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Immunization of networks with limited knowledge and temporary immunity
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(Dated: 21 April 2021)

Modern view of network resilience and epidemic spreading has been shaped by percolation tools from statistical

physics, where node and edges are removed or immunized randomly from a large-scale network. In this paper we

produce a theoretical framework for studying targeted immunization in networks, where only n nodes can be observed

at a time with the most connected one among them being immunized and the immunity it has acquired may be lost

subject to a decay probability ρ . We examine analytically the percolation properties as well as scaling laws, which un-

cover distinctive characters for Erdős-Rényi and power-law networks in the two dimensions of n and ρ . We study both

the case of fixed immunity loss rate as well as an asymptotic total loss scenario, paving the way to further understand

temporary immunity in complex percolation processes with limited knowledge.

Percolation theory has been extensively employed to study
network resilience and spread of infectious diseases. It has

successfully explained important behaviors like Achilles
heals of scale-free networks and targeted immunization. It

is recently reported that partial observation ability in the
targeted immunization strategy can effectively influence

the network robustness. In this paper, we add a further di-
mension to the picture by incorporating temporary immu-

nity, where a node acquires immunity at one step may lose
it later. By accommodating limitations in space (knowl-

edge of node) and time (immunity of node), we investi-
gate percolation properties and scaling lows analytically

for networks with arbitrary degree distributions. Distinc-
tive characteristics for targeted immunization in Erdős-

Rényi networks and power-law networks have been re-
vealed, extending, for example, the well-known Achilles
heals phenomenon under the two dimensions of limitation.

We solve for both cases of fixed fading rate of immunity
and asymptotic total loss of immunity. Our results suggest

that increasing level of knowledge in targeted immuniza-
tion may not be as effective as one would expect in fighting

some epidemics like COVID-19.

I. INTRODUCTION

In recent years, our understanding on dynamical phenom-

ena of large networks against adverse events such as mali-

cious attacks and outbreak of infectious diseases has expanded

considerably. Network robustness and disease epidemics have

been extensively probed by percolation theory from statistical

physics1–4, where nodes and edges are randomly removed or

immunized to reduce connectivity and thereby prevent dam-

age from spreading through the network structure. Targeted

immunization5,6 is highly efficient in that a fraction of key

nodes (mainly based on metrics like degree and betweenness)

a)Electronic mail: yilun.shang@northumbria.ac.uk.

is immunized to effectively fragment the network and inhibit

an endemic stage of the population.

One common limitation of targeted immunization strategies

is that they are dependent on the full network topology infor-

mation and the metrics involved are often badly skewed when

some nodes and edges are not observed7–9. Moreover, as-

suming complete network data is uneconomical and even im-

practical for dealing with large-scale networks in many real-

life situations. A recent work10 has developed a percolation-

based theoretical framework for targeted immunization un-

der limited knowledge, where the degree information of a

number n nodes is obtained at each step and the node with

highest degree of them is immunized, i.e. removed. The

process continues until 1− p fraction of nodes are removed

from the network. This framework interpolates between a

random immunization with n = 1 and a traditional targeted

immunization with n = N. Here, N tending to infinity is

the network size, mimicking a large-scale network. Inter-

estingly, it is revealed that with a relatively small value of n

the immunization strategy may approximate the targeted im-

munization with full network information. Similar partially-

observed networks have also been studied for problems like

targeted immunization11,12, attack robustness8,13, and influ-

ence maximization14. These works, however, are from the

perspective of blinding a portion of nodes through random

or some specific sampling schemes, which is related but not

equivalent to the limited knowledge notion studied in10. A

mirror process with tunable limited knowledge is investigated

very recently in15.

