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Abstract 

Graphitic carbon nanoparticles are in high demand for sensing, health care, and 

manufacturing industries. Physical vapor deposition (PVD) methods are advantageous for in-

situ synthesis of graphitic carbon particles due to their ability to produce large area 

distributions. However, the carbon particles can agglomerate, irrespective of the PVD method, 

and form coagulated structures while growing inside the vacuum chamber. The random shapes 

and sizes of these particles lead to non-uniform properties and characteristics, hence making 

them less attractive for numerous industrial applications, such as energy storage batteries and 

structural health monitoring. Therefore, the in-situ synthesis of isolated carbon particles 

produced in a single-step PVD process having control over size, shape, and large area 

distributions has remained inspiring for the past 30 years. This article gives an overview of 

characteristics, applications, industrial impact, and global revenue of graphite particles. A 

critical review on in-situ growth of graphitic carbon particles with different PVD methods is 

described with selected examples. A comprehensive summary compares the capability of 

different PVD techniques and corresponding carbon resources to produce graphitic particles 

with numerous sizes and shapes. Analysing the outputs of various PVD methods, a generalised 

four-stage model is explained to understand the in-situ growth of graphitic carbon particles, 

which start from seedings and grow as particles, clusters, and granular structures. It is 

concluded that the isolated carbon particles can be produced with specific size, shape, and 

distributions irrespective of the PVD method employed, by maintaining precise control over 

combinations of deposition system properties and process parameters. 
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1. Introduction 

Graphitic carbon particles [1] are widely used for structural health monitoring [2], 

medical treatment [3], sensing technology [4], cutting tools [5], and tribological applications 

[6]. These graphitic particles are recognised to regulate electrical conductivity [7, 8], thermal 

management [9,10], damping capacity [11,12], corrosion resistance [13,14], and wear 

resistance [15-17] in numerous industrial products. Their usability in advanced engineering 

applications is rapidly increasing. For example, electric batteries [18-20] with constantly 

increasing industrial demands, use graphitic carbon particles to improve their electro-chemical 

properties. Similarly, graphitic particles have proven their performance for aluminium 

machining [21] due to low-friction and energy-efficient features. Their demand in the cutting 

tool industry [22] has accelerated due to a surge in aluminium-consumed electronic products 

such as laptops, mobile phones and similar gadgets. Therefore graphitic carbon particles are 

actively being researched due to their superior performance for multiple industrial applications. 

Referring to Fig. 1, it can be seen that the number of research outputs on carbon particles has 

increased by over 500 % in past 20 years, from 11,743 publications in 2000 to 72,075 in 2020. 

Similarly, Fig. 2 presents the current and projected global revenue of the graphite market which 

is progressively increasing due to its high demand. The overall graphite market had an 

estimated value of USD 12.5 billion [23] in 2016, USD 14.3 billion [24] in 2019 and is 

projected to grow to USD 18.2 billion [23] by 2021 and USD 21.6 billion [24] by 2027. For 

granular and powder forms in particular [24], a global market value of USD 70 million was 

recorded in 2018 and is now forecasted to reach USD 82 million by 2025 with a compound 

annual growth rate of 1.8 %.  

 

Figure 1.  

Figure 2.  

Carbon nanoparticles synthesis originated from carbon coatings which were originally 

discovered in 1953 [26]. In the 1960s, carbon coatings contained graphite-like features and 

remained popular for biomedical [27] and nuclear [28] applications. In the 1970s, carbon 



Page 3 of 25 
 

coatings exhibited attractive mechanical properties by achieving higher sp3 fractions [29] when 

investigated with different deposition methods and conditions. Thus, a new class of carbon 

coatings emerged in the early 1980s, having diamond-like features. These coatings were 

recognised as diamond-like carbon (DLC) coatings having a distinguished hardness, low 

friction, and higher scratch resistance. Investigations into DLC coatings have since produced 

three research streams; (1) improvement in DLC quality and resolving limitations; (2) 

commercialisation and re-coating; and (3) exploring the fundamental mechanisms and building 

blocks which combine to produce such superior carbon films.  

