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Abstract: With advances in solid-state lighting, visible light communication (VLC) has emerged as a
promising technology to enhance existing light-emitting diode (LED)-based lighting infrastructure
by adding data communication capabilities to the illumination functionality. The last decade has
witnessed the evolution of the VLC concept through global standardisation and product launches.
Deploying VLC systems typically requires replacing existing light sources with new luminaires that
are equipped with data communication functionality. To save the investment, it is clearly desirable to
make the most of the existing illumination systems. This paper investigates the feasibility of adding
data communication functionality to the existing lighting infrastructure. We do this by designing an
experimental system in an indoor environment based on an off-the-shelf LED panel typically used in
office environments, with the dimensions of 60 × 60 cm2. With minor modifications, the VLC function
is implemented, and all of the modules of the LED panel are fully reused. A data rate of 40 Mb/s is
supported at a distance of up to 2 m while using the multi-band carrierless amplitude and phase
(CAP) modulation. Two main limiting factors for achieving higher data rates are observed. The first
factor is the limited bandwidth of the LED string inside the panel. The second is the flicker due to
the residual ripple of the bias current that is generated by the panel’s driver. Flicker is introduced by
the low-cost driver, which provides bias currents that fluctuate in the low frequency range (less than
several kilohertz). This significantly reduces the transmitter’s modulation depth. Concurrently, the
driver can also introduce an effect that is similar to baseline wander at the receiver if the flicker is
not completely filtered out. We also proposed a solution based on digital signal processing (DSP) to
mitigate the flicker issue at the receiver side and its effectiveness has been confirmed.

Keywords: visible light communication; LED; carrierless amplitude and phase modulation (CAP);
LED driver; bias-tee; lighting infrastructure

1. Introduction

Visible light communication (VLC) has attracted continued research interest [1–3],
while solid-state lighting has dominated the mass market over the last two decades [4].
The use of solid-state semiconductor devices, such as light-emitting diodes (LEDs), organic
light-emitting diodes (OLEDs) [5–7], and laser diodes (LDs) [8,9], in the visible range
enables intensity modulation of the optical power for communication simultaneously with
illumination. Therefore, the VLC technology has the potential to reuse the existing lighting
infrastructure to deliver add-on functionality in a cost-effective manner that can be adopted
in future smart indoor and outdoor environments. The outdoor lighting infrastructure
covers a variety of LED-based luminaries that range from street lights, traffic lights, to
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car lights, which have inspired the use of VLC in infrastructure-to-vehicular (I2V) and
vehicular-to-vehicular (V2V) communications [10,11]. Experiments using existing traffic
lights and car lights as transmitters have been reported to demonstrate the feasibility of
VLC in the outdoor I2V/V2V communications [12,13]. When compared with the outdoor
environment, the indoor scenarios often find large LED luminaries installed in the ceiling
or relatively small LED desk lamps placed directly above the table to provide a guaranteed
light level for illuminance. This benefits the indoor VLC applications greatly since those
LED luminaries’ high output optical power can ensure a decent signal-to-noise (SNR)
profile within rooms/offices if their intensity is efficiently modulated. In this work, we
hereafter limit the scope to VLC deployment in the indoor environment because of its
advantages and popularity.

Being motivated by the potential of VLC, standardisation has been carried out by
several organisations [14–16]. Recent standardisation activities are mainly conducted
within the Institute of Electrical and Electronics Engineers (IEEE) and the International
Telecommunication Union Telecommunication Standardisation Sector (ITU-T) [16]. In
March 2017, the IEEE 802.15.13 task group was established with the goal of defining an
optical wireless communication (OWC) standard that supports data rates of up to 10 Gb/s
using wavelength that ranged from 190 to 10,000 nm. The first draft was finished in 2019
with a letter ballot held in 2020. The standard is expected to be completed in 2021. In
parallel with 802.15.13, the IEEE 802.11bb task group was formed in May 2017 to develop
a global OWC standard targeted at the mass market within the well-known IEEE 802.11
wireless local area networks (WLAN, which is often linked and used interchangeably with
WiFi, i.e., wireless fidelity) standard family. Because the latest standards typically define
communications operating in the band beyond the visible light spectrum, the concept of
light fidelity (LiFi), which covers both visible and infrared bands, has been introduced [17].
The ambition of 802.11bb is to operate as closely as possible to the base 802.11 standards
to allow for integration with WLAN chipset vendors. Consequently, the physical (PHY)
layer of 802.11a with a bandwidth of 20 MHz has been adopted as the common PHY mode
in 802.11bb. The draft is still under discussion and expected to be completed in 2021.
As another influential standardisation body, ITU-T published a new VLC/LiFi standard
G.9991 (also known as G.vlc) [18] in 2019, which is highly based on the ITU-T’s high-speed
power-line communication standard G.9960 (also known as G.hn) [19,20]. In the PHY layer,
G.9991 defines two PHY modes that employ the orthogonal frequency division multiplex
(OFDM) modulation with three band plans. The total bandwidth in the three band plans is
50, 100, and 200 MHz, respectively. A maximum data rate of 2 Gb/s is supported. Since
the release of G.9991, several chipset implementations have been available from the G.hn
semiconductor vendors, helping to accelerate VLC/LiFi applications in the real world [16].

