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Abstract 

Origami robots self-reconfigure from a two-dimensional manufactured state to three-

dimensional mobile robots. By folding, they excel in transforming their initial spatial 

configuration to expand their functionalities. However, unlike paper-based origamis, where the 

materials can remain homogeneous, origami robots require high payloads and controllability 

of their reconfigurations. Therefore, the mechanisms to achieve automated folding adopt thick 

panels and folding hinges that are often of different materials. While the fundamental working 

principle of origami hinges remains simple, these multi-material origami joints can no longer 

be modeled by beam theory without considering the semi-rigid connections at the material 

interfaces. Currently, there is no comprehensive model to analyze the physical behavior of an 

actuated folding hinge accurately.  In this work, we propose a plate theory-based model to 

analyze the origami folding joints: we adapt a torsional spring to capture the semi-rigid 

connection, predict the folding stiffness and deflection of folding hinges. Herein, the semi-rigid 

connection is calibrated by quasi-static folding tests on a series of origami folding joints, and 

the accuracy of our model is compared to finite element simulations. With this analytical model, 

we can accurately simulate the mechanics of physical origami folding joints. 
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1. Introduction 

The origami principle of folding two-dimensional sheets into three-dimensional structures 

can lead to both beautiful artwork and practical robotic solutions (1-6). Therefore, they are 

shifting the paradigm in design, fabrication, and perception of autonomous mesoscale robots 

(7-10). The origami folding joints are fundamental components that enable both build-in 

compliance and movability of the robot. To ensure the functionality of physical origami robots, 

they are structured as thick panels and foldable hinges that are made of various engineering 

materials (2-5,11,12). This is the major difference from the models of zero-thickness sheets 

and zero-width creases as in traditional paper-based origamis (13-16). Therefore, the 

rotational pin-joint like folding behavior is obtained by the localized bending of the folding 

hinges. The folding hinge together with its adjacent thick panels is defined as an origami 

folding joint in this paper (Fig. 1A). The nonzero-width hinges are often built by thin sheets and 

typical applications can be found in pneumatic (4,17,18) and magnetic (19-22) actuated 

origami robots, cable-driven manipulators (15,23), buckling-triggered bistable origami 

structures (24-26), and origami metamaterials (27-32). In recent years, researchers are 

adopting active materials, e.g. shape memory alloy or polymers (3, 33-36), electromagnetic 

polymers (20), or photic material (37-40), which allows a series of origami robots to self-fold 

or self-assemble.  

For all folding robots, the folding flexible hinges bend locally to exert rotation on their 

adjacent thick panels. In this manner, the folding hinge induces stiffness, stores elastic energy, 

and exhibits high-order geometric continuity during the localized bending. To evaluate the 

elastic energy stored in origami folding joints, the hinges are often modeled as torsional 

mailto:Jamie.paik@epfl.ch


springs whose stiffness is roughly estimated by beam theory as described in Fig. 1B (5, 26). 

By definition of beam theory, folding hinges are simplified to one-dimensional (1D) line (41), 

even though its lateral dimension is much larger than the principle bending dimension. 

Considering the geometry, a folding hinge is a natural thin plate that undergoes two-

dimensional (2D) deformation. However, the 1D simplification of beam model fails to capture 

this 2D deformation. Moreover, the beam model only applies to small deformation, while the 

folding hinges normally undergo a large deformation to enable the folding in an origami 

structure. Recently, researchers adopt plate model to simulate the mechanics of folding hinges 

(42,43). However, these initial works are empirical because they roughly model the deflection 

as a ruling surface, whose parametric curve is approximated by a polynomial curve. To capture 

the localized bending at folding hinges, researchers also use finite element analysis (FEA) to 

model the bending region with shell elements but at high computational cost (30, 40). 

Therefore, we need an analytical model that can accurately capture the large deflection and 

physical folding stiffness of the folding hinges.  

Most origami robots are fabricated by lamination method (3,5,22,35) or multimaterial 3D 

printing technique (20,37,44), which bonds or merges thick panels and folding hinges by 

melting or photocuring the structural materials. Delamination failure frequently happens at the 

material interface between the thick panels and folding hinges, indicating that the connection 

is not rigidly bonded or plastic deformation is yielded. Until now, no research has covered this 

semi-rigid connection behavior. To accurately predict the mechanical property of origami 

folding joints, we indeed need a model that incorporates this semi-rigid behavior. 

