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Chapter 1
Data Security Challenges in Deep Neural
Network for Healthcare IoT Systems

Edmond S. L. Ho

Abstract With the advancement of IoT technology, more and more healthcare ap-
plications were developed in recent years. In addition to the traditional sensor-based
systems, image-based healthcare IoT systems become more popular since no spe-
cialized sensors are required. Combining with Deep Neural Network (DNN) based
automated diagnosis and decision-making systems, it is possible to provide users
with 24/7 health monitoring in real life. However, the high computational cost for
training DNNs can be a hurdle for developing such kind of powerful systems. While
cloud computing can be a feasible solution, uploading training data for the DNN
models to the cloud may lead to data security issues. In this chapter, we will review
some image-based healthcare IoT systems and discuss some potential risks on data
security when training the DNN models on the cloud.

1.1 Introduction

Nowadays, portal devices with high computational power, as well as high-speed
data transmission networks [12], are more accessible and affordable to the general
public. This certainly enables a wide range of serious applications to be developed to
improve our quality of life. In particular, such as environment is suitable for creating
healthcare IoT applications which usually consist of capturing health-related data
using sensors from the end-user. The data will then be uploaded to the cloud for 1)
automated analysis and diagnosis, and/or 2) informing the medical experts or carers
in a timely manner if abnormal health conditions are identified.

Examples of healthcare IoT systems in the literature include [17] in which heart-
beat sensor, body temperature sensor, room temperature sensor, CO sensor, and CO2
sensor were used for capturing health-related data in a hospital environment to serve
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as basic health signs monitoring system for patients. Chatterjee et al. [2] proposed
an IoT system for cardiovascular diseases risk assessment of the user based on phys-
iological parameters (age, gender, systolic and diastolic blood pressure, cholesterol,
diabetes and smoking habits). Gope and Hwang [11] highlighted the need for a
secure healthcare IoT system and proposed BSN-Care which is a secure IoT system
based on Body Sensor Network (BSN) technology [22]. In particular, a wide range of
sensors was used such a system, including Electrocardiogram (ECG), Electromyog-
raphy (EMG), Electroencephalography (EEG), Blood Pressure (BP), etc. The secure
IoT system is illustrated in Figure 1.1. In addition, both network security (e.g. secure
localization, authentication and anonymity) and data security (e.g. data integrity,
data freshness and data privacy) are considered when designing the system.

Fig. 1.1: The secure healthcare IoT system using Body Sensor Network (BSN)
technology illustrated in [11]. Image reproduced from [11].

Data protection is an important aspect in IoT systems [35] which is not only
specific to healthcare applications, but also all other systems that contain and transfer
sensitive personal information. For healthcare applications, however, data protection
and security become more important due to the fact that highly sensitive personal
information will be processed and transferred within the IoT systems. In particular,
encryption-based techniques have been widely used for protecting sensitive data
to be sent over the network. In [7], Elhoseny et al. proposed a hybrid encryption
system for securing secret medical data (such as the diagnostic results). The proposed
framework is illustrated in Figure 1.2. Specifically, the encryptionmethod is based on
a wide range of methods including Advanced Encryption Standard, Rivest, Shamir,
and Adleman algorithms, and the method hides the secret data in a cover image.
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In this chapter, we will focus on a less researched area. Firstly, we will review the
related research in image-based healthcare IoT systems (Section 1.2) which consists
of Deep Neural Network (DNN) as the core technology for automated diagnosis or
decision making. Next, different methods for attacking DNNs will be discussed in
Section 1.3.

Fig. 1.2: The framework for securing medical data transmission in [7]. Image repro-
duced from [7].

1.2 Image-based IoT Systems for Automated Diagnosis

Analyzing retinal images provide significant values to the healthcare sector since
a wide range of health disorders, such as atherosclerosis, diabetic retinopathy, and
congestive heart failure, can be predicted from those images. Recent work by Poplin
et al. [28] demonstrated the results on predicting the cardiovascular risk factors from
a large retinal fundus photographs dataset, which includes retinal fundus images from
48,101 patients from the UK Biobank (http://www.ukbiobank.ac.uk/about-biobank-
uk) and 236,234 patients from EyePACS (http://www.eyepacs.org). The proposed
models were validated using images from 12,026 patients from the UK Biobank and
999 patients from EyePACS. In [5], Das R. et al. proposed a low cost and portal
healthcare conceptual framework for acquiring retinal fundus images using a Head
Mounted Device (HMD). By combining such a framework with a mobile App for
Internet connection and deep learning for automated diagnosis, this can potentially
be a practical solution for developing countries that have limited access to low-cost
retinal image acquisition. In particular, the HMD conceptual image is illustrated in
Figure 1.3. The linear actuator will automatically adjust the length to ensure the
correct distance between the eyes and lenses can be maintained when capturing
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the retinal fundus images. Next, the acquired images will be sent to the automated
diagnosis system which is essentially a DNN-based image classification framework
(such as [28]) as cloud services. Finally, the predicted results will be sent to the
medical doctors and/or experts for further analysis. At the time of publishing [5], the
system is being translated into a smart healthcare application.