Nevertheless, not much attention has been paid to the viability and complexity of
implementing VLC using the existing lighting infrastructure following the standardised
specifications. The current commercial products normally require the complete replacement
of the existing illumination systems with new luminaires supporting VLC. It is therefore
desirable to make the most of the existing illumination systems to save the investment and
reduce the deployment cost. In this paper, we investigate the possibilities and challenges
in upgrading the existing LED-based luminaries with VLC functionality by developing a
demonstration system in a practical indoor environment. To the best of the authors’ knowl-
edge, there exist limited reports on reusing the existing commercial LED luminaries for
simultaneous VLC communication and illumination in the literature. In [21], a commercial
LED table lamp was upgraded to a VLC system providing a 10Base-T Ethernet connection
via an optical wireless transmission of 12.5 Mb/s Manchester coded on-off-keying (OOK)
signals. The achievable system capacity is not fully exploited due to the transmission speed
limitation of the Ethernet connection. Additionally, challenges and issues in implementing
such a practical system based on existing luminaries are not covered in [21].

Most of the indoor VLC systems that are reported in the literature are based on
dedicated designs using LEDs over a short distance in a controlled laboratory environment,
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focusing on achieving high data rates. Recently reported experimental systems have been
demonstrating transmission speed in the order of Gb/s with precisely aligned point-to-
point links that are based on single-colour LEDs (scLEDs) [22–24]. The use of the scLEDs
significantly contributes to the throughput in Gb/s, since they offer a higher modulation
bandwidth than the phosphor-converted white LEDs (pcwLEDs) with the absence of the
slow response phosphor. However, the existing illuminance products have been widely
adopted pcwLEDs due to their low cost, thus imposing hurdles to achieving comparable
date rates. As shown later, the LED panel that was adopted in our demonstration system
consists of 240 pcwLEDs and it has a 3-dB bandwidth of only 1.4 MHz. Although the
bandwidth of pcwLEDs can be increased to between 10 and 20 MHz by using blue filters at
the receiver side to mitigate the slow temporal response of the phosphor, this improvement
in bandwidth is paid for at the cost of power loss or signal-to-noise ratio (SNR) penalty due
to the phosphor-converted portion of the received light spectrum being filtered out [25].
It is unnecessary to use blue filters if multi-carrier modulation schemes, especially with
bit-loading, are applied because multi-carrier modulation can utilise all of the signal
power in the full received light spectrum to achieve higher SNR and, therefore, higher
system capacity, or data rates [26]. Similarly, analogue pre-equalisers [27,28] are designed
to compensate for the frequency response of the LED to extend the normalised 3-dB
bandwidth by sacrificing the modulation depth, which leads to the same issue as using blue
filters [29]. Hence, we adopted a multi-band carrierless amplitude and phase modulation
(CAP) [30–32] with bit-loading to combat the limited bandwidth problem due to its simple
implementation and low peak-to-average power ratio (PAPR) [33].

In addition, those high-speed experimental VLC systems often require bulky optics to
realise precise alignment between transmitters and optical receivers, which is unreasonable
for practical VLC applications in the real world. An optical receiver with a large field of
view (FoV) and sensitivity is a key enabling factor for the deployment of VLC applications.
We have designed and built a compact optical receiver with a half angle of ±35◦, which
highly relaxes the alignment requirement, in order to demonstrate the usability of our
system in real-world scenarios.

