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Abstract 1 

Butanediols are widely used in the synthesis of polymers, specialty chemicals and important 2 

chemical intermediates. Optically pure R-form of 1,3-butanediol (1,3-BDO) is required for 3 

the synthesis of several industrial compounds and as a key intermediate of β-lactam antibiotic 4 

production. The (R)-1,3-BDO can only be produced by application of a biocatalytic process. 5 

Cupriavidus necator H16 is an established production host for biosynthesis of biodegradable 6 

polymer poly-3-hydroxybutryate (PHB) via acetyl-CoA intermediate. Therefore, the 7 

utilisation of acetyl-CoA or its upstream precursors offers a promising strategy for 8 

engineering biosynthesis of value-added products such as (R)-1,3-BDO in this bacterium. 9 

Notably, C. necator H16 is known for its natural capacity to fix carbon dioxide (CO2) using 10 

hydrogen as an electron donor. Here we report engineering of this facultative lithoautotrophic 11 

bacterium for heterotrophic and autotrophic production of (R)-1,3-BDO. Implementation of 12 

(R)-3-hydroxybutyraldehyde-CoA- and pyruvate-dependent biosynthetic pathways in 13 

combination with abolishing PHB biosynthesis and reducing flux through the tricarboxylic 14 

acid cycle enabled to engineer strain, which produced 2.97 g L
-1

 of (R)-1,3-BDO and 15 

achieved production rate of nearly 0.4 Cmol Cmol
-1

 h
-1

 autotrophically. This is first report of 16 

(R)-1,3-BDO production from CO2. 17 

 18 

Keywords: 1,3-butanediol, 4-hydroxy-2-butanone, metabolic engineering, carbon dioxide, 19 

autotrophic fermentation, Cupriavidus necator H16  20 
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1. Introduction 1 

1,3-butanediol (1,3-BDO) is an important platform chemical used in a variety of industrial 2 

applications including production of 1,3-butadiene, a precursor of synthetic rubber (Duan et 3 

al., 2016). Amongst other applications, 1,3-BDO is mainly employed in the production of 4 

unsaturated polyester resins, plasticizers, and industrial dehydrating agents. Owing to the low 5 

toxicity, and good water solubility, it is used as a humectant and emollient in personal care 6 

products. The optically active R-form of 1,3-BDO is used in the production of pheromones, 7 

fragrances and insecticides (Matsuyama et al., 1993). (R)-1,3-BDO is also known for its use 8 

in the production of one of the most widely prescribed antimicrobial drugs, β-lactam 9 

antibiotics (Llarrull et al., 2010). Noteworthy, the 1,3-BDO can be oxidized to its ketone 10 

form 4-hydroxy-2-butanone (4H2B), an important precursor for the synthesis of pesticides, 11 

steroids, and anticancer drug doxorubicin (Zhang et al., 2010).  12 

Chemical and biochemical synthesis methods have been developed for (R)-1,3-BDO 13 

production. Chemical synthesis typically yields mixture of (R) and (S) enantiomers of 1,3-14 

BDO and requires the precursor, such as an acetaldehyde, derived from petrochemical 15 

sources (Larchevêque et al., 1991). Whereas, a more economical enzymatic biosynthesis of 16 

(R)-1,3-BDO has been achieved using either racemic 1,3-BDO or 4-hydroxy-2-butanone 17 

(4H2B) as substrates (Matsuyama et al., 2001). The oxido-reduction process of (4H2B) to 18 

(R)-1,3-BDO has been demonstrated in a variety of microorganisms such as Kluyveromyces, 19 

Candida, Pichia, and others, as well as engineered Escherichia coli (Matsuyama et al., 2001; 20 

Okabayashi et al., 2009).  21 

With the rising concerns over carbon footprint and interest in the natural personal care 22 

products, bio-based 1,3-BDO technologies are emerging in the last decade. Microbial 23 

bioproduction of (R)-1,3-BDO from glucose has been first reported by Kataoka and co-24 

workers in metabolically engineered E. coli (Kataoka et al., 2013). In this study, a synthetic 25 
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metabolic pathway, consisting of acetyl-CoA acetyltransferase (gene phaA) and acetoacetyl-1 

CoA reductase (phaB) from C. necator H16, 3-hydroxybutyryl-CoA dehydrogenase (bld) 2 

from Clostridium saccharoperbutylacetonicum N1-4(HMT) and endogenous E. coli 3 

NAD(P)H-dependent alcohol dehydrogenase (yqhD) possessing promiscuous 1,3-BDO 4 

dehydrogenase activity (Pérez et al., 2008), has been used to convert acetyl-CoA to 1,3-BDO 5 

via acetoacetyl-CoA, 3-hydroxybutyryl-CoA, and 3-hydroxybutanal intermediates. Optimised 6 

fed-batch fermentation using glucose as a carbon source has allowed to achieve 15.75 g/L 7 

(174.8 mmol/L) of (R)-1,3-BDO with a 98.6 % enantiomeric purity and a yield of 0.18 g/g 8 

glucose (0.37 mol/mol) (Kataoka et al., 2014). An alternative synthetic pathway has been 9 

recently investigated demonstrating conversion of pyruvate to 1,3-BDO through acetaldehyde 10 

and 3-hydroxybutanal intermediates (Kim et al., 2017; Nemr et al., 2018). Application of this 11 

pathway, consisting of pyruvate decarboxylase (PDC) from Zimomonas mobilis, 12 

deoxyribose-5-phosphate aldolase (Dra) from Bacillus halodurans and aldo/keto reductase 13 

(AKR) from Pseudomonas aeruginosa, has resulted in 2.4 g/L of 1,3-BDO with the yield of 14 

56 mg/g glucose (Nemr et al., 2018). 15 

An alternative microbial chassis that has shown great promise is chemolithoautotroph 16 

Cupriavidus necator H16 (formerly Ralstonia eutropha H16). This bacterium is able to grow 17 

aerobically and accumulate biomass to a very high level, competitive with E. coli, and 18 

exhibits a faster growth rate than cyanobacteria, high chemosynthetic efficiency and genetic 19 

tractability. C. necator H16 has been widely studied for its natural ability to produce the 20 

biodegradable polymer poly(3-hydroxybutryate) (PHB), used by this bacterium as a storage 21 

compound and accumulated in the presence of excess carbon and limited macro-elements 22 

such as nitrogen, phosphorus or oxygen (Volodina et al., 2016). C. necator H16 is an ideal 23 

candidate to produce platform chemicals with its ability not only to metabolise a wide range 24 

of organic compounds but more importantly to recycle CO2 by using the Calvin-Benson-25 
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Bassham (CBB) Cycle (Bowien and Kusian, 2002; Pohlmann et al., 2006). With the ability to 1 

fix CO2 as a feedstock, C. necator provides a significant advantage compared to the sugar-2 

based fermentation. Besides the gasification of plant’s waste, which allows the complete 3 

utilization of carbon contained within the biomass, CO2, suitable for gas fermentation, can be 4 

captured from chemical plants and steel mills reducing its emission to limit the climate 5 

change (Liew et al., 2016). Considering these advantages, C. necator H16 has been 6 

engineered to produce a wide range of commodity chemicals including methyl ketones, 7 

alcohols, terpenes, and alka(e)nes (Bommareddy et al., 2020; Chakravarty and Brigham, 8 

2018; Crepin et al., 2016; Grousseau et al., 2014; Krieg et al., 2018; Lu et al., 2012; Müller et 9 

al., 2013) demonstrating its versatility and potential as an industrial chassis. 10 

In this study, we aimed to engineer C. necator H16 for (R)-1,3-BDO production. 11 

Based on high availability of either (R)-3-hydroxybutyraldehyde-CoA ((R)-3HBCoA) or 12 

pyruvate precursors, two alternative (R)-1,3-BDO biosynthetic pathways were explored 13 

(Figure 1). To increase (R)-1,3-BDO yield, a number of genetic improvements including 14 

PHB biosynthesis inactivation, redirection of the carbon flux through deletion of TCA cycle 15 

genes, and increase of the copy number of biosynthetic pathway genes were implemented. To 16 

ensure the genetic stability, both (R)-1,3-BDO biosynthetic pathways were chromosomally 17 

integrated in the engineered strains. Finally, autotrophic fermentation using CO2 as sole 18 

carbon source was demonstrated for (R)-1,3-BDO production.  19 
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2. Materials and Methods 1 

2.1. Gene sequences 2 

The sequences of genes used for generation 1,3-BDO biosynthetic pathway variants were 3 

retrieved from GenBank under the following accession numbers/locus tags: AY251646 (bld 4 

from C. saccharoperbutylacetonicum); NP_417484/b3011, NP_416285/b1771, 5 

NP_417474/b3001, NP_416950/b2455, NP_415757/b1241 (yqhD, ydjG, gpr, eutE, adhE 6 

from E. coli ); NP_744640/PP_2492 (yqhD from Pseudomonas putida); WP_077844196 (s-7 

adh from Clostridium beijerinckii); CAJ92685/H16_RS07715, CAJ95981 /H16_RS24705 8 

(gbD, hibadh from Cupriavidus necator); O32210/BSU33400, P80874/BSU09530 (yvgN, 9 

yhdN from Bacillus subtilius); ADF38510/BMD_1654, ADF39485/BMD_2640, 10 

ADF40202/BMD_3362 (ADH1, ADH2, eutE from Bacillus megaterium); Q9KD67/BH1352 11 

(dra from B. halodurans); AHJ73198/A265_01761 (PDC from Z. mobilis), 12 

NP_249818/PA_1127 (AKR from P. aeruginosa); NP_149325/CA_P0162, 13 

NP_149199/CA_P0035 (adhE, adhE2 from Clostridium acetobutylicum). The bld, adhE , 14 

dra, s-adh and PDC coding sequences were optimised for C. necator H16 codon usage and 15 

synthesised by GeneArt Gene Synthesis (Thermo Fisher Scientific).  16 

 17 

2.2. Plasmid construction 18 

All plasmids and oligonucleotide primers used in this study are listed in Supplementary Table 19 