Another issue regarding the immunization strategy is the

loss of immunity. The immunity received for a node by vac-

cination or rehabilitation may not be permanent due to im-

perfect immunity or mutations of a virus, which lead to a

different disease strain and mitigate the immunity. Exam-

ples include influenza, measles, rubella mumps, and the recent

COVID-1916. An analogous mechanism for fear propagation

in an emergency over the crowd is also well-known in social

psychology17. In the literature of epidemic dynamics, tempo-

rary immunity has a long history and has been intensively in-

vestigated in compartmental models such as SIRS and SEIRS

models16,18,19, where a recovered individual may become sus-
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Immunization of networks with limited knowledge and temporary immunity 2

ceptible again at a certain rate. A different active line of re-

search focuses on network self-healing by allowing various

strategic recovery of damaged nodes or links; see e.g.20–22.

However, the above works rely on complete network data or

knowledge at a specific level to determine the accurate final

outbreak size.

Here, we look into the interplay and influence of partially

observed network and temporary immunity on networks mo-

tivated by the above consideration. The paper presents a con-

cise analytical percolation theory for targeted immunization,

where the degrees of n nodes are obtained at each step and

we immunize the one with highest degree with a temporary

immunity extending the framework of10. Both fixed immu-

nity fading rate ρ and asymptotic complete loss rule ρ(t) are

analyzed for networks with arbitrary degree distributions. We

show that although a smaller level of knowledge n is needed

for Erdős-Rényi networks to achieve full targeted immuniza-

tion effect than for power-law networks for a given ρ , the lat-

ter are more tolerant to the loss of immunity when ρ is small

for a given n. This observation has practical implications as

power-law like networks are prevalent. It is revealed that the

effectiveness of targeted immunization is markedly affected

by immunity loss for networks with different structure charac-

teristics such as average degree and degree exponents. When

dynamic decay of immunity is taken into consideration, we

find that the level of knowledge largely has little effect on the

percolation properties, regardless of the degree distribution of

the underlying interaction network.

II. ANALYTICAL FRAMEWORK OF NETWORK
IMMUNIZATION

Consider a configuration model1 of network G(V,E) with

degree distribution P(k) = P(k;0) at time step t = 0, which is

the probability of a node having k neighbors initially. Here, by

convention in graph theory, V and E are the sets of nodes and

edges, respectively. Denote by N = |V | the number of nodes

in G. For k ≥ 0, the initial cumulative distribution function

is defined as F(k) = F(k;0) = ∑k
s=0 P(s), which indicates the

probability of a node having degree no more than k.

Following the limited knowledge setting10, we assume n

(1 ≤ n ≤ N) random nodes are observed at each time step t

and the one with highest degree is immunized (i.e. removed)

from the network. Moreover, given a node is immunized, it

has a probability ρ to revert to existence and hence may be

observed again later. The probability ρ is potentially a time-

dependent function to reflect the decay of immunity induced

by ambient factors16, which we will discuss in Section III. For

the time being, we assume that ρ is a constant. The above pro-

cess continues until a fraction of 1− p nodes are immunized

(regardless of whether it will be recovered) from G(V,E). Ob-

viously, the case ρ = 0 suggests perfect immunity10,15 and the

other extremal case of ρ = 1 is trivial as no nodes will be re-

moved and the network remains intact.

To calculate the relative fraction P∞ of the giant compo-

nent and the percolation threshold pc, we first assume that if

an immunized node remains in the immunized, i.e. deleted,

FIG. 1. At step t, n = 2 nodes (solid) are observed. At the next step,

the node with degree four is immunized, i.e. deleted, (not affect-

ing half-edges connected to its four neighbors) if immunity retains,

otherwise the immunized node will be recovered.

state (which happens with probability 1 − ρ), we only re-

move the node but keep the remaining half-edges of its neigh-

bors; c.f. Fig. 1. Denote by P(k;t) the degree distribution

of a random node in the remaining network at time t. The

corresponding cumulative distribution function is given by

F(k;t) = ∑k
s=0 P(s;t), which indicates the probability that a

remaining node at time t has degree less than or equal to k.

