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Fractal-Constrained Crosshole/Borehole-to-Surface
Full Waveform Inversion for Hydrogeological
Applications Using Ground-Penetrating Radar

Iraklis Giannakis, Antonios Giannopoulos, Craig Warren and Anastasia Sofroniou

Abstract—Full waveform inversion (FWI) is considered one

of the most promising interpretation tools for hydro-geological

applications using ground-penetrating radar. However, FWI has

had limited practical uptake for several reasons: large computa-

tional requirements; an inability to reconstruct loss mechanisms

of soil; and the need for a good initial starting model. We aim

to address these issues via a novel FWI subject to a fractally-

correlated distribution of water. Initially, the dispersive properties

of the soil are expressed as a function of the water fraction using

a semi-empirical model. This approach means the permittivity,

conductivity, and relaxation mechanisms are all correlated, and

therefore sensitivity problems between the permittivity and loss

mechanisms no longer affect the performance of FWI. Subse-

quently, the distribution of the water fraction is constrained

to follow a fractal geometry. Fractal-correlated noise is then

compressed using principal component analysis (PCA) in order

to further reduce the number of the system’s unknowns and

accelerate FWI. PCA reduces the volume and dimensions of

the optimization space, and thus, initialisation is no longer

necessary. Lastly, a novel measurement configuration is suggested

that uses superposition with all the individual measurements in

order to reduce the number of forward models that need to

be executed for every iteration of FWI. These enhancements

substantially reduce the computational requirements of FWI and

therefore eliminate the need for high-performance computers

and time-consuming algorithms. The proposed scheme has been

successfully tested with several numerical case-studies, which

indicate the potential of this approach to become a commercially-

appealing interpretation tool for hydro-geology.

Index Terms—Ground Penetrating Radar (GPR), Full-

Waveform Inversion (FWI), Fractals, Hydrogeology, Finite-

Differences Time-Domain (FDTD), Principal Component Analy-

sis (PCA).

I. INTRODUCTION

G
ROUND-penetrating radar (GPR) is a mature geophysi-
cal technique with a diverse set of applications, ranging

from glaciology [1] and planetary sciences [2], to archaeology
[3] and landmine detection [4]. GPR has been established
as a mainstream interpretation tool in hydrogeology [5] and
has been successfully applied for permeability estimation [6],
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mapping the water table [7], delineating clay layers [8],
characterizing aquifers [9], deriving the root zone soil mois-
ture [10] and investigating groundwater-dependent ecosystems
[11].

In order to address the diversity of the hydrogeologi-
cal applications that GPR is used for, numerous surveying
strategies and corresponding processing pipelines have been
suggested over the years [12]. One of the most popular is
the crosshole/borehole-to-surface measurement configuration,
aimed at interpolating hydrogeological properties between
boreholes [13], [14], [15]. The interpretation of these data
is generally based on the geometrical ray theory [16], which
utilises the first arrivals and the maximum amplitudes [17],
[18] (subject to regularizations and constraints [19], [20], [21])
in order to reconstruct the dielectric properties of the inves-
tigated medium. Although ray-based tomography is practical
and computationally efficient, it suffers from significant short-
falls primarily associated with an inherent lack of resolution
[16], [22], [23].

Full-waveform inversion (FWI) addresses these issues by
utilising all the available information within the received
signal. This allows the overall resolution of the tomography
to be greatly increased [24], and the ability of GPR to
characterise loss mechanisms is enhanced [16]. FWI was
initially suggested for seismic prospecting [25] and has been
extensively investigated since then [26]. The FWI of GPR has
a wide range of applications (using both crosshole [27] and
on-ground measurement configurations [28]) which vary from
estimating the radius of cylindrical objects [29] and mapping
the chloride content of concrete [30], to characterizing aquifers
[13], [14].