1 and 2, respectively. Plasmids were assembled using either the USER cloning method 20 

(Bitinaite et al., 2007), NEBuilder Hifi DNA assembly method (New England Biolabs) or 21 

restriction enzyme-based cloning techniques (Sambrook et al., 1989). Plasmid DNA 22 

preparation was carried out using the QIAprep® Spin Miniprep Kit (Qiagen). Gel purified 23 

linearized DNA was extracted using the QIAquick® Gel Extraction Kit (Qiagen). Genomic 24 

DNA was isolated with the GenElute
TM

 Bacterial Kit (Sigma-Aldrich). All restriction 25 
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endonucleases, T4 DNA ligase and NEBuilder® HiFi DNA Assembly Master Mix were 1 

acquired from New England Biolabs. DNA sequences were verified by Sanger sequencing 2 

(Eurofins Genomics). A detailed assembly description for each plasmid is provided in the 3 

Supplementary information. 4 

 5 

2.3. Strains, transformation and media 6 

All bacterial strains used in this study are listed in Table 1. For strain transformation, E. coli 7 

DH5α, MG1655 and S17-1 competent cells were prepared according to (Sambrook et al., 8 

1989), while electrocompetent C. necator cells were prepared as described in (Ausubel et al., 9 

2003).  10 

For heterotrophic 1,3-BDO production, C. necator H16 strains were grown either in 11 

minimal media (MM) containing 1 g/L NH4Cl, 9 g/L Na2HPO4·12H2O, 1.5 g/L KH2PO4, 12 

0.2 g/L MgSO4·7H2O, 0.02 g/L CaCl2, 0.0012 g/L (NH4)5[Fe(C6H4O7)2] (Schlegel et al., 13 

1961) with 1 mL/L trace element solution SL7 (25% (w/v) HCl, 0.07 g/L ZnCl2, 0.1 g/L 14 

MnCl2·4H2O, 0.06 g/L H3BO3, 0.2 g/L CoCl2·6H2O, 0.02 g/L CuCl2·2H2O, 0.02 g/L NiCl2 15 

·6H2O, 0.04 g/L Na2MoO4·2H2O)) (DSMZ) supplemented with 300 µg/mL kanamycin and 16 

0.4 % (w/v) sodium gluconate (C:N = 6:1); or nitrogen limiting minimal media (NLMM), 17 

which contained reduced concentration of NH4Cl (0.6 g/L) and 2 % (w/v) (C:N = 50:1) at 18 

30 ºC and 200 rpm with orbital diameter of 1.9 cm. Overnight cultures were re-inoculated to 19 

an optical density at 600 nm (OD600) of 0.1 in MM or NLMM and grown for 4 hours before 20 

inducing recombinant gene expression by addition of 0.01 % (w/v) L(+)-arabinose, unless 21 

otherwise indicated. Initial strain screening was performed in 50-mL falcon tubes with 22 

limited aeration, whereas batch cultures for (R)-1,3-BDO production experiment were grown 23 

in 250-mL baffled shake-flasks with intensive aeration.  24 
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Fermentation minimal medium (FMM) was composed of following: 3.4 g/L Na3P3O9, 1 

1.5 g/L NH4Cl, 0.5 g/L MgSO4, 10 mg/L CaCl2, 5 mg/L MnCl2, 50 mg/L 2 

(NH4)5[Fe(C6H4O7)2], 150 mg/L K2SO4, and 10 mL/L SL-6 trace element solution (100 mg/L 3 

ZnSO4, 30 mg/L MnCl2, 300 mg/L H3BO3, 200 mg/L CoCl2, 10 mg/L CuCl2, 20 mg/L NiCl2 4 

and 30 mg/L Na2MoO4). 5 

 6 

2.4. Gene knockout and knock-in generation in C. necator 7 

Gene knockout and knock-in were performed using the pLO3 suicide vector exhibiting 8 

selection through tetracycline resistance (tetR) and counter-selection in the presence of 9 

sucrose (sacB). Chromosomal gene deletion was introduced by preserving start and stop 10 

codons of the gene. Where endogenous genes were replaced by introducing exogenous genes 11 

under control of the araC/ParaBAD inducible system, to eliminate potential transcriptional read-12 

through, rrnB T2 and rrnB T1 terminators were incorporated upstream and downstream to the 13 

heterologous DNA region, respectively. 14 

 pLO3 suicide vector-based plasmids were transformed into E. coli strain S17-1 15 

(ATCC 47055) suitable for conjugative plasmid transfer to C. necator H16. E. coli and 16 

C. necator strains were cultivated overnight in Luria-Bertani (LB) medium supplemented 17 

with 15 µg/mL tetracycline and 10 µg/mL gentamicin, respectively. Cells were harvested by 18 

centrifugation (5000 ×g for 10 mins) and washed for mating on a LB-agar plate for 6 h at 19 

30 °C. C. necator H16 transconjugants resulting from a first homologous recombination were 20 

isolated by plating onto MM-agar plates supplemented with 0.4 % (w/v) sodium gluconate, 21 

10 µg/mL gentamicin and 15 µg/mL tetracycline. Single colonies were then purified by re-22 

streaking twice onto MM-agar plates containing gentamicin and tetracycline. Single colonies 23 

were used to inoculate 5 mL LB supplemented with gentamicin and tetracycline and 24 

cultivated overnight. Cultures were then used to inoculate 5 mL low sodium-LB (2.5 g/L 25 
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NaCl) supplemented with 15 % (w/v) sucrose for overnight growth. Cells were then plated 1 

onto low sodium-LB-agar plates supplemented with 15 % (w/v) sucrose and single colonies 2 

were streaked onto LB-agar plates containing 15 µg/mL tetracycline and no antibiotic to 3 

establish loss of integrated chromosomal pLO3 DNA by a second homologous 4 

recombination. Cells were then screened by PCR for successful gene deletions or 5 

integrations. 6 

 7 

2.5. Two-stage batch fermentation in shake-flasks 8 

A two-stage batch fermentation in shake-flasks was employed for the production of (R)-1,3-9 

BDO in E. coli or C. necator. Biomass and synthetic pathway related proteins were generated 10 

by growing cells in rich media (LB) before transferring them to nutrient limited minimal 11 

media with excess carbon. 50 µg/mL or 300 µg/mL kanamycin was used throughout for 12 

E. coli or C. necator, respectively. Freshly transformed cells from single colonies were 13 

inoculated in 5 mL of LB medium and incubated for 18 h at 30°C and 200 rpm with orbital 14 

diameter of 1.9 cm. Subsequently, cultures of E. coli or C. necator strains were resuspended 15 

to an OD600 of 0.1 or 0.2 in 50 mL LB supplemented with 0.2 % (w/v) glucose or 0.2 % (w/v) 16 

sodium gluconate, respectively. The cultures were grown in 250 mL baffled shake-flasks at 17 

30 °C and 200 rpm with orbital diameter of 1.9 cm. At an OD600 of 0.60.8, 0.25 % (w/v) L-18 

arabinose was added and cultures were allowed to grow further for 46 h enabling 19 

heterologous gene expression. Then, E. coli cells were harvested by centrifugation (1700g for 20 

6 min), resuspended in 25 mL M9 minimal medium (0.24 mg/mL MgSO4, 0.011 mg/mL 21 

CaCl2 and M9 salts) (Sambrook et al., 1989) supplemented with 3 % (w/v) glucose, 1 µg/mL 22 

thiamine and 20 µg/mL uracil (Jensen, 1993) to an OD600 of 10 and incubated in 250 mL 23 

baffled shake-flasks at 30 °C and 200 rpm with orbital diameter of 1.9 cm. Whereas, 24 

C. necator cells were harvested by centrifugation for 10 min at 6,600g, resuspended in 25 mL 25 
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MM (excluding NH4Cl) supplemented with 2 % (w/v) sodium gluconate to an OD600 of 7 and 1 

incubated in 250 mL baffled shake-flasks at 30 °C and 200 rpm with orbital diameter of 1.9 2 

cm. Samples of 0.5 mL were taken immediately, 12 and 48 h after L-arabinose 3 

supplementation, centrifuged for 5 min at 17,000g, and the cell-free supernatant was 4 

subjected to HPLC-UV/RI analysis. 5 

 6 

2.6. HPLC-UV/RI analysis and chemical compound yield quantification 7 

Prior subjecting to the HPLC-UV/RI analysis, the cell-free supernatant samples were 8 

combined with an equal volume of mobile phase (5 mM H2SO4) spiked with 50 mM valerate 9 

as internal standard, the mixture was passed through a Choice™ cellulose acetate syringe 10 

filter with 0.22 μm pore size (Thermo Fisher Scientific; cat. no. CH2213-CA) and stored in 11 

2 mL snap cap vial closed with cap containing septa (Thames Restek; cat. no. SR-0101102-12 

AL and SR-01011TSIT, respectively). Samples were analysed using a Thermo Scientific 13 

UltiMate 3000 HPLC system equipped with a diode array detector DAD-3000 with the 14 

wavelengths set at 210 nm and 280 nm, a refractive index detector RefractoMax 521 (Thermo 15 

Fisher Scientific), and Phenomenex Rezex ROA-organic acid H+ (8%) 150 mm × 7.8 mm × 16 

8 μm column (Phenomenex). The column was operated at 35 °C with an isocratic flow rate of 17 

