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Abstract

In this paper, the global dynamics of a hanging fluid conveying cantilevered pipe with a concentrated mass attached at the free

end is investigated. The problem is of interest not only for engineering applications, but also because it displays interesting

and often surprising dynamical behaviour. The widely used nonlinear models based on the transverse motion of the pipe are

not able to accurately capture the dynamical behaviour of the system at very high flow velocities. Thus, a high-dimensional

geometrically-exact model is developed for the first time, utilising Hamilton’s principle together with the Galerkin modal

decomposition technique. Extensive numerical simulations are conducted to investigate the influence of key system parameters.

It is shown that at sufficiently high flow velocities past the first instability (Hopf bifurcation), the system undergoes multiple

bifurcations with extremely large oscillation amplitudes and rotations, beyond the validity of third-order nonlinear models

proposed to-date. In the presence of an additional tip mass, quasi-periodic and chaotic motions are observed; additionally, it is

shown that for such cases an exact model is absolutely essential for capturing the pipe dynamics even at relatively small flow

velocities beyond the first instability.

Keywords: Pipes conveying fluids; Nonlinear dynamics; Geometrically exact model; Chaos

1. Introduction

Real-world applications of pipes conveying fluid are numerous. They range from the small, such as micro and nano-tubes

conveying fluid (Sadeghi-Goughari et al. 2020) and Coriolis type flow-meters (Zheng et al. 2016), to the very large, such as

heat exchanger tubes, pipelines conveying liquid hydrocarbons (Mohmmed et al. 2020), as well as pipes used in ocean mining

(Païdoussis & Luu 1985).

As demonstrated by Païdoussis & Li (1993), the generic system of a pipe conveying fluid has become a model problem in

dynamics, on a par with the classical problem of a column subjected to an end-load, and indeed with a far wider repertoire. An

abbreviated review of previous work is given here, focusing on cantilevered pipes conveying fluid, the subject of the present

paper.

The first serious study of the system was made by Bourrières (1939), obtaining the basic equation of motion and reporting

that the system loses stability by amplified oscillation (flutter) at sufficiently high flow velocities – also reporting on earlier

observations by Brillouin, dating back to 1885. In the maelstrom of the Second World War, this study was effectively ‘lost’.1

The dynamics was therefore studied ab initio by Benjamin (1961a,b) in a seminal theoretical and experimental study, elucidating

the fluid-structure energy transfer mechanisms underlying the dynamics and the generation of flutter. Detailed calculations,
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1It was rediscovered in 1973; refer to Païdoussis & Issid (1974).
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however, were confined to articulated models of the pipe. The equation of motion of the continuously flexible cantilevered

system was solved for the first time by Païdoussis (1963), who also conducted experiments on a horizontal pipe conveying fluid,

as reported in Gregory & Païdoussis (1966a,b).

It was found (Benjamin 1961a;Gregory & Païdoussis 1966a) that that the dynamics of the system is controlled by a

dimensionless flow velocity, u, which is dependent on a single parameter, β, defined by

u =

(
M

EI

)1/2

LU, β =
M

M +m
, (1)

where M is the mass of the conveyed fluid per unit length with velocity U , EI is the flextural rigidity of the pipe, L its length

and m its mass per unit length. The critical flow velocity for flutter, ucr, increases with β discontinuously, exhibiting a number

of ‘jumps’, shown much later to be associated with changes in modal content of the fluttering pipe (Semler et al. 1998). The

interesting feature was demonstrated that, this being a non-conservative system, dissipation can be destabilizing.

Vertical systems were studied by Greenwald & Dugundji (1967) and Païdoussis (1970). The dynamics in this case is also

dependent on the parameter

γ =
M +m

EI
gL3, (2)

where g is the acceleration due to gravity. More recently, in a very important study, Doaré & de Langre (2002a,b) showed that,

for very long hanging pipes, the critical flow velocity does not diminish indefinitely with increasing length, but it reaches a

plateau, as a result of gravity-induced effective ‘rigidification’ of the upper portion of the pipe.

Many variants of the basic system have been studied over the past 50 years: pipes with added masses, springs, dashpots

and attached plates, pipes on elastic foundations, and so on, displaying a cornucopia of interesting and often unexpected

dynamical behaviour , as reviewed in Païdoussis (2014). Also, the effects of a nonuniform velocity profile in the pipe (Guo

et al. 2010), two-phase flow (Monette & Pettigrew 2004; Ebrahimi-Mamaghani et al. 2019), harmonically perturbed (pulsating)

flow (Païdoussis & Issid 1974; Païdoussis & Sundararajan 1975), externally excited pipes (Sazesh & Shams 2019), and pipes

with support imperfections (Kheiri 2020) have also been studied.

Finally, it was found, and demonstrated experimentally, that if the outlet at the free end is blocked and the fluid forced to

exit radially rather than axially, flutter is suppressed unconditionally (Rinaldi & Païdoussis 2010).

In all the foregoing, the fluid flow is directed from the clamped towards the free end. The opposite flow configuration.

usually referred to as ‘a pipe aspirating fluid’, has also been studied extensively for the following reason: for a long time, it

could not unequivocally be decided whether the system develops flutter at sufficiently high flow velocity or not. It was finally

concluded that it does, but the flutter is rather anaemic as compared to the fluid-discharging case; refer to Kuiper & Metrikine

(2005), Païdoussis et al. (2005), and Païdoussis & Tétreault-Friend (2009).

