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Abstract

The Coronal Multi-channel Polarimeter (CoMP) has opened up exciting opportunities to probe transverse MHD
waves in the Sun’s corona. The archive of CoMP data is utilized to generate a catalog of quiescent coronal loops
that can be used for studying propagating kink waves. The catalog contains 120 loops observed between 2012 and
2014. This catalog is further used to undertake a statistical study of propagating kink waves in the quiet regions of
the solar corona, investigating phase speeds, loop lengths, footpoint power ratio (a measure of wave power entering
the corona through each footpoint of a loop) and equilibrium parameter (which provides a measure of the change in
wave amplitude) values. The statistical study enables us to establish the presence of a relationship between the rate
of damping and the length of the coronal loop, with longer coronal loops displaying weaker wave damping. We
suggest the reason for this behavior is related to a decreasing average density contrast between the loop and
ambient plasma as loop length increases. The catalog presented here will provide the community with the
foundation for the further study of propagating kink waves in the quiet solar corona.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Quiet solar corona (1992); Solar coronal

loops (1485); Solar coronal heating (1989); Quiet sun (1322); Solar activity (1475)

Supporting material: machine-readable table

1. Introduction

The presence of MHD waves in the solar atmosphere is now
well established (e.g., Ofman et al. 1997; DeForest &
Gurman 1998; Erdélyi et al. 1998; Aschwanden et al. 1999;
Nakariakov et al. 1999; Schrijver et al. 1999; De Moortel et al.
2000; Williams et al. 2001, 2002; Goossens et al. 2002; Marsh
et al. 2002; Ofman & Aschwanden 2002; Katsiyannis et al.
2003; Wang et al. 2003; Verwichte et al. 2005; Tomczyk et al.
2007; Tomczyk & Mclntosh 2009; Morton et al.
2012, 2016, 2019). Of all the MHD wave modes observed in
the solar atmosphere, some of the most interesting are the
transverse waves. They are thought to be critical in transferring
energy from the turbulent convection in the photosphere to the
solar corona.

The most common transverse wave in the corona appears to
be the kink mode (the presence of torsional modes are more
difficult to determine; however, there is some evidence for such
motions, e.g., Kohutova et al. (2020). The kink mode has, to
date, been observed in the corona in three variants: (decaying)
standing kink waves, decay-less standing kink waves, and
propagating kink waves. The standing kink waves were the
first transverse wave modes to be observed in active region
coronal loops (Aschwanden et al. 1999; Nakariakov et al.
1999), found with the Transition Region and Coronal Explorer
(Handy et al. 1999). These observations, and the launch of the
Solar Dynamics Observatory (SDO; Pesnell et al. 2012),
heralded a new era in the exploration and understanding of the
physical properties of the solar corona through standing kink
modes (Nakariakov & Kolotkov 2020). The standing kink
modes are typically observed in active region coronal loops
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following an eruptive process (Stepanov et al. 2012; Zimovets
& Nakariakov 2015; Goddard et al. 2016). The excitation
mechanism of these standing kink waves is believed to be
nearby eruptions or plasma ejections (rather than a blast shock
wave ignited by a flare, as previously thought, e.g., Zimovets &
Nakariakov 2015), which leads to a displacement of the coronal
loops from their equilibrium position. These waves are found to
be rapidly damped, with the damping being attributed to the
phenomenon of resonant absorption or mode coupling (e.g.,
Ionson 1978; Hollweg 1984; Goossens et al. 2002; Ruderman
& Roberts 2002; Aschwanden et al. 2003). More recently,
Goddard et al. (2016) produced a catalog of standing kink
modes observed with the SDO Atmospheric Imaging Assembly
(AIA; Lemen et al. 2012), which was later extended by
Nechaeva et al. (2019). A study of the relationship between
damping time and amplitude indicated that a nonlinear
damping mechanism might also contribute to the observed
damping. Van Doorsselaere et al. (2021) suggested that the
observed relationship could be explained by uni-turbulence, a
form of generalized phase mixing (Magyar et al. 2019; Van
Doorsselaere et al. 2020).

Second, there has been the discovery of decay-less standing
kink wave modes (Tian et al. 2012; Wang et al. 2012;
Anfinogentov et al. 2013, 2015; Nistico et al. 2013) in active
region loops. These low-amplitude (<1 Mm) oscillations do
not appear to damp in time and are seen for several cycles. In
some cases, the wave amplitudes are shown to gradually grow
(e.g., Wang et al. 2012).