Referring to the third stream, i.e., investigating the fundamental building blocks of 

carbon coatings, the synthesis of C60 in 1985 with laser irradiation of graphite [30], helical 

graphite microtubes [31] and carbon nanotubes produced in 1991 [32] with arc discharge 

evaporation were revolutionary milestones. The attempts for in-situ synthesis of carbon 

particles were also reported in parallel. The literature review reflects that high-energy sources, 

such as sputtering, electron beams, lasers, and arc discharges were common methods used to 

produce carbon particles, as summarised in Fig. 3A. The difference in fundamental principles 

and operational parameters of PVD methods also bring variance in growth, crystal structure, 

morphology etc. of engineered graphitic carbon particles. crystal structure may vary with 

interplanar distance, crystal (ordered) and amorphous (disordered) arrangement of carbon 

atoms, defects, and structural growth in solid or hollow form. The said growth features 

influence particle morphology, density, and surface area which modifies their properties such 

as electrical and thermal conductivity, elasticity, absorbance, reflection, and chemical inertness 

to tailor their performance for different engineering sectors, such as, energy and environment, 

sensing, biological and chemical reactions, and for mechanical applications as shown in Fig. 

3B. Irrespective of the synthesis method, the carbon particles usually agglomerate [33] due to 

higher electronegativity [34] and collisions inside the plasma which may reduce their 

performance for engineering applications, such as sensing capabilities. It is observed that the 

in-situ synthesis of isolated carbon particles was intensively investigated between 1990 to 

~2005. Afterwards, alternative methods of carbon particle and nanostructure fabrication have 

emerged due to persistent agglomeration issues encountered during continued attempts made 

with physical vapor deposition (PVD). However, the in-situ synthesis of isolated carbon 

nanoparticles with PVD, having a specific size and large area distributions still remains 

inspiring [35-37]. 

 

Figure 3.  
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This article briefly describes the characteristics of graphite particles, such as the 

significance of crystal structure on corresponding properties, followed by an overview of their 

industrial applications in energy and environment, bio-chemical and medical, sensing 

technology, and structural and tribology sectors. The article presents refined examples of 

graphitic carbon particles produced with different PVD methods. A series of developments 

from agglomerated to isolated graphitic carbon particles have been summarised. A qualitative 

comparison is tabulated to reflect the in-situ growth of graphitic particles made with different 

PVD methods. A four-stage model for in-situ growth of isolated graphitic particles is explained 

to highlight the role of system and process influencers, irrespective of the synthesis method 

employed.  

2. Characteristics of graphite carbon particles 

Graphitic carbon particles have theoretical properties [38] similar to graphite but in 

practice they vary with synthesis method, which governs the growth mechanism and brings 

variations in their crystal structure, such as, crystallite height, interlayer distance, number of 

defects, or variation by structure and morphology, like sizes, shapes, porosity etc. These 

disorders in crystal structure are normally studied with X-ray powder diffraction (XRD) and 

Raman spectroscopy to evaluate the characteristics of graphite particles. Figure 4 presents the 

XRD θ - 2θ scans (Fig. 4A) and Raman spectrum (Fig. 4C) of a hollow graphitic particle (Fig. 

4B). Graphitic particles generally show an intense peak (002) around 25o [39] to 28o 2θ angle. 

Peak sharpness or slight variation in peak position reflects the crystallographic features, such 

as interlayer distance. Normally, the interlayer distance is found at ~ 0.34 nm for polyhedral 

graphite particles [40], onion-like particles [41], and hollow graphitic particles [42]. Besides 

in-situ synthesis, the crystallographic parameters are also sensitive to ex-situ procedures, such 

as chemical treatments which produce defects [41] in graphite particles and consequently 

change crystal dimensions. Similarly, the interlayer distance may differ between natural 

(0.3354 nm Nippon, Japan) and synthetic (0.3356 nm Hitachi, Japan) graphitic particles [43]. 