In most of the foregoing, the analytical models are linear. However, there exists extensive literature on the nonlinear

dynamics of the system. Thus, Bajaj et al. (1980) found that the Hopf bifurcation leading to flutter could be either subcritical or

supercritical, depending on a friction-related parameter. Bajaj & Sethna (1984) found that flutter can be either planar (2-D) or

circular (rotary, 3-D), depending on β in a disordered manner, and Modarres-Sadeghi et al. (2008) found that with increasing u

the flutter motions could switch from 2-D to 3-D and vice versa.

Pipes with an inter-span spring support were studied by Païdoussis & Semler (1993), in particular 2-D motion in the vicinity

of double degeneracy conditions, i.e. where static divergence and flutter coexist. Also, 3-D motions were studied by Steindl &

Troger (1995), Wadham-Gagnon et al. (2007) and Païdoussis et al. (2007) finding a very intricate and rich dynamical behaviour
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with increasing u, involving buckling, periodic and quasiperiodic flutter, oval and figure-of-eight oscillations, and chaotic

motions.

A set of remarkable experiments by Copeland & Moon (1992) revealed that a pipe with an end-mass conveying fluid

can display a very rich repertoire of dynamics as u is increased and γ varied: planar pendular and rotary motions, nutation,

combined pendular and planar motions and chaos. This spurred further, theoretical and experimental studies, e.g. by Païdoussis

& Semler (1998), Modarres-Sadeghi et al. (2007) and Ghayesh & Païdoussis (2010). In one bifurcation diagram, for example,

the system went through the following sequence of states as u was increased: (i) planar periodic flutter; (ii) planar quasiperiodic

oscillations; (iii) a frequency jump and return to periodic flutter; (iv) chaotic oscillations; (v) 3-D, planar period-1 and chaotic

oscillations, sequentially; (vi) quasi-periodic oscillations. Some of these states were observed in the associated experiments.

The analytical models utilised in the studies discussed just above were third-order nonlinear models, even though the

predicted oscillations were of large amplitude – large enough to render some of the results questionable. Fifth-order models

would be quite unwieldy and more prone to numerical inaccuracies. The large-amplitude response of beams has been examined

before, utilising finite element approaches together with exact displacement formulations by Pai (2014); Simo & Vu-Quoc

(1988). A finite-volume momentum-based nonlinear approach has also been recently used for large-amplitude dynamical

analysis of pipes conveying fluid in Tang & Sweetman (2021); the authors used piecewise linearisation in the time-domain to

obtain the dynamical response of the system. The present study proposes a geometrically exact analytical model based on the

beam centreline rotation, which circumvents the difficulties associated with large-amplitude dynamics of the pipe.

The review of previous work, leading to the raison d’être of the present paper, is quite long, but it is hoped interesting; yet,

it is not exhaustive. Extensive reviews of previous work may be found in Ibrahim (2010, 2011), and Païdoussis (2014).

The main objective of this paper is to explore the global dynamics of a hanging fluid conveying cantilevered pipe with a

concentrated mass attached at the free end, with special focus on high flow velocities. For this purpose, the classical nonlinear

model of Païdoussis & Semler (1998) is revisited, relaxing the major assumption of finite deflection of the pipe. Thus, an

analytical, high-dimensional, geometrically-exact model is developed in Section 2 for cantilevered pipes undergoing motions

of extremely large amplitudes and rotations. Due to significant challenges encountered when relaxing the finite deflection

assumption, a high-dimensional model has not been reported heretofore. Such high-dimensional discretisations are, however,

essential to predict the rich dynamics of the system at high flow velocities, as discussed in Section 3. Extensive numerical

results are obtained for the first time for such a high-dimensional exact model in Section 4 for different system parameters.

Finally, the summary of findings is presented in Section 5.

2. Analytical models

In this section, a detailed derivation of the geometrically exact nonlinear model for a hanging cantilevered pipe is undertaken

with the assumption of an inextensible centreline. The derivation to be presented here, so far as the structure of the system is

concerned, is similar in spirit and procedure to that in Tavallaeinejad et al. (2018, 2020).

2.1. Basic assumptions and concepts

The system under consideration consists of a flexible pipe of mass per unit length m, flexural rigidity El, length L, material

damping α, and cross-sectional area A, discharging an incompressible fluid of mass per unit length M flowing with a constant

mean velocity U ; a concentrated mass me is assumed to be attached at the free end (see Fig. 1). The XY coordinate system is
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Figure 1: Schematic of cantilevered pipe conveying flow with added end-mass.

associated with the undeformed state of the pipe. The X-axis coincides with the direction of gravity and the pipe is assumed to

oscillate only in the XY plane. Thus, the pipe undergoes two motions: w(s, t), in the transverse direction and v(s, t), in the

longitudinal direction.

For the derivation procedure, the xy coordinate system is used which relates to the original XY coordinate system by:

x = v +X and y = w + Y . The curvilinear coordinate s denotes the distance of an element of the pipe from the clamped end.

Although deflections of the pipe may be extremely large, the strains remain small; hence, the pipe centreline is assumed

inextensible; i.e., (∂sx(s, t))2 + (∂sy(s, t))2 = 1. As such, the centreline slope, θ(s, t), and curvature, κ(s, t), are related to

the longitudinal, v(s, t), and transverse, w(s, t), motions of the pipe through

sin θ(s, t) = ∂sy(s, t) = ∂sw(s, t), cos θ(s, t) = ∂sx(s, t) = 1 + ∂sv(s, t), κ(s, t) = ∂sθ(s, t). (3)

Note that the operator ∂s ≡ ∂/∂s denotes the first derivative with respect to variable s. Hence, the displacement and the

velocity components of an element can be formulated as

y(s, t) =

∫ s

0

sin θ(s∗, t) ds∗, x(s, t) =

∫ s

0

cos θ(s∗, t) ds∗,

∂ty(s, t) =

∫ s

0

∂tθ(s
∗, t) cos θ(s∗, t) ds∗, ∂tx(s, t) = −

∫ s

0

∂tθ(s
∗, t) sin θ(s∗, t) ds∗.