0.5 ml/min. Samples were run for 30 min and the injection volume was 20 μl. Chromeleon 18 

Chromatography Data System software was used for HPLC system control, data processing 19 

and analysis. The concentrations of chemical compounds were estimated from standard 20 

calibration curves generated by analysing known concentrations of sodium gluconate (cat. no. 21 

10356290) and ethanol (cat. no. 10437341) from Fisher Scientific; 4-hydroxy-2-butanone 22 

(Alfa Aesar; cat. no. L11456); 3-hydroxybutyraldehyde (Aldol; cat. no. CDS019977) and 23 

acetic acid (cat. no. A6283) from Sigma-Aldrich; L-arabinose (cat. no. 365185000), 1,3-24 
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butanediol (99% purity, Cat. No. 107622500) and pyruvic acid (cat. no. 132145000) from 1 

Arcos Organics.  2 

Chemical compound yields per biomass (YP/X) and substrate (YP/S) were calculated 3 

using equations (1) and (2), respectively: 4 

 5 

   ⁄  
  

      
 

           
 

(1) 6 

where P
*

t and P
*

t-1 are concentrations of chemical compound (e.g. 1,3-BDO) in g/L for time 7 

points t and t-1, Xt and Xt-1 are dry cell weight concentrations in g/L for time points t and t-1. 8 

 9 

     
       

       
 

(2) 10 

where Pt and Pt-1 are concentrations of chemical compound in carbon mole (Cmol) for time 11 

points t and t-1, St and St-1 are concentrations for substrate sodium gluconate in Cmol for time 12 

points t and t-1. 13 

To estimate dry cell weight (DCW), 1 mL of cell culture was centrifuged in pre-dried 14 

and pre-weighed 1.5 mL Eppendorf tubes for 2 min at 17000g and the supernatant was 15 

discarded. The cell pellet was dried for 48 h at 120 ºC in a Heratherm OGH60 gravity 16 

convection oven (Thermo Fisher Scientific). Subsequently, samples were cooled in a 17 

desiccator and the DCW was determined using an analytical balance with accuracy to 0.1 mg 18 

(SI-234, Denver Instrument). DCW was calculated as grams per litre. 19 

 20 
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2.7. Specific cell growth rate 1 

Cell growth was monitored by measuring the OD600 using a BioMate
TM

 3S UV-Visible 2 

Spectrophotometer (Thermo Fisher Scientific, MA, USA). Specific growth rate (µ) was 3 

calculated using the following equation (Widdel, 2007).  4 

 5 

     
           

       
 

(3) 6 

where lnOD1 and lnOD0 are the calculated natural logarithm values of measured OD600 for 7 

time points t1 and t0. 8 

 9 

2.8. Fermentation 10 

Autotrophic fermentation was carried out in 1.3 L vessel using a DASGIP® parallel 11 

bioreactor 4-fold system with Bioblock for microbiology including control modules CWD4, 12 

MP8, PH4PO4L, PH4PO4RD4, OD4, MX4/4, TC4SC4 (Eppendorf) equipped with probes to 13 

measure dissolved oxygen (DO) (optical DO probe, Mettler Toledo) , pH (405-DPAS-SC-14 

K8S pH Probe, Mettler Toledo) and temperature Platinum RTD Temperature Sensor 15 

(Eppendorf). DASware® control software was used for automated control of DO, 16 

temperature, and pH. The preculture was prepared and fermentation was performed as 17 

described previously (Bommareddy et al., 2020) with some modifications. Briefly, The first 18 

seed culture was grown overnight at 30 °C with 200 rpm shaking in 10 mL of LB from a 19 

single colony. Subsequently, this culture was reseeded to 120 mL of LB and grown for 20 

another 24 h as above. Resulting cells were harvested by centrifugation for 10 min at 6600g, 21 

washed with 10 mL of FMM to remove residual LB, resuspended in 50 mL FMM and used to 22 

inoculate 700 mL FMM. If appropriate, antibiotics were added to the growth medium at the 23 

following concentrations: 10 μg/ml gentamicin or 300 μg/ml kanamycin. When cells reached 24 
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DCW greater than 1 g/L protein expression was induced by addition of L-arabinose. pH was 1 

controlled at 6.9 by the addition of 1 M NH3OH until a DCW of 0.75 g/L was achieved, 2 

changing to 1 M KOH to limit nitrogen availability. DO was maintained at 10 % (v/v) by 3 

increasing air flow (8.5 – 9.5 L/h) and agitation with a Rushton-type impeller (400 – 4 

1600 rpm) and temperature at 30 °C. Using the DASGIP MX 4/4 Gas Mixing Module CO2, 5 

H2 and air were continuously sparged through 0.22 µm membrane filters into the bioreactors. 6 

Gas outflow composition was analysed using a Bioprocess R&D Lab Gas Analyser, Model 7 

RLGA-9804 (Atmosphere Recovery Inc.). 2 mL samples were taken immediately after 8 

addition of L-arabinose and then every 12 h for 120 h and subjected to the HPLC-UV/RI 9 

analysis. 10 

 11 

3. Results and discussion 12 

3.1. Choice of (R)-1,3-BDO biosynthetic pathways  13 

The systematic approach to engineer C. necator H16 for 1,3-BDO production was based on 14 

the following design and experimental rationale: 1) considering alternative biosynthetic 15 

pathways which enable to utilise pyruvate and its downstream anabolic products as 16 

precursors; 2) screening enzymes with butanal dehydrogenase and aldehyde reductase 17 

activities enabling biosynthesis of 1,3-BDO from (R)-3-hydroxybutyraldehyde-CoA, the 18 

natural pyruvate’s anabolic product in C. necator; 3) engineering C. necator H16 strain to 19 

improve the flux towards precursors required for 1,3-BDO biosynthesis; 4) establishing 20 

fermentation conditions and strain engineering to reduce the by-product biosynthesis; 5) 21 

ultimately, developing C. necator H16 strain suitable for production 1,3-BDO from CO2.  22 

C. necator H16 lacks any phosphofructokinase (2.7.1.11; 2.7.1.90 or 2.70.1.146) of 23 

the Embden-Meyerhoff-Parnas (EMP) pathway and 6-phosphogluconate dehydrogenase 24 

(1.1.1.44 or 1.1.1.343) of the oxidative pentose phosphate (OPP) pathway. Such organisation 25 
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of metabolism restricts the flux through OPP and forward-EMP pathways and instead directs 1 

it through the Entner–Doudoroff pathway under heterotrophic growth conditions. Under 2 

autotrophic conditions, CO2 is fixed by the reductive pentose phosphate cycle into the 3 

glyceraldehyde-3-phosphate and can increase the carbon flux through the reversed-EMP and 4 

ED pathways, as this has been observed under mixotrophic growth conditions (Alagesan et 5 

al., 2018b). The resultant flux distribution increases the availability of pyruvate that is used as 6 

a precursor for PHB synthesis in C. necator H16 under excess carbon and limited macro-7 

elements conditions (Volodina et al., 2016).  8 

Consequently, based on this existing knowledge, the pyruvate was identified as a 9 

highly available precursor for 1,3-BDO biosynthesis in C. necator H16. Two alternative 10 

heterologous biosynthetic pathways that branches out from pyruvate were considered: A) 11 

utilising (R)-3-hydroxybutyraldehyde-CoA ((R)-3HBCoA) and requiring two heterologous 12 

enzymatic reactions: (i) deacylation of (R)-3HBCoA to (R)-3-hydroxybutanal ((R)-3HBA) by 13 

butanal dehydrogenase (CoA-acylating, NADH-dependent) (Bld, EC 1.2.1.57), and (ii) 14 

reduction of (R)-3HBA into (R)-1,3-BDO by NADPH-dependent aldehyde reductase activity 15 

(YqhD, EC 1.1.1.2) (Pérez et al., 2008); B) utilising pyruvate and requiring three 16 

heterologous enzymatic reactions: (i) decarboxylation of pyruvate to acetaldehyde by 17 

pyruvate decarboxylase (Pdc, EC 4.1.1.1), (ii) condensation of two acetaldehyde molecules to 18 

(R)-3HBA by deoxyribose-5-phosphate aldolase (Dra/DeoC, EC 4.1.2.4); and (iii) reduction 19 

of (R)-3HBA into (R)-1,3-BDO by NADPH-dependent aldehyde reductase (Figure 1). 20 

Evidently, the same enzymatic activity can be utilised for the final conversion of (R)-3HBA 21 

to (R)-1,3-BDO in both pathways.  22 

The (R)-3HBCoA pathway requires three NAD(P)H, whereas the pyruvate pathway 23 

utilises one NADPH with two NAD
+
 molecules remaining in oxidised form due to the direct 24 

conversion of pyruvate into acetaldehyde. Both pathways are NAD(P)H-consuming with net 25 
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use of three reducing cofactor molecules for each (R)-1,3-BDO synthesised, and are, 1 

therefore, heavily reliant on the efficient regeneration and balance of reducing equivalent 2 

within the cell. Indeed, Bld protein contains a proline and a nonpolar/aliphatic amino acid in 3 

sequence positions that correspond to the residues P222 and I257 of structurally similar PduP 4 

(Supplementary Figure 1), which are implicated in the selectivity for NADH over NADPH 5 

(Trudeau et al., 2018). Moreover, in vitro assays have shown that Bld possess the NADH-6 

dependent activity (Hwang et al., 2014). 7 

Previous research has shown that key TCA cycle genes (sucC, fumA, mdh1) are 8 

downregulated when C. necator cells transition from exponential to stationary growth phase 9 

alongside the upregulation of PHB required genes phaAB (Peplinski et al., 2010): as one of a 10 

key nutrient is depleted and biomass production becomes restricted, the flux through (R)-11 