Fig. 1.3: The conceptual illustration of the proposed Head Mounted Device (HMD)
for capturing retinal fundus images in [5]. Image reproduced from [5].

Nowadays, the generality of IoT enables a wide range of smart applications to
be developed by connecting different types of sensors to the Internet which provide
data to be analyzed by automated systems and notify human experts in a timely man-
ner. However, data protection and privacy of the users are crucial factors to ensure
the applications are being safe to use. Data encryption is a natural solution for this
problem by protecting the data being read by unauthorized parties, but the additional
computation cost can greatly degrade the performance of the IoT system especially
for systems required to process high volume data. In [19], Jiang et al. proposed an
efficient framework for encrypting and diagnosing Diabetic Retinopathy (DR) from
retinal images using a camera sensor connected to a Raspberry Pi as a healthcare IoT
application. To reduce the computational cost for data encryption, somewhat homo-
morphic encryption (SHE) is used. Furthermore, parallel homomorphic evaluation
is performed by packing multibits into a single ciphertext through single instruction
multiple data (SIMD). By this, the computation time for homomorphic evaluation
and the transmission time for the cipher text can be reduced simultaneously. For
diagnosing DR, density-based clustering [37] is used to classify the retinal images in
a highly efficient manner. In summary, the proposed architecture provides a practi-
cal solution as a healthcare system with considerations on computational efficiency,
privacy protection, storage overhead and communication cost.

Liu et al. [24] proposed combining IoT and artificial intelligence for dental health-
care. In particular, an image-based dental health analysis system is implemented and
evaluated. The overview of the proposed framework is illustrated in Figure 1.5. Such
an architecture provides users with an in-home dental healthcare platform for sending
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Fig. 1.4: The overview of the proposed framework in [19]. Image reproduced from
[19].

color dental images (i.e. RGB images) using a mobile terminal (e.g. smartphone) to
the Smart Dental Services Layer for detecting dental diseases using a deep learning
framework. The AI Diagnosis of the Teeth framework is trained using image data
annotated with 7 types of dental diseases, including dental caries, dental uorosis,
periodontal disease, cracked tooth, dental calculus, dental plaque, and tooth loss. A
total of 12,600 clinical images were collected as training samples from 10 private
clinics. The core of the AI diagnosis framework is based on Mask R-CNN [14],
and image enhancement (such as balancing the dynamic range, edge, and color) is
required to achieve better performance. Experimental results show that the diagnosis
accuracy ranged from 90.1% to 100% for the 7 types of dental diseases and the mean
diagnosis time is reduced by 37.5% in the 1-month trial period in 10 private clinics.

In addition to the aforementioned specialized medical photography IoT systems,
there is also a huge potential for typical RGB image (e.g. captured using smartphones
[38], camcorders, etc) based IoT systems to be developed as healthcare applications.
For example, RGB videos (or RGB image sequences) can be used for predicting
cerebral palsy through clinical assessments such as General Movements Assessment
(GMA) [6]. The main focus of GMA is assessing the complexity and variability of
the general movements of the infant to predict if the nervous system is impaired
or not. Most of the current clinical practise still rely on highly trained clinicians to
inspect the RGB videos manually. This opens the door for automating this process
to:

• reduce subjectivity on the manual assessment
• improve efficiency
• monitor (24/7) the high-risk group such as infants born preterm [13].

A recent work proposed by McCay et al. [25] automate GMA by using computer
vision and machine learning techniques. Specifically, skeletal poses are extracted
from the video recordings of infant body movements in the pre-processing stage. An
example of the skeletal pose estimated from a video frame using OpenPose [1] is il-
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Fig. 1.5: The overview of the proposed framework in [24]. Image reproduced from
[24].

lustrated in Figure 1.6. Based on the skeletal poses which demonstrated encouraging
results in gait analysis [30] as a healthcare application, two new pose-based features,
namely Histograms of Joint Orientation 2D (HOJO2D) and Histograms of Joint
Displacement 2D (HOJD2D), are proposed to facilitate the classification process to
predict if the movement of the infant is considered as normal or abnormal. In partic-
ular, HOJO2D represents the distribution of the orientations of the body parts while
HOJD2D represents the distribution of the joint velocity. By fusing such features
extracted at each joint, the fused features can be used for representing movement at
different levels such as joint-level, limb-level and full body-level. With the use of
traditional classifiers such as k-nearest neighbor, Support Vector Machine (SVM)
and Ensemble classifier, encouraging result with 91.67% classification accuracy was
obtained.