In the same way, the crystallographic structure may change with service life as graphitic 

particles used for lithium-ion batteries have shown variance in interlayer distance between 

0.3365 nm to 0.4170 nm against different charge-discharge cycles [41]. Similar characteristics 

are measured with Raman spectroscopy, where the ordered and disordered carbon atoms show 

their peaks at specific wavelengths. Raman spectroscopy is carried out with different laser 



Page 5 of 25 
 

wavelengths which could be from the ultraviolet to infrared spectral range depending on the 

material under investigation. Diamond and graphite show sharp peaks at 1332 cm-1 and 1580 

cm-1 [44] when excited with a 514 nm wavelength laser. Thus, the corresponding peaks of 

disordered (D-band) and ordered (G-band) carbon atoms appear across said reference values 

and the variations in their positions specify their structural configurations. Onion-like particles, 

hollow graphitic particles, and polyhydric graphite particles have shown D-band structure at 

around 1340 cm-1 [41], 1349 cm-1 [42] and 1360 cm-1 [40], respectively. Whereas the 

corresponding G-band for onion-like particles and polyhydric graphite particles were found at 

1580 cm-1 and 1573 cm-1 for hollow graphitic particles, respectively. Irrespective to the crystal 

structures obtained from in-situ synthesis [45], ex-situ conditions like pressure [46], 

temperature and oxidation also change the crystal structure and corresponding peak positions. 

The G-band shifts from 1580 cm-1 to 1600 cm-1 once the crystal structure transforms from 

graphite to a nano-graphite [47] structure. More details on crystal structure measurements of 

graphite particles can be found in the literature [48]. 

Figure 4.  

Change in crystal structure significantly changes the corresponding properties of 

graphitic particles, such as density and surface area which in turn alters their electrical, 

mechanical, chemical, and thermal behaviours. It is observed that the increase in interlayer 

distance of 0.3354 nm of natural graphite particles to 0.3356 nm for synthetic graphite has 

increased the first-cycle efficiency of lithium-ion batteries from 82 % to 88 % [43]. 

Furthermore, a reverse trend has been observed [49] between density and resistivity, which 

suggests that the electrical resistivity increases from 0.009 to 0.022 Ωm with a decline in 

density from 2030 to 1860 Kg/m3. Similarly, referring to the effect of particle size and surface 

area, it can be estimated that graphitic particles of 4 µm, 14 µm, and 44 µm size, correspond to 

specific surface areas of 26 m2/g, 12 m2/g and 9 m2/g respectively [50]. Similarly, the graphitic 

particles of 70 µm, 430 µm, and 960 µm size, present expandable ratios of 40, 380 and 400, 

and potential of hydrogen (PH) values of 3.25, 3.85 and 5.62 respectively [51]. The higher 

expandability of graphitic particles is associated with their larger particle sizes as 

thermographic analysis also reflects large expandability of 300 ml/g for 196 µm large size 

particles, whereas small size particles of 39.8 µm correspond to small expandability of only 40 

ml/g [52]. Hence, the crystal structure i.e. interplanar distance, atomic arrangement, defects 

and physical aspects such as size, shape, surface area, and density, significantly influence the 
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electrical, thermal, and structural properties of graphitic particles. These properties are the 

bases of their functionality in different engineering applications in energy and environment, 

sensing, bio-chemical and medical and structural integrity sectors as summarised in Table 1.  

Table 1. Applications of graphite particles in energy, environment, sensing, bio-chemical, 

medical, and structural domains. More details on synthesis and industrial applications of 

graphitic particles can be studied from the literature [53-106]. 