3HBCoA is increased and the carbon is accumulated in the form of PHB. This involves β-12 

ketothiolase (PhaA), NADP-dependent acetoacetyl-CoA reductase (PhaB) and poly(3-13 

hydroxyalkanoate) polymerase (PhaC) activities. Notably, the PHB can constitute up to 90% 14 

of the DCW, if the excess carbon is available under nitrogen-limiting conditions (Volodina et 15 

al., 2016). This strongly suggests that a sufficiently large pool of precursor in form of 16 

3HBCoA can be generated under nutrient-limiting conditions generating a driving force for 17 

(R)-1,3-BDO biosynthesis when the (R)-3HBCoA-dependent pathway is utilised. Moreover, 18 

the deletion of phaC1 gene significantly reduces the poly(3-hydroxyalkanoate) polymerase 19 

activity enabling accumulation of (R)-3HBCoA, which can be utilised for biosynthesis of (R)-20 

1,3-BDO. 21 

Therefore, the (R)-3HBCoA-dependent (R)-1,3-BDO biosynthetic pathway was 22 

primarily selected for (R)-1,3-BDO production in C. necator H16 heterotrophically or from 23 

CO2. The PHB deficient ∆phaC1 strain was utilized for the (R)-3HBCoA-dependent pathway 24 

implementation and further metabolic engineering. 25 
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 1 

3.2. Implementation of (R)-3HBCoA-dependent (R)-1,3-BDO biosynthetic pathway 2 

3.2.1. Screening of biosynthetic pathway variants 3 

To enable implementation of (R)-3HBCoA-dependent (R)-1,3-BDO biosynthetic pathway, a 4 

screening of gene combinations, encoding enzymes with butanal dehydrogenase and 5 

aldehyde reductase activities, was performed (Supplementary Figure 2).  6 

 In this screen, as a substitute for the bifunctional AdhE2 from C. acetobutylicum 7 

(Fontaine et al., 2002), a butanal dehydrogenase (Bld) from C. saccharoperbutylacetonicum 8 

(Kosaka et al., 2007; Nair et al., 1994) was combined with a number of aldehyde reductases, 9 

including widely utilised YqhD from E. coli (Jarboe, 2011). The bld gene possessing a very 10 

low GC content of 32.8 % was codon-optimised for expression in C. necator H16 (66.3 % 11 

average GC content). Aldehyde reductase candidates were selected based on protein 12 

homology to YqhD or enzymatic activity on similar compounds reported previously, such as 13 

the conversion of 4-hydroxybutyraldehyde to 1,4-butanediol (Wang et al., 2017), acetoin to 14 

2,3-butanediol (Yan et al., 2009) or the in vitro conversion of 3-hydroxybutyraldehyde to 1,3-15 

butanediol (Kim et al., 2017). Furthermore, the yqhD gene was combined with eutE from two 16 

different species, as well as adhE2 and adhE1 from C. acetobutylicum and E. coli adhE were 17 

included. 18 

 All pathway variants were tested in C. necator H16 wild-type and PHB deficient 19 

mutant with the (R)-1,3-BDO biosynthesis observed only in the latter. (R)-1,3-BDO was 20 

produced in strains H16∆C-p2, H16∆C-p15 and H16∆C-p26 expressing bld with yqhD from 21 

E. coli MG1655 (hereafter denoted as yqhDEc) or P. putida KT2440 (yqhDPp), and 22 

bifunctional adhE2 from C. acetobutylicum, respectively (Supplementary Figure 2). Other 23 

biosynthetic pathway variants did not show detectable quantities of the diol by HPLC-RI. 24 

Biosynthesis of (R)-1,3-BDO in C. necator H16 obtained using bifunctional adhE2 on its 25 
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own or bld in combination with yqhD is consistent with previously reported activities of these 1 

enzymes (Hwang et al., 2014; Kataoka et al., 2013) confirming their indispensable role.  2 

It should be noted that (R)-1,3-BDO exhibited only a minor toxic effect on C. necator 3 

H16 with no growth inhibition in the presence of up to 83.2 mM (Supplementary Table 3). 4 

 5 

3.2.2. Evaluation of (R)-1,3-BDO biosynthesis 6 

Previous research has shown that the PHB synthesis in C. necator H16 is increased under 7 

nitrogen limiting conditions with excess carbon available (Tian et al., 2005). The nitrogen 8 

limitation effect on (R)-1,3-BDO yield was investigated H16∆C-p26 by changing 9 

carbon/nitrogen (C/N) ratio in culture minimal medium from 6 to 50. In spite of decrease in 10 

growth rate, more than 2-fold higher yield of (R)-1,3-BDO was observed using C/N ratio of 11 

50 (Supplementary Figure 3). Furthermore, Y1,3-BDO/S of 0.018 was measured 24 h after 12 

induction under nitrogen limitation, whereas in non-limiting nitrogen conditions (R)-1,3-13 

BDO became detectable only after 48 h. These results demonstrate that (R)-1,3-BDO 14 

biosynthesis in C. necator H16 can be improved by limiting nitrogen availability. 15 

The AraC/ParaBAD-arabinose inducible system is relatively well repressed under 16 

uninduced state and can be fine-tuned in the range from 0.00117 to 0.15 % (w/v) of L-17 

arabinose allowing to achieve more than 1000-fold induction in C. necator H16 (Alagesan et 18 

al 2018a). Importantly, the L-arabinose is not metabolised by this bacterium and does not 19 

exhibit any adverse effect on the cell growth (data not shown). Therefore, AraC/ParaBAD 20 

inducible system was selected to drive overexpression of (R)-1,3-BDO biosynthesis genes.  21 

To establish an optimal gene expression level of (R)-3HBCoA-dependent (R)-1,3-22 

BDO biosynthetic pathway, induction conditions using a range of L-arabinose concentrations 23 

(from 0.005 to 0.2% (w/v)) were investigated. For H16∆C-p2 strain expressing bld and 24 

yqhDEc, a direct correlation between the biosynthesis levels of (R)-1,3-BDO and 25 
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concentration of inducer was observed 24 hours after induction with the highest quantity of 1 

(R)-1,3-BDO produced in the cell culture that was supplemented with 0.2% of L-arabinose 2 

(Supplementary Figure 4). However, at the later stages of induction, the specific (R)-1,3-3 

BDO production was reduced and a strong growth inhibition observed in cultures 4 

supplemented with higher than 0.045 % concentrations of L-arabinose. Altogether these 5 

results revealed that 0.01 to 0.045 % concentrations of L-arabinose are optimal for induction 6 

of (R)-1,3-BDO biosynthetic pathway genes when the plasmid-based expression system is 7 

used in C. necator H16.  8 

Next, (R)-1,3-BDO-producing C. necator strains H16∆C-p2, H16∆C-p15 and 9 

H16∆C-p26 were compared under heterotrophic nitrogen-limited growth conditions (Figure 10 

2). Cumulative yields of (R)-1,3-BDO were steady for the duration of 96-hours cell growth 11 

period ranging from 0.035 to 0.055 Cmol Cmol
-1

, and comparable between all three strains. 12 

Increase in biomass and 1,3-BDO was greatest during initial 24-hour post induction period 13 

with a highest yield of 0.055 ± 0.003 Cmol Cmol
-1

 obtained using strain H16∆C-p2. It can be 14 

concluded that of three strains possessing alternative combinations of genes of (R)-3HBCoA-15 

dependent pathway, the strain H16∆C-p2 performed marginally better producing highest 16 

yields of (R)-1,3-BDO during early logarithmic and stationary growth periods while 17 

exhibiting the least growth impairment. Furthermore, YqhDEc aldehyde reductase specificity 18 

on butanal is higher (Km = 0.67) than that of AdhE2 (Km = 1.60) as reported previously 19 

(Palosaari and Rogers, 1988; Pérez et al., 2008). Therefore, the combination of genes bld and 20 

yqhDEc were chosen to be utilized for (R)-3HBCoA-dependent biosynthetic pathway in next 21 

stages of this study.  22 

 23 
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3.2.3. YqhD facilitates higher (R)-1,3-BDO yield in C. necator 1 

A NADPH-dependent aldo-keto reductase (AKR, PA1127) from P. aeruginosa has been 2 

shown to convert 3-hydroxybutanal into (R)-1,3-BDO (Kim et al., 2017) enabling to achieve 3 

yield of 0.075 Cmol Cmol
-1

-glucose in E. coli (Nemr et al., 2018). To compare the efficiency 4 

of AKR for (R)-1,3-BDO production in E. coli MG1655 and C. necator H16, plasmid 5 

constructs containing PA1127 replacing yqhD were assembled. Then, the (R)-1,3-BDO 6 

biosynthesis was achieved using two-stage batch fermentation in the 250 mL baffled shake 7 

flask as described in Materials and Methods. E. coli cells harbouring plasmid pJLG38 (MG-8 

p38 containing PA1127) or pJLG11 (MG-p11 containing yqhDEc) and C. necator strains 9 

harbouring plasmids with either PA1127 (H16∆C-p20) or yqhDEc (H16∆C-p2) were 10 

cultivated in rich media and heterologous gene expression was induced by supplementing 11 

media with 0.25 % (w/v) of L-arabinose, allowing biomass and recombinant enzyme 12 

production. Cells were then resuspended to a high cell density in minimal media with an 13 

abundance of either glucose (E. coli) or sodium gluconate (C. necator), cultured for 48 h and 14 