To further improve the classification accuracy, McCay et al. extended the work
[26] by proposing 5 DNN architectures as shown in Figure 1.7. Specifically, the new
network architectures include fully-connected networks (Figure 1.7a), 1D convolu-
tional neural networks (Figure 1.7b and 1.7c) and 2D convolutional neural networks
(Figure 1.7d and 1.7e). Experimental results highlighted that the proposed DNN
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Fig. 1.6: An example of skeletal pose estimation results presented in [25]. Image
reproduced from [25].

classifiers are more robust than the traditional classifiers evaluated in [25], and the
1D convolutional neural networks achieved the best performance with the HOJO2D
and HOJD2D features.

(a) FCNet

(b) Conv1DNet-1 (c) Conv1DNet-2

(d) Conv2DNet-1 (e) Conv2DNet-2

Fig. 1.7: The 5 deep neural network architectures for automated prediction of cerebral
palsy proposed in [26], including the fully-connected layers based FCNet, 1D Con-
volutional Neural Network based Conv1DNet-1 and Conv1DNet-2, and 2D Convo-
lutional Neural Network based Conv2DNet-1 and Conv2DNet-2. Images reproduced
from [26].

.
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WhileMcCay et al. [25, 26] mainly focus on the automated diagnostic framework,
such an approach can be extended as an IoT application for healthcare by providing
the automated diagnosis as cloud services such as the architecture illustrated in
Figure 1.9. The use of skeletal pose sequence for the cerebral palsy prediction can
certainly lower the risk of leaking sensitive data in case of a data breach since it
will be difficult to trace the identity of the subject by only looking at the skeletal
poses. To further enhance the accessibility, the video capturing and pose estimation
can be implemented as a smartphone App such as the TensorFlow Lite PoseNet
(https://www.tensorflow.org/lite/examples, see Figure 1.8). This can possibly be used
as in-home monitoring IoT system.

Fig. 1.8: An example of skeletal pose estimation results obtained using TensorFlow
Lite PoseNet. Image reproduced from https://www.tensorflow.org/lite/examples.

Pose analysis can also be used in a smart office environment. In [15], Ho et al.
proposed an RGB-D camera based monitoring framework (Figure 1.10) to assess
the healthiness of the postures of the user in an office environment. Examples of
healthy and unhealthy postures are illustrated in Figure 1.11. With the advancement
of depth-sensing technology, RGB-D cameras such as Microsoft Kinect become
more and more affordable to make it feasible to incorporate such devices in IoT
systems. However, the 2.5D data captured from Microsoft Kinect can be noisy
and result in incorrect pose extraction (see Figure 1.12). To tackle this problem,
Ho et al. [15] proposed to compute an extended set of reliability values [31] of
the detected joint locations from Microsoft Kinect and incorporate those values
into the classification framework. By this, the reliability values will determine the
importance of each detected joint locations when classifying the input postures into
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Fig. 1.9: Extending the pose-based cerebral palsy prediction framework to a health-
care IoT system

different healthy/unhealthy classes. Experimental results show that the proposed
method outperformed the baselines in the study.

Fig. 1.10: The posture monitoring framework proposed in [15]. Image reproduced
from [15].

The aforementioned IoT systems take image or image sequence as input for
automated diagnosis. Therefore, the quality of the images is crucial to the success
of the systems. However, image quality can be difficult to control when the data is
captured at the user-end in which the ideal environment (such as lighting condition,
white balance, etc) is not available and the users are inexperienced in taking pictures.
To tackle this problem, More et al. [27] proposed a secure Internet of Healthcare
Things (IoHT) system which consists of a sparse aware with convolution neural
network (SA_CNN) for effective noise removal (Figure 1.13a) and a secure IoHT
architecture for medical data storage (Figure 1.13b). The proposed framework was
evaluated using various medical modalities and the experimental results show that
the new framework outperformed the related work [8, 4, 3, 41] on quantitative
measurements such as peak signal to noise ratio (PSNR), structural similarity index
(SSIM), and mean squared error (MSE).
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Fig. 1.11: Examples of health and unhealthy postures collected in [15]. Image repro-
duced from [15].