Energy and 

Environment 

Sensing Technology Bio-chemical and 

Medical Technology 

Structural 

Integrity 

Energy storage 

batteries 

[58-60] 

Electro-chemical sensors 

(e.g., heavy elements 

detection) [65] 

Water treatment 

[73,74] 

Tribology 

[88-91, 104] 

Fuel Cells 

[42] 

Thermo-resistive sensors 

(flow and temperature 

sensor) [66] 

Enzymatic catalysis 

[76] 

Structural properties 

[84-87, 105, 106] 

Fuel additives 

[64,89] 

Biomedical sensors 

[69] 

Drug delivery and 

gene therapy 

[77-79, 103] 

Fire-retardant and 

corrosion resistance 

[92-97] 

Solar energy 

[55-57] 

Structural Health 

Monitoring  

[70,71] 

Bioimaging 

[78,81,82] 

3D manufacturing 

with conductive inks 

[100, 102] 

 

3. In-situ synthesis of carbon nanoparticles with PVD 

In-situ synthesis of graphitic nanoparticles has been reported with different methods, 

such as catalytic processes [107, 108], chemical vapour deposition [109], or physical vapor 

deposition (PVD) methods like irradiation [110], vaporisation [111], sputtering [35], and arc 

discharge [40] techniques. This review article covers PVD methods used for in-situ synthesis 

of agglomerated-to-isolated graphite particles with selected examples. 

 

3.1 In-situ synthesis of graphitic particles with irradiation and vaporisation methods 

Carbon nanoparticles were originally produced by irradiating carbon enriched 

resources, like diamond or graphite, with electron beams and laser beams. In 1992, Ugarte 

[110] reported the curling and closure of graphitic networks produced with electron beam 

irradiation and observed them with a transmission electron microscope (TEM) as shown in Fig. 

5A. The irradiation produced a cluster of spherical graphitic nanoparticles having random 

diameters. It was demonstrated that 10 min of irradiation produces a mixture of tubular or 

polyhedral particles which transform into needles and spherical-like particles. Perfect 

sphericity develops after 20 min of irradiation and no further change in shape is observed for 

longer irradiations. Similarly, Fig. 5B presents TEM micrographs of graphitic particles made 
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with CO2 laser vaporisation in conjunction with argon gas having a pressure of 0.8 MPa. It can 

be seen that the particles have polyhedral shapes which also vary size. It was deduced that the 

radiation and vaporisation methods have poor control over particle growth. The graphitic 

carbon particles of random size and shape agglomerate with each other to form clusters. Further 

details on particle synthesis with irradiation and vaporisation methodologies can be found in 

the literature [112-114]. 

 

Figure 5.  

 

3.2 In-situ synthesis of graphitic particles with arc systems 

The arc method intrinsically discharges micro carbon particles [115] from a cathode. These 

micro carbon particles were presumed as defects in thin carbon films and likely to reduce the 

coating properties [116]. Thus, single bend, double bend, and T-shaped cathodic arc systems 

were developed to filter out the contamination i.e., the micro-particles, while transporting the 

plasma from target-to-substrate. In contrast, the engineering of carbon nanoparticles of 

specified features was also attempted with cathodic arc systems. Amaratunga [117], Chhowalla 

[118, 119], and Roy [120], have documented their attempts to produce carbon particles with 

cathodic vacuum arc systems in 1996 and afterwards. The graphite target was arced in a high-

pressure nozzle and the plasma was quenched with helium gas. However, the received 

nanomaterials contained a mixture of carbon nanotubes, hollow carbon nanoparticles, or carbon 

onions that were transported from source-to-substrate under a large pressure gradient. Besides 

a physical mixture as shown in Fig 6A, these nanomaterials exhibit a complex chemical 

composition including C2, C20, C30, C60, and C70. The carbon coatings made of said mixtures 

have demonstrated superior mechanical performance i.e., higher hardness of 56 GPa and 

remarkable elasticity up to 85%. Similarly, Fig. 6B presents the synthesis of carbon onions of 

various sizes produced by cathodic vacuum arc. It is postulated that the carbon atoms, 

originating from the arc source, already possess higher kinetic energy, while the additional 

kinetic energy added by the quenching gas increases the momentum and reduces the mean-

free-path. This stimulates their agglomeration while transporting them through a higher-

pressure gradient, resulting in a physical mixture of nanomaterials arriving at the substrate 

surface. Similarly, Fig. 6C and Fig. 6D present the nanohorn and polyhedral graphitic particles 

produced with arc discharge using different precursors and experimental conditions. It is 

deduced that the arc method also produces clusters, agglomerations, strings, nanohorns, onions, 
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and their hybrids. More details on graphitic particles synthesis with arc discharge can be found 

in the literature [39, 40,121,122]. 