(4)

2.2. The energy method

In this paper, a Hamiltonian framework is adopted. The extended Hamilton’s principle for an open system may be expressed

as

δ

∫ t2

t1

(
T (t)− V(t)

)
dt+

∫ t2

t1

δ
(
Wf(t) +Wd(t)

)
dt = 0, (5)

with T (t) and V(t) denoting the kinetic and potential energies of the system, respectively, and δWf and δWd the virtual work

by the fluid forces and damping, respectively; here δ denotes the variational operator.

Considering the velocity of an infinitesimal element of the cantilevered pipe, Vp = ∂tx(s, t)i + ∂ty(s, t)j, and the fluid,
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Vf = (∂tx(s, t) + U cos θ(s, t))i + (∂ty(s, t) + U sin θ(s, t))j, the total kinetic energy can be written as

T (t) =
1

2

∫ L

0

(M +m(s))
(
(∂tx)2 + (∂ty)2

)
ds+

1

2
M

∫ L

0

U2ds

+
1

2
M

∫ L

0

(
2U∂tx cos θ + 2U∂ty sin θ

)
ds,

(6)

in which m(s) = m+meδD (x(s, t)− L), where δD denotes the Dirac delta function.

The potential energy of the pipe comprises strain and gravitational energy components. An exact form of the variation of

the potential energy, in the case of large deflections and small strains may be formulated as

δV(t) =EI

∫ L

0

∂sθ(s, t)∂s(δθ(s, t)) ds− (M +m)g

∫ L

0

δx(s, t) ds

−meg

∫ L

0

δD (x(s, t)− L) δx(s, t) ds.

(7)

Various models may be used for the structural damping. In this paper, the Kelvin-Voigt structural damping is adopted. Thus,

the virtual work associated with the viscous component of the axial stress may be formulated as

δWd(t) = −αI
∫ L

0

∂s(∂tθ(s, t))∂s(δθ(s, t)) ds. (8)

Finally, the virtual work done by nonconservative fluid forces associated with the fluid exiting the pipe can be expressed as∫ t2

t1

δWf(t) dt = −MU

∫ t2

t1

[(
∂tx(L, t) + U∂sx(s = L, t)

)
δx(L, t) +

(
∂ty(L, t) + U∂sy(s = L, t)

)
δy(L, t)

]
dt. (9)

2.3. Geometrically-exact model

Substituting Eqs. (6)-(9) into the Hamilton’s principle given in Eq. (5), performing some mathematical manipulations,

and employing the relationships in Eq. (4) yields the exact model governing the cross-section rotation of the fluid-conveying

cantilevered pipe. Utilising the following dimensionless parameters:

ξ =
s

L
, η = w/L, ζ = v/L, τ =

t

T
, γ =

m+M

EI
gL3, β =

M

m+M
,

Γ =
me

(m+M)L
, αs =

α

ET
, m(ξ) = 1 + ΓδD(ξ − 1), u =

(
M

EI

)1/2

LU,

(10)

where T = L2 [(m+M)/EI]
1
2 , the dimensionless form of the geometrically-exact equation of a pipe conveying fluid is

cos θ(ξ, τ)

∫ 1

ξ

{
m(ξ̃)

∫ ξ̃

0

[
∂ττθ(ξ

∗, τ) cos θ(ξ∗, τ)− (∂τθ(ξ
∗, τ))2 sin θ(ξ∗, τ)

]
dξ∗

+ 2u
√
β∂τθ(ξ̃, τ) cos θ(ξ̃, τ) + u2∂ξ̃θ(ξ̃, τ) cos θ(ξ̃, τ)

}
dξ̃

+ sin θ(ξ, τ)

∫ 1

ξ

{
m(ξ̃)

∫ ξ̃

0

[
∂ττθ(ξ

∗, τ) sin θ(ξ∗, τ) + (∂τθ(ξ
∗, τ))2 cos θ(ξ∗, τ)

]
dξ∗

+ 2u
√
β∂τθ(ξ̃, τ) sin θ(ξ̃, τ) + u2∂ξ̃θ(ξ̃, τ) sin θ(ξ̃, τ) +m(ξ̃)γ

}
dξ̃

− ∂ξξθ(ξ, τ)− αs∂ξξ (∂τθ(ξ, τ)) = 0.

(11)
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2.4. Nonlinear third-order model of Païdoussis & Semler (1998)

The equation of motion given in Eq. (11) can be recast in terms of the transverse displacement of the pipe via truncating the

nonlinear exact terms while retaining terms up to third order. One can obtain the equivalent third-order nonlinear equation of

motion as

m(ξ)∂ττη + (1 + αs∂τ ) ∂ξξξξη + 2
√
βu∂ξτη + u2∂ξξη + 4∂ξη ∂ξξη ∂ξξξη + (∂ξξη)3 + ∂ξξξξη(∂ξη)2

+ αs
∂

∂ξ

(
(∂ξη)2∂ξξξτη + ∂ξη ∂ξτη ∂ξξξη + ∂ξτη (∂ξξη)2 + 2∂ξη ∂ξξη ∂ξξτη

)
+ 2u

√
β∂ξτη(∂ξη)2 + u2∂ξξη(∂ξη)2 + γm(ξ)∂ξη

(
1 +

1

2
(∂ξη)2

)
+m(ξ)∂ξη

∫ ξ

0

∂

∂τ

(
∂ξ̃τη(ξ̃, τ)∂ξ̃η(ξ̃, τ)

)
dξ̃ − ∂ξξη

∫ 1

ξ

m(ξ̃)

∫ ξ̃

0

∂

∂τ

(
∂ξ∗τη(ξ∗, τ)∂ξ∗η(ξ∗, τ)

)
dξ∗ dξ̃

− ∂ξξη
∫ 1

ξ

(
2u
√
β∂ξ̃τη(ξ̃, τ) + u2∂ξ̃ξ̃η(ξ̃, τ)

)
∂ξ̃η dξ̃ −

(
∂ξξη +

3

2
(∂ξη)2∂ξξη

)∫ 1

ξ

γm(ξ̃)dξ̃.