Another key challenge that is faced in our system is the flicker caused by the low-cost
LED driver. The residual current ripple from the LED driver introduces unwanted low-
frequency light intensity modulation and, hence, reduces the modulation depth of VLC
signals. Optimised LED driver circuits for VLC have been proposed to address the flicker
issue [34,35]. In this paper, we still use the existing LED driver with the flicker problem in
order to fully reuse the existing illumination system and keep the modification within a
minimum degree. The detrimental effect of flicker on a binary phase modulation (BPM)
VLC system is investigated in [36] under the condition that the flicker is treated as a random
interference. In this paper, we treat the flicker as an underlying stationary and predictable
signal and, therefore, we can use a low-pass finite impulse response (FIR) filter to filter
out the low-frequency components as an estimate of the flicker. After subtracting the
estimated flicker from the received raw signal, the adverse effects of flicker can be greatly
alleviated, offering a different approach to addressing the flicker at the receiver. Because
the estimation of the flicker can be realised by a programmable FIR filter in the digital
domain, this digital signal processing (DSP)-based solution can be universally applied to
deal with a variety of flicker specifications.

Our demonstration system can support a data rate of 40 Mb/s at a distance of up to
2 m with a minimum illuminance level of 300 lux [37]. The VLC functionality is added to
the existing light infrastructure without any degradation in the lighting level, presenting a
usable VLC/LiFi system in an indoor office environment.

The remainder of this paper is organised, as follows. In Section 2, the demonstration
system is described in detail. Section 3 discusses the key challenges in the implementation
of the proposed system and presents the experimental results. Finally, conclusions are
made in Section 4.
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2. Experimental Setup

Figure 1 shows the proposed system block diagram and a photo of the experimental
setup. The lighting device used in our demonstration system is a 60× 60 cm2 commercial
LED panel (DFx 563-004-01), which has been installed in our laboratory ceiling. We
use a bias-tee circuit to modulate the LED panel’s intensity with information-carrying
signals being generated by an arbitrary waveform generator (AWG) and place an optical
receiver underneath that is connected to an oscilloscope (OSC) to capture the regenerated
transmitted signals for offline MATLAB processing. Full characterisation of the panel
was performed, followed by modulation circuit design, modulation scheme design, and
experimental test, to upgrade the LED panel with the data transmission function.
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Figure 1. (a) System block diagram; (b) experimental setup.

2.1. The Light-Emitting Diode (LED) Panel

In Figure 2a, the internal structure of the LED panel is depicted. Two LED strips are
mounted on opposite sides of a square aluminium frame that hosts a transparent light
guide plate to direct the light evenly within the panel area. On the backside of the light
guide plate is a single layer of reflective paper that is used to redirect the optical power
to the receiver plane. The other side of the light guide is attached to a diffuser plate to
produce evenly-distributed light for illumination. The two LED strips consist of 12 serially
connected blocks of 20 LEDs that are connected in parallel, see Figure 2b.
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LED
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Light guide plate
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+ -
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Figure 2. (a) Illustrative view, and (b) schematic of the light-emitting diode (LED) panel in use.

2.2. LED Panel Driver and Characteristics

We utilised the existing LED panel driver and designed a bias-tee circuit, as illustrated
in Figure 3, where the AC port of the bias-tee module is connected to an AWG for intensity
modulation of the LED panel. Alternative LED drivers with low ripple/noise can be used,
depending on the system requirements, but with increased cost and complexity. To measure
the V-I curve of the LED panel, two low-noise voltage sources were connected in series, as
shown in Figure 4a, to generate high enough voltages to turn on the LED strips. Because
the turn-on voltage of each LED is around 2 V, the turn-on voltage for the entire LED string
can be estimated to be ∼24 V. Therefore, the first voltage source is set to a fixed voltage of
24 V, while the second is set to sweep voltage and monitor the corresponding current. The
measured V-I curve of the LED panel as a lumped element is shown in Figure 4b. From the
datasheet, the LED panel is biased at 0.9 A, with a corresponding voltage of around 34.5 V.