    

Figure 6.   

 

3.3 In-situ synthesis of graphitic particles with sputtering  

The in-situ synthesis of graphitic carbon particles with sputtering was also started in 

the early 1990s. Praburam and Goree [123,125] have reported sputtering based investigations 

to produce graphitic carbon particles. The self-biased graphite electrodes were exposed to 

radio-frequency glow to grow carbon nanoparticles from dusty plasma. The exposure time 

governs the physical appearance of nanomaterials, such as the formation of grains at 20 min 

and coagulated strings after 7 hours of exposure. Fig. 7A presents scanning electron 

microscopy (SEM) images of isolated coneflower-like carbon grains produced with an 

agglomeration of carbon dust, fullerene, or tinny nanoparticles with increasing exposure time. 

Similarly, for a longer exposure, such as 7 hours, the coagulated strings were formed by 

interconnecting of carbon particles having different sizes as shown in Fig. 7B. The group have 

also demonstrated the in-situ synthesis of raspberry-like carbon grains [125]. It is important to 

note that a cloud of fine carbon dust may be excreted at the start of the sputtering process due 

to absorbed water vapours and degassing [126]. Such fine dust may act as seeds for graphitic 

particle growth or could be considered as contamination for thin film depositions. In summary, 

time governed transformation from grains to coagulation/agglomeration has been observed 

through dusty plasma synthesis. Referring to Fig. 7C and Fig. 7D, the formation of carbon 

mixture (small and large particles, coneflower grains, linked networks, radial columns) and 

flakes were observed when produced with gas-phase sputtering in a tokamak plasma [127]. 

Usually, the in-situ synthesis of carbon particles was attempted in large vacuum chambers. 

However, a major step toward the in-situ synthesis of isolated carbon particles was observed 

in 2012 when Bouchat et al, [35] produced isolated and agglomerated particles by sputtering 

inside an aggregation tube installed within the sputtering chamber. The preliminary 

investigations yielded agglomeration (Fig 7E) or linked carbon particles (Fig. 7F). However, 

precise control over process settings i.e., pressure gradient and electric potential have produced 

uniformly distributed and isolated carbon nanoparticles having similar sizes and shapes, as 

shown in Fig. 7G. A controlled pressure gradient was maintained inside the aggregation tube, 

and particle isolation was enhanced with electrostatic potential. For commercial-scale 

manufacturing, the aggregation tube is considered as a limitation to produce graphitic carbon 
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particles with large area distributions. More details on carbon particles synthesis with 

sputtering can be studied from the literature [128-133]. 

 

Figure 7.  

 

The work by Bouchat et al. [35] has demonstrated that isolated carbon particles can be 

created in common (large) chambers if precise control over the system and process is 

maintained. A small aggregation tube can be presumed as a sputtering chamber as long as a 

unique combination of electrostatic potentials, pressure gradient, substrate biasing, target-to-

substrate distance and plasma kinetics can be controlled, which is practically challenging. 

Recently, isolated graphitic carbon particles [134] have been created in-situ with an unbalanced 

magnetron sputtering (UDP 650 Teer Coatings, UK, large chamber of 650 mm diameter  650 

mm height) through rapid plasma quenching. The argon plasma was quenched with helium 

pulses to produce the particles of certain size i.e., ~ 50, ~ 110, ~ 350, ~ 500 and ~ 800 nm; and 

isolation distances of less than 5 m, between 5 to 10 m or more. An intensive parametric 

study with 48 parametric combinations was performed to identify the optimum conditions 

which provide control over the system and process to create spherical, uniform size, and large 

area distributed graphitic carbon particles. The most influential process parameters were 

helium pulse-to-plasma orientation, target-to-substrate distance, helium flow rate, injection 

duration and pulse frequency. Fig. 8A and Fig. 8B show the high-resolution representative 

images of isolated carbon particles observed by field emission scanning electron microscopy 

(FE-SEM), whereas their large area distributions are shown in Fig. 8C. The isolated carbon 

particles have shown superior mechanical and tribological performance when simultaneously 

embedded [135] in an amorphous carbon matrix in a single step process [87,136]. Further 

investigations [137] considering the effect of helium pressure and ultrashort pulses have 

demonstrated that a particle size 5010 nm with an isolation distance of less than 1 m can 

further improve the material’s performance. 

