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Abstract A new approach for establishing the mechanical model of the rubber damping ring was 

studied numerically and experimentally. Firstly, parameters of Mooney-Rivlin and Prony series 

models of the rubber material were identified based on ISIGHT integrating with ANSYS and 

MATLAB, in which the rubber damping ring’s hysteresis loop was obtained by vibration 

experiment and ANSYS simulation, respectively; meanwhile, the dynamic stiffness and damping 

were calculated simultaneously by a parameter separation and identification method. Subsequently, 

the accuracy of the constitutive model parameters was verified experimentally. In light of this, based 

on the experimental design and the approximate model method of the joint simulation platform, a 

mechanical model of dynamic stiffness and damping of the rubber damping ring was established. 

Finally, the rubber damping ring’s mathematical model was employed to perform a vibration 

reduction analysis in a multi-span shafting, where the numerical and experimental investigation was 

conducted, respectively. The results show that the theoretical and experimental error of vibration 

reduction rate is less than 17%, which verify the accuracy of the mechanical model of the rubber 

damping ring. 

Keywords Rubber damping ring; Hysteresis loop; Multi-span shafting; Vibration reduction 

1 Introduction 

The installation of a damping ring between the bearing and the support can significantly reduce 

the bending vibration of the transmission system. Rubber damping ring is widely employed in 

vibration and noise reduction of the rotor system due to its low cost and simple manufacturing 

process. It can be known that the dynamic performance of the rubber damping ring varies owing to 

factors such as rubber hardness, temperature, excitation frequency and excitation amplitude. 

Therefore, the establishment of an accurate mechanical model of the rubber damping ring is the 

prerequisite for achieving proper vibration reduction effects. 

The rubber material is a typical viscoelastic substance. Researchers in the field have carried out 

substantial studies on rubber damping ring. Currently, the mechanical modelling methods of rubber 

damping ring mainly include theoretical, finite element and experimental modelling. For the 

theoretical modelling method, the earliest dynamic models to simulate rubber’s dynamic 

http://dict.cnki.net/dict_result.aspx?scw=%e6%95%b0%e5%ad%a6%e6%a8%a1%e5%9e%8b&tjType=sentence&style=&t=mathematical+model


characteristics are the Maxwell model and Kelvin-Voigt model [1-2]; however, these models 

possess few parameters and cannot precisely depict the dynamic characteristics of the rubber 

damping ring. Therefore, the generalised Maxwell model, generalised Kelvin-Voigt model and the 

Zener model [3-5] have been proposed. The fundamental idea of these models is to employ multiple 

Maxwell models or various Kelvin-Voigt models in series or parallel [6-7]. Sjoberg et al. [8-9] 

employed a fractional derivative model to develop a mechanical model of the rubber element, which 

contains both an elastic element and a friction element. Berg et al. [10] proposed a smooth friction 

model, which is utilised to conduct dynamic behaviour analysis of the rotor-bearing system with 

rubber damping ring, and has been widely recognised and adopted in the field. Based on the 

nonlinear shape coefficient method, Hill et al. [11] calculated the static stiffness of the rubber 

damper theoretically; however, only the static stiffness of the rubber damper with regular shape can 

be calculated. Luo et al. [12] predicted the complete loading-unloading response utilising an energy 

dissipation method by means of modifying the classical hyperelastic model. A new approach in their 

work was proposed to simulate the dynamic impact characteristics of rubber and verified by 

experiments. Zhao et al. [13] studied a dynamic model of a nonlinear hysteretic vibration isolation 

system, which consists of nonlinear stiffness and nonlinear damping. Yu et al. [14] carried out a 

comparative investigation of parameter identification methods and prediction efficiency of 

Kelvin-Voigt, three-parameter Maxwell, Berg and Dzierzek models, and then analysed the 

characteristics and application scenarios of these four models. Additionally, based on a static 

stiffness mechanism, Zhao et al. [15] established a mechanical model through dynamic excitation 

experiments. 

With the development of finite element modelling methods for viscoelastic materials, 

commonly accepted hyperelastic constitutive models include Mooney-Rivlin, Ogden, 

Neo-Hookean, Yeoh and Polynomial [16-17], which are mainly used to predict the nonlinear static 

stiffness of rubber components. The dynamic properties are associated with load amplitude, 

frequency, temperature and other factors when rubber components are utilised in the dynamic load 

environment. Currently, viscoelastic material models, such as generalised Maxwell and Prony series 

models, have been introduced into finite element analysis software to describe the effects of 

amplitude and frequency on the dynamic performance of rubber components. The parameters of the 

hyperelastic and viscoelastic constitutive models can be determined by making standard specimens 

and carrying out corresponding experiments [18-19]. Utilising finite element software, Charlton[20], 

Zielnica [21], and Negrete [22] implemented static and dynamic simulation analysis on the rubber 

damper to predict the static and dynamic stiffness of the damper. Rahnavard [23] and Sheikhi [24] 

studied the rubber modeling using ABAQUS and ANSYS. However, in some cases, standard 

specimens which test the properties of rubber materials cannot be obtained; therefore, the 

parameters of the constitutive model of rubber materials can only be identified by means of 

investigating the overall mechanical characteristics of rubber dampers. Liu et al. [25-26] 

investigated the dynamic characteristic analysis method of rubber damper, and then proposed an 

optimisation method to determine the parameters of the viscoelastic model of rubber materials by 

way of ISIGHT software integrating with ANSYS and MATLAB, and verified it experimentally. 

The application of power and elliptic functions to fitting and identifying the hysteresis curve of 

the rubber damping ring is also a hot topic in recent years [27-28]. Sun et al. [29-30] conducted 

dynamic experiments on rubber damping rings, which generates the force and displacement curves 

at various frequencies and amplitudes. Subsequently, the parameters of the elastic and damping 



forces were identified, and the relationship between the elastic coefficient and damping coefficient 

and frequency was achieved, respectively. Han et al. [31] trained the neural network using 

experimental data, and then utilised the least square surface to align with the output of the neural 

network; afterwards, the mechanical model of the dynamic stiffness and damping of the rubber 

damper was established. Based on the literature reviewed, there exist several mechanical modelling 

methods for rubber damping rings. However, there is a lack of concise and compelling research 

proposals due to insufficient understanding of the properties of rubber materials. Besides, the 

derivation process is complicated and cannot precisely depict the dynamic characteristics of the 

rubber damping ring. At the same time, the rubber damping ring’s mathematical model was difficult 

to couple with the whole system. In this research, a mechanical model of a rubber damping ring is 

established by combining finite element and experimental modelling methods. Not only various 

constitutive model parameters of rubber materials are obtained easily, but also a simple and 

highly-efficient function of the rubber damping ring is developed, which can be conveniently 

coupled with the rotor system for dynamic analysis. 