In this work, we present for the first time a model to analyze the mechanics of origami 

folding joints accurately. This new amelioration of origami folding joint model allows origami 

robots to be reliably modelled for control by considering the behavior of inhomogeneous 

materials construction and semi-rigid connection. As denoted in Fig. 1C, we model the hinge 

as a thin plate, the semi-rigid connection as torsional springs. The crucial challenge lies in how 

to explicitly describe the constraints of a folding joint, and solve its deflection function under 

all these constraints. Herein, the hinges of these origami joints are modeled as elastically 

supported thin plates (45-47). To calibrate the semi-rigid connection, we prepare a series of 

origami joints and conducted quasi-static folding tests. Comparison with FEA simulations on 

two origami joint prototypes, the analytical model achieves high accuracy in predicting the 

mechanics of origami joints. With the analytical model and experimentally calibrated semi-rigid 

index, one can predict the folding stiffness of any origami folding joint of the same materials 

and fabrication technique. 

 
Fig. 1 Diagram of an origami folding joint. (A) An origami folding joint is composed of two thick panels and a folding hinge. 

(B) Until now, the hinge is roughly modeled as a cantilever beam clamped to adjacent panels. (C) In this work, the hinge is 

accurately modeled as an elastically supported thin plate. 

 



2. Modeling of origami folding joints 

To model the localized bending at the folding hinges, the first challenge is converting 

physical working conditions into explicit constraints. After, the critical difficulty is solving the 

deflection function that satisfies both the complicated constraints and equilibrium requirements. 

As shown in Fig. 2A, the hinge is taken as a thin plate of width, 2a , length, l , and thickness, 

h , held at 0x = , actuated upon by a uniformly distributed force P or moment M at x l=  and 

free of stress along the edges y a=  . Reissner released a general form of the deflection 

function (48), 
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The details of the analysis are provided in Supplementary S1. Here, , , ,C B F and I are four 

integration constants, determined by the boundary and loading conditions; D  is the flexural 

rigidity of the plate, relating to the material’s Young’s modulus, E , Poisson’s ratio, ,v and 

thickness, h , determined by 
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The bending moment, 
xM , twisting moments, xyM , shear force, 

xQ , and bending angle, 

x  shown in Fig. 2A can be obtained by substituting the deflection function w  into their 

expressions denoted in Supplementary S1. Their expressions are:  
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Here, A is also an integration constant determined by constraints, and 
2 2 /10k h=  as 

defined in Supplementary S1. 

 
Fig. 2 Two bonding conditions for origami folding joint. (A)The folding hinge is molded as a cantilever plate with the 

directions of moments and stresses shown on an infinitesimal element. (B) In this work, we analyze two prototypes of 

origami folding joints, namely rigid bond and semi-rigid bond. 

 



In this work, we extend the preliminary work on the cantilever plate to model the localized 

bending at the folding hinges of origami folding joints. Rather than directly clamping at the 

edges, two parallel edges of the hinges are rigidly joined to two torsional springs (Fig. 1C). To 

obtain the deflection of origami hinges, we derive the explicit boundary conditions for the semi-

rigid connection, then solve the corresponding integration constants. Herein, we simulate a 

rigidly bonded origami folding joint as a reference. To be noted, we focus on the deflection of 

folding hinge and rotation of the loaded panel in the physical origami joint. In this manner, all 

possible configurations of origami folding joints are analysed, and the effects of a semi-rigid 

connection are explicitly investigated. 

2.1 Rigid bond origami folding joints 

An origami folding joint may be actuated by pure transverse force, moment, or hybrid. 