LED Driver

Bias-tee

AC+DC output

AC+DC
output

  AC
input

 DC
input

 DC
input

  AC
input

connected
to AWG

 L

 C

Figure 3. The bias-tee combining the LED driver and arbitrary waveform generator (AWG) to drive
the LED panel.

Next, we measured the frequency response of the LED panel at the bias point of
(34.5 V, 0.9 A) using the setup that is shown in Figure 5a. Here, we used two low-noise
voltage sources connected in series as in the V-I measurement to mitigate the light intensity
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flicker that is caused by the residual current ripple of the original LED panel driver. With
an AWG and a spectrum analyser (SA), the frequency response is measured and plotted in
Figure 5b with a 3-dB bandwidth of 1.4 MHz. Table 1 provides the list of equipment for
characterising the LED panel.

+- +-

- +

(a) (b)

Figure 4. (a) Setup for V-I measurement; (b) measured V-I curve of the LED panel.

LED panel

+- +-

- +

24V 10V

AWG

sweep 
frequency

Optical
Receiver

Spectrum 
Analyser

bias-tee

(a)

-3 dB

1.4

(b)

Figure 5. (a) Setup for frequency response measurement; (b) measured frequency response of the LED panel.

Table 1. The list of equipment.

Item Value

LED panel model DFx 563-004-01, 4000 K, 36 W
Lumens 2700 lm

Luminous Efficiency 75 lm/W
Voltage source Keysight E3631A

Arbitrary waveform generator Tektronix AFG3022
Spectrum analyser Keysight N9020A

2.3. Optical Receiver

We adopted a silicon PIN photodiode (Hamamatsu S6968) with a large effective
photosensitive area of 150 mm2 and a built-in 14 mm (diameter) lens in the plastic package
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to relax the alignment requirement between the LED panel and the receiver. A trans-
impedance amplifier (TIA) circuit converts the detected current from the photodiode into
a voltage signal with a gain of 10 kΩ for the following data acquisition by the OSC. The
optical receiver was implemented compactly using a printed circuit board (PCB) inside an
aluminium enclosure. A photo of the optical receiver is given in Figure 6 with a closeup of
the PCB inside.

Figure 7 depicts the receiver’s relative signal strength at varying incident light angles,
from which a half angle of ±35◦ can be observed. Here, the half angle is defined as the
incident angle at which the strength is reduced to half of that generated when the incident
light is perpendicular to the photodiode. We also observed that the optical receiver works
robustly as long as the LED panel shines it in our practical measurements. In addition,
using a high-bandwidth laser diode (Osram, PL450B) as the light source, we measured the
3-dB bandwidth of our receiver as around 20 MHz, which satisfies our system specification.

(a) (b)

Figure 6. (a) Optical receiver and (b) the printed circuit board (PCB) inside.

relative strength(%)

Figure 7. Measured directivity of the optical receiver.



Sensors 2021, 21, 1697 8 of 16

2.4. MultiCAP for the Downlink Visible Light Communication

It is well known that LEDs, especially those that are used for illumination, suffer from
low 3-dB bandwidth (up to a few MHz) and decaying frequency responses [38], as shown
in Figure 5b. Unlike radio frequency (RF), wireless technologies where multi-path induced
fading is highly critical, multi-path fading is not a major concern and it poses limited impact
on the overall system frequency response in indoor VLC systems. One main reason is that
most practical indoor VLC systems are static line-of-sight (LOS) channels. The other reason
is that the coherence bandwidth of a tpicyal indoor non-LOS (NLOS) channel is much
higher than the LED’s 3-dB bandwidth, thus making the LED capable of approximately
representing the frequency response of the entire VLC system. Recent experimental results
have shown that a maximum root mean-square (RMS) delay spread of 14.2 ns was measured
for a 3 m NLOS link in a worst practical indoor scenario [39,40]. The coherence bandwidth
can be estimated to be in the order of several tens of MHz, which is still much higher than
the LED panel’s bandwidth of 1.4 MHz that was used in this work. A multi-carrier version
of carrierless amplitude and phase (MultiCAP) modulation with bit-loading is adopted to
overcome the unideal channel response [41]. When compared with OFDM, MultiCAP has
a lower peak-to-average power ratio (PAPR), because typical MultiCAP implementations
tend to use a smaller number of carriers. In addition, the modulation and demodulation
of MultiCAP can be implemented with reduced complexity, due to the absence of fast
Fourier transform (FFT) and inverse FFT operations. The parameters and algorithms for
the modulation and demodulation are described, as follows.