Firstly, according to the structure and loading condition of the rubber damping ring in the 

transmission shaft system, a test fixture is made. The hysteresis loops of the rubber damping ring 

under various excitation amplitudes and frequencies are achieved based on dynamic experiments. 

Then the dynamic stiffness and damping of the rubber damping ring under corresponding working 

conditions are obtained by way of a parameter separation and identification method. Subsequently, a 

joint simulation platform based on ISIGHT software is built, and utilizing the Radial Basis 

Approximation Function and Multi-Objective Particle Swarm Optimization (PSO), the hyperelastic 

and viscoelastic constitutive model parameters of the rubber materials are identified and verified 

experimentally. In light of this, based on the Optimal Latin Hypercube Design and Response 

Surface Approximation Function of co-simulation platform, the dynamic stiffness and damping of 

the rubber damping ring with various amplitudes and frequencies are analysed, and the mechanical 

model of dynamic stiffness and damping of rubber damping ring is constructed. Finally, the 

established mechanical model of the rubber damping ring is applied to multi-span shafting to 

investigate the vibration reduction performance and verify the precision of the mechanical model 

experimentally. This research lays a theoretical foundation for the design of a rubber damping ring 

in vibration and noise reduction of the shafting. 

2 Experimental Studies on Dynamic Stiffness and Damping of Rubber Damping 

Ring 

In this study, the rubber damping ring in a helicopter tail transmission shaft system is 

investigated, in which its shore hardness is 80. The schematic diagram of the helicopter tail 

transmission shaft system and rubber damping ring is shown in Fig. 1. 
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(a) Helicopter tail transmission shaft system                  (b) Rubber damping ring 

Fig. 1 Schematic diagram of the helicopter tail transmission shaft system and rubber damping ring 

2.1 Rubber damping ring test 

According to the structure and loading condition of the rubber damping ring, the test fixture is 

designed, as shown in Fig. 2. The rubber damping ring’s test fixture comprises an upper clamping, a 

lower clamping, a central shaft and a tightening nut. Subsequently, the dynamic characteristics of 

the rubber damping ring could be experimented and studied by the electro-hydraulic servo testing 

machine. The electro-hydraulic servo testing machine is exhibited in Fig. 3, which mainly contains a 

fixed chuck and a moving chuck. The lower clamping of the test fixture is clamped by the fixed 

chuck of the electro-hydraulic servo testing machine, and the moving chuck pulls the rubber 

damping ring to make sinusoidal displacement motion with various amplitudes and frequencies in 

the radial direction, as shown in Fig. 4. 

 

        

It exhibits a phase lag phenomenon when the rubber damping ring is under cyclic loading, and 

the force and displacement curves form a hysteresis loop. The area of the hysteresis loop is the 

energy dissipated by the rubber material in one cycle. Hysteresis loops of the rubber damping ring 

under various excitation frequencies and amplitudes are obtained utilising dynamic experiments. 

Figs. 5-6 manifest the dynamic characteristic curves of some particular test conditions. As shown in 

Fig. 5, under the identical excitation frequency, i.e. 4Hz, the inclination angle of the hysteresis loop 

is invariant basically with the increase of the excitation amplitude. The hysteresis loop’s area 

increases with the escalation of amplitude. As displayed in Fig. 6, at the same excitation amplitude, 

i.e. 0.2mm, the hysteresis loop’s inclination angle increases as the excitation frequency upsurges. 

      

Fig. 5 Hysteresis loops with various amplitudes        Fig. 6 Hysteresis loops with various frequencies 
at frequency 4Hz                                      at amplitude 0.2mm 
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2.2. Parameter separation and identification method 

The hysteresis loop of the rubber damping ring is decomposed into both a power function curve 

and an elliptic function curve. Consequently, Load 𝐹 is decomposed into elastic force 𝐹𝑘  and 

viscous damping force 𝐹𝑐, i.e., 

𝐹 = 𝐹𝑘 + 𝐹𝑐                                 (1) 

The damping force can be expressed as an elliptic function centred on the origin, and the 

corresponding equation can be written as 

𝑋2

𝐴2 +
𝐹𝑐

2

𝐵2 = 1                                 (2) 

where 𝑋 is the vibration displacement; 𝐹𝑐 denotes the damping force; 𝐴 represents the amplitude 

of displacement excitation; 𝐵 indicates the minor half axis of the ellipse. 

Elliptic functions can also be presented as parametric equations, i.e., 

X = Asin(2π𝑓t)                               (3) 

𝐹𝑐 = Bcos(2π𝑓t)                               (4) 

Here 𝑓 is the excitation frequency. 

The damping force is equivalent to viscous damping force, while 𝐹𝑐 is proportional to velocity, 

which can be obtained as follows. 

𝐹𝑐 = C(𝐴, 𝑓)Ẋ = 𝐶(𝐴, 𝑓)𝐴ω cos(2π𝑓t)                    (5) 

where C(𝐴, 𝑓)  denotes the damping coefficient; Ẋ  represents the vibration speed; ω  is the 

circular frequency. 