Considering the hybrid loading condition is equivalent to a superpose of individual loads, we 

focus on pure loads. Regarding the rigid bond origami joint in Fig. 3A, its hinge is ideally 

bonded to the adjacent thick panels. Therefore, the hinge is modeled as a cantilever plate 

clamped at 0x = , actuated by distributed transverse force P or moment M on x l= , and free 

of stress on y a=  . Its boundary and loading conditions are expressed explicitly as follows 

 0xw = = for 0,x =  (4a) 

 0,
a

x x
a

M Q dy P
−

= =  for ,x l=  (4b-1) 

 , 0
a

x x
a

M M Q dy
−

= =  for ,x l=  (4b-2) 

 0xyM = for ,y a=   (4c) 

where Eq. 4a describes the deflection and rotation constraints on edge 0x = ; Eq. 4b denotes 

the loading condition on edge x l= , in which Eq. 4b-1 prescribes a transverse force P -loaded 

plate and Eq. 4b-2 indicates a moment M case; and Eq. 4c reveals no shearing moment on 

the free edges y a=  . Considering the constraints on , ,y xM Q q  are already incorporated in 

deriving Eq. 1 (see Supplementary S1), so they are not restated here. 

In previous work (48), Eq. 4a is assumed merely to satisfy at the origin. However, this 

assumption is true only the length over width ratio ( )/ 2l a  of a plate is relatively high. For a 

folding hinge, its / 2l a  ratio is extremely low, and the assumption leads to a saddle-shaped 

deflection surface, which contradicts the physical deformation. Therefore, the constraints in 

Eq. 4q must be satisfied on the whole edge 0x = . By substituting the expressions of , xw   

into Eq. 4a, we can obtain 
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To solve the integration constants, we introduce a trigonometric cosine expansion to 

approximate Eq. 5 as functions of y  within the region  ,a a− . Afterward, we group the terms 



containing ( )cos / 2m y a   , where m  are odd integers, and set their coefficients equal to 

zero because Eq. 5 holds for all y  within the design domain (details in Supplementary S2). 

Following this process, the integration constants I  and F  are computed as : 
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Substituting moments , ,x xyM M and shearing force 
xQ from Eq. 3 into Eq. 4b-1 and Eq. 4c, 

we obtain the integration constants , ,A B andC for a hinge under terminal force, P : 
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Substituting the integration constants in Eq. 6 and Eq. 7 into Eq. 1, we can obtain the 

deflection function for a rigid-bond origami folding joint under terminal force, P . Specifically, 

if the length, l of the hinge is far more than its width, a , the deflection w is simplified to: 
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which is consistent with the result in (48). An origami folding joint normally undergoes large 

folding; therefore, it is critical to capture the deformed position of x l= , marked as 'l . The 

neutral surface of the folding hinge is unstretched under the terminal force P , thus any strip 

parallel to the x -axis maintains its original length. To simplify the computational process, we 

take the strip 0y =  to compute the deformed position of the right edge  'x l= : 
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Regarding a rigid-bond origami folding joint actuated by a moment M , we only need to 

resolve integration constants , ,A B  and C from Eq. 4b-2 and Eq. 4c, details of the computation 

process is in Supplementary S3. We then find:  
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Substituting the above integration constants into Eq. 1, we obtain the deflection function 

for a rigid-bond origami joint under moment, M . When a l , the boundary condition in Eq. 

4a is also set to be satisfied at the origin ( 0x y= = ). Then, the integration constant I equal to 

zero and the deflection function is simplified to: 
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Analogous to that in the transverse force-loaded hinge, we also take the strip at 0y =  to 

compute the deformed position of the edge 'x l=  under M , which gives 
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To evaluate the accuracy of the analytical model, we calibrate the analytical predictions 

concerning FEA on two origami folding joints, namely a narrow type sizing 2 mm ×10 mm × 

0.125 mm, and a wide type of 10 mm × 2 mm× 0.125 mm. Both hinges are composed of 

Kapton, whose Young’s modulus is 2.5 GPa and Poisson’s ratio is 0.34 (49). Referring to the 

analytical models, the deflections for the narrow and wide origami joints under a terminal force 

0.5P N=  and 0.005P N=  are shown in Fig. 3B(i,iv). Additionally, the deflection under a 

moment 1M N mm=   and 0.05M N mm=   are also obtained and shown in Fig. 3C(i,iv). It is 

observed that both hinges bend smoothly to cylindrical surfaces and the loaded panels rotate 

rigidly to the tangent plane of the deformed hinges.  

As a reference, a discretized FEA is used to study the bending of the narrow and wide 

origami joints. In this and subsequent sections of the paper, the FEA is solved in Abaqus/CAE 

with geometrical nonlinearity. The settings of the FEA is shown in Supplementary S4. The 

simulation result for a rigid-bond narrow joint under transverse force is given in Fig. 4A. The 

deflection on edge 'x l=  is merely 1.9% lower than that in Fig. 3B(i), which indicates high 

accuracy of the analytical model. The deviations of deflection on edge 'x l=  for two origami 

joints under transverse force and moment are given in Fig. 3B(vii) and Fig. 3C(vii), respectively. 

