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ABSTRACT

We consider a model of a circular lenticular vortex immersed into a deep and vertically stratified viscous fluid in the presence of gravity and
rotation. The vortex is assumed to be baroclinic with a Gaussian profile of angular velocity both in the radial and axial directions. Assuming
the base state to be in cyclogeostrophic balance, we derive linearized equations of motion and seek for their solution in a geometric optics
approximation to find amplitude transport equations that yield a comprehensive dispersion relation. Applying the algebraic Bilharz criterion
to the latter, we establish that the stability conditions are reduced to three inequalities that define the stability domain in the space of
parameters. The main destabilization mechanism is either monotonic or oscillatory axisymmetric instability depending on the Schmidt
number (Sc), vortex Rossby number, and the difference between radial and axial density gradients as well as the difference between epicyclic
and vertical oscillation frequencies. We discover that the boundaries of the regions of monotonic and oscillatory axisymmetric instabilities
meet at a codimension-2 point, forming a singularity of the neutral stability curve. We give an exhaustive classification of the geometry of the
stability boundary, depending on the values of the Schmidt number. Although we demonstrate that the centrifugally stable (unstable)
Gaussian lens can be destabilized (stabilized) by the differential diffusion of mass and momentum and that destabilization can happen even
in the limit of vanishing diffusion, we also describe explicitly a set of parameters in which the Gaussian lens is stable for all Sc> 0.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0068311

I. INTRODUCTION

An intriguing class of dynamical systems of geophysics and astro-
physics resides in the so-called lenticular vortices that serve to model
mesoscale oceanic or atmospheric cyclones and anticyclones, such as
the Great Red Spot (GRS) of Jupiter.1–3 These compact but intense
three-dimensional baroclinic vortices are strongly influenced by plane-
tary rotation and thus are governed by geostrophic and hydrostatic bal-
ances between pressure gradients and Coriolis and buoyancy forces,
from where they get their ellipsoidal shape,4 see Fig. 1. The aspect ratio
of the vertical half-height to the horizontal length scale of such vortices
in an equilibrium state ranges from flat “pancakes” to nearly round and
depends on the properties of both the ambient flow and the vortex.5,6

The lenticular vortices observed in nature are notoriously persis-
tent (like the GRS). In particular, a relatively long life cycle of weeks to
years allows the intense oceanic eddies to transport heat, salt, and
other passive tracers over long distances and thus to contribute to the
climate equilibrium on Earth.7 Nevertheless, even the GRS is subject to

variations in its size.8 Therefore, natural and timely questions arise on
how stable such lenticular vortices are, what are their basic destabiliza-
tion mechanisms, how quickly are they decaying, and what are their
origins?

Indeed, although according to the Taylor–Proudman theorem,
rotation tends to generate tall barotropic columnar vortices, many
studies show that vortices in rotating and stably stratified fluids have a
lenticular shape rather than being columnar.9 There is evidence that
lenticular vortices in rotating and stratified fluids can be created, e.g.,
from the remnants of the violent breakups of columnar vortices6 or
due to zigzag instabilities that destroy interacting columnar vortices.9

Among the main instabilities of single columnar axisymmetric
vortices such as shear instability, centrifugal instability, radiative insta-
bility, and Gent-McWilliams instability,10 the latter was found to be
the most effective in bending and slicing the vortex into lenticular vor-
tices embedded within shallow layers as it happens in many geophysi-
cal flows.5,7,11,12
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We notice that coherent vortices generated from wakes or turbu-
lence in stratified fluids or through hydrodynamic instabilities of sur-
face currents can also have an ellipsoidal shape.9

Monotonic axisymmetric modes subjected to centrifugal instabil-
ity are frequently found to be the most unstable in numerical, theoreti-
cal, and experimental works on stability of vortices.4,9 The onset of
centrifugal instability for inviscid differentially rotating axisymmetric
circular non-stratified flows, including columnar (barotropic) vortices,
is regulated by the standard Rayleigh criterion (1917), requiring the
square of the absolute angular momentum to decrease with the radius
somewhere in the flow.9

The Rayleigh criterion was extended in numerous works taking
into account, accordingly, rotation effects,13 non-axisymmetric distur-
bances,14 vertical stratification,15,16 temperature gradient,16–18 mag-
netic field, and other physical phenomena.19–21 However, it was widely
accepted that even the generalized inviscid Rayleigh criterion cannot
be adequately applied to oceanic eddies unless diffusion of momentum
(viscosity) and of a stratifying agent (diffusivity) is added to the model.