Finally, it has been demonstrated that there are persistent and
ubiquitous fluctuations in the Doppler velocities of coronal
emission lines, which propagate at Alfvénic speeds and follow
magnetic field lines (Tomczyk et al. 2007; Morton et al. 2019;
Yang et al. 2020a, 2020b). These motions have been
interpreted as propagating kink waves and have also been
observed with SDO/AIA (e.g., Mclntosh et al. 2011; Thurgood
et al. 2014; Weberg et al. 2018, 2020). There have been several
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studies to reveal the properties of the propagating kink waves,
finding that the power spectra of the velocity fluctuations can
be described with a power law, and also show an enhancement
of power at 4 mHz (e.g., Tomczyk & MclIntosh 2009; Morton
et al. 2015, 2016, 2019). The excitation mechanism for the
propagating waves is believed to be the random shuffling of
magnetic elements in the photosphere due to convection,
although this mechanism appears only to be able to explain the
high-frequency part of the observed power spectrum (Cranmer
& Van Ballegooijen 2005). Observational and theoretical
studies provide evidence that indicates that mode conversion of
p-modes may play a role in exciting some fraction of the
observed waves (Cally 2017; Morton et al. 2019). Moreover,
the origin of the low-frequency velocity fluctuations is still
unclear, although Cranmer (2018) suggests that reconnection
resulting from the evolution of the magnetic carpet may be the
source.

The damping and dissipation of the propagating kink waves
have not yet received as much attention as the standing modes.
In the case of the propagating kink waves, to date there has
only been a single observational case study analyzed in the
literature. Verth et al. (2010) were the first to highlight the
wave damping of the waves along the coronal loop presented in
Tomcezyk & MclIntosh (2009), suggesting resonant absorption
could provide a reasonable description of the observed
behavior. A number of other studies have also used the same
event for similar investigations into wave damping (e.g.,
Verwichte et al. 2013b; Pascoe et al. 2015; Tiwari et al. 2019;
Montes-Solis & Arregui 2020).

The focus of many previous studies has been on the
(decaying and decay-less) standing kink waves observed in
active regions, with many statistical studies revealing the
typical properties of these modes (e.g., Anfinogentov et al.
2015; Nechaeva et al. 2019). Given that the quiescent corona
occupies a larger volume of the Sun’s atmosphere than active
regions and is omnipresent over the solar cycle, it is vital to
understand the nature of the propagating kink waves that exist
there and the waves’ role in heating the quiescent coronal
plasma. However, to date, there has been little focus on the
propagating kink waves observed in quiescent corona. This
paper attempts to fill some of that gap in our knowledge and
provides a catalog of suitable quiescent coronal loops that can
be used for studying the propagating kink waves. In generating
this catalog, an overview of some of the typical propagating
kink wave properties in the quiescent Sun is also provided.
This paper also serves as a natural extension to the study by
Tiwari et al. (2019).

The paper is structured as follows: In Section 2 the details of
data and the analysis methods used are provided. Section 3
presents the main results and discusses the findings. The paper
is concluded in Section 4.

2. Data and Analysis
2.1. Observations

The data are obtained from the Coronal Multi-channel
Polarimeter (CoMP; Tomczyk et al. 2008), a coronagraph that
observes the off-limb corona between 1.05 and 1.35 R,. CoMP
is an imaging spectro-polarimeter, and provides images of the
corona taken at three different wavelength positions centered
on the 10747 A Fe Xm coronal emission line (referred to as
three-point measurements). The data were selected from CoMP
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observations taken between 2012 and 2016. The data sets
consisting of more than 135 (near)-contiguous data frames are
identified by a manual inspection of the CoMP online data
archive.’ The specific dates are given in Table 2. The data sets
from each selected date have a temporal cadence of 30 s (some
with a small number of missing frames, <5%) and spatial
sampling of ~4.5". The Doppler velocity data products derived
from fitting a Gaussian model to the line profile from the three-
point measurements are the focus of this study. Details of the
procedure used to estimate the Doppler velocities are given in
Tian et al. (2013), and an assessment of their uncertainties is
performed in Morton et al. (2016). A time series of Doppler
velocity images of the corona is used for this study. In cases
where frames are missing, linear interpolation is performed to
fill the gaps. Further registration of the Doppler images within
each time sequence is undertaken via cross correlation, with
further details given in Morton et al. (2016).

The analysis of the propagating kink waves requires the
measurement of the wave propagation direction. Hence, a data
product called a wave angle map is also derived, which gives
the relative direction of propagation for the velocity signal
within each pixel. The basis of the wave angle calculation
requires a coherence-based approach for the analysis of the
velocity signals. General details of the method are discussed in
Mclntosh et al. (2008) and particular applications to CoMP
data are discussed in Tomczyk & Mclntosh (2009), Morton
et al. (2015), and Tiwari et al. (2019). The strategy is to use the
coherence between the Doppler velocity time series of each
pixel and its neighboring pixels to obtain islands of coherence
above a threshold value. The direction of wave propagation is
calculated by a straight line fit through the islands, which
minimizes the sum of perpendicular distances from the points
to the line. Performing this operation for each pixel of the
Doppler velocity images gives the wave angle map. A sample
wave angle map is shown in the center panel of Figure 1.