In both loading conditions, the deviations increase with deformation. It is observed that the 

deviations of 𝑃-loading converge at 6.5%, while those of 𝑀-loading increase dramatically to 

55%. The misprediction at a high moment is because the analytical model fails to capture curl 

deformation. To preserve high accuracy of the model, it is suggested for use when the folding 

angle is less than 45°. The detailed comparison under varying transverse force and moment 

are enumerated in Supplementary Fig. S1. 

2.2 Semi-rigid bond origami folding joints 

In physical origami folding joints, the connection between hinges and panels is normally 

semi-rigid due to fabrication limitations or properties of the constitutive material. Inspired by 

the work in (50), we adopt a torsional spring to model this semi-rigid connection, as shown by 

Fig. 1C. In this section, we model the physical origami folding joints with special focus on the 

deflection and rotation of hinges. Herein, the hinge is semi-rigidly joined to thick panels on 

0,x l= , actuated by a transverse force or moment on x l=  and free of loads at the remaining 

two edges y a=  . Considering the fabrication settings and materials are identical for both 

material interfaces, we assume that the stiffness of two torsional springs are identical, sprk . 



 
Fig. 3 Comparison of the analytical model and FEA based on two origami folding joints. Under the boundary conditions in 

Fig. 3A, the narrow (2×10×0.125 mm3) and wide (10×2×0.125 mm3) origami joints deform to Fig. 3B and Fig. 3C under 

transverse force and moment, respectively. In each deflection contour, the units of the three axes are millimeters, the fixed left 

panel ( 2 , 1p pl mm h mm= = ) is ignored and the right panel is illustrated by its middle plane. Fig. 3B(vii-ix) and C(vii-ix) show 

the deviations of the analytical model concerning the FE simulation results, ‘N’ represents narrow joint, and ‘W’ is wide type.   



Because the torsional spring merely undergoes rotation, the deflection on edge 0,x l=  

are zero yet bending moment of hinge equals to the twisting moment of the spring. With 

incorporation of large deformation, the rotation angle of the torsional springs are
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The boundary and loading conditions for a physical origami folding joint are denoted as 

follows: 
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Here, Eq. 14a denotes the deflection and rotation consistency on the elastically supported 

edge at 0x = ; Eq. 14b describes the transverse force and moment loading conditions at edge 

x l= ; and Eq. 14c indicates no twisting moment is applied to the free edges at y a=  . 

Solving Eq. 14a, Eq. 14b-1, and Eq. 14c with the general form of deflection function w

from Eq. 1, bending moment, 
xM , twisting moment, xyM , transverse force, 

xQ  , and bending 

angle, x  from Eq. 3 (details in Supplementary S5), we can obtain the expressions of five 

integration constants and the folding angle of the loaded panel for a physical origami joint 

under terminal force P ,  
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Fig. 4 FEA simulation for a narrow origami pin-joint (A), which subject to 0.5P N= under (B) rigid bonding, (C, D) 

semi-rigid bond with focus on deflection and rotation. To note, 0.01 /sprk N rad=  for (B-D). 
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A key observation is that the expressions of the integration constants , ,A B C and I are 

identical to those in Eq. 6 and Eq. 7 for a rigid-bond origami joint under terminal force, and the 

only difference happens in the last term of F . This different term converges to zero if  sprk  

approaches infinity, and the case of infinite sprk is identical to the clamping constraint in rigid-

bond prototype. Hence, the rigid-bond origami joint can be viewed as a special case of the 

semi-rigid prototype. 