Recent theoretical developments have further established
FWI as a reliable interpretation tool for GPR acquisitions and
especially for crosshole/borehole-to-surface hydrogeological
surveys [15]. In particular, source deconvolution [31], [32]
and using the ratio of two electromagnetic field parameters
[33] have been successfully applied for removing the effects
of the unknown source wavelet. Moreover, in an effort to
reduce the computational requirements, 2.5D forward solvers
and 2D to 3D transformations have been proposed in order to
replace costly 3D simulations [34]. Furthermore, the presence
of numerous local minimal in the optimization space has
been tackled via ray-based initial models [16], using global
optimizers [35], [36], and by gradually increasing the selected
bandwidth as the optimization progresses [37]. Lastly, a fur-
ther increase in resolution was made possible by addressing
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sharp boundaries and promoting “blocky” solutions using total
variation regularization constraints [38].

Despite these advancements, there are still several issues and
pitfalls that need to be addressed before FWI can become com-
mercially appealing to GPR practitioners and hydrogeologists.
The most important of which is the very demanding –and often
unattainable– computational requirements. Numerous evalua-
tions of the forward model combined with time-consuming
Jacobian derivations and memory-intense matrix operations
require high-performance computers to operate for prolonged
periods of time. Another major drawback of FWI is that it
fails to provide an accurate estimation of the conductivity
[15] and –to our knowledge– no attempt has been made to
characterize the full dispersive properties of the investigated
medium. Moreover, the final results are sensitive to the starting
model [15] and therefore FWI is not applicable in the absence
of sufficient initialisation. Lastly, FWI greatly relies on the in-
version parameters (regularizations etc.) [15], and a parameter
selection based on trial-and-error is not attainable due to the
high computational requirements for each FWI execution.

This paper presents research which aims at addressing
the aforementioned issues through a novel FWI, constrained
to a compressed representation of the fractal distribution of
the water fraction of the subsurface. The suggested scheme
utilises a superpositioned forward model combined with semi-
empirical formulas [39], [40] for deriving the extended Debye
properties of the soil. This results in an efficient FWI scheme
capable of characterising the full dielectric properties of the
soil without the need for regularization and initialisation.
Finally, due to the imposed fractal-constrains, our scheme is
orders of magnitude faster compared to traditional FWI, which
makes a step change towards the commercialisation of FWI
in hydrogeology and borehole geophysics.

II. METHODOLOGY

The proposed FWI tries to address inherent shortfalls in
traditional FWI via the following novel attributes: a superpo-
sitioned forward solver that reduces the number of forward
models needed to be executed in each iteration; a semi-
empirical dielectric model for soils [39], [40] that overcomes
the sensitivity discrepancies between electrical permittivity
and conductivity; and a fractal-constrained inversion that re-
duces the dimensions of the optimisation space and there-
fore accelerates FWI without the need for initialization and
memory-intensive Jacobian derivations.

A. Super-positioned forward model

The forward solver of the proposed FWI is a second order
finite-difference time-domain (FDTD) method [41]. FDTD is
particularly attractive for GPR applications due to its time-
domain nature and its ability to implement dispersive media
[43]. Extended Debye relaxation mechanisms are accurately
incorporated into the model using the polarization density
method [44] while the boundaries of the grid are effectively
truncated via the time-synchronised convolutional perfectly
matched layer boundary conditions [45].
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Fig. 1. Real and imaginary parts of the electrical permittivity (shown by solid
lines) calculated using the semi-empirical model described in equations (1) -
(9) for different volumetric water fractions fw [39], [40]. The extended Debye
approximations using the analytical approach described in [48] is plotted with
circles. Notice that for fw = 0, the imaginary part becomes zero and therefore
is omitted from the plot.