2.2. Selection of Loops for Study

The selection of the loops from the CoMP data is a critical
step in the analysis of the waves. For each of the data sets,
suitable systems of coronal loops are identified. A lower limit
of 50 Mm is placed on the lengths of the loop systems selected,
whereby length refers to their visible length in the CoMP field
of view (FOV).* This limit is required to preserve a high signal-
to-noise level in the Doppler velocity time series. Smaller loops
are closer to the occulting disk, where the signal suffers from a
high scattering of photons that leads to poor estimates for the
Doppler velocity and hence increased noise in time series. The
imposition of a minimum loop length also ensures an
appropriate sampling in the k direction in Fourier space, which
is required for further analysis. A few such selected loops are
shown in the right panel of Figure 1. The loops are chosen by
manually identifying closed-loop structures first in the Doppler
and intensity image sequences and later also in the wave angle
map. The closed-loop structures as arcades of loops that appear
semicircular are identified, with each leg starting near the
occulting disk.

> hitps: //mlso.hao.ucar.edu/mlso_data_calendar.php?calinst=comp

An issue with measurements of the absolute length of loops is that the
occulter on CoMP covers the solar disk out to ~1.05 R, meaning that it is not
possible to trace the coronal loops back to their footpoints. Hence, only the
length of the loop in the CoMP FOV is reported.
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Figure 1. The left panel shows the position of all loops analyzed. The black dots correspond to the position of the loop apex. The red dashed lines represents the solar
disk. A sample observation for the loops observed on 2012 April 21 are shown in the two right panels of the figure. The center panel shows the calculated wave angle
at each pixel position, determined using a coherence-based method on each pixel of the Doppler velocity image. This wave angle serves as the guide for the tracks

shown in yellow in the right panel.

The second criteria for loop selection require that the loops
should be oriented such that the longitudinal direction of the
magnetic field is close to being positioned in the plane of sky.
The geometry and orientation of the loops are identified by
performing magnetic field extrapolations using the potential
field source surface (PFSS; Schrijver & DeRosa 2003) soft-
ware. The PFSS extrapolations were performed using line-of-
sight magnetogram data obtained from SDO’s Helioseismic
and Magnetic Imager (Scherrer et al. 2012). The extrapolations
provide us with a schematic geometry and orientation of the
loops in the plane of sky. The extrapolated field lines visibly
agree with the loop structures observed in the coronal EUV
images obtained by SDO/AIA and with the intensity images
obtained by CoMP. Furthermore, the loops are selected to
avoid loops within the cores of active regions (i.e., rooted in or
near sunspots). Some of the trans-equatorial loops identified
were located in the extended plage region of active regions on
the visible solar disk. The observed loops are assumed to be
rooted in network regions and are not part of active region loop
systems. The left panel of Figure 1 displays the location of the
apex positions, with respect to the solar limb, of all the loops
used within this study.

Due to the low spatial resolution of CoMP, the effect of line-
of-sight integration, and projection effects, there is an issue of
disambiguation of individual loops in CoMP observations.
Hence, the focus is on the wave signals in the system of coronal
loops, as opposed to an individual structure.

2.3. Wave Parameter Estimation

For each system of coronal loops, a number of wave paths
are extracted. A wave path is defined as being a contiguous set
of pixels through the loop system, starting and finishing at the
occulting disk. A pixel is selected within the loop system, and
the wave angle map is utilized to map out a path, selecting the
subsequent pixel based on the angle of propagation. The path is
followed until the occulting disk is reached. A square boxcar
median filter of width two pixels was applied to the wave angle
map to try and suppress some of the noise and led to the
improved tracing of wave paths. The pixel locations for each
wave path are then used to extract the relevant velocities from
the Doppler velocity images for each frame in the image
sequence. A cubic interpolation maps the velocities from the

selected wave paths onto (x, f) space. For each wave path, the
neighboring five wave paths on either side of the original wave
path are also extracted. The result of this is time—distance
diagrams along the coronal loops systems. The longer loops
lead to additional issues when tracing them because the wave
angle suffers from more significant uncertainties closer to the
apex of these loops. This arises because the wave angle is being
poorly estimated near the upper boundaries of the wave angle
map, primarily due to lower signal to noise in these regions
arising from fainter coronal emission. In such cases, only the
wave path for half a loop is obtained. The half-loop length is
defined for each loop, obtained by finding the point of inflexion
for the traced trajectory of the wave path (except for the longer
loops where only a half loop is already traced).

The Doppler velocity time—distance diagram for each half
loop is subject to a two-dimensional Fourier transform. The
Fourier components are used to separate the inward and
outward components of the wave propagation and provide
velocity power spectra as a function of wavenumber-
frequency (k — w).

The propagation speed for the waves is calculated in a
manner similar to Tomczyk & Mclntosh (2009), Morton et al.
(2015, 2019), and Tiwari et al. (2019). It is straightforward to
filter either the inward or outward waves from the Fourier-
transformed Doppler velocity time—distance diagrams by
setting Fourier components equal to zero. The inverse Fourier
transform of the filtered Fourier components then provides a
Doppler velocity time—distance diagram containing only the
inward or outward propagating waves. The cross correlation
between the time series at the center of the wave path and the
neighboring time series along the path is calculated from these
filtered Doppler velocity time—distance diagrams. The location
of the peak of the cross-correlation function gives the time lag
between the signals and is determined by fitting a parabola to
the peak. The observed lags as a function of the position along
the wave path are fit with a linear function, and the gradient
gives the propagation speed of the wave.