Similar to the rigid-bond origami joint, the deflection function, ,w  can also be simplified by 

taking the constraints in Eq. 14a to be satisfied at the origin when a l . Hence, the 

expressions of deflection function and length preserving constraint become: 
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To solve the deflection function w  for a semi-rigid origami joint under moment, M , we 

apply the five constraints in Eq. 14a, Eq. 14b-2 and Eq. 14c to the general form of deflection 

function in Eq. 1. The detailed computation process is elaborated in the Supplementary S5 

and the five integration constants and folding angle of the loaded panel become: 
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Comparing the integration constants in Eq. 17 and Eq. 10 also leads to the conclusion that 

rigid-bond origami joint is also an extreme case of the semi-rigid bond prototype under moment 

loading condition. Here, the only difference between the two sets of integration constants also 

happens in F , which converges to zero when sprk  approaches infinity. Providing a l , the 

deflection function can also be simplified by simplifying the boundary condition in Eq. 14a, i.e. 

merely satisfying at the origin. Therefore, the deflection function and deformed position of the 

right edge are denoted as: 
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Suppose a physical origami folding joint subject to a force eccentric to the folding axis, i.e. 

,P Px r r l=  . This loading condition can be equivalent to a distributed force and a moment 

passing through x l= . The efficacy of this equivalent system is verified in Supplementary S6. 

In this manner, we superpose Eq. 15 and Eq. 17 to compute the deflection function and folding 

stiffness of an origami folding joint. Herein, the folding stiffness is given by 
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(19) 

Here, the accuracy of the analytical models is also evaluated on the narrow and wide 

origami folding joints. Considering the flexural rigidity of the Kapton folding hinge is 0.46 N∙mm 

according to Eq. 2, we set sprk  equal to 0.01 N/rad and 0.001 N/rad for the narrow and wide 

origami joints. The deflection surfaces for the narrow folding hinge under transverse force and 

moment are denoted in Fig. 3B(ii,v) and Fig. 3C(ii,v), respectively. Compared to the rigid-bond 

origami joints in Fig. 3B(i,iv) and Fig. 3C(i, iv), a key observation is that both hinges tend to 

behave like rigid panels to rotate along 0x = , resulting in more than twice of the deflection. 

The amplified deflection leads to the conclusion that the mechanical property of the material 

interface affects the folding stiffness of the origami pin-joints dramatically. The rotation of the 

right panel for two origami joints are depicted in Fig. 3B(iii,vi) and Fig. 3C(iii,vi), respectively. 

It is observed that the middle plane of the loaded panel is tangent to or rotated by / sprM k  

along edge 'x l=  under transverse force or moment, respectively. 

Comparing the FEA in Fig. 4B and the analytical prediction in Fig. 3B(ii), a maximal 8.44% 

deflection deviation of the deflection on edge 'x l=  is observed, revealing high accuracy of 

the analytical model. The full range of deflection deviations on edge 'x l=  for the physical 

origami joint under transverse force and moment, are shown in Fig. 3B(viii) and Fig. 3C(viii), 

respectively. For 𝑃-loading, the deviations of the semi-rigid bond are higher than that of the 

rigid bond prototypes, the main reason is that the proposed analytical model performs better 

for smaller deformations. Providing the same external force, the folding joint with semi-rigid 

connection undergoes larger deformation than the rigid bond prototype. While the 𝑀-loading 

shows opposite trend when comparing Fig. 3C(viii) with Fig. 3C(vii), this is due to weakening 

curled deformation with decreases of sprk . Moreover, the deviations of the analytical model 

decrease when sprk increases. In Fig. 3B(viii), all deviations, except for those of the narrow 

origami folding joint with 0.001sprk = , are less than 15 %. By comparing Fig. 4B with Fig. 3B(iii), 

the deviations of 
ext  show similar trends as those of the deflection deviations, which also 

decrease when sprk  increase. Without losing accuracy, the analytical model is recommended 

to simulate origami pin-joints whose folding angles are moderately low, around less than 45 . 



The detailed comparison between analytical predictions and FE simulations with varying sprk  

are shown in Supplementary Fig. S2 and Fig. S3. 

3. Experimental calibration of semi-rigid bond 

Providing that the semi-rigid connection sprk is given, we can forecast the folding stiffness 

of physical origami folding joints, as well as the localized bending under transverse force, 

moment, or hybrid. Therefore, we propose a standard folding test to calibrate sprk  of origami 

joints whose material and fabrication process are predefined. Based on the experimental data, 

we derive a quantitative model to predict sprk  depending on the geometrical and flexible rigidity 

of folding hinges, so that we can find sprk  for origami folding joints with new dimensions and 

further predict their folding stiffness. 