In the light of the order statistics (c.f.23 (Thm. 8.1)), the de-

gree distribution Pi(k;t) of the observed highest-degree node

at time t is equal to

F(k;t)n −F(k− 1;t)n = ∆(F(k;t)n), (1)

for k ≥ 0, where ∆ is the difference operator with respect to

degree k. By definition, P(k;t) = ∆F(k;t). Moreover, for any

t we set F(−1;t) = 0 since Pi(0;t) = F(0;t)n. Recall that

given a node is immunized (i.e. removed), it will be recovered

with probability ρ . Let N(k;t) represent the number of nodes

having degree k in the remaining network at t. It follows that

N(k;t + 1) = N(k;t)−Pi(k;t) · (1−ρ) (2)

since we only remove nodes but not edges.

In the continuous limit, by using (1) and (2) we observe that

∂N(k;t)

∂ t
=− (1−ρ)∆(F(k;t)n)

=(N − t(1−ρ))
∂P(k;t)

∂ t
− (1−ρ)P(k;t) (3)

since N(k;t) = (N − t(1−ρ))P(k;t). Therefore,

∆

(

− (1−ρ)F(k;t)+ (N − t(1−ρ))
∂F(k;t)

∂ t

+(1−ρ)F(k;t)n

)

= 0. (4)

Noting F(−1;t) = 0 for t ≥ 0, we derive from (4) that for

k ≥ 0,






(N − t(1−ρ)) ∂F(k;t)
∂ t

= (1−ρ)F(k;t)− (1−ρ)F(k;t)n, t > 0,
F(k;0) = F(k).

(5)
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Immunization of networks with limited knowledge and temporary immunity 3

When n > 1, by directly integrating (5) we arrive at

F(k;t) =
(

1+(F(k)1−n − 1)

· e
(n−1) ln

(

N−t(1−ρ)
N

)

)− 1
n−1

. (6)

Since (1− p)N = t, the expression (6) can be recast as

Fp(k) =
(

1+(F(k)1−n − 1)(p+ρ(1− p))n−1
)− 1

n−1 , (7)

where Fp(k) is the cumulative distribution of the degree of

a random remaining node after a 1− p fraction of nodes are

immunized (regardless of whether immunity loses). In the

case of n = 1, taking the limit n → 1+ in (7) yields Fp(k) =
F(k) as one would expect.

The probability of a randomly chosen node in the remaining

network having degree k, when a fraction of 1− p nodes are

immunized (regardless of whether immunity loses), is

Pp(k) = ∆Fp(k) = Fp(k)−Fp(k− 1). (8)

Let u be the probability that a random edge does not lead to

the giant component. We have

1− u =
∞

∑
k=0

kP(k)

〈k〉
P(O|k)(1− uk−1), (9)

where P(O|k) is the probability that a node is in the remaining

network given it has degree k. Since edges are retained during

the process, P(k)P(O|k) = (1− (1−ρ)(1− p))Pp(k) = (p+
ρ(1− p))Pp(k). By (9) we obtain

1− u =
p+ρ(1− p)

〈k〉

∞

∑
k=0

kPp(k)(1− uk−1). (10)

The fraction of giant component can be derived as follows.

P∞ =
∞

∑
k=0

P(k)P(O|k)(1− uk)

= (p+ρ(1− p))
∞

∑
k=0

Pp(k)(1− uk), (11)

where u is determined by solving (10). Clearly, if we remove

all superfluous half-edges, P∞ will not be affected. Moreover,

we note that the critical value pc occurs when (10) starts to

have solution u < 1. Equating the derivatives of both sides of

(10) at u = 1 gives the critical occupation probability pc as

follows:

〈k〉 = (pc +ρ(1− pc))
∞

∑
k=2

k(k− 1)Ppc(k). (12)

When ρ = 1, the network G remains at its initial status. For

any n, we have Fp(k) = F(k) and Pp(k) = P(k) by (7) and (8).