Combining equations (4) and (5), the viscous damping coefficient can be calculated by 

C(𝐴, 𝑓) =
𝐵

𝐴ω
                                 (6) 

The energy consumed by the system in one motion period equals to the area of the ellipse, and 

the formula is S = πAB. According to the test data, the energy consumed by the system in one cycle 

is 𝑆𝑙𝑜𝑠𝑠 = ∮ Fdx, then 

B =
∮ Fdx

𝜋𝐴
                                    (7) 

By taking equation (7) into equation (6) into account, the viscous damping coefficient can be 

rewritten as 

C(𝐴, 𝑓) =
∮ Fdx

πA2ω
                                (8) 

The elastic force 𝐹𝑘 can be given by 

𝐹𝑘 = 𝐹 −
∮ Fdx

πA
cos(2π𝑓t)                           (9) 

The rubber damping ring’s dynamic stiffness 𝐾(𝐴, 𝑓) can be represented as 

𝐾(𝐴, 𝑓) = (𝐹𝑘𝑚𝑎𝑥−𝐹𝑘𝑚𝑖𝑛)/(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)                  (10) 

where 𝑋𝑚𝑎𝑥 and 𝑋𝑚𝑖𝑛 represent the maximum and minimum vibration displacement boundaries 

in one motion period, respectively; 𝐹𝑘𝑚𝑎𝑥  and 𝐹𝑘𝑚𝑖𝑛  are the maximum and minimum elastic 

forces in a motion cycle, respectively 

Hence, the hysteresis loop of the rubber damping ring can be decomposed into both an inclined 

straight line representing the elastic force and an ellipse standing for the viscous force by using the 

parameter separation and identification method. The elastic and the viscous forces, which are 

obtained by decomposing the hysteresis loop corresponding to different excitation frequencies and 



amplitudes, are varied, as indicated in Fig. 7. 

    

(a) 3Hz 0.1mm                          (b) 4Hz 0.13mm 

    
(c) 6Hz 0.15mm                         (d) 10Hz 0.18mm   

Fig. 7 Decomposition diagram of the hysteresis loop under various excitation frequencies and amplitudes 

3. Parameter Identification of Constitutive Model of the Rubber Material  

3.1. Simulation analysis of rubber damping ring based on ANSYS 

Transient dynamic analysis of rubber damping ring is carried out in ANSYS software. The 3D 

model of a rubber damping ring is demonstrated in Fig. 8, which mainly consists of a rubber ring 

and metal bushing. The metal bushing is made of steel with a density of 7850kg/m
3
, an elastic 

modulus of 2×10
11

Pa and Poisson’s ratio of 0.3. Rubber material’s density is 1200kg/m
3
, and 

Poisson’s ratio is 0.495. The hyperelastic model employs a two-parameter Mooney-Rivlin model, in 

which the initial parameters are assigned as follows, i.e. C10=4.56×10
6
, C01=-2.5×10

5
, d = (1 −

2υ)/(C10 + C01); The Prony series model is used for the viscoelastic model, in which initial 

parameters are listed as follows, i.e. 𝛼1=0.06, 𝛼2=0.02, 𝜏1=0.55 and 𝜏2=0.0008. Binding contact is 

adopted between the metal bushing and the rubber ring; subsequently, Solid185 element is chosen, 

and the rubber damping ring is meshed by the sweeping command, with a total of 4012 nodes. A 

harmonic displacement load A=0.00015sin(6×2πt) is applied to the centre of the rubber damping 

ring, wherein the centre point is connected with the inner surface of the metal bushing by way of 

rigid beams. Meanwhile, fixed constraints are imposed on the outer surface of the rubber damping 

ring. The mesh model and constraints of the rubber damping ring are exhibited in Fig. 9. Finally, the 

result data are collected and exported. 



       

Fig. 8 3D model of the rubber damping ring    Fig. 9 Mesh model and constraints of the rubber damping ring 

3.2. Data processing and analysis based on MATLAB 

MATLAB is utilised to analyse the result data of ANSYS simulation, to obtain each coefficient 

of the elliptic equation by means of fitting the hysteresis loop with the least square method, thus 

achieving the long and short axes of the ellipse, as exhibited in Fig. 10. The hysteresis loop obtained 

by simulation is decomposed into both an inclined straight line denoting elastic force and an ellipse 

representing viscous force by employing the parameter separation and identification method, as 

presented in Fig. 11. 

      
Fig. 10 Diagram of least square fitting              Fig. 11 Decomposition diagram of hysteresis 

 with the elliptic equation                                 loop obtained by simulation 

3.3. Joint simulation based on ISIGHT 

The hysteresis loops of the rubber damping ring under the working conditions of 6Hz and 

0.15mm are calculated through the experiment and simulation, respectively. Subsequently, the 

dynamic stiffness and damping under the corresponding conditions can be achieved by the 

parameter separation and identification method. In order to automatically identify the constitutive 

model parameters of the rubber material in the rubber damping ring, the optimisation software 

ISIGHT integrates ANSYS and MATLAB to build a joint simulation platform. The specific process 

is exhibited in Fig. 12. The effect picture of ISIGHT integrated with ANSYS and MATLAB is 

manifested in Fig. 13. 

Rubber ring 

Metal lining 



 

Fig. 12 Flow chart of parameters identification for the        Fig. 13 Effect diagram of integration of 

constitutive model of rubber damping ring material              ANSYS and MATLAB in ISIGHT 

The hyperelastic and viscoelastic constitutive model parameters of the rubber material are used 

as design variables, and a sample space was constructed, as shown in Table 1. The Optimal Latin 

Hypercube Design is employed to generate test points in the sample space [32]. Then the dynamic 

stiffness and damping of the corresponding test points are obtained under the cooperative work of 

ANSYS and MATLAB. 

Table 1 Constitutive model parameters of rubber material 

Design variable Initial value Minimum value Maximum value 

C10 4.56×106 2.4506×105 2.4506×107 

C01 -2.5×105 -9.6×106 -9.6×104 

𝛼1 0.06 0 1 

𝜏1 0.55 0 1 

𝛼2 0.02 0 1 

𝜏2 0.0008 0 1 

As the transient dynamic analysis of the rubber damping ring is a time-consuming process, in 

order to improve the optimization efficiency, Radial Basis Approximation Function is employed to 

reflect the relationship between the dynamic stiffness, damping and the constitutive model 

parameters of the rubber material. The optimal value of constitutive model parameters of the rubber 

material is determined through multi-objective PSO algorithm, in which the minimal difference 

between dynamic stiffness and damping of experiment and simulation results is used as the 

objective function under the identical working condition, and the objective function 𝐹𝑜 can be 

expressed as  

parameters of constitutive 

model 
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{

𝑚𝑖𝑛𝐹𝑜 = 𝑚𝑖𝑛[𝑓1, 𝑓2]

𝑓1 = |𝐾𝑠 − 𝐾𝑒|

𝑓2 = |𝐶𝑠 − 𝐶𝑒|
                          (11) 

where 𝐾𝑠 and 𝐾𝑒 represent the rubber ring’s dynamic stiffness obtained from simulation and 

experiment, respectively; 𝐶𝑠 and 𝐶𝑒 are the damping of the rubber ring solved from simulation 

and experiment, respectively. 