Crosshole/borehole-to-surface configurations consist of
multiple transmitters and receivers placed inside two parallel
boreholes and along the surface between them. For each trans-
mitter, the resulting electromagnetic fields are simultaneously
recorded by the receivers. The full dataset (i.e. all the recorded
signals for every transmitter) is then used in order to find the
optimum model -using computational electrodynamics- that
gives rise to a similar response. FDTD –and most of the
numerical methods in computational electrodynamics– is ca-
pable of calculating the received signal in many locations with
just one execution [41], with additional receivers adding very
minimal extra computational burden to forward modelling. On
the other hand, multiple transmitters require multiple execu-
tions, which consequently increase the overall computational
requirements of FWI. In order to overcome this, we use
the superposition principle which states that the net response
caused by multiple transmitters equals with the sum of the
responses for each transmitter individually [42]. Therefore, the
received signal using different transmitters can be summed and
the resulting dataset will be equal to the dataset that would
have been measured if all the transmitters were triggered
simultaneously. Consequently, the forward model needs to be
executed only once, using simultaneously-triggered impressed
sources at the positions of the transmitters. Via this approach,
the computational requirements of FWI are greatly reduced
since forward modelling is typically one of the most time-
consuming and memory-intense components of FWI.

B. Semi-empirical dielectric model for soils
FWI can not reliably reconstruct the distribution of con-

ductivity since the latter is particularly sensitive to the initial
model as well as the inversion parameters [15]. To tackle this,
the proposed FWI utilises a semi-empirical model, initially
developed by [39] and subsequently revised by [40], to express
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Fig. 2. A random sample of the various features that can be generated using
anisotropic fractal correlated noise (15). The scale of the axis is omitted since
fractals are scale invariant [61].

the full dispersive properties of the soil with respect to the
water fraction. Consequently, the parameter that the proposed
FWI tries to recover is the water fraction which corresponds
to a specific extended Debye model. The rationale behind
this approach is that –for hydrogeological applications– the
permittivity, conductivity and dipolar relaxation mechanisms
are highly correlated with each other and the most dominant
factor affecting their behaviour is the presence or absence of
water [39], [40], [46], [47].

Equations (1) - (9) describe the semi-empirical model that
relates the dispersive dielectric properties to the soil properties
[39], [40]
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where fw is the water volumetric fraction, ✏
0
1.4�18GHz

and ✏
0
0.3�1.3GHz

are the real parts of the permittivity for
the frequency range of 1.4 - 18 GHz and 0.3 - 1.3 GHz
respectively, and ✏0 is the electric permittivity of free space.
The imaginary part of the permittivity is defined by ✏

00, ⇢s

is the sand particles density (g/cm3), ⇢b is the bulk density
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Fig. 3. The first 49 (out of r) principal components of a training set consisting
of 2000 randomly generated anisotropic 2D fractals. The title of each subfigure
corresponds to the ith number of the principal component qi. Notice that the
dominant (first) principal components relate to the low-wavenumber elements
of the model.

of the soil (g/cm3), ✏s is the relative permittivity of the sand
particles, and ↵ = 0.65 is an experimentally derived constant.
The parameters S and C are the sand and clay mass fractions
respectively (0  S,C  1, S + C = 1), and ✏w = ✏

0
w
+ j✏

00
w

is the complex electric permittivity of water. The relaxation
time of the water is defined by t0,w (s), ✏w,s is the relative
permittivity of the water for zero frequency, and ✏w,1 is the
relative permittivity of the water for infinite frequency. Lastly,
the constants �f 1.4�18GHz and �f 0.3�1.3GHz are linearly
proportional to the conductivity � for the frequency range of
1.4-18 GHz and 0.3-1.3 GHz respectively. The soil described
in (1)-(9) is considered non-magnetic and therefore the relative
magnetic permeability is one.

The semi-empirical model described in (1) - (9) cannot be
directly implemented in FDTD, and thus an extended Debye
function is used to approximate it for the frequency range of
interest [43], [48]. The analytical method described in [48]
is used for the approximation. No iterative optimization is
required for this methodology and therefore it does not add
to the computational burden of FWI. The resulting extended
Debye function ✏d is given by [48]

✏d = ✏d,1 +
�d
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Fig. 4. Six random fractal models (not part of the training set T) are approx-
imated using a linear combination of 10, 20, and 30 principal components
(PC).
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The most important parameter in the semi-empirical model
-especially for frequencies below 1 GHz- is the water vol-
umetric fraction [48]. The dielectric properties of water are
related to temperature T [49], [50] and can be chosen based
on borehole measurements. For the current paper, we have
chosen T = 20oC which corresponds to t0,w = 9.23 ps,
✏w,s = 80.1, and ✏w,1 = 4.9. Regarding the soil properties,
typical soils have ⇢s = 2.66 g/cm