 

Figure 8.  

3.4 Summary of in-situ synthesis of graphitic particles with PVD methods 

Table 2 describes the most refined examples of in-situ synthesis of graphitic carbon 

particles produced with different PVD methods, such as electron beam irradiation, laser 

irradiation, laser vaporisation, arc discharge, direct current (DC) and radiofrequency (RF) 
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discharges and magnetron sputtering. Each example is detailed with carbon source, particle 

size range, nature of outcomes i.e., isolated, conjugated, mixture by size and shapes. Similarly, 

essential process parameters specific to the method and corresponding outcomes are also 

remarked. More details and specifications on each PVD method can be studied from the related 

reference. 

Table 2. PVD methods for in-situ graphitic carbon particles synthesis – refined examples. 

Synthesis 

Method 
Year 

Carbon 

Source 

Particle 

size 

(nm) 

Conjugated 

/Coagulate 
Mixture* 

Isolated 

particles 
Remarks Ref 

Electron 

Beam 

Irradiation 

1992 Carbon soot 47-70    
20 min irradiation brings 

specificity in particles 
110 

1996 
Diamond 

crystals 

3-8 

 
   

Intense electron beams of 

electron flux density of about 107 

electrons/nm: 

112 

Laser 

Vaporisation 

2004 

Graphite 

 target 

 

40–60 

80–100 

190–

350 

   
Nanohorns, Polyhedral, 

High temperature, High pressure 
46 

2007 
Carbon 

dioxide 

500-

1000 
   

Ultraviolet irradiate of near-

critical carbon dioxide 
113 

2009 

Carbon 

powder 

suspension 

1-6    Fluorescent carbon nanoparticles 114 

Arc 

Discharge 

1995 

Graphite, 

Isopropanol, 

Nickel/Iron 

5-10    String, Multi-shell 37 

1996 Graphite target -    

Mixture of closed, hollow 

graphitic carbon particles, CNT, 

and Carbon Onion. He quenching 

117 

1997 Graphite rods 5-20    
Mixture of Fullerene (Onion and 

bucky balls), CNT, and a-C 
119 

2003 

Water 

submerged 

graphite 

electrodes 

5-50 

 
   Carbon onions 120 

2004 Carbon rod ~50    Nanohorns, high temperature 121 

2015 

Hexan, 

Ethanol, 

Graphite 

electrodes 

40-50 

 
   

Onion-like carbon nanoparticles 

 
39 

2018 
Carbon rod, 

Ethanol  
220-380    

Polyhedral 

 
40 

RF 

Discharge / 

Sputtering 

1994 Graphite rods 10-250    
String, cauliflower-like surface 

 
124 

1996 

Graphite 

targets 

 

~150, 

~300 

400-500 

   Grains, string 123 
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1999 
Graphite 

cathode 
34311    Bumpy spherical shape 129 

DC 

Discharge / 

Sputtering 

2006 

Graphite 

cathode 

 

50-

200,000 
   

Mixture of dust, small, and large 

particles, linked network, grains, 

flakes, and cauliflower structures 

127 

2007 
Graphite 

cathode 
5410    Cauliflowerlike grains 130 

2013 

Polycrystalline 

graphite 

 

~30 

~45 
   Particle size as a function of time 133 

DC 

Magnetron 

Sputtering 

in 

aggregation 

tube 

2011 

Graphite 

cathode 

 

122 

10-20 

 

   

Sputtering in aggregation tube, 

isolated particles, nanoribbons, 

pulverisation gas 

35 

RF 

Unbalanced 

Magnetron 

Sputtering 

2017 

- 

2019 

Graphite 

cathode 

 

5010, 

11020 

~350 

~800 

   

He quenching, Controlled size 

and isolation, Large area 

distribution. 