It then follows from (10) and (11) that the relative size of the

giant component

P∞ =
∞

∑
k=0

P(k)(1− uk), (13)

where u satisfies

u =
∞

∑
k=1

kP(k)

〈k〉
uk−1. (14)

This recovers the classical results for configuration model24

(Eqs. (34) and (35)) presented in the form of generating func-

tions. Moreover, setting ρ = 1 in (12), we obtain the equality

〈k〉=
∞

∑
k=2

k(k− 1)P(k), (15)

which agrees with24 (Eq. (32)), pinpointing the phase transi-

tion at which a giant component first emerges.
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FIG. 2. (a) The giant component fraction P∞ for ER networks with

〈k〉 = 5 and N = 107 as a function of occupation probability p. The

points represent numerical simulations for ρ = 0 (blue) and ρ = 0.3
(red) with n = 1 (circles), n = 2 (squares), and n = N (triangles).

(b) The percolation threshold pc as a function of n for ρ = 0 (blue

circles), ρ = 0.1 (green pentagrams), ρ = 0.2 (magenta triangles),

ρ = 0.3 (red diamonds), ρ = 0.4 (yellow squares), and ρ = 0.5 (cyan

hexagrams). Solid curves are analytical calculations.

Erdős-Rényi (ER) random networks feature a degree distri-

bution P(k) = e−〈k〉〈k〉k/k! with a single parameter 〈k〉 being

its average degree. The analytical and numerical results for

P∞ are shown in Fig. 2(a) with respect to different knowledge

level n and immunity decay probability ρ . As one can see

from the figure, the increase of n makes the network more vul-

nerable as high degree nodes are more likely to be removed,

while the increase of ρ makes it more robust (and more harm-

ful from the perspective of virus immunization). The influ-

ence of ρ for different n can be better appreciated in Fig. 2(b).

For a given ρ , pc saturates at a plateau around n = 10, mean-

ing that higher level of knowledge is essentially superfluous

in terms of the percolation threshold pc. Interesting, pc ap-

proaches zero quickly for a relatively small ρ . For example,

pc is close to zero when ρ = 0.5 for n less than around 10. It

seems that ρ ≈ 0.4 achieves the highest gradient of pc for the

ER networks in consideration.

The influence of network density on robustness is shown in

Fig. 3 for ER networks with different average degrees. At a

given decay probability ρ , denser networks are more robust,

i.e., have smaller pc, as one would expect. When ρ = 0.3,

for example, ER networks with average degree greater than

about 6 are extremely robust against the targeted immuniza-

tion strategy with knowledge level n = 2.
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FIG. 3. The percolation threshold pc for ER networks as a function

of average degree 〈k〉 with n = 2. The points represent numerical

simulations for ρ = 0 (blue), ρ = 0.1 (green), ρ = 0.2 (magenta),

and ρ = 0.3 (red). Solid curves are analytical calculations.
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ρ=0
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FIG. 4. (a) The giant component fraction P∞ for power-law networks

with degree exponent γ = 2.4, kmin = 2, kcut = 3000 and N = 107 as a

function of occupation probability p. The points represent numerical

simulations for ρ = 0 (blue) and ρ = 0.3 (red) with n = 1 (circles),

n = 2 (squares), and n = N (triangles). (b) The percolation threshold

pc as a function of n for ρ = 0 (blue circles), ρ = 0.1 (green penta-

grams), ρ = 0.2 (magenta upward triangles), ρ = 0.3 (red diamonds),

ρ = 0.4 (yellow squares), ρ = 0.5 (cyan hexagrams), ρ = 0.6 (pur-

ple left triangles), ρ = 0.7 (brown right triangles), and ρ = 0.8 (grey

downward triangles). Solid curves are analytical calculations.

In Fig. 4 we show the counterpart results for power-law

networks with degree distribution P(k) ∝ k−γ , where the de-

gree exponent γ = 2.4, minimum degree kmin = 2 and cut-

off kcut = 3000. Comparing with ER networks in Fig. 2, we

have the following observations. Firstly, it generally requires a

larger n (especially when ρ is large) to near the level of pc for

targeted immunization with complete knowledge (i.e., n=N).