Then, the joint simulation platform is executed, and finally, the optimal solution is obtained, 

specifically as manifested in Table 2. 

Table 2 The identified optimal values of constitutive model parameters of rubber material 

Constitutive model parameters Optimal value 

C10 8.5×106 

C01 -4.62×105 

𝛼1 0.1609 

𝜏1 0.10205 

𝛼2 0.57 

𝜏2 0.0129 

3.4. Test verification 

Experiments were carried out on an electro-hydraulic servo testing machine so as to verify the 

accuracy of constitutive model parameters of the rubber material acquired by joint simulation. The 

hysteresis loops of the test and the simulation are plotted, respectively, as exhibited in Fig. 14. It can 

be observed that the hysteresis loops obtained by the test and simulation are in coincidence basically. 

Meanwhile, the comparative analysis of the dynamic stiffness and damping results obtained by test 

and simulation is displayed in Table 3, in which the maximum error rate is not more than 7%. In 

summary, the identification of constitutive model parameters of rubber material by way of ISIGHT 

integrating with ANSYS and MATLAB has high credibility and meets the needs of practical 

engineering. 

       

       (a) 3Hz 0.1mm                                   (b) 4Hz 0.13mm 
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(c) 6Hz 0.15mm                               (d) 10Hz 0.18mm 

      Fig. 14 Simulation and test results of hysteresis loop analysis of rubber damping ring 

Table 3 Comparative analysis of dynamic stiffness and damping between test and simulation 

Frequency/ 

Hz 

Amplitude/ 

mm 

Simulation result Test result Error 

Stiffness/ 

N/m 

Damping/ 

Nsm-1 

Stiffness/ 

N/m 

Damping/ 

Nsm-1 
Stiffness Damping 

3 0.1 11043497 242087 10964563 227087 4.3% 6.2% 

4 0.13 11956146 200263 11140818 213270 6.8% 6.1% 

6 0.15 13622507 163608 13097922 144859 3.8% 5.3% 

10 0.18 16681722 111647 17136266 117880 2.7% 5.6% 

4 Mechanical Modelling of the Dynamic Stiffness and Damping of Rubber 

Damping Ring 

The constitutive model parameters of the rubber material are determined through the research 

studies above. In this section, the mechanical models of the dynamic stiffness and damping of the 

rubber damping ring under various excitation amplitudes and frequencies are investigated by means 

of simulation directly. Similarly, a joint simulation platform is built by integrating ISIGHT with 

ANSYS and MATLAB. The rubber damping ring’s dynamic stiffness and damping in the 

corresponding working conditions are obtained by the experimental design method, in which the 

excitation amplitude and frequency are chosen as input variables. Finally, the Response Surface 

Function is employed to fit excitation and response to obtain approximate models of the relationship 

between the amplitude and frequency and the rubber damping ring’s dynamic stiffness and damping, 

as exhibited in Fig. 15. The effect diagram of ISIGHT integrated with ANSYS and MATLAB is 

presented in Fig. 16. 



 

Fig. 15 Flow chart for the mechanical modelling of        Fig. 16 Effect diagram of integrating ANSYS 

the rubber damping ring                                     and MATLAB into ISIGHT 

The range of excitation amplitude and frequency of the rubber damping ring is selected 

according to its actual operating conditions, as shown in Table 4. 

Table 4 The range of excitation amplitude and frequency of the rubber damping ring 

Input parameter Initial value Minimum Maximum 

Amplitude/m 0.0005 0.0001 0.0015 

Frequency/Hz 10 2 80 

The Optimal Latin Hypercube Design method is applied to generate test points in the sample 

space composed of excitation amplitude and frequency. The dynamic stiffness and damping of the 

corresponding test points are obtained by the joint simulation, and the specific values are given in 

Table 5. 

Table 5 Test points and corresponding dynamic stiffness and damping 

No. Amplitude/m Frequency/Hz Dynamical stiffness/ N/m Damping/ Nsm-1 

1 9.9e-04 9.09 16736479 175414 

2 8.6e-04 51.64 24926999 20594 

3 2.3e-04 23.27 23031390 20821 

4 1.12e-03 80 27481687 23914 

5 4.8e-04 2 9450310 365930 

6 6.1e-04 72.91 27227561 22428 

7 7.4e-04 30.36 23958962 10900 

8 3.5e-04 44.55 24455765 24066 

9 1.25e-03 37.45 25369392 14713 

10 1.5e-03 16.18 21473494 69879 

11 1.0e-04 65.82 23545135 28555 

12 3.0e-04 41 24113796 18658 

13 2.0e-04 63.29 24176788 26342 

14 1.2e-03 7.57 15667597 184512 

Response Surface Model fits 

dynamic stiffness and damping 

Initial excitation amplitude and 

frequency 

ANSYS simulates and exports 

data 

Least square fits data based on 

MATLAB 

Parameter separation and 

identification method based on 

MATLAB 
 

Determine the mechanical 

model of rubber damping ring 

Design of 

Experiment method 

base on ISIGHT 



15 6.0e-04 57.71 25409070 32369 

16 1.1e-03 29.86 24546443 29234 

17 8.0e-04 13.14 19500926 98851 

18 1.0e-04 18.71 20349739 50209 

19 7.0e-04 35.43 24691591 12984 

20 1.3e-03 68.86 26634371 25827 

The Fourth-order Response Surface Function is utilised to fit the dynamic stiffness and 

damping under various excitation amplitudes and frequencies; afterwards, an approximate function 

which reflects the relationship between the dynamic stiffness and damping and the excitation 

amplitudes and frequencies is achieved. Fig.s. 17-18 exhibit a curved surface graph of dynamic 

stiffness versus amplitude and frequency and a curved surface graph of damping versus amplitude 

and frequency, respectively. It can be observed from the two Fig.s that the rubber damping ring’s 

dynamic stiffness and damping studied in this research are considerably altered by the excitation 

frequency, but are rarely affected by the excitation amplitude. The dynamic stiffness of rubber 

damping ring increases gradually with the escalation of frequency, while the damping decreases as 

the frequency increases, and the descending rate is slowly decreasing. The prevalence of the results 

gained in this research is similar to that obtained in references [30][31], which reveals that the 

stiffness and damping of the rubber damping ring are mainly affected by the excitation frequency 

when the excitation amplitude is small. In short, the mechanical model constructed in this research 

achieves excellent precision, efficiency and reliability. 