(12)

The above equation of motion is identical to the third-order model of Païdoussis & Semler (1998) with the the only

difference being in the damping term, with the current model being of Kelvin-Voigt type rather than a linear viscous one.

2.5. Discretisation and solution techniques

The nonlinear integro-partial differential models given in Eq. (11) and Eq. (12) are first discretised in space via a Galerkin

technique.

As for Eq. (12), a linear combination of suitable admissible functions, φj(ξ), is selected to discretise the transverse motion:

η(ξ, τ) =
∑M
j=1 φj(ξ)qj(τ), with qj(τ) denoting the unknown time-dependent generalised coordinates of transverse motion,

and φj(ξ) being the jth eigenfunction of a linear cantilever beam2.

In the proposed exact model, i.e. Eq. (11), the admissible functions Θj(ξ) = ∂ξφj(ξ)/βj (where βj is the jth root of the

transcendental equation 1 + cosh(β) cos(β) = 0) are used to approximate the rotation of the pipe θ(ξ, τ) as:

θ(ξ, τ) =

M∑
j=1

Θj(ξ)pj(τ), (13)

where pj(τ) represents the unknown time-dependent generalised coordinates of centreline rotation.

In this study, the lowest 10 modes are retained in the series expansions for both exact and truncated models, i.e. M = 10.

The resultant 10-degree-of-freedom (dof) second-order nonlinear ordinary differential equations (ODEs) are then recast in a

system of 20-dof first-order ODEs. The subsequent set of ODEs is solved using a pseudo-arclength continuation technique

resulting in the bifurcation diagrams of the system. The Gear backward differentiation formula (BDF) is also used to obtain the

bifurcation diagrams of Poincaré sections, as well as the time histories and phase-plane diagrams of oscillation. It should be

noted that the high-dimensional discretisation of the proposed exact model is extremely challenging (this being the first time)

because, unlike the truncated model, for the exact model the spatial integrations cannot be completed in closed-form and need

to be performed numerically while keeping sufficient terms to ensure converged results. More specifically, considering the

first line in Eq. (11), the terms under the integral
∫ ξ̃
0

are also under another integral
∫ 1

ξ
, and after application of the Galerkin

2Considering the large amplitude deformations of the pipe, the hyperbolic beam modes utilised in this paper, which represent the real motion of the beam

obtained from a linear analysis, offer much better accuracy compared to polynomial functions. In particular, the polynomial functions lose accuracy rapidly in

higher-order spatial differentiations.
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technique will go under yet another integral
∫ 1

0
; assuming N terms to approximate each integral via a numerical integration

algorithm will lead to N3 terms just for one of the triple integrals. Hence, this process leads to an extremely large set of

discretised equations, but ensures accurate results.

Unless otherwise stated, the following values are considered throughout this study: β = 0.142 and γ = 18.9 as in Païdoussis

& Semler (1998) based on the physical system studied therein; additionally, the dimensionless material viscosity αs is set to

0.0018, which for small-amplitude oscillations is equivalent to the linear damping coefficient used for the 2nd transverse mode

in Païdoussis & Semler (1998).

3. Convergence analysis and comparison to 3rd-order model

In this section, a detailed convergence test is conducted to highlight the significance of high-dimensional discretisation.

Additionally, comparisons between the exact and the truncated nonlinear 3rd-order models are performed to show the limitations

of the latter.

For the convergence analysis, several discretised models of the geometrically exact model are constructed, i.e. the 2-, 3-,

4-, 8-, and 10-dof ones. The bifurcation diagrams of the fluid-conveying cantilevered pipe are then constructed for all these

discretised models, for three cases. Figure 2 shows the results of the convergence analysis for (a) Γ = 0, (b) Γ = 0.10, and (c)

Γ = 3.0. As seen in Fig. 2(a), employing either 2- or 3-dof models leads to inaccurate predictions; additionally, the 4-dof model

works well only for relatively low flow velocities, and it becomes inaccurate at relatively large flow velocities. The 8- and

10-dof models, on the other hand, predict almost identical responses, indicating convergence. A similar scenario is observed for

the cases with Γ = 0.10 and 3.0; however, in these cases, the inaccuracies of the low-dimensional models (i.e. 2-, 3-, and 4-dof

models) become more pronounced even at relatively small flow velocities. The comprehensive convergence analysis conducted

in Fig. 2 shows that it is essential to retain at least 8 modes in the discretisation procedure to ensure converged results, up to

u ' 15; it should be noted that the present study utilises a 10-dof model to ensure converged results for different values of the

tip mass ratio even at large flow velocities.

Next, a comparison between the prediction of the proposed exact model and that of the third-order nonlinear model is

conducted to further highlight the importance of utilising an exact model for investigating the behaviour of a fluid-conveying

cantilevered pipe. First, it should be mentioned that, similarly to the exact model, a 10-dof discretisation is used for the

3rd-order nonlinear model, which is sufficient for obtaining converged results (determined via another convergence analysis on

the 3rd-order model). The comparisons between the results obtained via the exact and 3rd-order models are shown in Fig. 3 for

different values of Γ, to better highlight the differences between the two models.