For instance, Lazar et al.12 considered different types of circular
barotropic vortices in a linearly stratified shallow layer of viscous fluid
with the ratio between kinematic viscosity and mass diffusivity (i.e.,
Schmidt number, Sc) fixed to unity and found that the centrifugally
unstable area in the parameter space is reduced in the double-diffusive
setting with respect to the diffusionless one. In addition, Lazar et al.12

provided an analytical marginal stability limit for the idealized
Rankine vortex in terms of the vortex Rossby number and Burger and
Ekman numbers.

The effect of Schmidt number on the stability of barotropic vorti-
ces in a stratified ambient fluid in the absence of rotation has been
studied recently by Singh and Mathur22 with the geometric optics
approach developed in Refs. 17, 20, 23, and 24.

Lenticular vortices of geophysical interest are generally baroclinic
with their azimuthal velocity being a function of both radial and axial
coordinates. Nevertheless, many previous studies addressing the stabil-
ity of baroclinic vortices concentrated on the extension of the Rayleigh
centrifugal criterion for barotropic vortices. For instance, the general-
ized Rayleigh criterion for baroclinic and stratified circular flows pro-
posed by Solberg (1936) states that the flow is unstable if the total

circulation decreases as the radius increases along isopycnals in the
flow.4,9,15,16

In his seminal work, McIntyre addressed the stability of a baro-
clinic circular vortex in a Boussinesq fluid with buoyancy determined
by the temperature gradient only and demonstrated that even in the
limit of vanishing diffusivities of momentum and heat, the centrifu-
gally stable diffusionless vortex is actually unstable to axisymmetric
disturbances, unless the Prandtl number, which is the ratio of viscosity
to thermal diffusivity, is equal to unity.25 Furthermore, “the more the
Prandtl number differs from 1, the larger the region in parameter
space for which the flow is stable by the classical criterion, but actually
unstable.”25 Although both monotonic instability and growing oscilla-
tions have been found, only the former was shown to determine the
stability criterion.25

Despite the lenticular vortices being very common in stratified flu-
ids, the literature on their stability is not vast.1,4–7,9,26–30 The vast major-
ity of these works are purely numerical and experimental. Therefore, a
general analytical treatment of this problem is timely to obtain new tools
for interpreting the data, informing, and guiding further research.

Laboratory experiments have demonstrated that most of the lab-
oratory lenticular vortices are unstable to baroclinic or barotropic
instabilities depending on their aspect ratio.7

Beckers et al.26 and Godoy-Diana and Chomaz27 have studied
the effect of Schmidt number on the decay of axisymmetric pancake
vortices in a stratified fluid. It was found that for Sc> 1 the secondary
circulation inside the vortex, dominated by the diffusion of momen-
tum, slows down the decay of horizontal velocity whereas for Sc< 1
the secondary motion, primarily driven by density diffusion, acceler-
ates the damping of the velocity.27

Yim et al.4 proposed a model incorporating a multitude of differ-
ent velocity profiles in radial and axial directions for the vortices,
including Gaussian–Gaussian, Gaussian–columnar, and Gaussian–
exponential vortices. However, the Schmidt number was fixed to unity
in that work, “since the turbulent advection at small scales dominates
the molecular viscosity and diffusivity.”

Yim and Billant9 explored the difference and similarity in desta-
bilization of columnar and ellipsoidal vortices in a non-rotating but
double-diffusive setting. Despite in most of the paper,9 Sc was kept
equal to one as well, the effect of deviation of the Schmidt number
from unity was briefly investigated in it. The authors found a new
instability branch numerically after increasing Sc to 700. This branch
corresponded to inclined short-wavelength oscillations localized in the
top and bottom of the vortex and was attributed by Yim and Billant9

to the oscillatory McIntyre instability.25 Nevertheless, since this insta-
bility was found to co-exist with centrifugal instability, being “less
unstable,” it was not investigated further by Yim and Billant.9 Recent
numerical study,30 however, provides new evidence that the McIntyre
instability is a reason for the density layer formation observed around
laboratory31 and oceanic32 vortices.

In the present work, our ambition is (i) to derive an original set
of dimensionless equations for circular baroclinic lenticular vortices in
a vertically stratified and rotating ambient fluid taking into account
the diffusion of momentum and mass; (ii) to perform a local stability
analysis within the geometric optics approach;17,20,23,24 (iii) to find a
comprehensive dispersion relation allowing stability analysis with arbi-
trary values of Sc; and (iv) to find analytically new explicit instability
criteria generalizing the previous results.

FIG. 1. Sketch of a differentially rotating lenticular vortex in a cyclogeostrophic bal-
ance between centrifugal, hydrostatic, and Coriolis forces.
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We will show that the Gaussian–Gaussian lenticular vortex is
subject to both the monotonic axisymmetric centrifugal instability and
oscillatory McIntyre instability depending on the value of the Schmidt
number. We will show that it is a codimension-2 point on the neutral
stability curve that separates the criteria for the centrifugal and oscilla-
tory McIntyre instability. Finally, we will provide evidence that the lat-
ter is a genuine double-diffusive dissipation-induced instability, which
criterion exists only when Sc 6¼ 1, and which persists even in the limit
of vanishing diffusion.

