : 1985). 2019;127(3):838-846.
29	1241	82.	Felippe LC, Melo TG, Silva-Cavalcante MD, et al. Relationship between recovery of
30	1242		neuromuscular function and subsequent capacity to work above critical power. European
31	1243		journal of applied physiology. 2020;120(6):1237-1249.
32	1244	83.	Skiba PF, Chidnok W, Vanhatalo A, Jones AM. Modeling the expenditure and reconstitution
33	1245		of work capacity above critical power. <i>Medicine and science in sports and exercise</i> .
34 35	1246		2012;44(8):1526-1532.
36	1247	84.	Ansdell P, Thomas K, Howatson G, Amann M, Goodall S. Deception Improves Time Trial
37	1248		Performance in Well-trained Cyclists without Augmented Fatigue. Medicine and science in
38	1249		sports and exercise. 2018;50(4):809-816.
39	1250	85.	Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Opioid-mediated muscle
40	1251		afferents inhibit central motor drive and limit peripheral muscle fatigue development in
41	1252		humans. The Journal of physiology. 2009;587(1):271-283.
42	1253	86.	Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M. Fatigue diminishes
43 11	1254		motoneuronal excitability during cycling exercise. Journal of neurophysiology.
44	1255		2016;116(4):1743-1751.
46	1256	87.	Goodall S, Gonzalez-Alonso J, Ali L, Ross EZ, Romer LM. Supraspinal fatigue after normoxic
47	1257		and hypoxic exercise in humans. J Physiol. 2012;590(11):2767-2782.
48	1258	88.	Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA. Arterial
49	1259		oxygenation influences central motor output and exercise performance via effects on
50	1260		peripheral locomotor muscle fatigue in humans. The Journal of physiology. 2006;575(Pt
51	1261		3):937-952.
5∠ 5२	1262	89.	Hureau TJ, Weavil JC, Thurston TS, et al. Pharmacological attenuation of group III/IV muscle
54	1263		afferents improves endurance performance when oxygen delivery to locomotor muscles is
55	1264		preserved. Journal of applied physiology (Bethesda, Md : 1985). 2019.
56	1265	90.	Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Implications of group
57	1266		III and IV muscle afferents for high-intensity endurance exercise performance in humans.
58	1267		The Journal of physiology. 2011;589(Pt 21):5299-5309.
59			
60			