     
Fig. 17 The curve of the stiffness with              Fig. 18 The curve of the damping with 

excitation amplitude and frequency                     excitation amplitude and frequency 

Since the amplitude exerts a small influence on the dynamic characteristics of the rubber 

damping ring, the mechanical model of the dynamic stiffness and damping can be expressed as 

follows: 

0 1 2 3 4

0 1 2 3 4

2 3 4

2 3 4

+

+

+

+

K a a F a a a

C b b F b b b

F F F

F F F

  

  





                      (12) 

where 
0

6673564.4a  , 
1

1478988.837a  , 
2

46467.764a   , 
3

637.201a  , 

4 3.087a   ;
0

438609.425b  , 
1

38792.117b   , 
2

1226.844b  , 
3

15.94b   , 

4
0.0732b   ; 𝐹 represents the excitation frequency. 

5 Application and Experimental Verification of Mechanical Model of Rubber 

Damping Ring in Multi-span Shafting 

5.1. Multi-span shafting test platform 



Vibration reduction experiments were carried out on multi-span shafting to compare the 

dynamic response of the rotor system with and without rubber damping ring. The multi-span 

shafting vibration test platform consists of multi-span shafting, dynamic signal acquisition 

equipment and a personal computer, as displayed in Fig. 19. The multi-span shafting includes a 

rotating shaft, an inertia disc, a flexible coupling, fixed support, a motor and the like, in which the 

supports I and Ⅲ are rigid supports, and the support Ⅱ is variable supports, as exhibited in Fig. 20. 

  

Fig. 19 Multi-span shafting vibration test platform           Fig. 20 Multi-span shafting 

The test platform employs eddy current sensors to measure the radial displacement of the rotor; 

meanwhile, an acceleration sensor is placed on the support Ⅱ to measure the radial acceleration. 

The sensor position is presented in Fig. 21. The internal structure of the support is shown in Fig. 

22. The vibration transmission path of the elastic support is sequentially from the shaft, shaft 

sleeve, ball bearing, bush, rubber damping ring to bearing support. The stiffness of each 

component is in series relation, so the elastic support’s radial stiffness is mainly determined by the 

rubber damping ring with the smallest rigidity. The internal structure of the rigid support is similar 

to that of the elastic support, except that the rubber damping ring is replaced by a steel ring; 

therefore, the radial rigidity is considerably improved. 

                 
(a) Addy current sensor                    (b) Acceleration sensor 

Fig. 21 Sensor position 

 
                       (a) Elastic support                        (b) Rigid support 

Fig. 22 The internal structure of the support 

5.2. Dynamic modelling 

The multi-span shafting is simplified to facilitate analysis, and its mechanical model is 

Rubber ring Steel ring Bearing support 

Ball bearing Shaft sleeve 

Bush 

http://dict.cnki.net/dict_result.aspx?searchword=%e8%bd%b4%e5%a5%97&tjType=sentence&style=&t=shaft+sleeve
http://dict.cnki.net/dict_result.aspx?searchword=%e8%bd%b4%e5%a5%97&tjType=sentence&style=&t=shaft+sleeve


constructed, as revealed in Fig. 23. The multi-span shafting mechanical model comprises the 

rotating shaft unit, inertia disc unit, flexible coupling unit, bearing unit, steel ring unit, rubber/steel 

ring unit and bearing support unit. The rotating shaft is discretised by the beam element, and the 

nodes of the element are arranged at the bearing support, the disc, the coupling and the like, 

respectively. Ball bearings take the effects of clearance and time-varying stiffness into account. 

Bearing supports are connected to the foundation by bolts, assuming their circumferential symmetry. 

Nodes 1-16 are those corresponding to rotating shaft units, while nodes 17-19 are those 

corresponding to bearing units, and nodes 20-22 are those corresponding to bearing units. Finally, 

the finite element method is employed to assemble the element matrices to obtain the overall 

dynamic equations of the multi-span shafting system. 

 

Fig. 23 Mechanical model of multi-span shafting 

5.2.1. Dynamic equation of rotating shaft 

As illustrated in Fig. 23, the dynamic equation of the rotating shaft needs to consider the 

influences of the mass and gyro moment of the inertia disk, the flexibility of the coupling and the 

nonlinear bearing force. Timoshenko beam element with 8 degrees of freedom is employed to 

establish the finite element model of the rotating shaft. According to existing studies [33-34], mass 

matrix eM , stiffness matrix eK  and gyro matrix eG  of Timoshenko beam element can be 

obtained, respectively, as shown in Appendix, in which E  and G  are elastic modulus and shear 

modulus,   and I  stand for density and diametral inertia, A and L  denote the element’s 

cross-sectional area and length,   represents Poisson’s ratio, Lm  is the shaft element mass, iD  and 

oD  are the outer and inner diameter of the element. Inertial disk assumes isotropy and merely 

considers the influence of main directions, where mass matrix 𝐌𝑑𝑘  and gyro matrix 𝐆𝑑𝑘  are 

respectively written as follows. 

dk

dk

dk

dk
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
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 
 

 (k=1,2) 

Here 𝑚𝑑𝑘 is the mass of the kth disc; 𝐽𝑑𝑘 represents the sectional moment of inertia of the kth disk; 

𝐽𝑝𝑘 indicates the polar moment of inertia of the kth disk. 