This confirms and extends the observation in10,15. Secondly,

for a given pair of ρ and n, the power-law networks generally

have a much higher pc than the ER networks although both

networks considered here have similar density (i.e., 〈k〉 ≈ 5).

For instance, for ρ = 0.5 and n = 20, pc ≈ 0.5 in Fig. 4(b)

while pc < 0.1 in Fig. 2(b). The discrepancy is more promi-

nent for larger n. This echoes the well-known robustness and

fragility hallmark of scale-free networks25, but here two addi-

tional dimensions have been refined in terms of targeted im-

munization. Note that even for the case of ρ = 0, such effect

of n was not revealed previously in10. Thirdly, the variation

of pc with respect to ρ is very gentle for small ρ , and the top

of the gradient of pc is achieved at a higher value of ρ ≈ 0.7
here compared to the situation in ER networks. This indi-

cates that (at a given level n of knowledge) power-law net-

works are less sensitive to the loss of immunity during the ini-

tial stage compared to ER networks. A relevant insight from

this ‘higher-order’ observation is that, in many real-world net-

works (which often feature a power-law like distribution), a

low level of loss in immunity is likely to be tolerated.

2.2 2.6 3 3.4
0

0.2

0.4

0.6

0.8

γ

p c

ρ=0.1

ρ=0

ρ=0.3ρ=0.2

FIG. 5. The percolation threshold pc for power-law networks as a

function of degree exponent γ with n = 3. The points represent nu-

merical simulations for ρ = 0 (blue), ρ = 0.1 (green), ρ = 0.2 (ma-

genta), and ρ = 0.3 (red). Solid curves are analytical calculations.

In Fig. 5, we show the critical occupation probability pc

with respect to a range of degree exponents γ for power-law

networks. As larger γ in our construction means sparser net-

works, pc grows with the increment of γ (at any given ρ).

This is similar with the observation in Fig. 3 for ER net-

works. From Fig. 3 and Fig. 5, we know that the influence of

immunity loss on robustness (and hence the effectiveness of

targeted immunization) is clearly noticeable for both homo-

geneous and heterogeneous networks across the spectrum of

network density and degree exponent.

Next, we examine the scaling law of the percolation thresh-

old pc in the limit of n→ ∞. Let p∗c = pc(n → ∞). The critical

occupation probability evolves following (see Appendix A)

pc ∼ p∗c −
a

n
e−bn. (16)

Here, p∗c is determined by the following

(1−ρ)p∗c =F(k1)−ρ

+
1

k1k2

(

〈k〉−
k1

∑
k=2

k(k− 1)P(k)

)

, (17)

where k2 is the smallest degree satisfying F(k) ≥ p∗c +ρ(1−
p∗c) and k1 = k2−1. The factor a in (16) is a constant given by

a = 2(1− ρ)−1[p∗c + ρ(1− p∗c)]k3/(k1k2) and the decay rate

b = mink{| ln(p∗c + ρ(1− p∗c))− lnF(k)|}. By the definition

of k1 and k2, the minimum rate b is attained at k = k1 or k = k2

since F(k) is monotonic. The degree k3 is the number k that

attains the minimum rate b (see Appendix A).

Fig. 6(a) and Fig. 6(b) present the analytical and simula-

tion results for ER networks and power-law networks, respec-

tively. Regardless of the specific percolation threshold pc and

immunity fading rate ρ , we find that the discrepancy follows

a universal scaling law pc− p∗c ∼ n−1 for small values of n for

both types of networks.
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FIG. 6. The scaling law of |pc− p∗c | for (a) ER networks with 〈k〉= 5

and (b) power-law networks with degree exponent γ = 2.4, kmin = 2,

kcut = 3000, and N = 107 with respect to n. The points represent

numerical simulations for ρ = 0.1 (green pentagrams) and ρ = 0.5
(cyan hexagrams). Solid curves are analytical calculations.