(R)-1,3-BDO concentration was measured in the media. E. coli MG-p38 strain harbouring 15 

plasmid with PA1127 gene yielded 0.087 (R)-1,3-BDO (Cmol Cmol
-1

) (Table 2) supporting 16 

previous work (Nemr et al., 2018). Whereas, C. necator strain H16∆C-p20 with PA1127, 17 

produced almost 2-fold less of (R)-1,3-BDO. Strikingly, C. necator strain H16∆C-p2 18 

expressing yqhDEc achieved the highest (R)-1,3-BDO yield of 0.140 (Cmol Cmol
-1

). Notably, 19 

similar improvement in the production of diols and other reduced chemical compounds using 20 

two-stage fermentation approach has been reported previously (Burg et al., 2016; Kataoka et 21 

al., 2013; Nemr et al., 2018). 22 

 Overexpression of yqhD has a clear adverse effect on the (R)-1,3-BDO yield in E. coli 23 

but not in C. necator. This is likely due to acetaldehyde dehydrogenase activity causing 24 
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production of ethanol as reported previously (Nemr et al., 2018) and with this associated 1 

depletion of NADPH. 2 

 3 

3.2.4. Metabolic by-products of the (R)-3HBCoA-dependent pathway 4 

As indicated in section 3.1, C. necator H16 strains with ∆phaC1 background were primarily 5 

used for biosynthesis of (R)-1,3-BDO. Further analysis of extracellular metabolite 6 

composition revealed that, alongside the (R)-1,3-BDO, large amounts of pyruvate, 7 

representing yields of 0.419 ± 0.003 Cmol Cmol
-1

, 0.505 ± 0.008 Cmol Cmol
-1

 and 0.415 ± 8 

0.011 Cmol Cmol
-1

, were respectively excreted from strains H16ΔC-p2, H16ΔC-p15 and 9 

H16ΔC-p26, containing (R)-3HBCoA-dependent pathway variants. Whereas only negligible 10 

quantities of acetate and ethanol were detected in these strains. The pyruvate was completely 11 

absent in cultures of wild-type background strains harbouring same biosynthetic pathway 12 

variants. The accumulation and excretion of pyruvate has been reported previously in 13 

C. necator H16 ∆pdhL and PHB
-
4 (DSM541) strains (Raberg et al., 2011; Steinbüchel and 14 

Schlegel, 1989). The former is deficient of the dihydrolipoamide dehydrogenase (E3) 15 

component of pyruvate dehydrogenase complex. The accumulation of pyruvate in PHB
-
 16 

strains indicates that the deficiency of poly(3-hydroxyalkanoate) polymerase activity causes 17 

the build-up of upstream metabolites of the PHB pathway and that the increase in acetyl-CoA 18 

level inhibits the pyruvate dehydrogenase activity, as postulated previously (Jung and Lee, 19 

1997; Raberg et al., 2011; Steinbüchel and Schlegel, 1989). Simultaneously, the pyruvate 20 

accumulation suggests that the (R)-3HBCoA-dependent pathway exhibits limited capacity to 21 

drive carbon flux towards the (R)-1,3-BDO.  22 

Alongside with the (R)-1,3-BDO synthesis and accumulation of pyruvate, the 4-23 

hydroxy-2-butanone (4H2B) was observed as a by-product in engineered C. necator H16 24 

expressing (R)-3HBCoA-dependent biosynthetic pathway genes. As shown previously, the 25 
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butanal dehydrogenase Bld exhibits enzymatic activity on various C4-CoA derivatives 1 

including 3HBCoA and 4HBCoA (Hwang et al., 2014; Kataoka et al., 2013). Therefore, we 2 

hypothesized that this promiscuous enzyme can also act upon the excess acetoacetyl-CoA (3-3 

oxobutyryl-CoA), produced by the β-ketothiolase, PhaA, converting it into 3-oxobutanal, 4 

which is further transformed into 4H2B by YqhD promiscuous activity (Figure 3A). To test 5 

this hypothesis, 4H2B and (R)-1,3-BDO biosynthesis was evaluated in C. necator ΔphaC1B1 6 

strain transformed either with plasmid pJLG14 containing bld (strain H16ΔCB-p14); pJLG2 7 

with bld and yqhDEc (H16ΔCB-p2) or pJLG44 containing bld, yqhDEc and phaB genes 8 

(H16ΔCB-p44). Results in Figure 3B show that neither (R)-1,3-BDO nor 4H2B are 9 

detectable in the culture of H16ΔCB-p14 when yqhD activity is absent. However, both 10 

compounds are synthesised by H16ΔCB-p2 and H16ΔCB-p44 containing both bld and yqhD 11 

genes. Moreover, in the absence of phaB1 gene (strain H16ΔCB-p2), mostly 4H2B is 12 

synthesized, whereas strains H16∆CB-p44 and H16∆C-p2, possessing bld, yqhDEc and phaB1 13 

genes, produce predominantly (R)-1,3-BDO (Figure 3B). These results confirm that when 14 

NADP-dependent acetoacetyl-CoA reductase activity is reduced by deletion of phaB1 gene, 15 

the acetoacetyl-CoA accumulates and is subsequently converted into 4H2B by Bld and YqhD 16 

activities. Notably, even if phaB1 gene is absent, a small quantity of (R)-1,3-BDO is 17 

generated, most likely through the activity of other C. necator PhaB homologues encoded by 18 

phaB2 and phaB3. When ΔphaB1 is complemented with plasmid-based phaB (H16ΔCB-19 

p44), the (R)-1,3-BDO biosynthesis is recovered, whereas the 4H2B yield is drastically 20 

reduced, indicating increase in availability of (R)-3HBCoA for conversion into the diol by 21 

Bld and YqhD. Overall, these results suggest that by-product’s 4H2B formation can be 22 

reduced by improving expression or copy number of phaB1 encoding for NADP-dependent 23 

acetoacetyl-CoA reductase. On the another hand, the 4H2B can be converted into (R)-1,3-24 
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BDO using enzymes with reducing activity as identified previously (Matsuyama et al., 2001; 1 

Okabayashi et al., 2009). 2 

 3 

3.3. Improvement of (R)-1,3-BDO production in C. necator 4 

3.3.1. Overexpression of endogenous phaA and phaB1 5 

The endogenous C. necator H16 genes phaA and phaB are essential for biosynthesis of 3-6 

HBCoA from acetyl-CoA (Figure 1). In order to assess whether enhanced expression of phaA 7 

and phaB by increasing their copy number and expression level can improve (R)-1,3-BDO 8 

production, phaA and phaB in addition to bld and yqhD genes were included in the plasmid-9 

based overexpression system yielding pJLG35. The yield of (R)-1,3-BDO in H16∆C-p35 10 

containing chromosomal and plasmid-based copies of phaAB was compared to that in 11 

H16∆C-p15 (chromosomal copy of phaAB), H16∆CAB-p15 (no phaAB) and H16∆CAB-p35 12 

(plasmid-based only copy of phaAB) (Figure 4). Of all strains, H16∆C-p35 and H16∆CAB-13 

p35 exhibited the diol production within the first 24 hours, whereas the former maintained 14 

highest yield (approximately 0.045 Cmol Cmol
-1

) throughout the rest of 120-hour 15 

fermentation. Evidently, expression of plasmid-based phaAB genes encoding acetoacetyl-16 

CoA reductase improved utilisation of carbon source and conversion of pyruvate at the later 17 

stages of fermentation. Interestingly, despite the lack of phaAB in strain H16∆CAB-p15, the 18 

production of (R)-1,3-BDO was still observed, albeit at much lower yields of 0.008 ± 0.003 19 

Cmol Cmol
-1

. Specific production of 1,3-BDO by strain H16∆CAB-p15 after 120 h indicates 20 

combined activity of one or multiple β-ketothiolase homologues reported in the C. necator 21 

genome (Lindenkamp et al., 2012) and acetoacetyl-CoA reductase PhaB3 (H16_A2171) 22 

possessing reduced rate compared to PhaB1 (Budde et al., 2010).  23 

 24 
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3.3.2. Reducing TCA cycle flux for enhanced 1,3-BDO production 1 

With previous literature detailing improvement of PHB production as a result of acetyl-CoA 2 

accumulation facilitated through gene deletions observed in E. coli (Centeno-Leija et al., 3 

2014), C. necator genes sucCD and iclAB were targeted to be deleted individually and in 4 

combination to reduce TCA cycle carbon flux, increasing acetyl-CoA pool for 1,3-BDO 5 

production (Figure 5). C. necator strains H16 ∆phaC∆iclAB (H16∆2), H16 ∆phaC∆sucCD 6 

(H16∆3) and H16 ∆phaC∆iclAB∆sucCD (H16∆4) were generated. For (R)-1,3-BDO yield 7 

profiling, they were transformed with plasmid pJLG2 containing (R)-3HBCoA-dependent 8 

(R)-1,3-BDO biosynthetic pathway genes, batch fermentation and product analysis performed 9 

as above. The results showed that the overall (R)-1,3-BDO yield was significantly higher for 10 

engineered strains H16∆3-p2 and H16∆4-p2. Notably, H16∆3-p2 exhibited nearly 2-fold 11 

higher yield than other strains after 24 hours of fermentation.  12 

As predicted, deletion of sucCD helped to improve (R)-1,3-BDO yield likely through 13 

increased acetyl-CoA pool. Despite the loss of ATP generation by the deletion of sucCD, all 14 

strains exhibited similar specific growth rates. Indistinctly, iclAB deletion strains showed no 15 

improvement in (R)-1,3-BDO biosynthesis as the sole deletion or when combined with 16 

sucCD deletion. Since iclAB has been previously reported to be primarily involved in β-17 

oxidation pathways (Brigham et al., 2010; Sharma et al., 2016) and only low expression level 18 

was observed under heterotrophic growth (Alagesan et al., 2018b) this indicates its reduced 19 

involvement in gluconate metabolism and flux through the glyoxylate bypass. 20 

 21 

3.4. Implementation of pyruvate-dependent (R)-1,3-BDO pathway 22 

3.4.1. Evaluation of pyruvate-dependent pathway 23 

The pyruvate-dependent biosynthetic pathway has been recently developed for (R)-1,3-BDO 24 

production in E. coli (Kim et al., 2017; Nemr et al., 2018). This pathway consisting of 25 
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pyruvate decarboxylase (PDC), deoxyribose-5-phosphate aldolase (Dra) and aldo/keto 1 

reductase (AKR) enables to convert pyruvate to (R)-1,3-BDO through acetaldehyde and (R)-2 