1 2			
2	1769	01	Plain GM Mangum TS Sidhu SK at al. Group III/IV muscle afferents limit the intramuscular
4	1200	91.	metabolic perturbation during whole body evercise in humans. The Journal of physiology
5	1209		
6	1270	92	Amann M. Dempsey IA. Locomotor muscle fatigue modifies central motor drive in healthy
7	1271	52.	humans and imposes a limitation to exercise performance. The Journal of physiology
8	1272		
9 10	1273	93	O'Leary TL Morris MG. Collett L Howells K. Central and peripheral fatigue following non-
11	1275	55.	exhaustive and exhaustive exercise of disparate metabolic demands. Scandingvign journal of
12	1276		medicine & science in sports 2016:26(11):1287-1300
13	1277	94.	O'Leary TJ. Collett J. Morris MG. High-intensity exhaustive exercise reduces long-interval
14	1278	5	intracortical inhibition. <i>Experimental brain research</i> . 2018:236(12):3149-3158.
15	1279	95.	Skof B. Stroinik V. Neuromuscular fatigue and recovery dynamics following prolonged
10 17	1280		continuous run at anaerobic threshold. British journal of sports medicine. 2006;40(3):219-
17	1281		222; discussion 219-222.
19	1282	96.	Husmann F, Gube M, Felser S, et al. Central Factors Contribute to Knee Extensor Strength
20	1283		Loss after 2000-m Rowing in Elite Male and Female Rowers. Medicine and science in sports
21	1284		and exercise. 2017;49(3):440-449.
22	1285	97.	O'Leary TJ, Collett J, Howells K, Morris MG. Endurance capacity and neuromuscular fatigue
23	1286		following high- vs moderate-intensity endurance training: A randomized trial. Scandinavian
24 25	1287		journal of medicine & science in sports. 2017;27(12):1648-1661.
26	1288	98.	Gandevia SC, Allen GM, Butler JE, Taylor JL. Supraspinal factors in human muscle fatigue:
27	1289		evidence for suboptimal output from the motor cortex. The Journal of physiology. 1996;490 (
28	1290		Pt 2)(Pt 2):529-536.
29	1291	99.	Ortu E, Deriu F, Suppa A, Tolu E, Rothwell JC. Effects of volitional contraction on intracortical
30	1292		inhibition and facilitation in the human motor cortex. The Journal of physiology.
31	1293		2008;586(21):5147-5159.
२८ २२	1294	100.	Hunter SK, McNeil CJ, Butler JE, Gandevia SC, Taylor JL. Short-interval cortical inhibition and
34	1295		intracortical facilitation during submaximal voluntary contractions changes with fatigue.
35	1296		Experimental brain research. 2016;234(9):2541-2551.
36	1297	101.	Klass M, Roelands B, Levenez M, et al. Effects of noradrenaline and dopamine on supraspinal
37	1298		fatigue in well-trained men. <i>Medicine and science in sports and exercise</i> . 2012;44(12):2299-
38	1299		2308.
39 40	1300	102.	Bulbulian R, Darabos BL. Motor neuron excitability: the Hoffmann reflex following exercise
40 41	1301	102	of low and high intensity. <i>Medicine and science in sports and exercise</i> . 1986;18(6):697-702.
42	1302	103.	Moti RW, O'Connor P J, Dishman RK. Effects of cycling exercise on the soleus H-reflex and
43	1303		state anxiety among men with low or high trait anxiety. <i>Psychophysiology</i> . 2004;41(1):96-
44	1304	104	105. Magafield C. Hagharth KE. Corman D. Candovia SC. Burke D. Decline in chindle support to
45	1305	104.	Maceneiu G, Hagbarth KE, Gorman K, Gandevia SC, Burke D. Decline in spinole support to
46	1200		apria-motorieurones during sustained voluntary contractions. The Journal of physiology.
47 48	1202	105	1991,440.497-912. Duchateau I. Balestra C. Carpontier A. Hainaut K. Beflex regulation during sustained and
49	1200	105.	intermittent submaximal contractions in humans. The Journal of physiology 2002:541/Dt
50	1210		
51	1310	106	SJ. 333-307. Rossi A Decchi B. Ginanneschi F. Presynantic excitability changes of group la fibres to muscle
52	1312	100.	nocicentive stimulation in humans. Brain research 1999-818(1):12-22
53	1312	107	Fitts RH. The cross-bridge cycle and skeletal muscle fatigue. <i>Journal of applied physiology</i>
54 55	1314	107.	(Bethesda, Md : 1985), 2008:104(2):551-558.
55 56	1315	108.	Sidhu SK. Weavil JC. Venturelli M. et al. Spinal mu-opioid receptor-sensitive lower limb
57	1316		muscle afferents determine corticospinal responsiveness and promote central fatigue in
58	1317		upper limb muscle. The Journal of physiology. 2014;592(22):5011-5024.
59			
60			