Fig. 1.12: Examples of joint locations detected using the Microsoft Kinect SDK
v1. It can be seen that the joint locations (such as the elbow location in the middle
column) are detected incorrectly. Image reproduced from [15].
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(a) The SA_CNN architecture

(b) The IoHT architecture for medical data storage

Fig. 1.13: The sparse aware convolution Neural Network (SA_CNN) architecture
and IoHT architecture for medical data storage proposed in [27]. Images reproduced
from [27].
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1.3 Data Security Issues in Image-based Deep Learning

With the outstanding performance in using deep learning in different research areas,
more andmore real-world applications start taking advantage of incorporatingDNNs
such as the IoT systems discussed in Section 1.2. However, the training process of
DNNs usually requires a high volume of training data as well as high computational
costs. As a result, cloud service providers including Google, Amazon and Microsoft
are offering cloud-based deep learning solutions which can be referred to asMachine
Learning as a Service (MLaaS). While such kind of services provides users with
the flexibility on the computational resources (i.e. computational power and storage
space), uploading training data to remote servers which are managing by external
companies may lead to data security problems. Xu et al. [39] recently reviewed
some of the data security issues and the solutions available currently, as well as
proposed a verifiable and privacy-preserving prediction protocol, namely SecureNet
for protecting the deep neural networks model and user privacy. In particular, [39]
focusing on typical DNN training processing depicted in Figure 1.14 which has an
input layer, a number of hidden layers and an output layer. In particular, the output
layer contains the prediction (e.g. class label for classification problems). The data
security issues are mainly related to attacking the DNN model training process
such that wrong prediction will be given as output. In the rest of this section, the
terminology from [39] will be used for explaining different types of attacks and
solutions.

Fig. 1.14: A general Deep neural network training process illustrated in [39]. Image
reproduced from [39].
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1.3.1 Terminology

1.3.1.1 Centralized Training

This refers to the training process will be done on a single server. Here a single
cloud server will be used for getting all training data from the user to complete the
DNN training process. In other words, the parameters of the resultant DNN model
are computed from the cloud server solely.

1.3.1.2 Collaborative Training

This refers to the training process will be done in a distributed manner. Each user will
train the DNNmodel separately while exchanging the learned model parameters. By
this, the ’final’ DNN model is trained in a ’collaborative’ manner.

1.3.1.3 Black-Box Attacker

The attacker can access the DNN model to generate the output (i.e. prediction).
However, the attacker does not know the details of the DNN model such as the
training data, network architecture and optimization procedures.

1.3.1.4 White-Box Attacker

The attacker can access the DNN model to generate the output (i.e. prediction) as
well as the details of the DNN model such as the training data, network architecture
and optimization procedures.

1.3.2 Poisoning Attack

The first type of attacks reviewed in [39] is the Poisoning attack. The idea is to have
’poisoned data’ in the training dataset such that that DNN model to be learned will
likely generate the wrong prediction. As illustrated in Figure 1.14, the parameters of
the DNN model is learned during backpropagation in which the gradient is updated
in order to minimize the loss term(s) of the model. It can be seen that if the training
data is being poisoned (or manipulated), the DNN model parameters will not be
learned correctly and it may lead to the wrong prediction.

In [18], Jagielski et al. presented a study on poisoning attack against linear
regression (Figure 1.15) and proposed an effective defence method, namely TRIM,
for those attacks. The poisoning attack is done by introducing poisoning points into
the training data. In particular, both white-box and black-box attackers scenarios
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were considered and the problems were formulated as a generic bilevel optimization
problem. Specifically, for white-box attackers, the outer optimization is responsible
for selecting the poisoning points to maximize the loss (opposite to the typical
training process which minimizes the loss) while the inner optimization is used for
training the regression model parameters based on the poisoned data manipulated
by the outer optimization. The black-box attacks follow the same formulation except
the training data has to be prepared by the attacker instead of using the ’real’ training
data.

To defend against the poisoning attacks, the proposed TRIM algorithm [18] not
only ignore (or remove) outliers (i.e. likely to be the poisoning points) from the
training data as in previous work, but also ignore inliers which are the poisoning
points that are having a similar data distributions as the real training data. This
is achieved by iterative updating the regression model parameters using a subset
of training data that has the lowest residuals. Experimental results show that the
TRIM algorithm can effectively defence poisoning attacks as the mean square errors
(MSEs) are within 1%when compared with the MSEs from the unpoisoned models.

Fig. 1.15: The system architecture for simulating the ’normal’ (Ideal world) and
’attack’ (Adversarial world) scenarios in [18]. Image reproduced from [18].