134 

- 

137 

*Mixture by size and shape or mixture of isolated and conjugated particles 

 

Fig. 9 shows the range of particles size produced with different PVD methods as 

analysed in Table 2. It can be seen that magnetron sputtering and laser vaporisation have the 

ability to produce isolated carbon particles at specific experimental conditions. 

 

Figure 9.   

 

4. Four-stage model for qualitative control over graphitic carbon particles growth 

The literature review reflects that graphitic carbon particles coagulate [15] and agglomerate 

irrespective of the selected synthesis method; either arc discharge, laser irradiation, or 

sputtering. Fig. 10 presents a four-stage model [134] to understand the in-situ particle growth 

and synthesis of graphitic carbon particles with PVD methods. Usually, the carbon atoms leave 

the target and pass through the so-called stable plasma and deposit a homogeneous carbon film 

at the substrate surface. However, most in-situ synthesis mechanisms used to produce carbon 

particles with PVD methods, require plasma turbulence to achieve the objectives. For example, 

plasma quenching [117, 135] which is practised for in-situ synthesis of carbon particles, 

abruptly changes the plasma equilibrium and alters the plasma physics and chemistry. The 

quenching gas increases the chamber pressure and adds additional kinetic energy to the plasma 

system which influences the charge distributions, particle trajectories, mean-free-paths, and 

atomic/particles/molecular momentums. The mean-free-path is reported to reduce from ~ 
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2.6×10-2 m to ~ 0.2×10-2 m with an increase in chamber pressure from 20×10-2 to 2×10-2 Torr 

[138]. The appropriate selection of quenching gas is also a sensitive parameter which regulates 

plasma dynamics. Comparing helium with argon, both gasses will have different mechanistic 

behaviours due to difference in their ionisation potential, molecular weights, and number of 

molecules per unit volume which govern the collisions, kinetics, and momentums. The 

injection: duration, frequency, flow rate, and pressure further exaggerate the plasma dynamics. 

Thus, particles growth is a complex mechanism and involves numerous factors, such as ion 

energies associated with kinetics, ion flux, ion and neutral drags, thermophoretic, electrostatic, 

and magnetic [139] potentials, electronegativity, gravity effects, pressure gradients, physical 

collisions and reversible transformation between stable carbon atoms and carbon ions.  

As demonstrated by Praburam and Goree [125], particle growth is a time-dependent 

parameter [129]. Referring to Fig. 10, carbon leaves the cathode at the atomic scale, termed as 

seeds which grow in size and reach the phase of coalescence by absorbing carbon ions and 

stable carbon atoms [123] due to natural and forced (due to quenching gas) collisions. The 

material properties like elasticity and physical features like surface roughness also contribute 

towards the merging of particles. Similarly, the velocity of the collision must be lower than the 

threshold speed, which shall facilitate stacking of particles through van der Waals attractions. 

Otherwise, the particles will bounce apart in the case of higher collision speeds [140]. Along 

with physical collisions, a covalent bonding develops between host and incoming atoms/ions 

due to electronegativity difference [141]. The same mechanism repeats to transform particles 

into agglomeration and clustering phases. Finally, the clusters further combined to form macro-

structures or a granular film at the substrate surface. Referring to time-dependent particle 

growth [125,127], the particles grow in isolation in the first 20 min of plasm glow exposure 

and then start inter-connecting with each other to form coagulations at around 2 hours. It is also 

worth mentioning that that coagulation is not an infinite process. The particle or cluster size 

and shape depends on the material’s electronegativity, ion flux [123] and charge distribution 

over the surfaces and is administrated by the electrostatic potential of adjoining 

particles/clusters [142]. Similarly, electronegativity has an evident role in particle shape since 

it is anticipated to encounter surrounding potential. Generally, carbon with higher 

electronegativity (2.55) tends to maintain sphericity when compared with silver (1.93) which 

exhibits compact aggregate but close to a spherical shape, or copper (1.90) and aluminium 

(1.61) which form fractal-like particles due to lower electronegativity. The higher electrostatic 

potential is likely to increase the particles isolation [35], while in contrast, the increase in 

chamber pressure and addition of kinetic energy from an external source, like quenching gas, 
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reduces the mean-free path and accelerates the transformation from seeding to clustering. 