1 2			
3 4	1318 1319	109.	de Morree HM, Klein C, Marcora SM. Perception of effort reflects central motor command during movement execution. <i>Psychophysiology</i> , 2012;49(9):1242-1253.
5 6 7	1320 1321	110.	Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. <i>Journal of applied physiology (Bethesda, Md :</i>
8 9 10	1322 1323 1324	111.	Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical Power: An Important Fatigue Threshold in Exercise Physiology. <i>Medicine and science in sports and exercise</i> .
11 12 13	1325 1326 1327	112.	2016;48(11):2320-2334. Lepers R, Theurel J, Hausswirth C, Bernard T. Neuromuscular fatigue following constant versus variable-intensity endurance cycling in triathletes. <i>Journal of science and medicine in</i>
14 15 16	1328 1329 1330	113.	<i>sport.</i> 2008;11(4):381-389. Lepers R, Hausswirth C, Maffiuletti N, Brisswalter J, van Hoecke J. Evidence of neuromuscular fatigue after prolonged cycling exercise. <i>Medicine and science in sports and exercise</i>
17 18 19	1331 1332	114.	2000;32(11):1880-1886. Racinais S, Girard O, Micallef JP, Perrey S. Failed excitability of spinal motoneurons induced
20 21	1333 1334	115.	by prolonged running exercise. <i>Journal of neurophysiology</i> . 2007;97(1):596-603. Jubeau M, Rupp T, Perrey S, et al. Changes in voluntary activation assessed by transcranial
22 23 24	1335 1336	116.	magnetic stimulation during prolonged cycling exercise. <i>PloS one</i> . 2014;9(2):e89157. Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY. Neuromuscular fatigue during a
25 26 27	1337 1338 1339	117	2002;92(4):1487-1493. Burnley M. Jones AM. Power-duration relationshin: Physiology, fatigue, and the limits of
27 28 29	1340 1341	118.	human performance. <i>European journal of sport science</i> . 2018;18(1):1-12. Ortenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. <i>The Journal of</i>
30 31	1342 1343	119.	physiology. 2013;591(18):4405-4413. Gejl KD, Hvid LG, Frandsen U, Jensen K, Sahlin K, Ortenblad N. Muscle glycogen content
32 33 34	1344 1345		modifies SR Ca2+ release rate in elite endurance athletes. <i>Med Sci Sports Exerc.</i> 2014;46(3):496-505.
35 36 37	1346 1347 1348	120.	Ørtenblad N, Nielsen J, Saltin B, Holmberg HC. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. <i>The Journal of physiology</i> . 2011;589(Pt 3):711-725.
38 39	1349 1350	121.	Noakes TD, Lambert EV, Lambert MI, McArthur PS, Myburgh KH, Benade AJ. Carbohydrate ingestion and muscle glycogen depletion during marathon and ultramarathon racing.
40 41 42 43	1351 1352 1353	122.	European journal of applied physiology and occupational physiology. 1988;57(4):482-489. Cheng AJ, Yamada T, Rassier DE, Andersson DC, Westerblad H, Lanner JT. Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and
44 45 46 47	1354 1355 1356 1357	123.	Mrakic-Sposta S, Gussoni M, Moretti S, et al. Effects of Mountain Ultra-Marathon Running on ROS Production and Oxidative Damage by Micro-Invasive Analytic Techniques. <i>PloS one.</i> 2015;10(11):e0141780.
48 49 50	1358 1359 1360	124.	Cheng AJ, Place N, Westerblad H. Molecular basis for exercise-induced fatigue: the importance of strictly controlled cellular Ca2+ handling. <i>Cold Spring Harb Perspect Med.</i> 2017
51 52 53 54 55	1361 1362 1363 1364	125.	Skurvydas A, Mamkus G, Kamandulis S, Dudoniene V, Valanciene D, Westerblad H. Mechanisms of force depression caused by different types of physical exercise studied by direct electrical stimulation of human quadriceps muscle. <i>European journal of applied</i> <i>physiology</i> . 2016;116(11-12):2215-2224.
56 57 58 59 60	1365 1366 1367	126.	Place N, Lepers R, Deley G, Millet GY. Time course of neuromuscular alterations during a prolonged running exercise. <i>Medicine and science in sports and exercise</i> . 2004;36(8):1347-1356.