II. MATHEMATICAL SETTING

Let et be time and ðer ;eh;ezÞ be a right-handed cylindrical coordi-
nate system with the unit vectors er; eh; ez , see Fig. 1. We assume that
the frame of reference rotates with angular velocity ð0; 0; f =2Þ, where
the constant Coriolis parameter, f, can be of both positive and negative
sign. Gravity ð0; 0;�gÞ is anti-parallel to the ez axis and the centrifugal
force is assumed to be negligible.25

We consider a base state of a linearly stratified fluid along the
direction of application of gravity. We also include dissipation in the
fluid in the form of viscosity and we assume for definiteness the diffu-
sion of stratifying agent to be present, in contrast to the work of
McIntyre,25 where thermal diffusion only was taken into account.

We further assume a baroclinic ellipsoidal vortex with angular
velocity ð0; 0; eXðer ;ezÞÞ to be immersed in a deep and motionless (in
the rotating frame) fluid far away from the core center at
ðer0;ez0Þ ¼ ð0; 0Þ, so that the boundaries do not influence the inner
motion, see Fig. 1.

We notice, however, that the thermal diffusivity excceds by two
orders of magnitude the mass diffusivity in oceans. Therefore, intro-
ducing thermal diffusivity and the associated Prandtl number to model
instabilities of a truly thermohaline vortex is a natural though chal-
lenging extension of our study, which is left for a future work.

A. Density stratification

The linear density variation in the vertical directionez is described
within the Boussinesq approximation by the stable background density
gradient �q0N

2=g, where N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðg=q0Þðdeq=dezÞp

is the Brunt–
V€ais€al€a frequency of the ambient fluid and q0 is the constant reference
density.

The influence of the internal stratification of the baroclinic vortex
is captured by the density anomaly term eqA such that the total densityeq takes the form4,28,33,34

eqðer ;ezÞ ¼ q0 � q0
N2

g
ez þ eqAðer ;ezÞ: (1)

B. Dimensional equations of motion on the f-plane

Equations on the f-plane that govern the evolution of velocity
field eu, density eq, and pressure eP represent conservation of linear
momentum (the Navier–Stokes equations), conservation of density,
and incompressibility of the fluid as follows:

@eu
@et þ eu � $ð Þeu þ f ez � eu ¼ �$eP

q0
� geq

q0
ez þ �$2eu; (2a)

@eq
@et þ eu � $ð Þeq ¼ j$2eq; (2b)

$ � eu ¼ 0: (2c)

Here ez is the unit vector of the chosen coordinate frame; g stands for
the uniform acceleration due to gravity; and � and j are the coeffi-
cients of kinematic viscosity and diffusivity, respectively.4

It is instructive to rewrite the system given by Eq. (2) by projec-
ting the equations onto the vertical direction, ez , and the horizontal
direction specified by the vector eh that lies in the plane spanned by
the vectors er and eh, as implemented in previous articles.27,29 This
transformation retains the cylindrical geometry with the curvature
terms still present on the horizontal plane but it simplifies the system
further and allows us to perform a thorough dimensional analysis of
the variables. Equations (2a)–(2c) thus become

@euh

@et þ euh � e$h

� �euhþeuz
@euh

@ez þ f ez � euh ¼�
1
q0

e$hePþ � eDeuh; (3a)

@euz

@et þ euh � e$h

� �euz þ euz
@euz

@ez ¼ � 1
q0

@eP
@ez � geq

q0
þ � eDeuz; (3b)

@eq
@et þ euh � e$h

� �eq þ euz
@eq
@ez ¼ j eDeq; (3c)

e$h � euh þ
@euz

@ez ¼ 0; (3d)

where eD is the operator defined as

eD ¼ e$2
h þ

@2

@ez2 : (4)

C. Non-dimensionalization

Let us introduce scaling laws as follows:

er ¼ r�r; eh ¼ h; ez ¼ z�z; et ¼ t�t; eu ¼ u�huh þ u�zuzez;eq ¼ q�q; eP ¼ P�P;
(5)

where t� ¼ R=U is an advective timescale; ðr�; z�Þ ¼ ðR;ZÞ are char-
acteristic radial and axial length scales; and ðu�h; u�zÞ ¼ ðU;WÞ are
typical horizontal and vertical velocities, which we assume to be posi-
tive. We emphasize that viscous diffusion is neglected in the base flow
of the vortex in a manner that the radius R does not evolve according
to the scaling law35 R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 þ 4�t

p
but, instead, remains constant

over time (as it is the case if one assumes � ! 0).
Dividing Eq. (3a) by the factor fU, we obtain the scaling law for

pressure as being

P� ¼ q0fRU : (6)