Rotating shafts are generally connected by laminated couplings, which can compensate for 

axial, angular and radial installation errors. In this research, the finite element analysis of laminated 

coupling is directly carried out by ANSYS, and the laminated assembly’s stiffness matrix can be 

obtained by 
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, cxx cyyk k  and c x c yk k   represent the radial 

stiffness and angular stiffness of laminated couplings, respectively, which are illustrated in Table 6. 

Table 6 Calculation of Coupling Stiffness 

Stiffness Result 

Radial stiffness of coupling (N/m) 9.9×108 

Angular stiffness of coupling (Nm/rad) 3.98×104 

Fig. 24 is a schematic structural diagram of a ball bearing, in which 𝑁 is the number of ball 

elements of the bearing; 𝜔𝜑 denotes the angular velocity of the rotor; bearing outer ring radius is 𝑅; 

bearing inner ring radius is 𝑟, interference connection with the rotor. According to the kinematic 

theorem of ball bearing, the ball body’s angular velocity 𝜔𝑐𝑎𝑔𝑒  can be obtained as 

𝜔𝑐𝑎𝑔𝑒 =
𝜔𝜑𝑟

𝑟+𝑅
                               (13) 

 

Fig. 24 Schematic diagram of a ball bearing structure 

According to the findings of existing studies [35], the nonlinear elastic force 𝑭𝑏𝑗(j=1,2,3) 

acting on the rotor can be represented as 

𝑭𝑏𝑗 = [
𝐹𝑏𝑥𝑗

𝐹𝑏𝑦𝑗
] = [

𝑘𝑝 ∑ (𝑤𝜃𝑖
)3/2 ⋅ 𝐻(𝑤𝜃𝑖

) ⋅ 𝑐𝑜𝑠 𝜃𝑖
𝑁
𝑖=1

𝑘𝑝 ∑ (𝑤𝜃𝑖
)3/2 ⋅ 𝐻(𝑤𝜃𝑖

) ⋅ 𝑠𝑖𝑛 𝜃𝑖
𝑁
𝑖=1

] (j=1,2,3)             (14)

 
where 𝐹𝑏𝑥𝑗 and 𝐹𝑏𝑦𝑗 represent the nonlinear bearing forces of ball bearings in X and Y directions, 

respectively; 𝑤𝜃𝑖
= 𝑥𝑐𝑜𝑠𝜃𝑖 + 𝑦𝑠𝑖𝑛𝜃𝑖 − 𝛾0, indicating the deformation of the ith ball elements at 

the angular displacement 𝜃𝑖; 𝜃𝑖 = 𝜔𝑐𝑎𝑔𝑒𝑡 +
2𝜋(𝑖−1)

𝑁
, which indicates the angular displacement 𝜃𝑖 

of the ith ball element of the bearing at time t; 𝑘𝑝 is Hertz contact stiffness; H(⋅) = {
1, ⋅> 0
0, ⋅≤ 0

 

indicates a function of Haversian. 

The beam elements 𝐌𝑒, 𝐊𝑒, 𝐂𝑒 and 𝐆𝑒 of the rotating shaft are assembled based on the finite 

element theory, and the inertia disk’s mass matrix 𝐌𝑑𝑘(k = 1,2) and gyro matrix 𝐆𝑑𝑘(k=1,2), the 

laminated coupling’s stiffness matrix 𝐊𝑐, and the ball bearing’s nonlinear force 𝑭𝑏𝑗(j=1,2,3) are 

integrated with the nodes of the corresponding beam elements to obtain the dynamic equations of 

the rotating shaft, which can be expressed as 

𝐌𝒓𝐪̈ + (𝐂𝒓 − 𝜔𝐆𝒓)𝐪̇ + 𝐊𝒓𝐪 = 𝐐𝒓                          (15)
 



Here 𝐌𝑟 is the overall mass matrix of the rotating shaft, which includes the mass of each beam 

element and inertia disc; 𝐂𝑟 is the damping matrix of the rotating shaft, i.e. 𝐂𝑟 = 𝛼𝐌𝑟 + 𝛽𝐊𝑟; 𝐆𝑟 

is the rotating shaft’s gyro matrix, including each beam element and inertial disk; 𝐊𝑟 is the stiffness 

matrix of the rotating shaft, which consists of each beam element and laminated coupling; 𝐐𝑟 is the 

external force on the rotating shaft, mainly including unbalanced force and bearing force. 

5.2.2. Dynamic equation of bearing outer ring 

The outer ring of the bearing is subjected to the bearing force; Simultaneously, it is affected by 

the authority of the steel ring or the rubber damping ring. Assume that 𝑥𝑤𝑗  and 𝑦𝑤𝑗  represent the 

bearing outer ring’s vibration displacement in X and Y directions, respectively, while 𝑥𝑏𝑗 and 𝑦𝑏𝑗 

indicate the bearing support’s vibration displacement in these directions; 𝐹𝑟𝑥𝑗 and 𝐹𝑟𝑦𝑗 denote the 

force of the steel ring or the rubber damping ring on bearing outer ring in X and Y directions, 

respectively. According to Newton’s second law, the differential equations of motion of the 

bearing’s outer ring can be expressed as follows. 

{
𝑚𝑏𝑤𝑗𝑥̈𝑤𝑗 + 𝐹𝑟𝑥𝑗 = 𝐹𝑏𝑥𝑗

𝑚𝑏𝑤𝑗𝑦̈𝑤𝑗 + 𝐹𝑟𝑦𝑗 = 𝐹𝑏𝑦𝑗
 (j=1,2,3)                         (16) 

Here: when j=1 or 3, then {
𝐹𝑟𝑥𝑗 = 𝐾𝑥(𝑥𝑤𝑗 − 𝑥𝑏𝑗) + 𝐶𝑥(𝑥̇𝑤𝑗 − 𝑥̇𝑏𝑗)

𝐹𝑟𝑦𝑗 = 𝐾𝑦(𝑦𝑤𝑗 − 𝑦𝑏𝑗) + 𝐶𝑦(𝑦̇𝑤𝑗 − 𝑦̇𝑏𝑗)
;  when j=2 and there is a 

rubber damping ring between the ball bearing and the bearing support, then 

{
𝐹𝑟𝑥𝑗 = 𝐾(𝑥𝑤𝑗 − 𝑥𝑏𝑗) + 𝐶(𝑥̇𝑤𝑗 − 𝑥̇𝑏𝑗)