It is seen in Fig. 3(a) that for Γ = 0, the difference in the transverse oscillation amplitude predicted by the two models

becomes significant even at slightly higher flow velocities beyond the critical value. In particular, the 3rd-order model

predicts the transverse amplitude with almost 20% error at u = 8.74; additionally, the 3rd-order model predicts unstable

periodic response in the approximate u range of [13 17], which is not the case according to the exact model. The difference

between the two models becomes even more pronounced when Γ = 0.10 and 0.15 as shown in Fig. 3(b) and (c), respectively.

More specifically, the error of 3rd-order model at u = 7.30 exceeds 37% when Γ = 0.10 and 54% when Γ = 0.15. More

importantly, the 3rd-order model completely diverges at flow velocities larger than 13 for these two cases. A final comparison

is made in Fig. 3(d) for the case with Γ = 3.0; as seen, the 3rd-order model quickly diverges almost immediately beyond

ucr. This comprehensive comparison between the proposed geometrically exact model and the 3rd-order nonlinear model

7



(a)

0 5 10 15 20 25
u

0

0.2

0.4

0.6 2-dof 3-dof
4-dof

8-dof (red line)
10-dof (black line)

(b)

0 3 6 9 12 15 18
u

0

0.2

0.4

0.6
3-dof

4-dof

10-dof
8-dof

2-dof

(c)

5 6 7 8 9 10
u

0

0.1

0.2

0.3

0.4

8-dof (red line)
10-dof (black line)

3-dof4-dof

2-dof

Figure 2: Convergence analysis of the proposed geometrically exact model showing the maximum transverse tip displacement for

(a) Γ = 0, (b) Γ = 0.10, and (c) Γ = 3.00; β = 0.142 and γ = 18.9 for all cases.

demonstrates the necessity of utilising an exact model for predicting the post-critical dynamics of fluid-conveying cantilevered

pipes accurately.

Furthermore, a comparison is made in Fig. 4 between the bifurcation diagram of a fluid-conveying pipe obtained by

Païdoussis & Semler (1998) using a third-order model and that obtained via the proposed 10-dof exact model as well as the

10-dof 3rd-order model developed in this study. As seen, the response obtained by the 10-dof 3rd-order model used in this

study almost matches that obtained by Païdoussis and Semler using a 4-dof third-order model, hence verifying the 3rd-order

model utilised in this study. The exact model, on the other hand, predicts a generally smaller amplitude of oscillation for the

flow range examined.

4. Results and discussion

In this section, the nonlinear aspects of the system dynamics, such as limit-cycle amplitudes and frequencies, as well as the

transition between various dynamical states, are studied numerically. This is done via constructing bifurcation diagrams as well
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Figure 3: Comparison between the maximum transverse tip displacement obtained via the proposed geometrically exact model

(10-dof) and that obtained via the third-order nonlinear model (10-dof) for (a) Γ = 0, (b) Γ = 0.10, (c) Γ = 0.15, and (d) Γ = 3.00;

β = 0.142 and γ = 18.9 for all cases.

as shapes of pipe oscillations.

4.1. Exact pipe behaviour at relatively large flow velocities

Figure 5 shows the large-amplitude exact dynamic response of the fluid-conveying cantilevered pipe in the flow velocity

range of [0 25]; the bifurcation diagrams are shown for (a) tip slope, (b) the dimensionless angular frequency of limit cycles (i.e.

Ω, which is related to its dimensional counterpart ω via Ω = ωT ), (c) tip dimensionless transverse displacement η, and (d) tip

dimensionless axial displacement ζ . Figure 6 shows the detailed planar motion of the pipe at different flow velocities; it should

be noted that in Fig. 6, X and Y denote the dimensionless (with respect to L) undeformed coordinates.

Increasing the flow velocity from zero, the system loses stability via a Hopf bifurcation at ucr = 6.20; the cantilevered

pipe starts oscillating in a plane, generally with a second cantilevered beam-mode shape (see Fig. 6(a)), with a dimensionless

frequency of Ωcr = 16.05. This well-known phenomenon has been reported in theoretical and experimental studies previously

by many researchers (Païdoussis 1963,1970;Païdoussis & Semler 1998).
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Figure 4: Bifurcation diagrams for β = 0.142, Γ = 0 and γ = 18.9; maximum transverse tip displacement of the pipe over a cycle

of steady-state oscillation. [ ] Proposed exact model, [ ] 10-dof 3rd-order nonlinear model, [ ] results obtained by Païdoussis &

Semler (1998) using a 4-dof 3rd-order nonlinear model.

An interesting aspect of the pipe behaviour, as seen in Fig. 5, is that the tip transverse displacement magnitude reaches a

maximum of 0.503 at u = 8.93; as the flow velocity is increased further, the tip transverse deflection is initially decreased

and then increased until reaching a maximum of 0.501 at u = 15.79, and then decreases again. This is accompanied by the

change in the dominant mode of oscillations and stronger contribution of higher modes in the response of the system (note the

steady increase of oscillation frequency with flow velocity shown in Fig. 5(b)). This is also seen in sub-figures 6(a)-(f), where

the tip transverse oscillation amplitude is initially increased as the flow velocity is increased, and then decreased with further

increase of the flow velocity. It should be noted that the pipe displays stable periodic oscillations up to u = 24.76, where a

torus bifurcation occurs and the motion becomes non-periodic.