We use a similar methodology to recover the dimensional factor q�

for the density, from the balance between non-hydrostatic pressure
and buoyancy forces in expression (3b), yielding

q� ¼ P�

gZ
¼ q0fU

ga
; (7)

while introducing the aspect ratio of the vortex

a ¼ Z
R
: (8)

Finally, we make use of expression (3c) to recover the scaling law
for the vertical velocity W. Substituting the previous factors and
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density profile (1) in this equation without the presence of diffusivity
(j¼ 0) yields the following balance:

Wq0RN
2

gUq�

 !
uz ¼

W
Ua

� �
uz
@qA

@z
: (9)

From expression (9), two distinct scaling laws are possible for the axial
velocity W, namely, W � ðgUq�Þ=ðq0RN

2Þ or W � Ua, depending
on the regime considered (strong or weak stratification and rotation
rate). We further introduce, respectively, the horizontal Froude num-
ber as the ratio of the flow velocity over the maximum phase speed of
internal gravity waves27,29,36 and the vortex Rossby number as the ratio
of the angular velocity of the vortex to the Coriolis frequency as
follows:4

Fh ¼
U
RN

; Ro ¼ U
fR
: (10)

As U> 0, anticyclonic (cyclonic) eddies correspond to negative (posi-
tive) values of Ro and f.4

In the following, we assume a reasonable for the geophysical
applications regime with strong stratification and large in absolute
value Coriolis parameter f, such that the ratio F2

h=Ro is of order unity
and thus, both scales forW are consistent whatever the value of a is.28

We therefore choose W ¼ aU for the sake of simplicity of the equa-
tions of motion.

To complete the set of dimensionless parameters of consider-
ation, we introduce two more dimensionless numbers, namely, the
Schmidt and the Ekman numbers as follows:

Sc ¼ �

j
and Ek ¼ Ro

Re
¼ �

fR2
; (11)

respectively, where Re ¼ UR=� > 0 is the Reynolds number.
Therefore, although Ek and Ro can take both positive and negative val-
ues, they are either both positive or both negative.

Equations of motion (3) are expressed in their dimensionless
form as

Ro
du
dt
þ ez � u ¼ �$aP �

q
a2

ez þ EkDu; (12a)

Ro
dq
dt
¼ Ek

Sc
Dq; (12b)

$ � u ¼ 0; (12c)

where d=dt ¼ @t þ ðu � $Þ; D ¼ $2
h þ a�2@2z and $a ¼ ð@r ; r�1@h;

a�2@zÞT is the modified gradient operator.

III. STEADY STATE

The background flow is assumed to be purely azimuthal, i.e.,

U ¼ Uh;Uz½ � ¼ Ur ;Uh;Uz½ � ¼ 0; rXðr; zÞ; 0½ �; (13)

where Xðr; zÞ ¼ ðR=UÞeX is the dimensionless angular velocity, see
Fig. 1. Additionally, we assume the vortex profile to possess a
Gaussian shape along both radial and axial directions, i.e.,

Xðr; zÞ ¼ e�r
2�z2 > 0; (14)

The profile given by Eq. (14) represents a particular class of lenticular
vortices, known as the Gaussian lenses. This model is adopted by the

majority of theoretical studies of coherent isolated vortices because it
fits both real oceanic eddies and laboratory lenticular vortices reason-
ably well (see Fig. 1).1,4,27–30

Consider the equilibrium governed by the stationary and inviscid
form of Eq. (12a) as follows:

@P
@r
¼ rX 1þ RoXð Þ; (15a)

@P
@z
¼ �q; (15b)

where q is the dimensionless version of the density profile given by
Eq. (1), i.e.,

qðr; zÞ ¼ ga
fU
� ga

q0fU

� �
q0

N2

g
Zz þ qAðr; zÞ

¼ ga
fU
� a2Ro

F2
h

z þ qAðr; zÞ

¼ ga
fU
� Bu

Ro
z þ qAðr; zÞ; (16)

and Bu is the Burger number

Bu ¼ a2Ro2

F2
h

: (17)

Taking the radial derivative of expression (15b) and substituting
expression (15a) in the result, we obtain (in contrast to the thermal
wind equation in Refs. 25 and 30) the gradient wind equation28 for the
density profile given by Eq. (16) as

r
@

@z
X 1þ RoXð Þ½ � ¼ � @qA

@r
: (18)

Making use of the angular velocity profile from Eq. (14) in Eq. (18)
and computing the axial derivative yields

2rzX 1þ 2RoXð Þ ¼ @qA

@r
: (19)