III. ANALYSIS OF AN ASYMPTOTIC COMPLETE LOSS
OF IMMUNITY

In this section, we conduct an analysis for a type of loss of

immunity characterized by a time-varying function ρ(t) with

limt→∞ ρ(t) = 1. In other words, immunity will be lost totally

as time goes on. This is almost always the case in reality. For

example, when fitting model to data, it is recently revealed that

two corona viruses have effective immunity duration around

60 weeks16. Specifically, we here consider the following im-

munity decay function

{

ρ(t) = 1− t−
1
α , t ≥ 1;

ρ(0) = 0,
(18)

where α > 1 is a decay parameter. This function makes it

amenable to analytical solutions.

With a time-dependent ρ(t), we can obtain the following

initial value problem for F(k;t) for any k ≥ 0 generalizing the

system (5):







(N − t(1−ρ(t)))
∂F(k;t)

∂ t
= (1−ρ(t))F(k;t)

−tρ ′(t)F(k;t)− (1−ρ(t))F(k;t)n, t > 0,
F(k;0) = F(k).

(19)

In view of (18), by setting t = 1 and ρ = 0 in (6), we have

F(k;1) =
(

1+(F(k)1−n − 1)

· e(n−1) ln(N−1
N )
)− 1

n−1
. (20)

We now assume n = o(N), which is relevant to most realis-

tic large-scale networks. It is direct to check that
(

N−1
N

)n−1
→

1 as N tends to infinity. Hence, F(k;1) = F(k) by (20). In-

voking (18), we obtain from (19) that

{

dF

(1− 1
α )F−Fn

= t−
1
α dt

N−t1− 1
α
, t > 1,

F(k;1) = F(k).
(21)

The solution can be expressed as (see Appendix B)

F(k;t) =
( α

α − 1

)− 1
n−1

·
[

1+
(α − 1

α
F(k)1−n − 1

)

· e(n−1) ln
(

N−t
α−1

α
N−1

)

]− 1
n−1

. (22)

Since (1− p)N = t and n = o(N), we obtain

(n− 1) ln
(N − t

α−1
α

N − 1

)

∼−
n(1− p)

α−1
α

N
1
α

→ 0, (23)

as N →∞. It follows from (22) and (23) that F(k;t)∼F(k) for

t ≥ 1. In view of the initial condition at t = 0 in (19), we have

F(k;t)∼ F(k) for t ≥ 0. Or equivalently, Fp(k)∼ F(k) for all

p ∈ [0,1]. This means that when immunity is lost gradually

following the function of (18), any knowledge of n = o(N)
nodes literally makes no difference for targeted immunization.

This result is independent of the degree distribution of the un-

derlying network. It is in sharp contrast with the observation

in Section II for a fixed immunity fading rate ρ (especially

for a small ρ , e.g. the case of ρ = 0 studied in10). The im-

portant caveat here is that increasing the knowledge level in

targeted immunization may not be as effective as one might

be expecting when dealing with diseases like COVID-19.

IV. CONCLUDING REMARKS

In conclusion, we have developed a mathematical frame-

work of targeted immunization for studying network immu-

nization with limited knowledge and temporary immunity.

The limited knowledge of the host, where only n nodes are

observed at a time, is complicated with the fading immunity

of each immunized node. Percolation properties have been

solved exactly for random networks with arbitrary degree dis-

tributions. Under a fixed decay probability of immunity ρ , we

reveal the distinctive characteristics for targeted immunization

in ER networks and power-law networks under two dimen-

sions of n and ρ . While, given ρ , a much smaller level of

knowledge n is needed for ER networks to achieve full tar-

geted immunization effect than for power-law networks, the

latter turn out to be more tolerant to the loss of immunity when

ρ is small for a given n. In the case of asymptotic complete

loss of immunity, we find that the level of knowledge is largely

unaffected, which is irrespective of the degree distribution of

the underlying interaction network. Our results suggest per-

tinent insights to network robustness and virus immunization

in realistic complex processes, where limited knowledge and

decay of immunization are well evidenced.