A feature of the propagating kink waves that is of particular
interest is to estimate is the observed damping of these waves.
The damping can be measured through analysis of the power
ratio of the outward to inward propagating waves, P(f);ago- AS
mentioned, this has been performed previously by a number of
authors for a single case study (Verth et al. 2010; Verwichte
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et al. 2013b; Pascoe et al. 2015; Tiwari et al. 2019; Montes-
Solis & Arregui 2020).

The velocity power as a function of frequency for the
inward, P;,(f), and outward P, (f), component of the waves
are obtained by summing the velocity power spectra in the k
direction. For each loop, the inward and outward power spectra
are averaged over the neighboring wave paths to suppress the
variability in the power spectra. From this one-dimensional
averaged wave power, the ratio of the outward to inward
power, (P(f))aio, i determined by taking the ratio of the
power at corresponding positive and negative frequencies.

Following Verth et al. (2010), the function to model the ratio
of the power spectra is defined as follows:

(P(f))ratio = 1; exp( 2L f} (1)

in Uph

where L is the half-loop length, vy, is the propagation speed
and ¢ is the equilibrium parameter (or quality factor) that
provides a measure of the strength of the wave damping. The
factor P, /P, can be interpreted as the ratio of the power
entering the corona through each of the loop footpoints. We
note that Equation (1) is only valid when WKB conditions are
satisfied, i.e., the wavelength is less than the length scale of
inhomogeneity along the loop (see, e.g., Soler et al 2011). For a
plasma of T, =~ 1.3 MK, the scale height is H ~ 61 Mm. For the
kink waves we report here, the wavelength is A =~ 140 Mm for a
wave with frequency f= 3.3 mHz. However, given these are
initial measurements of the propagating kink waves, we will
use Equation (1). The equilibrium parameter that will be
estimated can be thought of as an average value along the loop.

Estimates for £ are obtained by fitting the model power ratio
given by Equation (1) to the data, using a maximum likelihood
approach. The associated confidence intervals on the model
parameters were estimated by utilizing the Fisher information.
For a detailed discussion on the statistics of the power ratio and

the maximum likelihood approach, see Tiwari et al. (2019, their
Section 3.4).

3. Results and Discussion

In total propagating kink waves in 120 individual quiescent
loops observed with CoMP are analyzed. For each loop,
estimates for the loop length, the propagation speed, the power
ratio at the loop footpoint (P,y/Pi,), and the equilibrium
parameter (&) are obtained. The various parameters that were
obtained are listed in Table 2. In the following subsections, a
summary of the main properties of the propagating kink waves
is provided.

3.1. Loop Lengths

First, a summary of the typical wave-path lengths is
provided, which is used as a proxy for the loop length. In the
left panel of Figure 2, the distribution of the half-loop lengths is
shown. The half-loop lengths for the traced coronal loops are in
the range of 50—600 Mm. The distribution peaks at around
150-200 Mm, and most of the loops observed are between 50
and 250 Mm. The number of longer loops is low, as it becomes
increasingly difficult to trace the longer loops due to the limited
FOV of the CoMP instrument. As well as the mentioned issue
with visibility of the lower portions of the loops, the observed
loop lengths suffer from projection effects, although it is hoped
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that the selection criteria for the loops minimize this (see
Section 2.2). Due to the reasons mentioned above, in the case
of propagating waves, a loop length always means half the loop
length.

3.2. Propagation Speeds

The distribution of propagation speeds is shown in the right
panel of Figure 2, with the measured speeds distributed
between 200 and 800kms ' and peaking around
400-600 km s~ '. This is consistent with the various propaga-
tion speeds reported in the literature (Tomczyk et al. 2007;
Tomczyk & McIntosh 2009; Liu et al. 2014; Morton et al.
2015; Tiwari et al. 2019; Yang et al. 2020a, 2020b). The
propagation speed values obtained are averaged over the
outward and inward wave propagation speeds. There is some
evidence that the outward and inward velocities are different,
which can be explained by the presence of flows along the
coronal loops. However, the methodology for the measurement
of the wave propagation speed is currently not sensitive enough
to quantify this, apart from in extreme cases (e.g., in coronal
holes, see, Morton et al. 2015). The presence of flows leads to
modification of the resonant damping of the kink waves, as
described by Soler et al. (2011); consequently, this would
require a change in the model for the power ratio that has been
used. However, the influence of flows is neglected until they
can be inferred more readily.

3.3. Power Ratio

The power ratio factor, Poy/Pi,, defined in Equation (1) is
essentially a measure of the power of the waves entering the
corona at each footpoint of the loops. The distribution of the
estimated values of power ratio is shown in the left panel of
Figure 3, and has a mean value of 1.29 4+0.04. While the
footpoint power ratio does not provide any information about
the driving mechanism, it can be used as a proxy for measuring
the energy input at each footpoint of the loop. The driving
mechanism of propagating kink waves are thought to be one
that acts globally due to the ubiquitous nature of these waves
(Morton et al. 2019). Hence, one would expect that the energy
entering the corona through each footpoint will be approxi-
mately equal, unless each set of footpoints is located in regions
with dissimilar magnetic field strengths. The mean value of the
footpoint power ratio supports this hypothesis and is in
agreement with the results from previous studies (Verth et al.