Integrating Eq. (19) over the radial coordinate returns an explicit
expression for the density anomaly, i.e.,

qAðr; zÞ ¼ �zX 1þ RoXð Þ: (20)

Hence, the cyclogeostrophic balance33,34,37 between centrifugal,
Coriolis, and pressure forces yields

qðr; zÞ ¼ ga
fU
� z

Bu
Ro
� zX 1þ RoXð Þ: (21)

Finally, we check that Eq. (21) satisfies an expression for the aspect
ratio of a stratified vortex submerged in a stratified fluid.5,6 Assume for
simplicity that

@q
@z

��� r ¼ 0
z ¼ 0

¼ 0; (22)

which corresponds to the limit Nc ! 0 (Nc is the Brunt–V€ais€al€a fre-
quency associated with the vortex center5,6,30) that eliminates a possi-
bility for gravitational instability of the vortex.4 Take into account that
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q ¼ qL þ qA and qL ¼ ðgaÞ=ðfUÞ � zBu=Ro, then, with our profiles
in Eqs. (14) and (20), implyingXð0; 0Þ ¼ 1, we obtain

@q
@z

���r¼0
z¼0

¼@qL

@z

���r¼0
z¼0

þ@qA

@z

���r¼0
z¼0

¼�Bu
Ro
�ðRoþ1Þ¼0: (23)

With the expressions (10) and (17), the relation given by Eq. (23)
yields the aspect ratio of the Gaussian lens in equilibrium as follows:

a2 ¼ �Roð1þ RoÞ
N2

f 2; (24)

in full agreement with the general result.5,6

IV. LINEARIZED EQUATIONS OF MOTION

We assume the background flow presented in Sec. III to depart
slightly from its original state, according to infinitesimal disturbances.
Let thus introduce perturbations ðu0r ; u0h; u0z; p0; q0Þ of velocity, pres-
sure, and density to perform a linear stability analysis of this hydrody-
namical model.

Linearizing Eqs. (12a)–(12c) about the base state described in
Sec. III yields

Ro
d
dt
þu

� �
u0 þ ez � u0 þ $ap

0 þ q0

a2
ez ¼ EkDu0; (25a)

Ro
dq0

dt
þb

Tu0
� �

¼ u0zBuþ
Ek
Sc

Dq0; (25b)

$ � u0 ¼ 0; (25c)

where d=dt ¼ @t þ ðU � rÞ; u ¼ $U andb ¼ $qA with

u ¼
0 �X 0

Xþ r@rX 0 r@zX

0 0 0

0B@
1CA; (26)

and

b ¼
�z @X

@r
1þ 2RoXð Þ

0

�z @X
@z

1þ 2RoXð Þ � X 1þ RoXð Þ

0BBBB@
1CCCCA: (27)

V. GEOMETRIC OPTICS APPROXIMATION

Focusing on short-wavelength instabilities, we take advantage of
the geometric optics approach17,20,22,38 that provides a systematic pro-
cedure for finding asymptotic solutions of the linearized equations of
motion (25) as an expansion in terms of a small formal parameter e,
such that 0 < e� 1. Disturbances of the flow under such asymptotic
expansion are written as17,20

u0ðx; t; eÞ ¼ ei
/ðx;tÞ

e uð0Þðx; tÞ þ euð1Þðx; tÞ
h i

þ euðrÞðx; t; eÞ; (28a)

p0ðx; t; eÞ ¼ ei
/ðx;tÞ

e pð0Þðx; tÞ þ epð1Þðx; tÞ
h i

þ epðrÞðx; t; eÞ; (28b)

q0ðx; t; eÞ ¼ ei
/ðx;tÞ

e qð0Þðx; tÞ þ eqð1Þðx; tÞ
h i

þ eqðrÞðx; t; eÞ; (28c)

with / being the phase of oscillations and x the vector of coordinates.
We further assume the residual terms ½uðrÞ; pðrÞ;qðrÞ� to be uniformly
bounded in e.17,20

Substituting the series given by Eq. (28) in the isochoric condition
in Eq. (25c), and retaining only terms of orders e�1 and e0, respec-
tively, yields

uð0Þ � $/ ¼ 0; (29)

$ � uð0Þ þ iuð1Þ � $/ ¼ 0: (30)

Following the earlier works,17,20,22–24,38 we assume that damping terms
are quadratic in the small parameter e and we therefore have
Ek ¼ e2fEk. Using a similar analysis as for the expanded incompressi-
bility conditions given by Eqs. (29) and (30), we recover the
Navier–Stokes equation (25a) along with the local conservation of
density given by Eq. (25b) in terms of a linear system at order e�1 as
follows:

Ro

@/
@t
þ U �$/ð Þ 0

0
@/
@t
þ U �$/ð Þ

0BB@
1CCA uð0Þ

qð0Þ

 !
¼ �$a/

pð0Þ

0

 !
;

(31)

and at order e0

iRo

@/
@t
þ U � $/ð Þ 0

0
@/
@t
þ U � $/ð Þ

0BB@
1CCA uð1Þ

qð1Þ

 !
þ

Ro
@

@t
þUþ U � $

� 	
þfEk $a/ � $/ð Þ þ ez�

ez
a2

RoBT � eTz Bu Ro
@

@t
þ U � $

� 	
þ
fEk
Sc

$a/ � $/ð Þ

0BBBB@
1CCCCA

� uð0Þ

qð0Þ

 !
¼ �i$a/

pð1Þ

0

 !
� $a

pð0Þ

0

 !
: (32)

Taking the dot product of the first equation in Eq. (31) with $/, we obtain

Ro $/ � uð0Þ
� � @/

@t
þ U � $/

� 	
¼ $/ � $a/ð Þpð0Þ: (33)

Applying the constraint given by Eq. (29) on Eq. (33) yields17
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pð0Þ ¼ 0: (34)

Taking Eq. (34) into account in the linear system given by Eq. (31),
while seeking for non-trivial solutions, we recover the Hamilton–
Jacobi equation from the computation of its determinant17 as follows:

@/
@t
þ U � $/ ¼ 0: (35)

For the rest of this section, we assume that $/ ¼ k and $a/ ¼ ka, with
k ¼ ðkr ; kh; kzÞT and ka ¼ ðkr ; kh; kz=a2ÞT . Application of the gradient
operator $ on Eq. (35) yields the following eikonal equation:17,20,23,24

dk
dt
¼ �uTk: (36)

Taking relations (34) and (35) into account within Eq. (32) results in
the coupled equations

Ro
d
dt
þu

� 	
þ Ekþ ez�

� �
uð0Þ þ qð0Þ

a2
ez ¼ �ikap

ð1Þ; (37)

Ro
d
dt
þ Ek

Sc

� �
qð0Þ þ RobT � eTz Bu

� �
uð0Þ ¼ 0; (38)

where Ek ¼fEkjkT
a kj.

Taking the dot product of Eq. (37) with kT from the left, in view
of Eq. (29) we can isolate the first-order pressure term in the right-
hand side and express it in terms of zeroth-order terms as follows:

pð1Þ ¼ ikT

kTka
Ro

d
dt
þu

� 	
þ ez�

� �
uð0Þ þ qð0Þ

a2
ez

" #
: (39)

Differentiating Eq. (29) yields17,20

d
dt

k � uð0Þð Þ ¼ dk
dt
� uð0Þ þ k � duð0Þ

dt
¼ 0: (40)

With the identity given by Eq. (40), Eq. (39) becomes

pð1Þ ¼ ikT

kTka
Rouuð0Þ þ ez � uð0Þ þ qð0Þ

a2
ez

� 	
� iRo

kTka

dk
dt
� uð0Þ: (41)

Rewriting Eq. (41) by means of the phase equation (36), we further
obtain

pð1Þ ¼ ikT

b2 ez � uð0Þ þ qð0Þ

a2
ez

� �
þ 2iRo

kT
u

b2 uð0Þ; (42)

where b2 ¼ kTka ¼ k2r þ k2h þ k2z=a
2.

Inserting expression (42) in Eq. (37) yields the transport
equations

Ro
duð0Þ

dt
¼� Ekuð0Þ � Ro i� 2

k

b2

� �
uuð0Þ

� i�k

b2

� �
ez � uð0Þ � i�k

b2

� �
ez

qð0Þ

a2
;

Ro
dqð0Þ

dt
¼� Ek

Sc
qð0Þ � b

TRo� eTz Bu
� �

uð0Þ; (43)

wherei is the identity matrix andk ¼ kakT .
From the eikonal equation (36), we deduce that kr ¼ kz ¼ const

and kh ¼ 0 due Eq. (26).17,20,23,24 Introducing the scaled wavenumbers

qr ¼ kr=b and qz ¼ kz=b, we find qr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2z=a

2
p

. This allows us

to write k ¼ qaqT , where q ¼ ðqr ; 0; qzÞT and qa ¼ ðqr ; 0; qz=a2Þ
T ,

such that

k ¼

q2r 0 qrqz

0 0 0

qrqz=a2 0 q2z=a
2

0BBB@
1CCCA: (44)

In the new notation, the amplitude transport equation (43) for the
perturbed velocity and density fields take the following explicit form:

Ro
@

@t
þ X

@

@h

� �
þ Ek

� 	
uð0Þr �

q2z
a2

1þ 2RoXð Þuð0Þh �
qzqr
a2

qð0Þ ¼ 0;