1			
2			
3	1368	127.	Sahlin K, Seger JY. Effects of prolonged exercise on the contractile properties of human
4	1369		quadriceps muscle. European journal of applied physiology and occupational physiology.
5	1370		1995;71(2-3):180-186.
7	1371	128.	Saldanha A, Nordlund Ekblom MM, Thorstensson A. Central fatigue affects plantar flexor
, 8	1372		strength after prolonged running. Scandinavian journal of medicine & science in sports.
9	1373		2008;18(3):383-388.
10	1374	129.	Petersen K, Hansen CB, Aagaard P, Madsen K. Muscle mechanical characteristics in fatigue
11	1375		and recovery from a marathon race in highly trained runners. <i>European journal of applied</i>
12	1376		physiology. 2007;101(3):385-396.
13	1377	130.	Millet GY, Martin V, Lattier G, Ballay Y, Mechanisms contributing to knee extensor strength
14	1378		loss after prolonged running exercise. Journal of applied physiology (Bethesda, Md : 1985).
15	1379		2003:94(1):193-198.
16 17	1380	131.	Millet GY. Martin V. Maffiuletti NA. Martin A. Neuromuscular fatigue after a ski skating
17 18	1381		marathon. Canadian journal of applied physiology = Revue canadienne de physiologie
19	1382		annliquee 2003:28(3):434-445
20	1383	132	Ross E7 Middleton N. Shave R. George K. Nowicky A. Corticomotor excitability contributes to
21	1384	152.	neuromuscular fatigue following marathon running in man. Experimental physiology
22	1385		2007·92(2)·417-426
23	1386	133	Gauche F. Leners R. Rahita G. et al. Vitamin and mineral supplementation and
24	1387	155.	neuromuscular recovery after a running race. Medicine and science in sports and evercise
25	1288		
26	1200	12/	Millet GV Leners P. Maffiuletti NA. Pabault N. Martin V. Lattier G. Alterations of
2/	1200	134.	nouromuscular function after an ultramarathon Journal of annliad physiology (Pethecda, Md
28 20	1201		
30	1202	125	. 1963). 2002, 92(2).460-492. Martin V. Karbarya II. Massanniar I.A. et al. Control and paripharal contributions to
31	1392	135.	Martin V, Kernerve H, Messonnier LA, et al. Central and peripheral contributions to
32	1292		(Betheader, Add, 1005), 2010;100(5);1224,1222
33	1394	120	(Belliesuu, Mul : 1985). 2010;108(5):1224-1233. Ciandelini M. Cimanaz D. Tamasi I. et al. Effect of the Estimus Induced by a 110 km
34	1395	136.	Giandolini M, Gimenez P, Temesi J, et al. Effect of the Fatigue Induced by a 110-km
35	1396		Oltramaration on Tiblai Impact Acceleration and Lower Leg Kinematics. Plos one.
36	1397	107	2016;11(3):e0151687.
37	1398	137.	Temesi J, Arnai PJ, Rupp T, et al. Are Females More Resistant to Extreme Neuromuscular
38	1399	120	Fatigue? Medicine and science in sports and exercise. 2015;47(7):1372-1382.
39 40	1400	138.	Millet GY, Tomazin K, Verges S, et al. Neuromuscular consequences of an extreme mountain
41	1401	120	ultra-marathon. Plos one. 2011;6(2):e1/059.
42	1402	139.	Besson T, Rossi J, Mallour TLR, et al. Fatigue and Recovery following Single- versus
43	1403		Multistage Oltramarathon Running. <i>Medicine and science in sports and exercise.</i> 2020.
44	1404	140.	Saugy J, Place N, Millet GY, Degache F, Schena F, Millet GP. Alterations of Neuromuscular
45	1405		Function after the World's Most Challenging Mountain Ultra-Marathon. Plos one.
46	1406		2013;8(6):e65596.
47	1407	141.	Ross EZ, Gregson W, Williams K, Robertson C, George K. Muscle contractile function and
48	1408		neural control after repetitive endurance cycling. <i>Medicine and science in sports and</i>
49 50	1409		exercise. 2010;42(1):206-212.
51	1410	142.	Hollge J, Kunkel M, Ziemann U, Tergau F, Geese R, Reimers CD. Central fatigue in sports and
52	1411		daily exercises. A magnetic stimulation study. International journal of sports medicine.
53	1412		1997;18(8):614-617.
54	1413	143.	Aboodarda SJ, Fan S, Coates K, Millet GY. The short-term recovery of corticomotor responses
55	1414		in elbow flexors. <i>BMC neuroscience</i> . 2019;20(1):9.
56	1415	144.	Mohr M, Krustrup P, Bangsbo J. Fatigue in soccer: a brief review. <i>Journal of sports sciences</i> .
57	1416		2005;23(6):593-599.
58			
59 60			
00			