Suppose that a full band of Bmod is divided evenly into N sub-bands. Each sub-band is
transmitting a band-pass CAP signal, which is similar to quadrature amplitude modulation
(QAM). For example, the nth sub-band is centred at the carrier frequency fn = 2n−1

2N Bmod,
where n = 1, · · · , N. Because the band is divided evenly, the baseband symbol rate Rs in
each sub-band is the same and is equal to Bmod

N(1+β)
when using the square-root raised cosine

(SRRC) filter with a roll-off factor of β for pulse shaping. The MultiCAP filter bank consists
of N pairs of pulse shaping filters, as given by:

gIn(t) = g(t) cos 2π fnt (1)

gQn(t) = g(t) sin 2π fnt (2)

where

g(t) =
sin[π(1− β)t/Ts] + 4βt/Ts cos[π(1 + β)t/Ts]

πt/Ts[1− (4βt/Ts)2]
(3)

is the SRRC pulse and Ts = 1/Rs is the baseband symbol period. The synthesis of pulse
shaping filters in (1) with built-in carriers is the major difference between CAP and QAM.
Because of this feature, CAP does not require extra free-running oscillators and mixers
to shift the spectrum to the target frequency range, which is beneficial when designing
low-cost systems.

Block 6 of Figure 1a illustrates the schematic diagram for the implementation of
modulation and demodulation in MultiCAP. At the transmitter, for the nth sub-band, a
random symbol sequence Dn is split into two branches, i.e., an in-phase (I) sequence DIn
and a quadrature (Q) sequence DQn, after the QAM-2kn constellation mapping. Here, kn
denotes the QAM constellation order (in bits) that is used in the nth sub-band. Subsequently,
the baseband symbol sequences DIn and DQn are up-sampled and filtered by the nth in-
phase and quadrature filters of gIn(t) and gQn(t), respectively. Finally, the nth CAP signal
is generated by subtracting the I path signal from the Q path signal, which is given by:

sn(t) = DIn ∗ gIn(t)− DQn ∗ gQn(t) (4)
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where ∗ is the time-domain convolution. The MultiCAP signal is generated by summing
up (4), which is expressed by:

s(t) =
N

∑
n=1

sn(t). (5)

In our demonstration system, the MultiCAP signal is generated in MATLAB and then
uploaded to the AWG, which produces a corresponding waveform at a sampling frequency
of fT to modulate the LED panel’s intensity.

At the receiver, demodulation is carried out in the reverse order of the modulation.
After the flicker removal and resampling operations, the signal y(t), which is captured
by the OSC at a sample frequency of fR, turns to the signal s′(t), which is ready for
demodulation. The signal s′(t) is first applied to N pairs of match filters with the pulse
impulse response of gIn(−t) and gQn(−t), n = 1, · · · , N, and then down-sampled to
recover the transmitted I/Q symbols. Following QAM constellation demapping, N streams
of symbols {D′n} are obtained and compared with the transmitted data {Dn} to calculate
the symbol error rate (SER) or the bit error rate (BER). The selection of the QAM order kn
is realised using a simple bit-loading algorithm, which iteratively searches for the largest
kn that is capable of supporting a BER below the 7% forward error correction (FEC) limit
of 3.8× 10−3. In our work, the determination of the bit-loading pattern was only carried
out at the longest distance (2 m), which has the worst SNR profile and it can then support
shorter distance with better BER performance.

Note that the flicker removal is to mitigate the baseline wander that is caused by the
current ripple of the LED driver and it will be detailed in the next section. Additionally,
since the nominal frequency of fR is not identical to fT , a resampling process is applied to
match the underlying sampling rate with that of the reference transmitted data. Using the
demodulation algorithms that are described above, the recovered data stream is compared
with the transmitted data to determine the BER. Table 2 lists the key parameters adopted
in this work.

Table 2. Key system parameters.