3HBA intermediates. To utilise the pyruvate that accumulates in C. necator ∆phaC strains, 3 

the pyruvate-dependent pathway was implemented in this study. With YqhDEc proved 4 

suitable for conversion of (R)-3HBA to (R)-1,3-BDO in engineered C. necator, the gene of 5 

this enzyme was combined with PDC from Z. mobilis ZM4 and dra from B. halodurans into 6 

the plasmid pJLG306 yielding strain H16∆C_p306 (Figure 6A). However, similarly to 7 

H16∆C-p26, this strain did not produce detectable quantities of (R)-1,3-BDO by HPLC-RI 8 

analysis under heterotrophic growth conditions (Figure 6B). The further metabolite analysis 9 

revealed no accumulation of pyruvate, indicating that it is completely converted into 10 

acetaldehyde by PDC (Figure 6C). However, high yields of acetate and ethanol suggest that 11 

Dra is ineffective in converting acetaldehyde to (R)-3HBA and causes a bottleneck in the 12 

pyruvate-dependent biosynthetic pathway. This is also supported by previous results showing 13 

that the gene copy number and expression level of dra contribute to the increase of (R)-1,3-14 

BDO yield (Nemr et al., 2018). Furthermore, a rapid acetate synthesis from acetaldehyde is 15 

likely to be associated with acetaldehyde dehydrogenase AcoD activity in C. necator H16 16 

(Priefert et al., 1992), whereas a low affinity of YqhDEc towards acetaldehyde (Pérez et al., 17 

2008) can contribute to the gradual increase in the ethanol yield during the 120-hour 18 

fermentation. 19 

 20 

3.4.2. Combining (R)-3HBCoA- and pyruvate-dependent pathways  21 

Considering the absence of any detectable (R)-1,3-BDO production by the pyruvate-22 

dependent pathway in C. necator and aiming to reduce accumulation of pyruvate and 23 

improve carbon flux through acetyl-CoA node, it was reasoned that the combination of both,  24 

pyruvate- and (R)-3HBCoA-dependent pathways, may improve (R)-1,3-BDO biosynthesis. 25 
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As postulated previously, the acetoin dehydrogenase bypass can counteract an accumulation 1 

of pyruvate and utilise acetaldehyde that is generated as pyruvate-dependent pathway 2 

intermediate, by offering an alternative route to acetyl-CoA, especially, when pyruvate 3 

dehydrogenase complex is inhibited by elevated concentration of acetyl-CoA (Raberg et al., 4 

2014).  5 

To combine (R)-3HBCoA- and pyruvate-dependent pathways, genes bld, yqhDEc, dra 6 

and PDC were assembled into a plasmid pJLG304. C. necator strains H16∆C_p304, 7 

harbouring pJLG304, and H16∆C_p2, containing the 3-HBCoA-dependent pathway only, 8 

were compared for (R)-1,3-BDO and other major metabolite yields (Figure 7; Supplementary 9 

Table 4). Strain H16∆C_p304 showed 1.7-fold increase in (R)-1,3-BDO yield compared to 10 

H16∆C_p2. Notably, similarly to H16∆C_p306, no accumulation of pyruvate and high yields 11 

of acetate and ethanol were observed for strain H16∆C_p304. Moreover, metabolite profiles 12 

vary considerably in an oxygen rich environment, with increased acetate yields by strain 13 

H16∆C_p304 rising from 0.046 ± 0.002 to 0.206 ± 0.009 Cmol Cmol
-1

, after 72-hour 14 

induction. 15 

 16 

3.5. Engineering stable expression of (R)-1,3-BDO pathway genes 17 

3.5.1. Chromosomal integration of biosynthetic pathway 18 

To improve genetic stability ensuring stable expression of (R)-1,3-BDO biosynthetic pathway 19 

genes, chromosomal integration of the constructs into phaCAB loci was performed. 20 

Simultaneously, heterologous genes for either 3-HBCoA-dependent pathway or combining 21 

the 3-HBCoA-dependent and pyruvate-dependent pathways were introduced. To ensure 22 

tuneable expression of chromosomally integrated heterologous genes, an arabinose inducible 23 

system (araC/ParaBAD) preceded with terminator was integrated into the phaC locus upstream 24 

of either bld and yqhDEc (strain H16∆1::54) or bld, yqhDEc, dra, and PDC (strain H16∆1::56). 25 
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By design, utilisation of the phaC locus as a target integration site not only abolished the 1 

PHB synthesis but also ensured a controllable expression of phaA and phaB, which are 2 

required for (R)-1,3-BDO production. Nonetheless, engineered strains contained only a single 3 

copy of chromosomally integrated biosynthetic pathway genes, and despite a significant 4 

reduction in gene copy number comparing to the plasmid-based expression system, a 5 

detectable level of (R)-1,3-BDO was observed for both strains H16∆1::54 and H16∆1::56 6 

under non-optimal growth conditions with limited aeration (Table 3). 7 

 Earlier results indicated that limited expression of either bld or dra can create a 8 

bottleneck in the (R)-1,3-BDO biosynthetic pathways. Moreover, bld from 9 

C. saccharoperbutylacetonicum is potentially an oxygen-sensitive enzyme, similarly to its 10 

homologue from C. beijerinckii (Yan and Chen, 1990). Therefore, to further improve strains 11 

H16∆1::54 and H16∆1::56, a second copy of these genes was introduced by replacing sucCD, 12 

deletion of which was identified in this study as beneficial for improving (R)-1,3-BDO yield. 13 

An additional copy of bld was integrated into the strains containing either the 3HBCoA-14 

dependent pathway (H16∆1::54/∆3::58) or the combined 3HBCoA- and pyruvate-dependent 15 

pathway (H16∆1::56/∆3::58). The bld gene was placed under the control of a strong 16 

constitutive promoter (P8) (Alagesan et al., 2018a). The same strategy was employed for 17 

integration bld and dra into the strain with combined 3HBCoA-and pyruvate-dependent 18 

pathway (H16∆1::56/∆3::60). All engineered strains were screened by measuring (R)-1,3-19 

BDO and by-products yields (Table 3). As expected, for all strains, diol yield was reduced 20 

compared with plasmid-based expression system. Nonetheless, a clear improvement of (R)-21 

1,3-BDO biosynthesis was achieved by introducing additional copies of dra and/or bld.  22 

 23 
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3.5.2. (R)-1,3-BDO production from CO2  1 

With C. necator H16 capable of using CO2 as sole carbon source, autotrophic fed-batch 2 

fermentation was undertaken for production of (R)-1,3-BDO. Strains H16∆1::54, 3 

H16∆1::54/∆3::58, H16∆1::56 and H16∆1::56/∆3::60 were cultivated in 1.2 L bioreactors 4 

with a working volume of 750 mL, variable impeller agitation speed and a constant supply of 5 

CO2, H2 and air in the presence of 0.1 % (w/v) arabinose (Figure 8). As observed for 6 

metabolite profiling under heterotrophic growth conditions, increased availability of key 7 

pathway enzymes, namely Bld and Dra, considerably improved the (R)-1,3-BDO production 8 

when utilising the 3HBCoA-dependent pathway (strain H16∆1::54/∆3::58) and combination 9 

of 3HBCoA- and pyruvate-dependent pathways (H16∆1::56/∆3::60). For these strains, 10 

Maximum production rates of 0.41 and 0.27 Cmol Cmol
-1

 h
-1

 and titres of 7.8 and 9.5 mM, 11 

respectively, were measured in the early stationary phase (48 – 60 hours). Despite a 12 

continuous supply of CO2 at this stage, cells were entering stationary phase due to the 13 

complete consumption of key elements such as nitrogen and/or phosphate, resulting in carbon 14 

flux being re-directed from biomass towards the (R)-1,3-BDO biosynthesis. 15 

 16 

3.5.3. Further improvement of autotrophic (R)-1,3-BDO production by increasing bld copy 17 

number 18 

Moreover, to further evaluate if the increase in the copy number of biosynthetic pathways 19 

genes can improve (R)-1,3-BDO production, strains containing chromosomally integrated 20 

bld, yqhDEc, dra, and PDC, were transformed with plasmid carrying bld and dra copies. (R)-21 

1,3-BDO and by-product profiles of resulting strains H16∆1::54_p14 (chromosomal bld and 22 

yqhDEc; plasmid bld), H16∆1::56_p14 (chromosomal bld, yqhDEc, dra, and PDC; plasmid 23 

bld) and H16∆1::56_p45 (chromosomal bld, yqhDEc, dra, and PDC; plasmid bld and dra) 24 

were compared to earlier characterised strains H16∆C_p2 and H16∆C_p304 (Supplementary 25 
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Figure 5). A significant improvement of (R)-1,3-BDO yield was observed in strains 1 

(H16∆1::54_p14 and H16∆1::56_p14) with additional copy of bld on the plasmid. Whereas, 2 

the addition of dra had only a marginal effect on the (R)-1,3-BDO yield. As observed 3 

previously, by introducing the pyruvate-dependent pathway, no pyruvate accumulation is 4 

observed demonstrating efficient metabolism of pyruvate to acetaldehyde facilitated by PDC.  5 