58

1 2			
2 3 4 5	1417 1418	145.	Goodall S, Thomas K, Harper LD, et al. The assessment of neuromuscular fatigue during 120 min of simulated soccer exercise. <i>European journal of applied physiology</i> . 2017;117(4):687-
6 7 8	1419 1420 1421	146.	Harper LD, Hunter R, Parker P, et al. Test-Retest Reliability of Physiological and Performance Responses to 120 Minutes of Simulated Soccer Match Play. <i>Journal of strength and</i>
9 10 11	1422 1423 1424	147.	conditioning research. 2016;30(11):3178-3186. Thomas K, Dent J, Howatson G, Goodall S. Etiology and Recovery of Neuromuscular Fatigue after Simulated Soccer Match Play. <i>Medicine and science in sports and exercise</i> .
12 13 14	1425 1426 1427	148.	2017;49(5):955-964. Rampinini E, Bosio A, Ferraresi I, Petruolo A, Morelli A, Sassi A. Match-related fatigue in soccer players. <i>Medicine and science in sports and exercise</i> , 2011;43(11):2161-2170.
15 16 17	1428 1429	149.	Ispirlidis I, Fatouros IG, Jamurtas AZ, et al. Time-course of changes in inflammatory and performance responses following a soccer game. <i>Clinical journal of sport medicine : official</i>
18 19 20	1430 1431 1432	150.	Krustrup P, Ortenblad N, Nielsen J, et al. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game.
21 22 23	1433 1434 1435	151.	European journal of applied physiology. 2011;111(12):2987-2995. Murphy AP, Snape AE, Minett GM, Skein M, Duffield R. The effect of post-match alcohol ingestion on recovery from competitive rugby league matches. <i>Journal of strength and</i>
24 25 26 27	1436 1437 1438	152.	conditioning research. 2013;27(5):1304-1312. Skein M, Duffield R, Minett GM, Snape A, Murphy A. The effect of overnight sleep deprivation after competitive rugby league matches on postmatch physiological and
28 29 30	1439 1440	152	perceptual recovery. International journal of sports physiology and performance. 2013;8(5):556-564.
31 32	1441 1442 1443	153.	function and the relationship to match demands in amateur rugby league matches. <i>Journal of science and medicine in sport</i> . 2012;15(3):238-243.
34 35	1444 1445 1446	154. 155	Pointon M, Duffield R. Cold water immersion recovery after simulated collision sport exercise. <i>Medicine and science in sports and exercise</i> . 2012;44(2):206-216. Ansdell P. Dekerle I. Sodium bicarbonate supplementation delays neuromuscular fatigue
36 37 38	1447 1448	155.	without changes in performance outcomes during a basketball match simulation protocol. Journal of strength and conditioning research. 2017.
39 40 41	1449 1450 1451	156.	Minett GM, Duffield R, Billaut F, Cannon J, Portus MR, Marino FE. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat. <i>Scandinavian journal of medicine & science in sports.</i> 2014;24(4):656-666.
42 43 44	1452 1453 1454	157.	Pointon M, Duffield R, Cannon J, Marino FE. Cold water immersion recovery following intermittent-sprint exercise in the heat. <i>European journal of applied physiology.</i> 2012:112(7):2483-2494.
45 46 47 48	1455 1456	158.	Goodall S, Thomas K, Barwood M, et al. Neuromuscular changes and the rapid adaptation following a bout of damaging eccentric exercise. <i>Acta physiologica (Oxford, England)</i> .
49 50 51	1457 1458 1459	159.	Goodall S, Charlton K, Hignett C, et al. Augmented supraspinal fatigue following constant- load cycling in the heat. <i>Scandinavian journal of medicine & science in sports.</i> 2015;25 Suppl
52 53 54	1460 1461 1462	160.	1:164-172. Brownstein CG, Souron R, Royer N, Singh B, Lapole T, Millet GY. Disparate kinetics of change in responses to electrical stimulation at the thoracic and lumbar level during fatiguing
55 56 57 58 59 60	1463 1464 1465 1466	161.	isometric knee extension. <i>Journal of applied physiology (Bethesda, Md : 1985).</i> 2019. Doyle-Baker D, Temesi J, Medysky ME, Holash RJ, Millet GY. An Innovative Ergometer to Measure Neuromuscular Fatigue Immediately after Cycling. <i>Medicine and science in sports</i> <i>and exercise.</i> 2018;50(2):375-387.