3 and ⇢b = 2 g/cm
3 and

small variations around these values have small effects to the
overall complex permittivity [48]. Moreover, although C and
S play an important role for frequencies greater than 1.5 GHz
(by changing the ratio between free and bounded water [48]),
they have minor effects on the frequencies most often used
in hydrogeological applications [48], and thus are set to the
average S = C = 0.5. For frequencies below 1 GHz, the
clay content affects the dielectric properties indirectly due
to the high porosity of clays (i.e. high fw) and not due to
the clay particles themselves. Even Cole-Cole phenomena,
predominantly present in clay media, are masked by the overall
effects of the volumetric water fraction for the frequency range
of interest [48].

Figure 1 illustrates the complex electrical permittivity for
T = 20oC, ⇢s = 2.66 g/cm

3, ⇢b = 2 g/cm
3, S = C = 0.5,
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Fig. 5. The mean absolute difference of 200 randomly generated fractals
and their corresponding approximation using different number of principal
components (PC).

and for fw = 0 � 0.4 using the semi-empirical model
and corresponding extended Debye approximations. Notice
that via this approach, both the real and the imaginary part
(conductivity and dipolar losses) of the complex electrical
permittivity can be inferred and subsequently incorporated in
FDTD using the volumetric water fraction fw as the only
input.

C. Fractal-constrained FWI
Typical FWI is an ill-posed problem that suffers from

instabilities, non-uniqueness, and local-minimal [38]. To that
extent, good initialisation and regularisation methods, such as
Tikhonov and total variation constraints, are necessary for
providing a stable and reliable solution [38]. In addition,
resolution-requirements result in a large number of model
parameters that need to be fine-tuned. This leads to time-
consuming and memory-intensive Jacobian and Hessian calcu-
lations that increase the overall computational requirements of
FWI. In order to tackle the aforementioned issues, we suggest
a novel FWI scheme in which the water fraction of the soil is
forced to follow a compressed anisotropic fractal distribution
with an arbitrary fractal dimension. This choice is based on
a large volume of evidence in the literature that suggest that
hydrogeological, soil, and environmental parameters can be
sufficiently described using fractal correlated noise [51], [52],
[53], [54], [55], [56], [57], [58], [59], [60], [61]. In particu-
lar, realistic synthetic reservoir models were generated using
fractals in [51]. Landscapes and various environmental data
were also accurately modelled based on fractal distributions
in [52], [61]. Lastly, fractals have also been extensively used
for modeling the physical properties of soils [53], [55], [57],
[58], [59], [60] such as hydraulic conductivity and porosity
[54], [56]. Based on the above, it is evident that under normal
geological conditions, soil properties are expected to follow
a correlated distribution that can be sufficiently described
using fractals. Nonetheless, this does not hold true for non-
stochastic, deterministic distributions, often encountered in
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8 m

4 m

Fig. 6. Measurement configuration used for the numerical case studies
examined in this paper. Twenty Tx/Rx are placed in each borehole and one
Tx/Rx is placed on the surface between the boreholes. All antennas act both as
transmitters and receivers and they are triggered simultaneously in the FDTD
simulation. Subsequently the direct wave is removed by time-gating.

anthropogenic environments. In those cases, the performance
of the fractal-constrained FWI will be limited since FWI will
try to approximate the deterministic model with a compressed
orthonormal basis derived based on fractal correlated noise.

Additionally, as shown later in this section, PCA was proven
to be very effective in compressing anisotropic fractals. This
results in a significant reduction (by orders of magnitude) of
the model parameters that need to be optimized. The reduced
model parameters, combined with the semi-empirical model
used for the soil properties, greatly accelerate FWI without
the need for regularization methods and initialization.