Additionally, it is seen in Fig. 5 that a cantilevered fluid-conveying pipe undergoes extremely large rotations at relatively

large flow velocities. In fact, it is noticed that for u > 12.50, the tip slope becomes larger than π/2; this is also visible in

sub-figures 6(e) and (f). This is important in the sense that a nonlinear truncated third-order model is not capable of capturing

such oscillation amplitudes accurately, due to its inherent third-order limitation which leads to significant error at relatively

large tip angles (as further explained in Section 3), thus highlighting the significance of employing a geometrically exact model

capable of capturing such large slopes reliably.

Figure 7 shows the effect of β on the global dynamics of the system. The Hopf bifurcation materialises at higher flow

velocities with increasing β, while the amplitude decreases as a result of a change in the modal shape of the oscillations, as

shown in Fig. 7(a). This is made clearer in Fig. 7(b), showing that the oscillation frequencies steadily increase with u and β.

Additionally, in all three cases, the tip slope exceeds π/2 at high flow velocities. These observations indicate that the exact

model, spatially discretised with a higher number of modes, is essential to adequately represent the dynamics of the system as

β and u are increased. It is worth noting that the parameter β, being the coefficient of the Coriolis term in the nondimensional

equation of motion, has a stabilising effect, thus causing ucr to increase with increasing β. However, if this is looked upon

from a dimensional analysis perspective, a higher β corresponds to a higher mass of fluid flow, which should lead to lower

critical flow velocities; this indeed is the case: the dimensional critical flow velocities decrease with increasing β. Hence, care

should be taken when discussing the variation of critical flow velocity with β.
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The effect of the gravity parameter, γ, is investigated employing the geometrically exact model and the results are shown in

Fig. 8. Since the pipe is hanging, a larger value of γ leads to increased tension in the pipe which in turn stabilizes the system

and leads to a larger critical flow velocity. It is interesting to note that the difference between the amplitudes of oscillation for

different values of γ becomes less significant at relatively large flow velocities.

4.2. Tip mass effect

In this section, the effect of the tip mass on the dynamics of the fluid-conveying cantilevered pipe is investigated. Two

ranges of tip mass ratio parameter Γ are considered, i.e., a range of relatively small values: Γ = 0.03, 0.05, 0.10, and 0.15, as

well as a range of relatively large values: Γ = 1.0, 2.0, and 3.0.

Figure 9 shows the bifurcation diagrams for the fluid-conveying cantilevered pipe for the small values of Γ. The correspond-

ing diagrams for the dimensionless angular frequency of limit cycles for each value of Γ is depicted in Fig. 10. Finally, the pipe
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Figure 5: Bifurcation diagrams for β = 0.142, Γ = 0 and γ = 18.9. (a) Maximum/minimum values of the tip slope of the pipe

over a cycle of steady-state oscillation. (b) Dimensionless angular frequency of oscillations. (c) Maximum/minimum values of the tip

transverse motion and (d) the corresponding longitudinal motion over a cycle of steady-state oscillation. [ ] Stable static solution,

[ ] unstable static solution, [ ] stable periodic solution.

11



motion at different flow velocities for the case Γ = 0.10 is shown in Fig. 11.

As seen in Fig. 9, in all cases, with increasing the flow velocity above the onset of flutter, the oscillation amplitude first

increases and reaches an initial maximum in the range of 8.20 < u < 8.50, and then undergoes a sharp reduction. More

specifically, for the lightest tip mass with Γ = 0.03 (Figs. 9(a) and (b)), as the flow velocity is increased past the Hopf

bifurcation, the pipe starts to oscillate and the amplitude of oscillation grows rapidly with increasing flow velocity. Various

bifurcation types appear at u > 15, namely saddle-node and torus. The dimensionless frequency of oscillation for this case is

shown in Fig. 10(a), showing that it generally increases with increasing flow velocity. The sharp increase in the frequency of

oscillations in the vicinity of u = 17 is associated with the change in the mode of oscillations, thus resulting in a reduction in

the transverse motion amplitude.

The dynamical behaviour of the pipe with Γ = 0.05 (Figs. 9(c) and (d)) is more sophisticated. For this case, branch

points occur at u < 15, giving rise to a complex solution branch which itself includes saddle-node and torus bifurcations. The

frequency of the dynamic response, as shown in Fig. 10(b), increases up to the first branch point; it is seen that the oscillation

frequency of the bifurcated solution branch is smaller than that of the main branch. As the flow velocity is increased further, the

oscillation frequency jumps to a larger value, indicating increased contribution of higher modes.

As Γ is increased to 0.10, the branch points disappear and the pipe displays generally simpler dynamics. The qualitative

dynamical behaviour of the pipe with Γ = 0.15 is quite similar to that of the pipe with Γ = 0.10 with more substantial changes
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Figure 6: Shapes of the oscillating pipe; (a) u = 6.60, (b) u = 7.65, (c) u = 8.94, (d) u = 11.10, (e) u = 18.40, and (f) u = 24.51,

showing that the tip angle exceeds π/2.
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Figure 7: Bifurcation diagrams showing (a) the maximum (positive) transverse tip displacement and (b) the frequency of the

transverse oscillation, obtained for a system with γ = 18.9, Γ = 0 and various values of β.

in the amplitude of oscillations with varying u. Moreover, the pipe in these two cases displays two saddle-node bifurcations

and a torus bifurcation, but no branch point, which leads to slightly simpler dynamics compared to the previous cases. The

oscillation frequency of the pipe for this case is illustrated in Fig. 10(c). As seen, there is initially a slight increase in the

frequency of oscillation before the occurrence of the first saddle-node bifurcation; as the flow velocity is increased further, the

oscillation frequency increases sharply, indicating increased contribution of higher modes. This is also illustrated through pipe

motions at different flow velocities in Fig. 11, for the case with Γ = 0.10; as seen, second-mode flutter is dominant in Fig.