2010; Tiwari et al. 2019). The scatter around the value of 1
could indicate that in some regions of the atmosphere, the
driver is weaker/stronger than in others.

However, examination of the behavior of the power ratio as a
function of the length of the coronal loop reveals the footpoint
power ratio exhibits a decreasing trend with loop length (right
panel of Figure 3). The power ratio starts at values close to 1.5
for the shorter loops and tends toward one as the loop length
increases. A potential explanation for this trend could be that,
for shorter loops, the wave power injected at each footpoint is
different, possibly due to different excitation mechanism or due
to differences in the frequency/strength of the driver. Why this
should be the case for shorter loops only is not evident.

Instead, it is suggested that the enhanced power ratio for
shorter loops is an artifact of the analysis method. If the spatial
wavelength of the oscillation is on the order of, or greater than,
the length of the wave path used in the analysis, then there can
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Figure 2. The left panel shows the distribution of measured half-loop lengths. The right panel corresponds to the measured phase speeds for the observed propagating
waves. The blue bars and line represent the histogram and kernel density estimate (KDE) estimates for the distributions, respectively.

be a leakage of power into negative/positive values of k. As an
example, the wavelength of the kink modes is vy, P, where vy,
is the phase speed, and P is the period. Using the values
associated with the observed waves, a period of 300s and
phase speed in the range of 200-600kms ' then gives
wavelengths in the range of 60-180 Mm. Hence, the
wavelengths are comparable to the lengths of the shorter loops
selected here. The leakage of power from one quadrant of the
power spectrum to another might be able to explain the
observed deviation from 1. In future work, analysis can be
modified to negate the impact of this power leakage, which can
be avoided by fitting the power spectrum in w—k space instead
of just frequency.

3.4. Equilibrium Parameter

Perhaps the most interesting parameter estimated here is the
equilibrium parameter or quality factor (§), which quantifies the
damping rate of the waves. The distribution of ¢ presented in
the left panel of Figure 4 for the positive values. The values of £
are between 0.89 and ~298; hence, they occupy a wide range
of values (relative to the standing modes, see Morton et al.
2021). The distribution illustrates that ~80 % of the positive £
observations fall in the range of (0.89, 30). Hence, the
propagating kink waves can be strongly damped or very
weakly damped. The median value is ~11, and a mean value of
~18, which is greater than that found for the standing kink
modes (see, Morton et al. 2021, for a full discussion of the
importance of the observed values of the equilibrium
parameter).

It should also be noted that of the 108 loops identified and
studied, 31 of them show signs of power amplification, with a
negative value of & These are observed only for short loops
(less than the half-loop length of 350 Mm). At present, it is
unclear whether these results are physical. As already
mentioned, short loops typically contain lower signal-to-noise
velocity time series due to their proximity to the occulting disk.
However, it has been shown by Soler et al. (2011) that flows
can play an important role and can lead to amplification of
waves. The amplification of waves is always in competition
with wave damping mechanisms. However, as discussed, the
values of ¢ are typically large, which implies a weak damping.
Hence, in loops with weak damping, there is an improved

chance to observe any amplification that may arise from flows
or other mechanisms. These shorter loops with negative & need
further investigation.

3.5. Equilibrium Parameters Relationship with Half-loop
Length

Tiwari et al. (2019) gave evidence in favor of dependence
between the equilibrium parameter (£) and the loop length,
although there were only seven loops analyzed in that study.
The additional measurements made here enables us to examine
this dependence further. As mentioned, the loops selected for
this study correspond to loops being oriented such that the
longitudinal axes are predominantly in the plane of sky. It
implies that the longer loops reach higher altitudes in the
corona. The right panel of Figure 4 displays a scatter plot,
revealing a range of equilibrium parameters are possible for all
loop lengths. The equilibrium parameter also shows a distinct
behavior with increasing loop length. As indicated by the
results in Tiwari et al. (2019), as loop length increases, there is
an increase in the value of the damping equilibrium parameter.

In order to show this relationship, whether several simple
models of the form é‘ = f(L) could describe the data is
examined. The models examined were constant, linear,
quadratic, square root, and log. Each model also contained a
constant term. The models were fit to the data assuming that a
normal distribution describes the likelihood of the data; hence,
the negative log-likelihood of the form is minimized:

Y (& - Ly
—2InL = : ,
where &; is the observed value, E(L) is the model prediction,
and o; is the uncertainty on &;. The out-of-sample prediction
error is estimated to test the ability of each model to describe
the data. First, leave-one-out cross validation is utilized, using
the mean value of the negative log-likelihood as a measure of
the test error. It turns out all models (except the constant) show
a similar ability to describe the data, with the quadratic and
linear models performing the best, although the difference
between the nonconstant models is small. Moreover, the
Akaike information criteria calculation supports the results
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Figure 3. The left panel shows the distribution of measured footpoint power ratios after performing fitting for the observed waves. The blue bars and line represent the
distribution and KDE for the footpoint power ratio for propagating kink waves. The right panel highlights the variation of footpoint power ratio with respect to the
half-loop length. The black circles represent the footpoint power ratio, and the corresponding error bars are shown in gray.

from cross validation and confirms that the constant model
performs the worst.