Anisotropic fractal correlated noise for N dimensions can
be expressed as [43], [48]

F (x1...xn) = rot✓

0

@F�1

0

@R(k1...kn) ·
 

NX

i=1

aik
2
i

!H
1

A

1

A

(15)
where F is the fractal correlated noise, F�1 is the sign
for the inverse Fourier transform, R is an N th dimensional
Gaussian noise, xi is the ith dimension of the fractal, ki

is its corresponding wavenumber, ai is a weight parameter
that generates anisotropic fractals [51], rot is a rotational
operator that rotates the image at an angle ✓, and H is a
linearly proportional parameter to the fractal dimension of F

[61]. Figure 2 illustrates a sample of the features that can be
generated using (15). Changing H, ✓, and ai results in an infi-
nite number of different scenarios with a plethora of patterns
ranging from layer structures and tilted inhomogeneities, to
distinct structures of various shapes and sizes (see Figure 2).

An arbitrarily-generated 2D-fractal distribution of water
fraction is defined as Q(fw) 2 Rx⇥z , where x and z are the
dimensions of the model. Consequently, the total number of
parameters that need to be optimized by FWI is r = x ⇥ z.
The dimensions of the optimization space can be significantly
reduced by compressing Q(fw) using PCA [62], [63]. Initially,
the 2D matrix Q(fw) is reshaped into the vector q(fw) 2 Rr.

We then create a coherent training set of 2000 randomly
generated 2D fractals T = [q1, q2...q2000] 2 Rr⇥2000. The
fractal parameters H, ✓ and ai are randomly selected subject to
a uniform distribution. Via this approach, a coherent, equally-
distributed and representative training set is generated, capable
of adequately resolving the investigated feature space. The
principal components of the training data T are stored in a
square matrix P 2 Rr⇥r consisting of orthogonal vectorized
images with decreasing co-variance. Figure 3 illustrates the
first 49 principal components of the training set T. The first
principal components correspond to low-wavenumber com-
ponents (background) while the later principal components
describe finer structures. PCA suggests that every vectorized
fractal q(fw) of the training data, can be expressed as a linear
combination of all principal components i.e. q(fw) = Pw,
where w 2 Rr is a column vector with the same dimensions
as q(fw). Choosing a subset of the principal components
P 2 Rr⇥u (u < r) results in an over-determined system
q(fw) ⇡ Pv, where v(fw) 2 Ru is the vector that con-
tains the compressed coefficients of q(fw). The latter can
be calculated using the well-known least squares formula
v(fw) =

�
P
T

P
��1

P
T

q(fw). Consequently, the compressed
fractal distribution of the water fraction can be calculated
via L(fw) = Pv(fw), where L(fw) 2 Rx⇥z . Anisotropic
fractals have been proven to be very compressible and using
just the first 30 principal components is proven adequate for
sufficiently reconstructing any randomly generated anisotropic
fractal (see Figure 4 and 5). Essentially we are deriving an
orthonormal basis P fine-tuned for fractal geometries. Meaning
that a small subset of P is adequate to reconstruct fractal-
correlated noise. For non-fractal geometries, more principal
components are needed. For a fully accurate reconstruction,
the whole matrix P should be used which will result to a v

vector with length that equals to w i.e. the size of the model
(zero compression).

The vector v(fw) contains the 30 parameters of the model
that need to be optimised in the next step. These 30 parameters
represent a compressed anisotropic fractal distribution of the
water fraction, which corresponds to a fractal distribution of
an extended Debye model that describes the full dielectric
behaviour of the soil based on the semi-empirical model
previously presented. Therefore, the investigated medium can
be fully described –subject to the aforementioned constraints–
using just 30 scalars with known boundaries (based on the
training set). Here we need to highlight that fractal-constrain
is a soft constrain similar to smoothness and total variation
constrains; and does not force the model parameters to be a
specific shape or type. It just makes the solutions biased to
scale-invariant and self-similar geometries i.e. follow a fractal
distribution (see Fig. 2).