Suciu et al. [32] proposed the FAIL framework for evaluating the robustness
of machine learning models against poisoning and evasion attacks along 4 dimen-
sions: Features, Algorithms, Instances, and Leverage. The framework evaluates a
machine learning model by treating different knowledge levels (i.e. availability of
model details as in black-box and white-box attacks) as different scenarios and re-
turns the success rates of different attacks. An attack algorithm called StingRay is
further proposed which demonstrated the effectiveness of bypassing two existing
anti-poisoning defences. The main idea behind StingRay is to introduce poisoning
points while not affecting the overall classification performance of the DNN model.
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Specifically, given a target class of features to be misclassified as the goal of the
poisoning attack, StingRay will create poisoning samples that are based on a benign
sample from the training data. Next, a subset of the base sample will be replaced
by the features of the target class. This process will repeat until the target class of
features is being misclassified.

1.3.3 Evasion Attack

The second type of attacks reviewed in [39] is the Evasion attack, in which the
goal of the attack is to input carefully crafted samples (i.e. adversarial examples)
during the prediction (or testing) stage and lead to misclassification. In particular,
the adversarial examples can be classified correctly by human but not DNN models.
In Figure 1.16, Goodfellow et al. [9] demonstrated an adversarial example which led
to misclassification. Specifically, adversarial examples can be generated by adding
noise (in [9], the perturbation is based on the gradient of the cost function) to the
original input data (e.g. the ’original’ panda image in Figure 1.16 left). The resultant
adversarial example (Figure 1.16 right) will appear similar to the original image to
human eyes, but such input will lead to wrong classification result in DNN models
such as classifying this ’panda’ image as the ’gibbon’ class by GoogLeNet [33].

Fig. 1.16: An adversarial example (right) is created by perturbating the original image
(left) based on the gradient of the cost function in [9]. The adversarial example leads
to misclassification result on GoogLeNet [33]. Image reproduced from [9].

In the rest of this section, some popular techniques for generating adversarial
samples will be discussed. Readers are referred to a recent systematic review [40] as
well as the original publications for the details.

Szegedy et al. [34] investigated different properties of neural networks. From
their experiments, they found that input-output mappings learned by DNNs are
discontinuous. Based on such an interesting property, they proposed an optimization
technique to generate adversarial samples. Specifically, the optimization search for
the required perturbation by minimizing the probability of images being classified
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as the correct class. Adversarial samples were generated successfully for attacking
various networks (MNIST, QuocNet [23], AlexNet [20]) in the study. Adversarial
examples generated for AlexNet [20] are shown in Figure 1.17. It can be seen that
the original images and adversarial examples are indistinguishable by a human, but
DNN models will misclassify the adversarial examples.

Fig. 1.17: An adversarial examples generated for AlexNet [20] using the method
proposed in [34]. In each set of samples (a and b), the images on the left column are
the original images while the right column contains the adversarial examples which
lead to misclassification. The middle column illustrates the differences between the
original image and the adversarial example magnified by 10 times. Image reproduced
from [34].

Goodfellow et al. [9] proposed a method called fast gradient sign method (FGSM)
which is more computationally efficient than the expensive optimization used in [34].
Specifically, an adversarial example G ′ can be generated adding perturbation [ to the
input image G based on the sign of the gradient of the cost function in the training
process:

[ = n B86=(∇G� (\, G, H)) (1.1)

where H is the target associated with G, \ is themodel parameters, � (\, G, H) is the cost
of training the network and n is used for controlling the strength of the perturbation.
An example of the adversarial example generated by this method is visualized in
Figure 1.16. Since then, there are variants of the FGSM method proposed in the
literature. For example, Tramèr et al. [36] introduced randomness when perturbing
the input data, Rozsa et al. [29] replaced the sign of the gradient with the raw gradient
value, and Kurakin et al. [21] further extend FGSM to maximizing the target class
probability while generating adversarial examples.
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1.4 Conclusion

In this chapter, we reviewed a wide range of IoT-based healthcare systems. With the
advancement of technology, such as more affordable and portal cameras and better
performance smartphones, it is now feasible to capture images from the user-end
using portable devices in healthcare IoTs. Combiningwith image-based deep learning
frameworks on the cloud for diagnosis, fully or semi-automated IoT solutions can be
realized. While this opens the door for a wide variety of image-based healthcare IoTs
to be utilized in real life, we also review some of the potential risks for the image-
based deep learning framework which may lead to making the wrong decision. It
is advised that IoT solution developers should understand more about the risks and
counter those attacks accordingly. For example, Goodfellow et al. [10] and Huang
et al. [16] improve the robustness of the DNN models by adding a small number of
adversarial examples to the training set iterative. By this, the model to be trained
will be more robust again the adversarial examples that may be injected by attackers
during the prediction stage.
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