In the right panel of Figure 4, the results from the quadratic
model is displayed. The uncertainty on the model curve is
calculated by performing 10,000 bootstrap simulations of the
fitting procedure, then using the percentile method to estimate
the point-wise confidence intervals. The increase in £ with loop
length is evident. It is noted that the data also appear to show
there is a lower bound to the possible values of ¢ for the loops
that increases with loop length.

The implication of the increase in ¢ with loop length is that
the propagating kink waves are subject to a reduced rate of
damping for longer loops. As discussed in Tiwari et al. (2019),
a physical explanation for the apparent decrease in damping
rates can be made. Assuming that resonant absorption is the
mechanism acting to provide the observed frequency-depen-
dent damping, the quality factor for kink modes is given by

Re+1

E=aT T @)

where R is loop radius, [ is the thickness of the density
inhomogeneity layer, (= p;/p, is the ratio of the internal and
external densities of the magnetic flux tube, respectively, and «
is a constant whose value describes the gradient in density
across the resonant layer. It is suggested that the key factor in
understanding the observed behavior would be the density ratio
between the internal and external plasma. Quiescent coronal
loops should be subject to similar heating rates; hence, the rate
of associated chromospheric evaporation is similar. If this is
true, then the average density of the longer loops is likely to be
less than those of shorter loops. This will lead to the density
ratio (p;/ p.) for longer loops being, on average, smaller than for
the shorter loops compared to the ambient plasma.

As a basic examination of this premise, the scaling laws for
dynamic loops derived in Bradshaw & Emslie (2020) are
utilized. The scaling laws are derived under the assumption that
a dynamic loop (i.e., one subject to heating) has reached a
steady state, with the sum of the static pressure and dynamic
pressure (arising from flows) being constant along the loop.
The static pressure, temperature, and density vary along the

loop, but gravity is neglected. Moreover, it is assumed that the
loops have a constant cross section along their length. The
scaling laws are likely more applicable to short loops, where
the hydrostatic scale height is on the order of the loop height.
As mentioned earlier, for a plasma of 7, ~ 1.3 MK, the scale
height is H ~ 61 Mm. The CoMP loops typically reach a higher
altitude than this (see Figure 2 and Table 1); hence, the
dynamic scaling laws are likely insufficient to describe the
plasma conditions in the observed loops. Nevertheless, as there
is no alternative, we use the scaling laws from Bradshaw &
Emslie (2020), but do not place too much significance on the
results.

From Equation (45) in Bradshaw & Emslie (2020), the loop
apex density, n,,, is related to the heating rate, Ey, by

ny = [c(M)Ey LV/417,

where L is the half-loop length, and c(M) is a function of the
Mach number. The heating rate is assumed constant along the
loop. We rewrite this expression in terms of the energy flux,
Fy=Ey, giving,

ny = [c(M)Fy L3417 3)

The loop number density can be thought of as a combination of
an initial number density (n() (due to some basal heating, Ep,),
which is assumed to be equal to ambient plasma (7.), plus an
additional density, n;, from the evaporation of the chromo-
spheric/transition region due to some heating event (Ep,)
associated with the loop, i.e.,

Ny = no(Eg,) + m(Ep,).

The density ratio ¢ can be defined as

T
(== “)

ne

4/7
=1 i L3/, 5)

+
(2.4 x 1075%"Mn,

This expression suggests that the density ratio may depend
upon the length of the coronal loop, with the over-density of
the loop decreasing as the loop length increases.
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Table 1
Median Values of Various Characteristics of the Different Observed Kink
Modes in the Solar Corona

Damped Damped Decay-less
Properties Standing Propagating Standing
Loop length (Mm) 324 349 190
Period (s) 7.3 4.2
Amplitude (Mm) 5 0.14
Equilibrium 1.8 11.4

Parameter

Kink Speed (km 1336 483 1645

sh

Note. In case of the propagating kink waves the loop length is calculated by
multiplying the half-loop length by a factor of 2.

We then substitute the expression for ¢ into Equation (2) to
estimate the quality factor as a function of loop length. To
obtain values of £, we require some reasonable estimates for
quiet Sun parameters. Hence we assume that the energy flux is
Frpy~200 W m*2 2 x 10% erg s~' cm™?; the electron density
is n, = 10%° cm™>; the Mach number is O 1 (corresponding to
flows of ~10km sfl), a=2/m; and I/R = 1. The dependence
of the quality factor on loop length from the scaling law theory
is shown in Figure 4. While it does not match the curve from
the model fitting, the results support our physical explanation
for an increase in the equilibrium parameter as a function of
loop length.