(45a)

Ro
@

@t
þ X

@

@h

� �
þ Ek

� 	
uð0Þh þ 1þ Ro 2Xþ r

@X
@r

� �� 	
uð0Þr

þ rRo
@X
@z

uð0Þz ¼ 0; (45b)

Ro
@

@t
þ X

@

@h

� �
þ Ek

� 	
uð0Þz þ

qzqr
a2

1þ 2RoXð Þuð0Þh þ
q2r
a2

qð0Þ ¼ 0;

(45c)

Ro
@

@t
þX

@

@h

� �
þEk
Sc

� 	
qð0Þ �uð0Þz BuþRo

@qA

@r
uð0Þr þ

@qA

@z
uð0Þz

� �
¼0:

(45d)

Observing that Eqs. (45a) and (45c) coincide under the linear
transformation uð0Þz ¼ �ðqr=qzÞuð0Þr , we can eliminate the variable
uð0Þz and thus reduce the number of equations in the system given by
Eq. (45) to three,17 with respect to uð0Þr ; uð0Þh , and qð0Þ only.

VI. DISPERSION RELATION

Introducing in the reduced system given by Eq. (45) the complex
growth rate k and the azimuthal wavenumberm from the ansatz17,20,23

uð0Þr ; uð0Þh ; qð0Þ
h i

¼ ûð0Þr ; ûð0Þh ; q̂ð0Þ
h i

exp kt þ imhð Þ; (46)

yields a linear eigenvalue problem hn ¼ k̂n, where n ¼ ðûð0Þr ; ûð0Þh ;

q̂ð0ÞÞT ; k̂ ¼ Roðkþ imXÞ þ Ek, andh is a 3� 3 matrix

h ¼

0
q2z
a2

2j
r2

qrqz
a2

�
r2 qzj2

r � qrj2
z

� �
2qzj

0 0

�Ro qz@rqA � qr@zqAð Þ þ qrBu
qz

0 Ek
Sc� 1
Sc

0BBBBBBBB@

1CCCCCCCCA
;

(47)

where @rqA and @zqA are given by Eq. (27), j(r, z) is the angular
momentum per unit mass

j ¼ r2

2
1þ 2RoXð Þ: (48)

jr is the epicyclic frequency and jz is the frequency of vertical oscilla-
tions given by3
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j2
r ¼ r�3

@j2

@r
; j2

z ¼ r�3
@j2

@z
: (49)

The dispersion relationDðk̂Þ of the system is obtained from

Dðk̂Þ ¼ det h� k̂ið Þ; (50)

and is a third-order polynomial in k̂

Dðk̂Þ ¼ k̂
3 þ Ek

1� Sc
Sc

k̂
2 þ c1 þ c2ð Þk̂ þ Ek

1� Sc
Sc

c1; (51)

where

c1 ¼
qz
a2

qzj
2
r � qrj

2
z

� �
;

c2 ¼
qr
a2

Ro qz
@qA

@r
� qr

@qA

@z

� �
þ qrBu

� 	
:

(52)

It is worth mentioning that similar dispersion relations of third
order were obtained earlier by McIntyre,25 who studied a baroclinic
circular vortex in the presence of viscosity and a temperature gradient,
and Singh and Mathur22 who studied a barotropic columnar vortex in
a stratified ambient fluid in the non-rotating frame. In both of these
works, the authors restricted their analyses to axisymmetric (m¼ 0)
instabilities only.

Therefore, dispersion relation (51) with the coefficients given by
Eq. (52) substantially generalizes those of the previous works as it takes
into account rotation of the frame, azimuthal wavenumber m, diffu-
sion of mass and momentum, both r- and z-dependence of the vortex
angular velocity X via the Gaussian profile given by Eq. (14), radial
and axial stratification of the vortex, its aspect ratio, and axial stratifi-
cation of the ambient fluid. This implies that a shear parameter c1
related to differential rotation induced by the vortex and a buoyancy
parameter c2 related to the density stratification of the ambient fluid
influenced by the vortex can take both positive and negative values.

A. Diffusionless and Sc¼ 1 cases

Notice that at Ek¼ 0, as well as at Sc¼ 1, dispersion relation (51)
factorizes into a product of quadratic and linear in k̂ polynomials and
thus can be solved explicitly.