An important dimension in dealing with disease control and

prevention in public health and epidemiology is the time as-

pect. Percolation theory, however, predominantly focuses on

final outbreak size. An interesting direction would be to con-

sider the counterpart of our framework in disease transmission

models with immunization strategy. A standard SIRS model
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Immunization of networks with limited knowledge and temporary immunity 6

for example follows the dynamics:











dS(t)
dt

=−β S(t)I(t)+λ R(t),
dI(t)

dt
= β S(t)I(t)−κI(t),

dR(t)
dt

= κI(t)−λ R(t),

(24)

where S, I, R represents the fraction of susceptible, infected

and recovered members, respectively, and β , κ , λ character-

izes the infection rate, recovery rate and immunity loss rate,

respectively, in a mass action process. The time evolution of

such a system is well known. A non-vanishing infectedness,

for example, indicates that the immunization strategy is not

effective and the system enters into an endemic state.

It is natural to view λ on par with our parameter ρ , while

β and κ can be closely related to the contact network topol-

ogy and the immunization strategy. The parameters β and

κ should be designed as functions of certain pertinent vari-

ables. Some variations of the design of parameters can be

found in e.g.26,27. The way to correlate epidemic models with

the present theory framework and to explore the time evolu-

tion aspect would be interesting future work.

APPENDIX A: ASYMPTOTIC BEHAVIOR OF pc AS n → ∞

To investigate the convergence of pc with respect to n from

(12), we will first study that of Fp(k) using (7). Write Fp(k) =
F∗

p (k)+ δp(k), where F∗
p (k) is the constant leading term and

δp(k) is vanishing as n → ∞.

For small k satisfying F(k)< p+ρ(1− p), we derive

Fp(k)∼
(

1+
( p+ρ(1− p)

F(k)

)n

− (p+ρ(1− p))n
)− 1

n

∼
F(k)

p+ρ(1− p)

(

1+
( F(k)

p+ρ(1− p)

)n)− 1
n

∼
F(k)

p+ρ(1− p)
exp
{

−
1

n

( F(k)

p+ρ(1− p)

)n}

∼
F(k)

p+ρ(1− p)
−

1

n
exp
{

− n ln
( p+ρ(1− p)

F(k)

)}

.

(A1)

For F(k)→ p+ρ(1− p) satisfying [(p+ρ(1− p))/F(k)]n →
1, set ξ = 1 − (p + ρ(1 − p))/F(k). Given [(p + ρ(1 −
p))/F(k)]n = (1− ξ )n ∼ 1− nξ , we have

Fp(k)∼
(

1+
( p+ρ(1− p)

F(k)

)n

− (p+ρ(1− p))n
)− 1

n

∼
(

2− n

(

1−
p+ρ(1− p)

F(k)

)

− (p+ρ(1− p))n
)− 1

n

=exp
{

−
1

n
ln2−

1

n
ln
(

1−
n

2

(

1−
p+ρ(1− p)

F(k)

))

−
1

2
(p+ρ(1− p))n

}

∼1−
ln2

n
+

1

2

(

1−
p+ρ(1− p)

F(k)

)

. (A2)

For large k satisfying p+ρ(1− p)< F(k)< 1,

Fp(k)∼
(

1+
( p+ρ(1− p)

F(k)

)n

− (p+ρ(1− p))n
)− 1

n

∼exp
{

−
(p+ρ(1− p))n

nF(k)n
+

(p+ρ(1− p))n

n

}

∼1−
(p+ρ(1− p))n

nF(k)n
+

(p+ρ(1− p))n

n

∼1−
1

n
e−n[lnF(k)−ln(p+ρ(1−p))]. (A3)

When F(k) = 1, we clearly have Fp(k) = 1.