D. Optimization method

The proposed FWI tries to find the best vector v(fw) that
minimizes the summation of the absolute difference between
the actual and the simulated measurements. The transmitters
are all triggered simultaneously, and therefore the cost function
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Fig. 7. Three numerical case studies are used to demonstrate the capabilities of the proposed interpretation scheme. The first row corresponds to the investigated
fractal models. In the second and third row, various deterministic non-fractal targets are included in the model.

S(v) needs a single FDTD execution in order to be evaluated

S(v) =
X

Tx

X

Rx

X

t

|Eo

Tx,Rx,t
� E

s

Tx,Rx,t
(v) ⇤A(t, v)| (16)

where Tx is the transmitter index, Rx is the receiver index, t is
the observation time, Eo are the observed measurements, and
E

s are the simulated ones. The simulated traces are generated
using an arbitrary source-wavelet that deviates from the actual
pulse leading to errors and instabilities [31]. The effects of the
unknown source can be formulated via a convolutional term
A(t, v) that acts upon all measurements [64]
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where E
rs is the received trace subject to the correct source-

wavelet. The convolutional term A(t, v) is calculated by tak-

ing the average value of the deconvolution between all the
observed and simulated signals

A(t, v) = F�1

 
1

N

X

Tx

X

Rx

E
o

Tx,Rx,!

E
s

Tx,Rx,!
(v) + e

!
(18)

where ! is the angular frequency, N is the total number of
receivers, and e is a very small damping constant to address
divisions by zero. In (18) we try to find the best wavelet-
source that fits the observed data for a given vector v(fw).
Consequently, the function A(t, v) is re-calculated subject to
the updated v(fw) as the optimisation progresses.

The optimization space of argminv S(v) is bounded by the
expected values of v(fw) derived from the training set T.
Therefore, each component vi(fw) of the compressed water
fraction lies within a predefined domain vi(fw) 2 [li, ui]. The
first step of the optimisation is a sequential independent search
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for every principal coefficient in v(fw) = [v1, v2....v30]. In
particular, the cost function S(v1) is evaluated for five equidis-
tant values between [l1, u1]. A spline interpolation is applied
to fit the resulting points, and the optimum v1 that minimises
S(v1) is chosen. Subsequently, the cost function S([v1, v2])
is evaluated using the value of v1 from the previous step and
five equidistant values for v2 between [l2, u2]. Similar to v1, a
spline interpolation is applied to the resulting points, and the
v2 that minimises S([v1, v2]) is chosen. This procedure contin-
ues until all the principal coefficients are set. Via this approach,
the initial model v0(fw) = [v1, v2...v30] of the optimisation is
evaluated. The first step of the optimisation follows the notion
described in [37], [65] where low frequency components are
initially inverted in order to reconstruct the background model
and avoid local minimal. In the proposed FWI, similar to
[37], [65], the model is progressively reconstructed starting
with the first principal coefficients (background, see Figure 3)
and progressively moving to finer structures. The compressed
model v0(fw) is subsequently used as an initial solution for an
interior-point nonlinear optimisation algorithm as presented in
[66], [67]. The interior-point is a fully bounded method that
deals with non-convexity and can be applied in a straightfor-
ward manner using the function fmincon in MATLAB [68].
Via trial and error it was estimated that, for the majority of
the case-studies examined, the interior-point method converges
in ⇡ 20 iterations.

III. NUMERICAL CASE STUDIES

The proposed FWI is tested in various 2D numerical case
studies including different scenarios with different water distri-
butions and fractal dimensions. Figure 6 shows the employed
measurement configuration. Twenty Tx/Rx are placed in each
borehole and one Tx is placed between them at the top surface.
As it is described in section II.A, all the Tx are excited
simultaneously in order to reduce the number of times that
the FDTD forward model needs to be executed. The spatial
step of the FDTD is �x = �y = 0.1 m and the time-step
follows the Courant limit [41]. The excitation pulse used to
generate the synthetic data is an ideal line source excited by
a Gaussian modulated pulse with central frequency 80 MHz.
Only the central frequency of the antenna is considered to be
known during FWI. Instead of the actual pulse, the forward
solver of FWI is excited by the first derivative of a Gaussian
function with the same central frequency as the real pulse.
The whole FWI procedure takes around 20-30 minutes on an
Apple MacBook Air with a 1.6 GHz Intel Core i5 CPU and
8 GB 1600 MHz DDR3 RAM.