Therefore, the identification of optimised combinations of process parameters is essential to 

produce isolated carbon particles specific to that PVD system. 

 

Figure 10.   

The in-situ synthesis of isolated carbon particles has remained inspiring [17,18, 37] for 

the past thirty years. The recent investigations of isolated carbon particles synthesis with 

helium pulses [87,134-137] demonstrates that the in-situ synthesis of large area, uniformly 

distributed, isolated carbon particles produced in a single step process without supplementary 

instrumentation (like aggregation tube) is possible with precise control over system settings 

i.e., bias voltage, target-to-substrate distances, quenching methodology, and parameters, such 

as pulse orientations, flow rate, pressure, time etc. 

Empirically, the particle size can be controlled by estimating the growth rate through 

Eq. 1 [123], 

𝑑𝑎

𝑑𝑡
=

𝑌𝐽𝑖𝑇
3

𝑒
        (1) 

Where a is particle radius, t is time, Y is sputtering yield, Ji is current density supplied to an 

electrode, T is the layer thickness formed by absorbed atoms, and e denotes electrons. Other 

empirical models describing collisions, atomic flux, energy distributions, energy interaction 

between particles and coagulation rate can be studied in the literature [127, 143,144]. However, 

the experimental investigations suggest that the in-situ synthesis of carbon particles is sensitive 

to system properties and operational parameters. The chamber size, target-to-substrate 

distance, pressure gradient, target currents and bias voltages, electrostatic and electromagnetic 

potentials in the plasma regime, characteristic of quenching gas and quenching parameters 

greatly influence the particles growth. The core influencers in graphitic particles growth with 

PVD methods are listed in Table 3 and precise control of their combinations can produce 

isolated carbon particles of the desired size, irrespective of the PVD method.  

Table 3. Core system and operational parameters which influence the in-situ synthesis of 

graphitic carbon particles through PVD methods. 

System and operational influencers (not limited to) 

PVD system Plasma dynamics Quenching Mechanism 

Chamber size, design  Electrostatic potentials/bias 

voltage 

Quenching layout 
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Target-to-substrate 

distance 

Magnetic field Characteristics of 

quenching gas 

Chamber pressure Temperature Operational parameters: 

- Quenching time 

- Gas pressure 

- Flowrate 

- Injection frequency 

Electrode Current Any other source which 

adds energy to the plasma 

 

Summarising the discussion, it is perceived that: 

• A unique combination of process parameters may produce isolated carbon particles for any 

PVD system. 

• There are higher chances to receive isolated particles in shorter process times.  

• Electrostatic potential/bias voltage help in increasing isolation between particles.  

• The isolation is likely to reduce with increasing pressure gradient inside the chamber. 

• The isolation is likely to reduce by reducing target-to-substrate distance. 

• Appropriate quenching gas and corresponding operational parameters should be optimised 

to identify those conditions which facilitate the growth of isolated graphitic carbon particles. 

Conclusion 

In-situ synthesis of isolated graphitic carbon particles with PVD methods is desirous 

for superior performance in numerous industrial applications. The role of crystal structure on 

the properties of graphitic particles and their applications in energy, environment, sensing, 

medical, and mechanical sectors are overviewed. Generally, graphitic particles agglomerate 

due to collisions and higher electronegativity.  Hence, 30 years of progress with in-situ 

synthesis of carbon particles using PVD methods has been critically reviewed and those 

materials and procedures within the PVD domain which can produce isolated graphitic carbon 

particles have been identified. Four stages of particle growth are explained with system and 

operational influencers, to understand the graphite particle growth mechanisms. It is perceived 

that isolated graphitic particles can be created with specific size, shape, and distributions with 

any PVD system as long as a unique combination of system and process parameters are 

controlled precisely.  
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