11(a) for u = 8.23, but as the flow velocity is increased (i.e. sub-figures (b) and (c)), the contribution of higher modes in the

pipe motion increases.

The next set of figures, i.e. Figs. 12, 13, and 14, corresponds to relatively large values of Γ. More specifically, the response
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Figure 8: Bifurcation diagrams showing (a) the maximum (positive) transverse tip displacement and (b) the frequency of the

transverse oscillation, obtained for a system with β = 0.142, Γ = 0 and various values of γ.
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Figure 9: Bifurcation diagrams showing (left) the maximum (positive) transverse tip displacement, and (right) the maximum

(positive) tip rotation angle, obtained for (a, b) Γ = 0.03, (c, d) Γ = 0.05, (e, f) Γ = 0.10, and (g, h) Γ = 0.15. [ ] Stable static

solution, [ ] unstable static solution, [ ] stable periodic solution, [ ] unstable periodic solution.
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Figure 10: Frequency of pipe transverse oscillation as a function of flow velocity for (a) Γ = 0.03, (b) Γ = 0.05, (c) Γ = 0.10, and

(d) Γ = 0.15.
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Figure 11: Shapes of the oscillating pipe of Fig. 9(e, f), i.e. with Γ = 0.10; (a) u = 8.23, (b) u = 12.03, and (c) u = 15.56,

showing that the tip angle exceeds π/2.
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Figure 12: Bifurcation diagrams showing (left) the maximum (positive) transverse tip displacement, and (right) the maximum

(positive) tip rotation angle, obtained for (a, b) Γ = 1.0, (c, d) Γ = 2.0, and (e, f) Γ = 3.0. [ ] Stable static solution, [ ]

unstable static solution, [ ] stable periodic solution, [ ] unstable periodic solution.
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Figure 13: Frequency of pipe transverse oscillation as a function of flow velocity for (a) Γ = 1.0, (b) Γ = 2.0, and (c) Γ = 3.0.

of the fluid-conveying cantilevered pipe for relatively large values of tip mass ratio, i.e. Γ = 1.0, 2.0, and 3.0, is shown in

Fig. 12, while the corresponding transverse dimensionless oscillation frequency versus flow velocity is shown in Fig. 13. The

pipe motion for the case Γ = 3.0 is shown in Fig. 14.

As seen in Fig. 12, for such large values of Γ, the supercritical Hopf bifurcation is replaced by a subcritical one with

S-shape response in the vicinity of the critical flow velocity, consisting of two unstable solution branches and three saddle-node

bifurcations. It is seen that, contrary to the effect of smaller values of Γ, as the tip mass ratio is increased, the critical flow

velocity is increased as well. Similar observations have been made by Copeland & Moon (1992) who reported measurements

for large Γ. Additionally, the figure shows that, for the range of u examined here, the pipe response becomes generally simpler

as Γ is increased. Furthermore, referring to Fig. 13, it is interesting to note that, unlike the case with small tip mass ratios, in

this case the frequency decreases sharply with increasing u until reaching a minimum and then increases gradually. As seen,

the hysteresis-type behaviour becomes stronger as the tip mass ratio is increased.

The pipe oscillation in one period for the case Γ = 3.0 is shown in Fig. 14, for three flow velocities; as seen, the pipe
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Figure 14: Shapes of the oscillating pipe of Fig. 12(e, f), i.e. Γ = 3.0; (a) u = 7.42 (b) u = 8.83 , and (b) u = 10.00.
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oscillation amplitude and its rotation over the whole pipe length grow as the flow velocity is increased. In particular, sub-figure

14(c) shows that the tip reaches angles much larger than π/2 and even close to π, which further manifests the necessity of

employing an exact model for accurate prediction of the pipe motion.

It ought to be mentioned that caution must be exercised in interpreting the unstable periodic solutions obtained via the

continuation technique for some flow ranges. In section 4.3, a complementary analysis is conducted to assess the global

dynamics and the nature of the motion in these flow ranges.

4.3. Global dynamics

This section examines the dynamics of the pipe conveying fluid with small values of tip mass ratio via constructing the

bifurcation diagrams of Poincaré sections. The trigger used for the Poincaré sections is that the tip velocity passes through zero.

The reason for constructing these diagrams is that the previous bifurcation diagrams obtained via continuation analysis only

provide details about stable periodic motions; in other words, the continuation method does not provide any information on

nonperiodic, such as quasiperiodic and chaotic, motions. The bifurcation diagrams of Poincaré sections, on the other hand, are

capable of providing motion details irrespective of the type of motion. In this section, the bifurcation diagrams are constructed

for three representative values of Γ, i.e. Γ = 0.05, 0.10, and 0.15. In order to obtain the bifurcation diagrams, the discretised

equations of the exact model are solved in the time domain utilising the Gear backward differentiation formula, for τ in the

range [0 500]. Only the last 40% of the time histories are retained to ensure removal of any transient responses.