Item Value

Oscilloscope Keysight DSO9254A
Arbitrary waveform generator Tektronix AFG3022

Arbitrary waveform generator output voltage 10 Vpp (set at the 50 Ω impedance)
Modulation bandwidth Bmod = 10 MHz

MultiCAP carrier number N = 10
Carrier frequencies 0.5 to 9.5 MHz with a step size of 1 MHz

Square-root raised cosine filter roll-off factor β = 0.15
Square-root raised cosine filter length 20 symbols

Baseband symbol rate Rs = 1/Ts = 869.57 kBaud
Bit-loading pattern {kn, n = 1, · · · , N} = {4 5 5 5 5 5 5 4 4 4}
Aggregate data rate Rb = ∑N

n=1 Rskn = 40 Mb/s
Distance Up to 2 m

3. Challenges and Results
3.1. Flicker Issue and the Digital Signal Processing (DSP)-Based Solution

Flicker is a common problem in LED lighting, which is mainly caused by the low-
frequency (ranging from 3 Hz to ∼1 kHz) ripple of the current generated by the power driver
in most cases [42]. Unlike the precise voltage sources that were used in our measurements,
the commercial LED driver converts AC mains to a “noisy” DC current to drive the LED
panel. For instance, the full-wave bridge rectifier or power factor correction (PFC) circuitry,
which are two typical circuits that have been widely adopted in commercial LED drivers,
will generate ripples at twice the AC line frequency [42]. If not suppressed properly, the
ripples can lead to severe flicker problems that cascade to data perturbations. Unfortunately,
although the driving current from the commercial LED driver has been filtered to prevent
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the ripples from introducing noticeable flicker, the residual ripple amplitude is still quite
high from the communication point of view. There are two major disadvantages: (i) the
reduced modulation depth for VLC signals—since the VLC signal is superimposed onto
the bias current, the headroom left for VLC signals is reduced if the bias current has a high
ripple amplitude; (ii) the low-frequency flicker can interfere with the signal falling in the
frequency range. The following two solutions help to combat the flicker issue:

1. A high-pass filter circuit can be inserted to filter out the low-frequency flicker if it is
possible to modify the analogue frontend of the optical receiver.

2. If it is not feasible to change the hardware, then DSP techniques can be used to remove
the flicker by subtracting the low-frequency “envelope” from the received signal.

The first approach requires a hardware modification according to the specification
of flicker and it is not always feasible, while the second DSP approach is more flexible
and it can be applied universally. Figure 8 illustrates the detailed block diagram of the
DSP solution. The fundamental idea is to subtract the estimated flicker signal from the
received signal r(t). A low-pass finite impulse response (FIR) filter is used to filter out
the low-frequency components in order to recover the flicker signal. Before feeding r(t)
through the FIR filter, a decimation operation, or downsampling, is applied to decrease the
sampling rate to reduce the implementation complexity of the succeeded FIR filter. After
the FIR filter, an interpolation operation is paired to increase the sampling rate back to the
original sampling rate.

+

FIRdecimation interpolation

delay

low-pass,500Hz# D " D

y(t)r(t)

e(t)

+

t = m
fR

;m = 0;1; 2;

rd(t)

Figure 8. Digital signal processing (DSP)-based solution to remove the flicker in the received signal.
r(t) is the signal captured directly by the oscilloscope (OSC) at a sample rate of fR and e(t) is the
estimated low-frequency “envelope” signal for the flicker. y(t) is flicker-free after the removal of e(t)
from r(t).

Figure 9a shows the signal r(t) in blue, which is captured by the OSC and exhibits a
slowly changing envelope that is caused by the flicker. From the waveform, the period of
the flicker can be roughly estimated to be around 10 ms, indicating a fundamental frequency
of 100 Hz (twice the UK mains frequency). Because the flicker is not a perfect single-tone
sine wave, a low-pass FIR filter with a cut-off frequency of 500 Hz is used to let a frequency
up to the 5th harmonic pass through to recovery a close replica of the flicker. The filtered
signal e(t) is shown in red in Figure 9a. Figure 9b also provides a zoom-in view of r(t) and
e(t). It can be observed that the flicker e(t) has been successfully extracted from r(t) and
it corresponds to the fluctuating DC level. Once subtracted from r(t), the flicker can be
removed, and a stable DC level at around zero is achieved, as shown in Figure 9c,d. The
improvement in BER performance can be clearly observed from the decoded constellation
diagrams at the 1st carrier before and after flicker removal, as shown in Figure 10. We
also find that only the 1st carrier was affected, which confirms our analysis that the flicker
interferes with the sub-band while using the same spectrum for data transmission.
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Figure 9. (a) Received signal r(t) (blue) and the corresponding estimated flicker signal e(t) (red); (b) a zoom-in view of a
segment of r(t) and e(t); (c) filtered signal y(t); (d) a zoom-in view of a segment of y(t).