Consequently, the leading term of Fp(k) can be given by

F∗
p (k)∼

{

F(k)
p+ρ(1−p) , F(k)< p+ρ(1− p),

1, F(k)> p+ρ(1− p),
(A4)

and the vanishing error term is

δp(k) =

{

− 1
n
e−b(k)n, F(k)< 1,

0, F(k) = 1,
(A5)

where the decay rate is b(k) = | ln(p+ρ(1− p))− lnF(k)|.
With the decomposition the distribution Fp(k) as above,

we then investigate the asymptotic behavior of the critical

occupation probability pc. Define k1 = maxF(k)<p+ρ(1−p)k,

k2 = minF(k)≥p+ρ(1−p)k and k3 = minF(k)=1 k. Employing

(12), (A4) and (A5), we obtain

〈k〉

pc +ρ(1− pc)

=
∞

∑
k=2

k(k− 1)∆Fpc(k)

=
∞

∑
k=2

k(k− 1)∆F∗
pc
(k)+

k3

∑
k=2

k(k− 1)∆δpc(k)

∼
k1

∑
k=2

k(k− 1)
P(k)

pc +ρ(1− pc)
+ k1k2

(

1−
F(k1)

pc +ρ(1− pc)

)

− 2
k3

∑
k=1

kδpc(k). (A6)

Let p∗c = limn→∞ pc and express pc as pc = p∗c + δc, where

constant p∗c is the leading term and the next term δc tends to

zero as n → ∞. We solve p∗c via the following equation

〈k〉

p∗c +ρ(1− p∗c)
=k1k2

(

1−
F(k1)

p∗c +ρ(1− p∗c)

)

+
k1

∑
k=2

k(k− 1)
P(k)

p∗c +ρ(1− p∗c)
, (A7)

where k1 and k2 are determined by p∗c herein, and they are

independent of n. Employing the Taylor series at p∗c , (A6) and

(A7), we obtain

δc ∼ â

k3

∑
k=1

kδp∗c
(k), (A8)

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
45

44
5



Immunization of networks with limited knowledge and temporary immunity 7

where â = 2(1 − ρ)−1(p∗c + ρ(1 − p∗c))/(k1k2). Thanks to

(A5) and the monotonicity of F(k), it is clear that the dom-

inant decay rate becomes b = mink b(k) = mink{| ln(p∗c +
ρ(1− p∗c))− ln F(k)|}, where the optimum is achieved at k1

or k2. Pulling these observations together, we have

pc ∼ p∗c −
âk3

n
e−bn (A9)

as n → ∞, where k3 is the degree k that achieves the minimum

rate b.

APPENDIX B: SOLVING THE SYSTEM (21)

It is relatively straightforward to solve this system by inte-

gration. Replace t with s on the right-hand side of the equa-

tion and integrate it over the interval [1, t] with respect to s.

We have

∫ t

1

s−
1
α ds

N − s1− 1
α

= c1 −
α

α − 1
ln
(

N − t1− 1
α
)

(B1)

for some constant c1. Integrate the left-hand side of the equa-

tion similarly gives

∫ t

1

dF

(1− 1
α )F −Fn

=
α

α − 1

∫ t

1

1

F
dF +

α

α − 1

∫ t

1

Fn−2

1− 1
α −Fn−1

dF

=c2 +
α

α − 1
·

1

n− 1
ln
( Fn

(

1− 1
α

)

F −Fn

)

, (B2)

for some constant c2. Equating (B1) with (B2), we derive

F(k;t) =
[ α

α − 1

(

1+ c3e
(n−1) ln

(

N−t
α−1

α
)

)]− 1
n−1

. (B3)

for some constant c3. Setting t = 1 in (B3) and use the initial

condition we arrive at

c3 =
(α − 1

α
F(k)1−n − 1

)

· e−(n−1) ln(N−1), (B4)

which readily yields the solution.
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