Figure 7 illustrates the actual and the reconstructed wa-
ter distributions using the suggested fractal-constrained FWI.
Three numerical case studies are investigated with different
water distributions and fractal dimensions. Each model is fur-
ther modified by adding non-fractal deterministic geometries
in order to evaluate the performance of the suggested scheme
to non-fractal targets within fractal environments. From Figure
7 it is evident, that using fractals as basis functions, makes it
possible to reconstruct complex geometries in an accurate, and
most importantly, time efficient manner.
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Fig. 8. First column represents the real model. Second column represents
the PCA approximation using 30 PCs. The third column is the estimated
water fraction using the fractal constrained FWI. Colorbar represents the water
volumetric fraction fw .

The next numerical example (Figure 8) illustrates the in-
herited resolution constrains due to the limited (compressed)
number of PC used for the reconstruction. The performance of
the proposed FWI is inversely proportional to the roughness
of the investigated model. The resolution of the model is
constrained primarily by the employed central frequency and
the number of PC used for the approximation (see Figure
8). Increasing the resolution of FWI would require higher
frequency antennas combined with additional principal compo-
nents in v(fw). Increasing the number of principal components
–and consequently the computational requirements of FWI–
using the same central frequency will have negligible effects
to the overall resolution of the model. Changing the central
frequency will increase the resolution but will decrease the
investigation area due to the reduced penetration depth. There-
fore, a change in the frequency component of the pulse needs
to be combined by an equivalent scaling of the investigation
area. Notice that since fractals are scale invariant, changing
the central frequency and the scale of the model will have no
affect on the principal components needed to approximate a
given fractal.

The proposed algorithm is then tested on purely determinis-
tic non-fractal geometries often encountered in anthropogenic
environments. In situations like these, fractal-constrained FWI
should be used with caution since it is inherently constrained
to approximate any given geometry by its fractal equivalent.
Figure 9 illustrates three case studies with simple geometrical
targets. It is evident that the proposed method estimates a
fractal approximation of the investigated geometry and fails
to reconstruct sharp boundaries and clinical non-fractal ge-
ometries.

Lastly, we test the fractal-constrained FWI in non-stacked
data corrupted with random Gaussian noise. Figure 10 illus-
trates the investigated case study. Data from a low dimen-
sional fractal model were corrupted with 0%, 5% and 10%
Gaussian noise. It is apparent, that Gaussian noise effects
the reconstructed model by modifying the boundaries between
permittivity structures; and by adding a high-wavelength noise
giving the impression of a model with a higher fractal-
dimension.
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Fig. 9. Evaluation of the suggested FWI scheme on non-fractal media. The
colorbar indicates the water volumetric fraction fw .

IV. CONCLUSIONS

A novel fractal-constrained full-waveform inversion (FWI)
is suggested in order to reconstruct the water distribution
between boreholes in a practical and efficient manner. Via a
set of numerical experiments, it is demonstrated that a fractal
distribution of water can be successfully reconstructed using
its compressed representation based on principal component
analysis. Within that context, inherent properties of fractals
are utilised in order to reduce the number of the unknowns
and accelerate FWI. In addition, a semi-empirical model that
reduces the number of the unknowns, combined with a more
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Fig. 10. Assessing the performance of the proposed scheme subject to
contaminated data with 0%, 5% and 10% Gaussian noise. The colorbar
indicates the water volumetric fraction.

economic forward solver, further contributes to the reduction
of the overall memory and computational requirements. These
novel additions make the suggested FWI commercially appeal-
ing and attainable for GPR practitioners and hydrogeologists
without the need for high performance computers.
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