It is always worthwhile drawing comparisons between
related results. To our knowledge, there is only one previous
estimate for the damping rate of Alfvénic modes in the
quiescent corona (excluding Verth et al. 2010; Tiwari et al.
2019), which was estimated in Hahn & Savin (2014).° They
provide estimates for the damping lengths of the waves, finding
a broad distribution (up to 500 Mm) with a median value
between 100 and 200 Mm. In order to provide a comparison to

5 In Hahn & Savin (2014), measurements of nonthermal line widths from

Hinode /EIS data are assumed to represent Alfvénic waves. It is likely that the
nonthermal broadening is due to the under-resolved kink waves, e.g., McIntosh
& De Pontieu (2012), Pant et al. (2019)

their results, the estimated quality factors should be converted
to damping lengths. The damping length (L) can be calculated
using

L,= é.Apropv

where Aprop = vpuP. Substituting typical values of the period
(P) of the waves observed by CoMP (100-1000s) and the
measured phase speeds (see Table 2) in this expression given
the damping lengths. Figure 5 shows the estimated damping
lengths as a function of the period for three different values of
Vph, Using the median value of £ from measurements in this
study. The damping lengths reported in Hahn & Savin (2014)
are comparable to the estimated damping lengths for the shorter
period waves from the CoMP observations (Figure 5). The
damping lengths given by Hahn & Savin (2014) will
themselves, of course, be related to waves with a particular
range of periods. However, it is not straightforward to ascertain
the periods of the waves encapsulated in the nonthermal line
widths.

A value of £ from the information in Hahn & Savin (2014)
can also be estimated. Although the assumed values of
propagation speed, vp,, are not given in Hahn & Savin
(2014), by inverting the given equation for the energy flux, F,
namely,

= p{6v?) vpn,

where (év) is the velocity amplitude from the nonthermal
widths, gives the propagation speed. The given values of
energy flux (5.5 x10° ergs ' cm™?), nonthermal widths
(30kms™ "), and electron density (5 x 108 ecm™?) are also
utilized to find v, =550 km s~'. Hence, using the damping
lengths of 100-200 Mm, the quantity ¢ P = 180-360s. The
Hinode/EIS data used in their study is integrated over 60s.
Assuming that only waves with periods less than 60s
contribute to the line broadening (which is a very conservative
assumption), then &=3-6. These values are likely over-
estimates for their study (i.e., Hahn & Savin 2014) but are
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Table 2
Measured Loop Parameters and Wave Parameters Obtained from Observations

Loop Solar-X Solar-Y Date Half-loop I3 Power Phase
No. Length Ratio Speed

(arcsec) (arcsec) YYYYMMDD) (in Mm) (km s™h
1 798.50 —819.50 2012 Apr 23 42.0+£3.23 —-1.53 £1.27 2.1 £0.61 29142
2 —1026.30 —238.20 2012 May 14 42.0+£3.23 —8.04 £5.78 2.17+£0.72 415+ 15
3 980.56 422.56 2012 Jun 26 4504323 —0.95 +2.07 2.51+1.07 561 + 11
4 —928.26 —549.67 2012 Jun 26 450 £3.23 —-1.89 £2.0 251 £1.07 561 £ 11
5 —1136.86 —57.01 2012 Apr 10 55.0+3.23 2.49 +£3.23 1.47 £0.63 373 +4

(This table is available in its entirety in machine-readable form.)
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Figure 5. Estimated variation of damping length with phase speed, calculated
using typical values for the period, and the median value of the equilibrium
parameter.

broadly in agreement with the range of values found in this
study (e.g., Figure 4).

3.6. Comparison with Observations of Different Modes of Kink
Waves

Before concluding, we provide a light-touch comparison
between the properties of the propagating kink waves observed
here and the previous studies of the two standing kink modes,
i.e., damped and decay-less. The comparison is worthwhile to
highlight that the standing and propagating modes are found in
coronal loops with significantly different plasma conditions.

For the damped standing kink waves, the catalog of events
compiled by Goddard et al. (2016) and Nechaeva et al. (2019),
using data from SDO/AIA is used. All the observations from
these data sets, which did not have any associated period or
damping time information, are removed. The total number of
cases after this selection is 103 events over the course of solar
cycle 23.

In the catalog of standing kink waves, the loop length is
estimated under the assumption that the loops are close to the
semicircular shape by either measuring the projected distance
between the footpoints or by the apparent height. For each
oscillation, the amplitude of the initial displacement and initial
oscillation amplitude was given, along with the period. The
mode of the standing kink waves here is assumed to be the
fundamental.

The kink speed, which is not provided in the catalog of
Nechaeva et al. (2019), is calculated as follows:
w 4L
Ckink X I (6)
where ¢y 1S the kink speed, L is the half-loop length, and P is
the period of the waves observed. Furthermore, the equilibrium
parameter is also calculated by using the measured damping
time of the oscillations and the periods, i.e., £ =7/P.

For the decay-less kink waves, the catalog put together by
Anfinogentov et al. (2015, see their table A.1)° is used. The
catalog provides a study of 71 observations of decay-less kink
waves in 21 active regions (NOAA 11637-11657) between
2012 December and 2013 January.