𝐹𝑟𝑦𝑗 = 𝐾(𝑦𝑤𝑗 − 𝑦𝑏𝑗) + 𝐶(𝑦̇𝑤𝑗 − 𝑦̇𝑏𝑗)
; otherwise, {

𝐹𝑟𝑥𝑗 = 𝐾𝑥(𝑥𝑤𝑗 − 𝑥𝑏𝑗) + 𝐶𝑥(𝑥̇𝑤𝑗 − 𝑥̇𝑏𝑗)

𝐹𝑟𝑦𝑗 = 𝐾𝑦(𝑦𝑤𝑗 − 𝑦𝑏𝑗) + 𝐶𝑦(𝑦̇𝑤𝑗 − 𝑦̇𝑏𝑗)
； in 

which 𝐾𝑥, 𝐾𝑦, 𝐶𝑥 and 𝐶𝑦 are the steel ring’s stiffness and damping in the X and Y directions, 

respectively; 𝐾 and 𝐶 represent the stiffness and damping of the rubber damping ring, respectively, 

and are obtained by Equation 11. 

5.2.3. Dynamic equation of bearing support 

The bearing support is affected by the reaction force of the rubber damping ring or steel ring and 

the elastic force and damping force between the bearing support and the foundation. Base on 

Newton’s second law, the differential equations of motion of the bearing support can be obtained as 

follows: 

{
𝑚𝑏𝑠𝑗𝑥̈𝑏𝑗 + 𝑘𝑥j𝑥𝑏𝑙 + 𝑐𝑥j𝑥̇𝑏𝑙 = 𝐹𝑟𝑥𝑗

𝑚𝑏𝑠𝑗𝑦̈𝑏𝑗 + 𝑘𝑦j𝑥𝑏𝑙 + 𝑐𝑦j𝑦̇𝑏𝑙 = 𝐹𝑟𝑦𝑗
 (j=1,2,3)                  (17) 

where 𝑚𝑏𝑠𝑗 is the mass of the jth bearing support; 𝑘𝑥j and 𝑘𝑦j represent the stiffness between the 

jth bearing support and the foundation, respectively; 𝑐𝑥j and 𝑐𝑦j indicate the damping between the 

jth bearing support and the foundation, respectively. 

5.2.4. Coupling dynamic equation of multi-span shafting 

By combining equations (15), (16) and (17), multi-span shafting coupling dynamic equations 

can be established, as follows: 

𝐌̅𝐗̈ + (𝐂 − 𝜔𝐆̅)𝐗̇ + 𝐊̅𝐗 = 𝐐̅                              (18) 

Here 𝐌̅ is the generalised mass matrix of the coupling system; 𝐂 is the generalised damping 

matrix of the coupling system; 𝐆̅ is the coupling system’s generalised gyro matrix; 𝐊̅ is the 

generalised stiffness matrix of the coupling system; 𝐐̅ is the generalised force matrix of the coupled 



system 

5.3. Solutions and analysis 

It can be seen that the coupling dynamic equation of the multi-span shafting is a complex 

system through the above analysis, and it is difficult to achieve satisfactory results by some existing 

analytical methods. In this research, Newmark and Newton-Raphson hybrid methods are employed 

to compute the numerical solution of the system. In order to obtain an accurate dynamic response of 

the system, the step size is 1/300 of the excitation frequency. The structural parameters of the 

rotating shaft are exhibited in Table 7, and the rotor is made of steel with a density of 7850 kg/m
3
, an 

elastic modulus of 2.1×10
11

 Pa and a Poisson’s ratio of 0.3. The inertial disk’s parameters are 

displayed in Table 8. Relevant parameters of ball bearings are presented in Table 9. Stiffness and 

damping of the steel ring are displayed in Table 10. The parameters of bearing support are 

manifested in Table 11. 

Table 7 Parameters of shaft 

Items Shaft element 

Node to node 1-2 2-3 3-4 4-5 5-6 6-7 7-8 

Outer Diameter/mm 14 14 14 14 14 14 14 

Inner Diameter/mm 0 0 0 0 0 0 0 

Shaft Length/mm 125 125 75 75 120 120 70 

Node to node 8-9 9-10 10-11 12-13 13-14 14-15 15-16 

Outer Diameter/mm 14 14 14 14 14 14 14 

Inner Diameter/mm 0 0 0 0 0 0 0 

Shaft Length/mm 70 95 95 100 110 100 50 

Table 8 Parameters of inertial disk 

inertial disk node Outer Diameter / mm Inner Diameter / mm thickness / mm Density/ kg/m3 

1 5 100 14 20 7850 

2 7 100 14 20 7850 

Table 9 Parameters of ball bearing 

Ball 

bearing 
node 

Outer 

radius/ mm 

Inner 

radius/ mm 

Ball 

number 

Contact 

stiffness/ N/m3/2 
Gap/ μm 

Outer 

mass/ kg 

1 17 52 25 13 7.055 × 109 10 0.5 

2 18 52 25 13 7.055 × 109 10 0.5 

3 19 52 25 13 7.055 × 109 10 0.5 

Table 10 Parameters of steel ring 

Steel ring 𝑘𝑥/ N/m 𝑐𝑥/ Ns/m 𝑘𝑦/ N/m 𝑐𝑦/ Ns/m 

1 6 × 108 500 6 × 108 500 

2 6 × 108 500 6 × 108 500 

http://dict.cnki.net/dict_result.aspx?searchword=%e5%8e%9a%e5%ba%a6&tjType=sentence&style=&t=thickness


Table 11 Parameters of bearing supporting 

Bearing support node 𝑘𝑥/ N/m 𝑐𝑥/ Ns/m 𝑘𝑦/ N/m 𝑐𝑦/ Ns/m Mass/ kg 

1 20 2 × 108 1000 2 × 108 1000 8 

2 21 2 × 108 1000 2 × 108 1000 8 

3 22 2 × 108 1000 2 × 108 1000 8 

5.3.1. Verification of dynamic model of multi-span shafting  

The inertial disk exists an unbalance amount due to material and manufacturing errors. A 

unbalance value is applied to the disk node 5 of the multi-span shafting dynamic model. 