Highest producing strains H16∆1::56_p14 and H16∆1::56_p45 were subjected to 6 

autotrophic fermentation using CO2 as a sole carbon source. Despite successful production of 7 

(R)-1,3-BDO in shake-flask mode, strain H16∆1::56_p45 was genetically unstable due to the 8 

plasmid pJLG45 loss, which was observed at the early stage of fermentation by plating cell 9 

culture on non-selective medium and selective medium with chloramphenicol antibiotic. 10 

Therefore,  the (R)-1,3-BDO or another metabolite production was inconsistent and was not 11 

subjected to further analysis. Nonetheless, H16∆1::56_p14 achieved the highest reported (R)-12 

1,3-BDO titre of 33 mmol L
-1

 (2.97 g L
-1

) (Figure 9). With theoretical yield of 1.00 for (R)-13 

1,3-BDO production from CO2, a yield of 0.77 Cmol Cmol
-1

 for 72- to 84-hour fermentation 14 

period and average yield of 0.4 Cmol Cmol
-1

 were obtained. Furthermore, 4H2B production 15 

was high (19.7 mmol L
-1

 titer and average yield close to 0.3). 4H2B yield increased during 16 

later stage of fermentation indicating insufficient conversion of acetoacetyl-CoA to 3-17 

hydroxybutanal facilitated by PhaB, despite being under the control of the arabinose 18 

inducible system. With such high yields of (R)-1,3-BDO and 4H2B there was no other by-19 

products detectable. 20 

 21 

4. Conclusions  22 

Here we report the stepwise engineering of C. necator H16 for production of (R)-1,3-BDO 23 

from CO2. To achieve this, two alternative heterologous (R)-1,3-BDO biosynthetic pathways, 24 

based on utilisation of either (R)-3HBCoA or pyruvate as precursors, were investigated. 25 
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Initially, the (R)-1,3-BDO biosynthesis was achieved by heterologous gene expression of 1 

either C. saccharoperbutylacetonicum bld in combination with E. coli yqhD or 2 

C. acetobutylicum adhE2. The (R)-1,3-BDO yield was improved through the genetic 3 

inactivation of the PHB biosynthesis by deletion of either phaC1 gene or phaCAB operon and 4 

redirecting excess carbon toward the diol production. (R)-1,3-BDO-producing strains were 5 

further improved by introducing extra copies of phaA, phaB1, bld and dra, as well as by 6 

deleting sucCD genes. An alternative (R)-1,3-BDO biosynthetic pathway was implemented 7 

by heterologous expression of PDC from Z. mobilis, and dra and yqhD from E. coli. The 8 

introduction of this biosynthetic pathway did not yield a detectable level of (R)-1,3-BDO, 9 

whereas the combination of both biosynthetic pathways resulted in a highest diol production. 10 

Further to this, genes of both (R)-1,3-BDO biosynthetic pathways were chromosomally 11 

integrated ensuring the genetic stability of engineered strains. Application of (R)-3HBCoA- 12 

and pyruvate-dependent pathways, in combination with abolishing the PHB biosynthesis and 13 

reducing the flux through the tricarboxylic acid cycle, enabled to engineer a strain that was 14 

able to  produce more than 2.97 g L
-1

 of (R)-1,3-BDO viaautotrophic fermentation from CO2. 15 

In this fermentation mode a large proportion of carbon (up to 40% Cmol Cmol
-1

) was 16 

directed to the (R)-1,3-BDO. In conclusion, this study demonstrates that engineered 17 

C. necator H16 can be effectively utilised for diol production. 18 
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Tables 1 

Table 1. Strains used in this study. P denotes ParaBAD promoter with square brackets showing 2 

genes under promoter control.  3 

Strain Genotype Parent strain Plasmid Source 

E. coli MG1655 F- , λ-, rph-1 - - 
ATCC 

70096 

E. coli DH5α lacZΔM15, recA1, endA1 - - Invitrogen 

E.coli S17-1 
recA pro hsdR 

RP42Tc::MuKm::Tn7 
- - 

ATCC 

47055  

P. putida 

KT2440 
wild type   

ATCC 

47054 

C. necator H16 wild type - - DSM-428 

C. necator H16 

phaC*
-
 

PHB
-
4 - - DSM-541 

C. necator H16 

ΔphaC1 
ΔphaC1 - - 

Arenas et al., 

unpublished 

C. necator H16 

ΔphaC1B1 
ΔphaC1, ΔphaB1 - - This work 

C. necator H16 

ΔphaC1AB1 
ΔphaC1, ΔphaA, ΔphaB1 - - 

Arenas et al., 

unpublished 

C. necator H16 

Δ2 
ΔphaC1, ΔiclAB - - This work 

C. necator H16 

Δ3 
ΔphaC1, ΔsucCD - - This work 

C. necator H16 

Δ4 
ΔphaC1, ΔiclAB, ΔsucCD - - This work 

MG-p11 
MG1655, (P[bld yqhDEc 

phaA phaB1] Km
r
) 

E. coli 

MG1655 
pJLG11 This work 

MG-p35 
MG1655, (P[bld yqhDPp 

phaA phaB1] Km
r
) 

E. coli 

MG1655 
pJLG35 This work 

MG-p38 
MG1655, (P[bld PA1127 

phaA phaB1] Km
r
) 

E. coli 

MG1655 
pJLG38 This work 

H16∆C-p2 
H16ΔphaC1, (P[bld 

yqhDEc] Km
r
) 

C. necator H16 

ΔphaC 
pJLG2 This work 

H16∆C-p15 
H16ΔphaC1, (P[bld 

yqhDPp] Km
r
) 

C. necator H16 

ΔphaC 
pJLG15 This work 

H16∆CAB-p15 
H16ΔphaCAB, (P[bld 

yqhDPp] Km
r
) 

C. necator H16 

ΔphaCAB 
pJLG15 This work 

H16∆C-p26 
H16ΔphaC1, (P[bld 

adhE2] Km
r
) 

C. necator H16 

ΔphaC 
pJLG26 This work 

H16∆C-p35 
H16ΔphaC1, (P[bld 

yqhDPp phaA phaB1] Km
r
) 

C. necator H16 

ΔphaC 
pJLG35 This work 

H16∆CAB-p35 
H16ΔphaC1AB1, (P[bld 

yqhDPp phaA phaB1] Km
r
) 

C. necator H16 

ΔphaCAB 
pJLG35 This work 

H16∆C-p304 
H16ΔphaC1, (P[bld 

yqhDEc dra PDC] Km
r
) 

C. necator H16 

ΔphaC 
pJLG304 This work 
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H16∆C-p306 
H16ΔphaC1, (P[ yqhDEc 

dra PDC] Km
r
) 

C. necator H16 

ΔphaC 
pJLG306 This work 

H16∆CB-p14 H16ΔphaC1, (P[bld] Km
r
) 

C. necator H16 

ΔphaC 
pJLG14 This work 

H16∆CB-p2 
H16ΔphaC1, (P[bld 

yqhDEc] Km
r
) 

C. necator H16 

ΔphaC 
pJL2 This work 

H16∆CB-p44 
H16ΔphaC1, (P[bld 

yqhDEc phaB1] Km
r
) 

C. necator H16 

ΔphaC 
pJL44 This work 

H16∆2-p2 
H16ΔphaC1ΔiclAB, (P[bld 

yqhDEc] Km
r
) 

C. necator H16 

Δ2 
pJLG2 This work 

H16∆3-p2 
H16ΔphaC1ΔsucCD, 

(P[bld yqhDEc] Km
r
) 

C. necator H16 

Δ3 
pJLG2 This work 

H16∆4-p2 
H16ΔphaC1ΔiclABΔsucCD

, (P[bld yqhDEc] Km
r
) 

C. necator H16 

Δ4 
pJLG2 This work 

H16∆1::54 
H16ΔphaC1::P[bld yqhDEc 

phaAB] 
- - This work 

H16∆1::54-p14 
H16ΔphaC1::P[bld yqhDEc 

phaAB], (P[bld] Km
r
) 

H16∆1::54 pJLG14 This work 

H16∆1::54-p2 

H16ΔphaC1::P[bld yqhDEc 

phaAB], (P[bld yqhDEc] 

Km
r
) 

H16∆1::54 pJLG2 This work 

H16∆1::54/∆3::5

8  

H16ΔphaC1::P[bld yqhDEc 

phaAB], ΔsucCD::P8[bld] 
- - This work 

H16∆1::56 
H16ΔphaC1::P[bld yqhDEc 

dra PDC phaAB] 
- - This work 

H16∆1::56-p14 

H16ΔphaC1::P[bld yqhDEc 

dra PDC phaAB] (P[bld] 

Km
r
) 

H16∆1::56 pJLG14 This work 

H16∆1::56-p45 

H16ΔphaC1::P[bld yqhDEc 

dra PDC phaAB] (P[bld 

dra] Km
r
) 

H16∆1::56 pJLG45 This work 

H16∆1::56/∆3::5

8 

H16ΔphaC1::P[bld yqhDEc 

dra PDC phaAB], 

ΔsucCD::P8[bld] 

- - This work 

H16∆1::56/∆3::6

0 

H16ΔphaC1::P[bld yqhDEc 

dra PDC phaAB], 

ΔsucCD::P8[bld dra] 

- - This work 

 1 
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Table 2. Concentration of (R)-1,3-BDO and yields of (R)-1,3-BDO and 4H2B obtained using 1 

two-stage batch fermentation by E. coli MG-p11 and MG-p38 or C. necator H16∆C-p2 and 2 

H16∆C-p20 strains. Values represent the average and standard deviation of three biological 3 

replicates. 4 

Strain 

(R)-1,3-BDO 

(mM) 

Y1,3BDO (Cmol 

Cmol
-1

) 