From both catalogs, the median values for the loop length,
period, amplitude, and kink speed (see Table 1) are shown.’
For the damped waves, the median value of the equilibrium
parameter is also presented.

In terms of the length of coronal loops that support the
oscillations, the loops studied in this paper here have a similar
distribution to those from the damped and decay-less standing
wave studies. The propagating kink wave catalog also contains
several longer loops. The reader is reminded that the loop
lengths measured by CoMP and SDO/AIA are not directly
comparable. The CoMP instrument has an occulting disk that
obscures the corona below 1.05 Rg,,. Hence, the measurements
for the coronal loops’ length do not begin near the footpoints,
and it is likely an underestimation of the length of the CoMP
loops (a rough correction being the addition of 70 Mm to the
given values). On the other hand, SDO/AIA images show the
solar disk, often making the coronal footpoints of the loop
visible in the images.

One of the main difference between the two loop populations
is the measured kink speed. In the case of standing waves, the
estimated kink speeds have medians of ~1300 and
~1700 km s~ for damped and decay-less, respectively. While
for the propagating waves, the median value of the propagation
speed is substantially smaller at ~480km s~ '. The contrast of
these values reflects the sizeable differences in the magnetic
field strengths between the regions where these waves are
observed (and also somewhat the different densities). The
electron density in the quiet Sun (10%° cm™2) is less than that
of active regions (10°'® cm™?), which indicates the magnetic

6

The table was scraped using the Beautifulsoup module (Richardson 2007).
5

The loop length in case of the standing and the decay-less kink waves are
the full semicircular loop lengths as seen in AIA/SDO, while in the case of the
propagating kink waves the loop lengths refer to the half-loop length as seen in
the CoMP FOV.
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field strength must be substantially weaker in the quiescent
Sun. This is borne out by estimates of the magnetic field
strength, which in the active region coronal loops lies in the
range of 4-30G (e.g., Nakariakov & Ofman 2001; White &
Verwichte 2012),® while the magnetic field of the quiet Sun
loops are estimated to be between 1 and 9 G (Morton et al.
2015; Long et al. 2017; Yang et al. 2020a, 2020b).

The difference in plasma parameters will ultimately bring
about differences in how the waves/oscillations evolve as a
function of time and/or distance. In fact, in the companion
paper, Morton et al. (2021), a comprehensive discussion on the
implications of differences in the equilibrium parameter found
for the standing waves (&meqian = 1.8) and the propagating
waves (Emedian = 11.4) is provided.

4. Summary and Conclusion

The details of a catalog of quiescent coronal loops observed
with the CoMP instrument are provided, all of which show
evidence for the presence of propagating kink waves. The
catalog is used to undertake a statistical study of the
propagating kink waves providing estimates for the damping
rate and propagation speeds of the waves, presenting some
details of how the propagating kink waves evolve. It is found
that the equilibrium parameter, which quantifies the degree of
wave damping, has a broad range of values, which indicates
that in some of the coronal loops, the propagating kink waves
are only weakly damped (this is aspect is discussed further in
Morton et al. 2021). The damping length of the propagating
kink waves is also estimated, which is found to be broadly
comparable to the previous estimates of Hahn & Savin (2014).
Moreover, the study also finds that there is a relationship
between the degree of damping and loop length, with waves
propagating along longer loops typically experiencing reduced
damping, verifying claims of Tiwari et al. (2019). The
suggested reason for this behavior is related to longer loops
having a lower average density contrast, potentially due to
limits on the amount of mass that can be evaporated during
heating events associated with a given heating rate. Our
analysis also finds signatures of the amplification of waves, the
nature of which is unclear at this time.

A brief comparison of the observed properties of the
propagating waves to the standing modes is also presented.
Notable differences between propagation speed and damping
rates are found, with the contrast being due to the dissimilar
plasma and magnetic environments of the two populations of
loops that support the waves. The standing kink waves have
been reported predominantly in loops with at least one
footpoint in an active region; however, the propagating kink
waves have been reported to be ubiquitous in the solar corona.

It is envisaged that the catalog of propagating kink waves
will provide the community with the foundation for further
study of propagating kink waves in the quiet solar corona.’
Many potential studies can exploit the propagating kink waves
to further probe the plasma conditions in the quiescent loops,
with the potential to incorporate density measurements from
the Fe xm line pair that CoMP also observes and provide
estimates of magnetic field and flows through magneto-
seismology (Morton et al. 2015; Yang et al. 2020a). This will

8 It should be noted that the magnetic field measurements obtained by coronal

magneto-seismology provide an underestimate of the magnetic field values
(Verwichte et al. 2013a).

° The catalog in Table 1 is available as a csv file.
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ultimately enable us to develop a clear picture of how the
propagating kink waves evolve in the quiescent corona and
determine their role in plasma heating. Moreover, it is
emphasized that there is a need for 3D MHD simulations of
kink wave propagation in quiescent coronal loops to aid our
understanding of the role of resonant absorption in the damping
of propagating kink waves.
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Appendix

Compilation of the loop parameters for the study of damped
propagating kink waves in the solar corona.
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