The bifurcation diagram for Γ = 0.05 is shown in Fig. 15. As seen, the pipe exhibits various types of motion such as

periodic, period-3, quasiperiodic and chaotic motions. More specifically, the single dots in Fig. 15(a) for u < 5.2 (forming a

straight line) represent the original position of the pipe at rest. Two dots (positive and negative) in the range [5.2 13.8] indicate

a periodic motion (period-1). The pipe undergoes a chaotic motion in a narrow range of [13.8 14.2], associated with a wide

band of dots in the bifurcation diagram. The motion of the pipe becomes dominantly period-3, followed by a wide region of

periodic motion in u ∈ [16.8 20.8]. Finally, the motion of the pipe becomes chaotic at circa u = 21.4 after a narrow range

of quasiperiodic oscillations. In order to visualize the type of motion, relevant time histories and phase-plane portraits are

also presented respectively in Fig. 15(b) and (c) for u = 14.050, showing a random-like time trace and a dense phase-plane

diagram, suggesting the existence of chaotic motion. Additionally, the details of the period-3 motion at u = 15.025 are shown

in Fig. 15(d) and (e).

The global dynamics of the pipe with Γ = 0.10 is shown in Fig. 16. With increasing u, the pipe loses its static stability at

u = 5.61 via a supercritical Hopf bifurcation leading to a period-1 oscillation around the origin. In the range u ∈ [17.05 19.23],

the motion becomes stable quasiperiodic with two incommensurate frequencies; sample results are shown in subfigures (b) and

(c) for u = 18.025. The pipe undergoes periodic motion at u = 19.23, followed by period-2 oscillations at u = 20.8; finally,

chaotic oscillations arise for higher flow velocities.

Similar qualitative behaviour can be seen for the case with Γ = 0.15 in Fig. 17. It is found that secondary bifurcations

leading to periodic, period-n, and chaotic oscillations emanate at flow velocities beyond the first Hopf bifurcation. However,

in contrast to lower values of Γ, the pipe does not return to period-1 motion at high flow velocities. The chaotic motion is

associated with erratic oscillations taking place mainly around the undeflected equilibrium with varying amplitude and period.

Looking at the phase-plane plot, it reflects the existence of an overriding rather strong periodic component in the motion. The

power spectral density (PSD) is quite dense, yet showing that one dominant frequency survives. Although the probability
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Figure 15: (a) Bifurcation diagram showing the maximum and minimum transverse tip displacement, obtained for β = 0.142,

γ = 18.9, and Γ = 0.05; (b) time history and (c) phase-plane plots of response at u = 14.050, indicating a chaotic motion; (d) time

history and (e) phase-plane plots of response at u = 15.025, indicating a period-3 motion.
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Figure 16: (a) Bifurcation diagram showing the maximum and minimum transverse tip displacement, obtained for β = 0.142,

γ = 18.9, and Γ = 0.10; (b) time history and (c) phase-plane plots of response at u = 18.025, indicating a quasi-periodic motion.

density function (PDF) does not have a Gaussian distribution and it is still double-masted, it possesses a suspension-bridge

shape filling up between the two peaks, indicating the mostly visited locations by the pipe tip during the motion. All are

characteristics of chaotic oscillation, albeit with a surviving periodic component.

It ought to be mentioned that in order to refer to the motion in this flow regime as categorically “chaotic", a more rigorous

sensitivity analysis of dependence of the system response on initial conditions by virtue of the Lyapunov stability definition is

required.

5. Concluding remarks

In this study, the nonlinear large-amplitude dynamics of a hanging pipe has been investigated utilising a geometrically

exact model. More specifically, a highly accurate model for centreline rotation of a fluid-conveying cantilevered pipe was

developed utilising Hamilton’s principle while keeping all the terms geometrically exact. The distinguishing feature of such an

exact model, compared to other nonlinear truncated models, is that it allows for accurate analysis of the pipe dynamics even at
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Figure 17: (a) Bifurcation diagram showing the maximum and minimum transverse tip displacement, obtained for β = 0.142,

γ = 18.9, and Γ = 0.15; (b) time history and (c) phase-plane plots of response at u = 16.825, indicating a periodic motion; (d) time

history, (e) phase-plane, (f) power spectral density, and (g) probability density function plots of response at u = 24.400, indicating a

chaotic motion.

extremely large rotations and oscillation amplitudes. A high-dimensional modal decomposition was conducted via the Galerkin

scheme to obtain the discretised nonlinear equations, which were then solved via use of a continuation technique as well as a

time integration method.

A convergence analysis demonstrated that low-dimensional models (i.e. 2-, 3-, and 4-dof ones) do not yield reliable results

and they tend to diverge at relatively large flow velocities, especially in the presence of a tip mass. It was shown that, at

21



least 8 modes must be retained in the discretisation procedure, and that a 10-dof model (the one used in this study) ensures

reliable predictions even at very large flow velocities or large tip mass ratios. Additionally, comparisons between the proposed

exact model and a nonlinear third-order model revealed that the deviation between the two starts almost immediately after

the occurrence of the Hopf bifurcation. Also, the discrepancy between the two models is exacerbated with increasing flow

velocity and/or the tip mass ratio. These results indicate that it is essential to use an exact model when analysing dynamics of a

fluid-conveying cantilevered pipe which may involve large-amplitude oscillations and extremely large rotations.

The effects of some of the key parameters affecting the system dynamics were explored. It was shown that the dynamics of

cantilevered pipe with an end mass displays a number of bifurcations as the flow velocity is varied. Quasiperiodic and chaotic

motions were observed for the range of tip mass ratios investigated. Additionally, possible by means of the present model is the

prediction of changes in flutter amplitudes with increasing β or γ due to changes in the modal shape of oscillations, and how

these vary with flow velocity, as well as many other quantitative and qualitative post-bifurcation facets of the system dynamics.

It is emphasised that the high-dimensional exact model proposed in this study enabled us, for the first time, to reveal

the global dynamics of pipes with a tip mass at high flow velocities. Fresh experiments with cantilevered pipes at high flow

velocities are required to validate the predictions of the proposed model.
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