(a) (b)

Figure 10. (a) Decoded constellation diagram at the 1st carrier before flicker removal; (b) Decoded
constellation diagram at the 1st carrier after flicker removal.

3.2. Results and Discussion

The BER was measured at varying distances from 1 to 2 m, see Figure 11. For reference
purposes, a light level (in lux) curve is also provided. The experimental results show that,
with the proposed flicker removal DSP solution, a 40 Mb/s link can be supported up to



Sensors 2021, 21, 1697 12 of 16

2 m with an illuminance level of ∼300 lux (minimum illuminance for indoor workplaces in
accordance with EN 12464-1 [43]), maintaining a BER below the 7% FEC limit. When the
flicker removal algorithm was not applied, the system performance was mainly limited by
the BER performance of the 1st sub-band and the overall BER level was close to the FEC
limit with a narrow margin. The effectiveness of the flicker mitigation was validated by the
improvement in the system performance and robustness.

In order to better demonstrate the system performance, the measured spectra of the
received signal and background noise at a distance of 1.4 m (with a light level of 600 lux
measured) are shown in Figure 12. The ten carriers can be clearly observed, with every
recovered constellation diagram from each carrier included in Figure 13. The corresponding
SNR curve is given in Figure 14 with the bit-loading pattern being plotted. As mentioned
earlier, the bit-loading pattern is determined at the longest distance and, therefore, the SNR
profile at the distance of 1.4 m can support quite clear constellation diagrams, as shown in
Figure 13. A video demonstrating the successful demodulation of the 10th carrier is also
provided as Supplementary Materials for interested readers.

Figure 11. Bit error rate (BER) performance and light level vs. distance.

10 = carrier index
9

8
7

6
5

4
3

21

Figure 12. Measured signal spectrum and background noise spectrum at the distance of 1.4 m.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 13. Demodulated constellation diagrams at the distance of 1.4 m for the (a) 1st carrier; (b) 2nd carrier; (c) 3rd carrier;
(d) 4th carrier; (e) 5th carrier; (f) 6th carrier; (g) 7th carrier; (h) 8th carrier; (i) 9th carrier; (j) 10th carrier.

Figure 14. The measured signal-to-noise ratio (SNR) profile and the bit-loading pattern at the distance
of 1.4 m.

Two major limiting factors for achieving higher Rb using the off-the-shelf LED panel
are observed. Firstly, the modulation bandwidth is limited to 10 MHz, because severe
distortion, which might be attributed to the LED’s nonlinearity and the parasitic in the
electronics, is incurred beyond 10 MHz. It could be a big issue when trying to reuse the
existing lighting sources in the applications of high-speed VLC standards, like G.9991 [18]
requiring a minimum bandwidth of 50 MHz. Secondly, the flicker that is caused by the
LED driver inevitably reduces the modulation depth or the transmitted optical power for
VLC signals, imposing a limit on the SNR and the achievable Rb. An improvement in data
rates is expected if the LED driver is optimised for VLC.
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4. Conclusions

The feasibility of upgrading the existing indoor LED-based lighting infrastructure
with add-on VLC functionality was validated by our demonstration system. With a bias-tee,
a minimum modification was applied to the large LED panel that was installed in the
ceiling to enable intensity modulation for simultaneous communication and illumination.
A transmission rate of 40 Mb/s was supported up to 2 m with a measured illuminance
level of ∼300 lux. The key factors preventing our system from achieving higher data rates
are the limited bandwidth of the LED panel and the flicker that is caused by the low-cost
LED driver. To combat those issues, we utilised the low-complexity MultiCAP modulation
to exploit the spectrum out of the 3-dB bandwidth and proposed a DSP-based solution to
remove the baseline wander effect that is caused by the flicker.

Supplementary Materials: The following are available at https://www.mdpi.com/1424-8220/21/5
/1697/s1, Video S1: vlc-panel-demo-multicap-last-carrier.
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