In this work, we prepare various origami folding joints fabricated by the lamination 

technique (4,18,35), whose structure is denoted Fig. 5A. The holes in Fig. 5A are used for 

aligning layers of material precisely in the lamination process, and as fixtures to clamp the 

samples on the test setup (5,22,51). Thereafter, the origami joints undergo repetitive quasi-

static folding tests with one panel fixed and the other driven by a step motor. The details of 

the test are depicted in Supplementary S7. The folding angle over driven force for a joint with 

215h m=  and varying l  are given in Fig. 5B. Taking an average of /pin extk P =  for repeatable 

tests and redundant samples, we obtain the folding stiffness for all types of origami pin-joints, 

given in Fig. 5C. Based on the experimental data, we extract the stiffness of the torsional 

spring 
sprk  for each type of origami folding joint using Eq. 19, and the results is shown in Fig. 

5D. To ensure 
sprk  is scalable with mechanical and geometrical properties of folding hinges, 

 
Fig. 5 Experimental results of the semi-rigid connections and predictions on the folding properties of origami joints with 

varying dimensions. (A) An origami joint is fabricated by laminate technique. (B) Experimental results for the origami 

folding joints with 125h m= . Characterized results for (C) folding stiffness, (D) semi-rigid connection, (E) and semi-

rigid index. (F) Predictions for physical origami folding joints with varying width l and length a . 

 



we introduce a semi-rigid index,  , which is defined by unifying sprk  with respect to flexural 

rigidity, D : 

 

2

2

sprk l

a
 =

D
 (20) 

The semi-rigid index, ,  for three sets of origami pin-joints is shown in Fig. 5E, indicating 

that   is linearly related to the width of hinges. By rewriting Eq. 20, we finally achieve the 

relationship between sprk and D  and the geometrical parameters of the hinges, 

 ( )
2

0.2775 0.0379spr

a
k l

l
= −

D
 (21) 

With the stiffness of the torsional spring from Eq. 21, the deflection function from Eq. 15 

and Eq. 17, and the folding stiffness from Eq. 19, one can successfully predict the mechanical 

property and localized bending of any origami folding joint fabricated of the same material and 

by the same approach as denoted in Fig. 5A. As verification, Fig. 5F illustrates the folding 

angle over driven force curves for five types of origami folding joints with new dimensions, 

including the narrow and wide types in Fig. 3. 

For origami folding joints made from different materials and fabricated by different 

techniques, we recommend the user to conduct standard folding tests to calibrate the semi-

rigid connection on material interfaces, and adopt the proposed analytical model to predict the 

folding stiffness and localized bending. Providing the basic properties of origami folding joints 

are known, one can directly integrate them into the modeling framework to accurately predict 

the mechanics of origami robots. 

4. Discussion 

Origami folding joints are fundamental components enabling origami robots to achieve 

mobility and reconfigurability. This paper introduced an analytical model to predict the 

mechanics of origami folding joints, i.e. localized bending at folding hinges, the semi-rigid, 

flexible behavior on the material interface, and the folding stiffness of physical origami folding 

joints. With this analytical model and experimentally characterized semi-rigid connection index, 

the user can accurately evaluate the folding stiffness of new origami folding joints and the 

localized bending at the folding hinges under external loads.  

This analytical model is, however, not applicable to origami folding joints with thick folding 

hinges because of the initial thin plate assumption. Referring to the comparison between 

analytical results and FEA simulations, the deviations increase dramatically when the folding 

angle is larger than 45 under moment loading conditions. Therefore, the proposed analytical 

model cannot predict the localized deformation of folding hinges when they are fully folded. 

Moreover, our experiments are conducted on actual prototype of millimeter scale samples. 

While the model is scalable for other materials and manufacturing processes, for practicality 

of building a physical prototype, the thickness (ℎ) should be ranges from 50 micrometers to 2 

millimeters; the ratio between the thickness (ℎ) and width (𝑙) for folding hinge should be less 

than 0.2; the stiffness of the hinge material should be higher than 1 MPa. 

Extensions and refinements of this work may explore integrating the basic model of folding 

joints into the framework of origami robot modeling. As scientists and engineers are 

continuously inspired by origami principles, further engineering of origami structures is 



continuing to be developed by replacing creases with folding hinges. Our work lays the 

foundation for modeling of these engineered origami structures.  
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