1			
2			
3	1467	162.	Endoh T, Nakajima T, Sakamoto M, Komiyama T. Effects of muscle damage induced by
4 5	1468		eccentric exercise on muscle fatigue. Medicine and science in sports and exercise.
5	1469		2005;37(7):1151-1156.
7	1470	163.	Rampinini E, Connolly DR, Ferioli D, La Torre A, Alberti G, Bosio A. Peripheral neuromuscular
8	1471		fatigue induced by repeated-sprint exercise: cycling vs. running. The Journal of sports
9	1472		medicine and physical fitness. 2016;56(1-2):49-59.
10	1473	164.	Rossman MJ, Garten RS, Venturelli M, Amann M, Richardson RS. The role of active muscle
11	1474		mass in determining the magnitude of peripheral fatigue during dynamic exercise. American
12	1475		journal of physiology Regulatory, integrative and comparative physiology.
14	1476	465	2014;306(12):R934-940.
15	14//	165.	Rossman MJ, Venturelli M, McDaniel J, Amann M, Richardson RS. Muscle mass and
16	1478		peripheral fatigue: a potential role for afferent feedback? Acta physiologica (Oxford,
17	1479	166	Englana). 2012;206(4):242-250. Nolson BC, Dillman CL, Lagasso B, Bickett D, Diamachanics of overground versus treadmill
18	1400	100.	rupping Medicine and science in coarts 1972:4/4):222-240
19 20	1401	167	Carter H. Jones AM. Barstow TI. Burnley M. Williams CA. Doust IH. Ovygen untake kinetics in
21	1482	107.	treadmill running and cycle ergometry: a comparison <i>Journal of annlied physiology</i>
22	1484		(Bethesda Md · 1985) 2000·89(3)·899-907
23	1485	168.	Edwards RH, Hill DK, McDonnell M, Myothermal and intramuscular pressure measurements
24	1486		during isometric contractions of the human guadriceps muscle. The Journal of physiology.
25 26	1487		1972;224(2):58P-59P.
20	1488	169.	Kruger RL, Aboodarda SJ, Jaimes LM, MacIntosh BR, Samozino P, Millet GY. Fatigue and
28	1489		recovery measured with dynamic properties versus isometric force: effects of exercise
29	1490		intensity. The Journal of experimental biology. 2019;222(Pt 9).
30	1401		
31	1491		
5∠ २२	1492		
34			
35			
36			
37			
38 30			
40			
41			
42			
43			
44 45			
45 46			
47			
48			
49			
50			
51 52			
53			
54			
55			
56			
57 58			
59			
60			

Figure 2. Relationship between time to post-exercise assessment and reduction in knee extensor maximum voluntary contraction (MVC; A), voluntary activation (VA; B) and peak twitch force (P¬tw; C) as a percentage of pre-exercise 16,21,22,31,60,66,68,70,84,86,87,89,91,93,94,96. The R2 is derived from the logarithmic slope presented on each graph.

152x237mm (300 x 300 DPI)

Figure 4. Relationship between reduction in knee extensor maximal voluntary contraction (MVC; A), voluntary activation (VA; B) and peak twitch force (Ptw; C) as a percentage of pre-exercise relative to the duration of exercise. Note that the figure pertains only to longer duration with a minimum duration of 30 min 17,21,22,113-116,126-128,135-140. * outlier 127.

184x267mm (300 x 300 DPI)

Acta Physiologica

Figure 5. Maximum voluntary contraction (A), potentiated knee-extensor twitch force (B) and voluntary activation measured with motor nerve (VA), and motor cortical (VATMS) stimulation (c) at pre-exercise, half time (HT), full time (FT), and following extra time (ET) of a simulated soccer match. P = < 0.05 vs. the pre-exercise value, $\dagger = P < 0.05$ vs. HT, $\ddagger = P < 0.05$ vs. FT. From Goodall et al. 145.

156x280mm (300 x 300 DPI)

View publication stats