Subsequently, the results of the test and theoretical analysis are compared, which provides a 

theoretical basis for subsequent verification of the precision of the rubber damping ring mechanical 

model. 

The multi-span shafting dynamic model without rubber damping ring is investigated 

numerically and experimentally. Fig. 25 is a comparative analysis of experimental and theoretical 

results of the accelerated motion of multi-span shafting. The test results exhibit that the first-order 

rotation speed of the multi-span shafting experiment platform is 3360r/min, and the corresponding 

displacement amplitude is 7.2 × 10−4m. The first-order critical speed obtained by solving the 

dynamic model is 3171r/min, and its magnitude is 6.8 × 10−4m. The average error rate between 

them is less than 10%. The above study proves that the multi-span shafting dynamic model 

established in this research holds superior accuracy and can be utilised to predict the real-world 

multi-span shafting’s dynamic characteristics. 

 

Fig. 25 Vibration displacement of accelerated motion of the test and theoretical analysis 

5.3.2. Vibration reduction analysis of multi-span shafting by rubber damping ring 

(1) Response analysis of the accelerated motion of the rotating shaft 

The rotating shaft is accelerated with an angular acceleration of 𝛼 = 155rad/s2 through the 

control of the variable-frequency motor, and then keeps the rotational speed constantly after 

reaching the speed of 5000r/min. The response of accelerated motion of the rotating shaft with 

and without the rubber damping ring is experimented, respectively, as presented in Fig. 26. It can 

be known from the test that when the rubber damping ring is installed at the support II, the 

system’s first-order natural frequency declines due to the reduction of the overall stiffness of the 

3 6 × 108 500 6 × 108 500 



multi-span shafting; meanwhile, the amplitude of the vibration is obviously reduced at the critical 

point due to the damping influence of the rubber damping ring, which is favourable for the 

multi-span shafting to smoothly cross the critical point and improve the service life of the system. 

Fig. 27 is the acceleration vibration response of the rotating shaft with and without rubber 

damping rings obtained by the theoretical solution. The natural frequency of the system will 

deteriorate when the system’s support contains a rubber damping ring, and the vibration amplitude 

will reduce significantly at the critical speed, which is similar to the test results. The experiment and 

theoretical solutions of the vibration reduction ratio are compared at the critical point, which can be 

observed that the vibration reduction ratio of the test is 44%, and that obtained by the simulation is 

38%; therefore, the error between the two is 13.6%. 

  

Fig. 26 Accelerated motion experiment of the rotating      Fig. 27 Accelerated motion simulation of rotating  

shaft with or without rubber damping ring              shaft with or without rubber damping ring 

(2) Steady-state response analysis 

The acceleration response at support II with or without rubber damping ring was measured via 

experiments under the rotating speeds of 𝑛 = 2000r/min and 𝑛 = 4000r/min, as exhibited in 

Fig. 28. Moreover, Fig. 29 illustrates the acceleration response of the rotating shaft with or without 

a rubber damping ring obtained by the theoretical solution at various rotating speeds. The 

comparison of the test and simulation results reveal that the error of the vibration reduction rate of 

rubber damping ring is less than 17% at different rotating speeds, as shown in Table 12. In short, 

our research can provide useful theoretical guidance pertaining to the engineering design of the 

rubber damping ring. 

Table 12 Comparative analysis of vibration reduction rates of test and simulation at the different rotational speed 

Speed 
Vibration reduction ratio 

Error 
Test Simulation 

2000r/min 42% 37.2% 16.6% 

4000r/min 49% 41% 16.3% 

http://dict.cnki.net/dict_result.aspx?scw=%e5%87%8f%e6%8c%af%e7%8e%87&tjType=sentence&style=&t=vibration+reduction+ratio
http://dict.cnki.net/dict_result.aspx?scw=%e5%87%8f%e6%8c%af%e7%8e%87&tjType=sentence&style=&t=vibration+reduction+ratio
http://dict.cnki.net/dict_result.aspx?searchword=%e8%af%95%e9%aa%8c&tjType=sentence&style=&t=experiment


  

(a) 𝑛 = 2000r/min                       (b) 𝑛 = 4000r/min 

Fig. 28 Test results at a different speed 

  

(a) 𝑛 = 2000r/min                       (b) 𝑛 = 4000r/min 

Fig. 29 Theoretical analysis results at a different speed 

6 Conclusions 

In this research, a mechanical model of rubber damping ring is established by means of 

experiments, parameter separation methods and joint simulations. The mechanical model of a 

rubber damping ring is applied to the vibration reduction analysis of multi-span shafting, and the 

following conclusions are obtained: 

(1) The constitutive model parameters of hyperelasticity and viscoelasticity of the rubber 

material are identified by joint simulation. Subsequently, it verified experimentally. It can be 

observed that the hysteresis loops acquired by simulation and experiment are basically in 

coincidence; meanwhile, the maximum error rate of dynamic stiffness and damping obtained by 

experiment and simulation is not more than 7%. 

(2) Based on the experimental design and approximate model method in the joint simulation 

platform, the mechanical model of the dynamic stiffness and the damping of rubber damping ring 

are proposed. Due to taking the working states into account, the dynamic stiffness and damping of 

the rubber damping ring are mainly influenced by the excitation frequency, while the vibration 

amplitude exerts an insignificant impact. The obtained mechanical model is a function of excitation 

frequency and can be conveniently coupled with the dynamic rotor system for dynamic analysis. 

(3) The dynamic equations of multi-span shafting with and without rubber damping ring are 

established by the finite element and lumped mass method. On this basis, the vibration reduction 

analysis of rubber damping ring is carried out. The experimental results exhibit that the theoretical 

and experimental error of vibration reduction rate is less than 17%, which indicates that the 



mechanical model of the rubber damping ring established in this research has superior precision and 

reliability. 

The research provides a new idea for establishing the mechanical model of the rubber damping 

ring. However, the influence of special working conditions such as temperature on the dynamic 

characteristics of the rubber damping ring is not considered. In the future, a mechanical model of the 

rubber damping ring considering the effect of temperature will be further established. 
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