Y4H2B (Cmol 

Cmol
-1

) 

E. coli MG-p11 1.994 ± 0.504 0.035 ± 0.010 N.D. 

E. coli MG-p38 8.903 ± 0.239 0.087 ± 0.019 N.D. 

C. necator H16∆C-p2 14.805 ± 0.454 0.140 ± 0.002 0.030 ± 0.001 

C. necator H16∆C-p20 5.311 ± 0.289 0.048 ± 0.003 0.024 ± 0.001 

 5 
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Table 3. (R)-1,3-BDO and by-product yields in engineered C. necator strains. Cells were 1 

grown in 10 mL of 2 nitrogen-limiting minimal media supplemented with 2 % sodium 2 

gluconate and  0.1 % arabinose for 72 hours. 3 

Strain Y1,3BDO  

(Cmol Cmol
-

1
) 

Y4H2B  

(Cmol Cmol
-

1
) 

YAcetate  

(Cmol Cmol
-

1
) 

YEthanol 

(Cmol Cmol
-

1
) 

YPyruvate 

(Cmol Cmol
-

1
) 

H16∆1::54 0.008 ± 0.000 N.D. 0.022 ± 0.000  0.008 ± 0.000  0.345 ± 0.005 

H16∆1::54

/∆3::58 

0.010 ± 0.001 N.D. 0.014 ± 0.002 0.013 ± 0.004 0.289 ± 0.023 

H16∆1::56 0.012 ± 0.001 N.D. 0.182 ± 0.010 0.108 ± 0.012 N.D. 

H16∆1::56

/∆3::58 

0.017 ± 0.002 0.001 ± 0.000 0.136 ± 0.012 0.104 ± 0.003 0.016 ± 0.008 

H16∆1::56

/∆3::60 

0.021 ± 0.001 0.001 ± 0.001 0.154 ± 0.012 0.110 ± 0.014 0.010 ± 0.005 
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Figure legends 1 

Figure 1. Alternative biosynthetic pathways for (R)-1,3-BDO production in C. necator H16. 2 

Required precursors 3HBCoA (A) and pyruvate (B) are highlighted with dashed line. 3 

Figure 2. Comparison of (R)-1,3-BDO yields in C. necator expressing alternative genes of 4 

(R)-3HBCoA-dependent pathway. (A) The endogenous β-ketothiolase (PhaA) and NADP-5 

dependent acetoacetyl-CoA reductase (PhaB) provides (R)-3HBCoA, a precursor metabolite, 6 

which is converted by AdhE2 or a combination of Bld and YqhD into (R)-1,3-BDO. The 7 

phaC1 encoding a poly(3-hydroxyalkanoate) polymerase (PhaC) for PHB synthesis is 8 

chromosomally knocked-out to re-direct metabolic flux towards (R)-1,3-BDO. (B) Carbon 9 

yield of (R)-1,3-BDO (bars) and dry cell weight (circles) in C. necator strains H16∆C-p2 (i), 10 

H16∆C-p15 (ii) and H16∆C-p26 (iii) 0, 24, 48, 72 and 96 h after the induction of 11 

heterologous gene expression with 0.01 % (w/v) L-arabinose. Yields calculated from time-12 

point 0 (C) Carbon yield of (R)-1,3-BDO within specific 24-hour time periods. Yields 13 

calculated from the previous time-point. Cells were grown in 2 % (w/v) sodium gluconate 14 

NLMM using 250 mL baffled shake flasks. Results represent the average of three biological 15 

replicates and error bars show standard deviation. 16 

Figure 3. Biosynthesis of 4H2B in C. necator expressing heterologous bld and yqhD genes. 17 

(A) Schematic of the 4H2B biosynthetic pathway. Acetoacetyl-CoA is converted to 3-18 

oxobutanal by Bld exhibiting promiscuous acylating dehydrogenase properties. Then, 3-19 

oxobutanal is subsequently reduced to 4H2B by YqhD. (B). 1,3-BDO carbon yield (bars) and 20 

4H2B carbon yield (striped bars) in batch fermentation cultures of H16∆CB-p14 (i), 21 

H16∆CB-p2 (ii) , H16∆CB-p44 (iii) and H16∆C-p2 (iv). Plus or minus sign indicates the 22 

presence or absence of a gene. Results represent the average of three biological replicates and 23 

error bars show standard deviation. 24 
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Figure 4. Improvement of (R)-1,3-BDO production by overexpression of phaAB. Batch 1 

fermentation profile data for strains H16∆C-p15 (i); H16∆C-p35 (ii); H16∆CAB-p15 (iii) and 2 

H16∆CAB-p35 (iv) are presented as following: (A) (R)-1,3-BDO yield (bars), (B) biomass 3 

DCW (circles) sodium gluconate concentration (triangles) and pyruvate yield (upside down 4 

triangles). Cells were grown in NLMM supplemented with 2 % (w/v) sodium gluconate. The 5 

gene expression was induced by addition of 0.01 % (w/v) arabinose. Results represent the 6 

average of three biological replicates and error bars show standard deviation. 7 

Figure 5. Improvement of (R)-1,3-BDO yields by sucCD deletion. Yields of (R)-1,3-BDO 8 

(bars) and pyruvate (upside down triangles), and DCW obtained using strains H16∆C-p2 (i), 9 

H16∆2-p2 (ii), H16∆3-p2 (iii), H16∆4-p2 (iv) are shown. Cells were grown in NLMM 10 

supplemented with 2 % (w/v) sodium gluconate. The biosynthetic pathway gene expression 11 

was induced by addition of 0.01 % (w/v) arabinose. Results represent the average of at least 12 

two biological replicates and error bars show standard deviation. 13 

Figure 6. Evaluation of pyruvate-dependent biosynthetic pathway in C. necator 14 

H16∆C_p306. (A) Schematic of pyruvate-dependent biosynthetic pathway consisting of 15 

pyruvate decarboxylase PDC, deoxyribose-5-phosphate aldolase Dra and aldehyde reductase 16 

YqhD. The bacteria DCW (circles), sodium gluconate concentration (triangles) and (R)-1,3-17 

BDO yield Cmol Cmol
-1

 of sodium gluconate (squares) are presented in (B). (C) The yield 18 

(Cmol Cmol
-1

 of sodium gluconate) of major by-products excreted by the engineered 19 

C. necator H16 are highlighted as following: pyruvate (upside down triangles), acetate 20 

(crosses) and ethanol (diamonds). Strain H16∆C-p306 was cultivated in NLMM 21 

supplemented with 2 % (w/v) sodium gluconate and biosynthetic pathway gene expression 22 

was induced by addition of 0.01 % (w/v) arabinose. Results represent the average of three 23 

biological replicates and error bars show standard deviation. 24 
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Figure 7. Improvement of (R)-1,3-BDO yield by combining 3-HBCoA-dependent and 1 

pyruvate-dependent pathways. (A) Schematic of cumulative biosynthetic pathway indicating 2 

routes of (R)-1,3-BDO and by-product formation. Batch fermentation product yields (Cmol 3 

Cmol
-1

 of sodium gluconate) for strains H16∆C-p2 (i) and H16∆C-p304 (ii) are presented as 4 

following: (R)-1,3-BDO (solid bars) (B); and 4H2B (squares), pyruvate (upside down 5 

triangles), acetate (crosses) and ethanol (diamonds) (C). Engineered strains were cultivated in 6 

NLMM supplemented with 2 % (w/v) sodium gluconate and biosynthetic pathway gene 7 

expression was induced by addition of 0.01 % (w/v) arabinose. Results represent the average 8 

of three biological replicates and error bars show standard deviation. 9 

Figure 8. Autotrophic fed-batch fermentation of CO2 for (R)-1,3-BDO production using 10 

DASGIP parallel bioreactor system. Data for strains H16∆1::54 (i), H16∆1::54/∆3::58 (ii), 11 

H16∆1::56 (iii) and H16∆1::56/∆3::60 (iv) represented as following: production rate of (R)-12 

1,3-BDO (solid bars) and CUR (triangles) (A); (R)-1,3-BDO titer (solid bars) (B); 4H2B 13 

yield (squares) and DCW (circles) (C); and acetate (squares), ethanol (diamonds), and 14 

pyruvate (upside down triangles) yields (D). Due to the continuous supply of carbon source, 15 

metabolite Cmol Cmol
-1

 yields were calculated by dividing metabolite production within a 12 16 

hour time period by average carbon uptake rate (CUR mmol h
-1

) for the identical 12-hour 17 

time period. Results represent the average of three technical replicates (sampling) that were 18 

taken from single reactor for each strain. 19 

Figure 9. Autotrophic fed-batch fermentation of CO2 for (R)-1,3-BDO production using 20 

strain H16∆1::56-p14. Data were obtained from single reactor and represented as following: 21 

production rate of (R)-1,3-BDO (solid bars) and CUR (triangles) (A); (R)-1,3-BDO titer 22 

(solid bars) (B); and 4H2B titer (squares) and DCW (circles) (C). Pyruvate, acetate and 23 

ethanol were not detected by HPLC analysis. Sampling was performed and Cmol Cmol
-1

 24 

yields were calculated as described for Figure 8. 25 
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Highlights 

 

1. Engineering of chemolithoautotroph C. necator H16 for (R)-1,3-butanediol production. 

2. Implementation of (R)-3-hydroxybutyraldehyde-CoA- and pyruvate-dependent pathways 

for (R)-1,3-butanediol biosynthesis. 

3. Redirecting carbon flux for (R)-1,3-butanediol biosynthesis. 

4. Achieved 2.97 g/L of (R)-1,3-butanediol with production rate of nearly 0.4 Cmol/(Cmol h) 

autotrophically. 

5. First report of (R)-1,3-butanediol production from CO2. 
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