In these cases, the eigenvalues governing the centrifugal instabil-
ity are recovered as, cf. Ref. 14,

k6 ¼ � imX
Ro

6
1
Ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� c1 þ c2ð Þ

p
; (53)

which reads the instability condition

c1 þ c2 < 0: (54)

1. Centrifugal instability of a barotropic circular vortex

In the particular case of purely transverse perturbations
(qr ! 0), the eigenvalues given by Eq. (53) are

k6 ¼ � imX
Ro

6
qz

aRo

ffiffiffiffiffiffiffiffiffi
�j2

r

q
; (55)

and, therefore, yield an instability when j2
r < 0. Notice that in the

dimensional variables and parameters

j2
r ¼ f �2ð@ereuz þ euz=er þ f Þð2euz=er þ f Þ

is nothing else but the generalized Rayleigh discriminant for a baro-
tropic circular vortex.4 The inequality j2

r < 0 is thus the well-known
criterion for the centrifugal instability of columnar vortices.4,13

2. Connection to Acheson and Gibbons19

Let us compare our criterion for centrifugal instability given by
Eq. (54) with the results derived previously by Acheson and Gibbons
in the study of a magnetic and differentially rotating star.19

For this purpose, we first present their axisymmetric and diffu-
sionless dispersion relation (without magnetic field) in its original
form

c
s2

n2
x2 ¼ crX2 @R

@h
þ G

@E
@h
; (56)

where, in our notations, n¼ kz is the axial wavenumber, s ¼ jkj is the
norm of the wave vector, r ¼ ik is an eigenfrequency, x ¼ r�mX is
the Doppler-shifted eigenfrequency, R ¼ ln r4X2 is the logarithm of
squared angular momentum, E ¼ ln pq�c is a measure of entropy,
G ¼ gr � ðkr=kzÞgz is a function containing gravitational effects, and
c is the heat capacity ratio. The derivative operator in Eq. (56) is fur-
ther defined as @=@h ¼ @=@r � ðkr=kzÞ@=@z.19

Multiplying both sides of Eq. (56) by n2=s2 and introducing the
wavenumbers qr ¼ kr=s and qz ¼ kz=s, we first recover

kþ imXð Þ2 ¼ �q2z
ej2
r3
@hej2ej2 þ G

c
@hðpq�cÞ

24 35; (57)

whereej ¼ r2X is a simplified version of the angular momentum given
by Eq. (48) without the influence of the Coriolis force.

If the gravity is directed along the axial z-coordinate only (as it is
in our setting), then using the correspondence ðgr ; gzÞ ¼ ð0; qÞ within
the function G in Eq. (57) yields

kþ imXð Þ2 ¼ �q2z
1
r3
@hej2 � qrq

qzc
@hp
p
þ c

@hq
q

� �� 	
: (58)

As a consequence of the Newton–Laplace equation, the spe-
cific heat capacity ratio is related to the speed of sound cs via the
expression c2s ¼ cp=q and, hence, tends to infinity in the case of
incompressible flows (as it is in our case). Taking this limit in Eq.
(58), we obtain

kþ imXð Þ2 ¼ �qz qzej2
r � qrej2

z

� �
þ qr
qz

qz@rq� qr@zqð Þ
� 	

; (59)

with ejz ¼ r�3@zej2 and ejr ¼ r�3@rej2. Finally, the inviscid eigenfre-
quency of the work19 takes the form

k6 ¼ �imX6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� qz qzej2

r � qrej2
z

� �
þ qr qz@rq� qr@zqð Þ


 �q
: (60)

Notice that the radicand in Eq. (60) has the same structure as our
expressions (52) and (53), with the difference only in the factors a�2

and Ro and in the term containing the Burger number.
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B. Particular cases when either c1 ¼ 0 or c2 ¼ 0

In these two particular cases, the polynomial given by Eq. (51)
factorizes, which allows us to find its roots explicitly.

For c1 ¼ 0, the roots are

k1;2 ¼ �imX� Ek
2Ro

1þ 1
Sc

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSc� 1Þ2

Sc2
� 4c2
Ek2

s8<:
9=;;

k3 ¼ �imX� Ek
Ro
:

(61)

Recalling that Ek=Ro ¼ 1=Re > 0, we see that in the limit Sc!þ1,
the vortex is stable if c2 	 0, see Figs. 2(f) and 6. In general, the condi-
tion for stability at c1 ¼ 0 reads

c2 	 �
Ek2

Sc
: (62)

In the particular case when c2 ¼ 0, we have

k1;2 ¼ �imX� Ek
Ro

6

ffiffiffiffiffiffiffiffi�c1
p

Ro
;

k3 ¼ �imX� Ek
RoSc

:

(63)

According to Eq. (63), in the diffusionless case (Ek¼ 0) the vor-
tex is stable regardless of the sign of Ro, if and only if c1 	 0, which is
similar to the generalized Rayleigh criterion j2

r � j2
z 	 0 described in

the literature,4 since c2 ¼ 0 corresponds to the radial and axial density
gradients compensating each other. When diffusivities of mass and
momentum are taken into account, then with any Sc> 0 such vortices
remain stable. Unstable diffusionless vortices (c1 < 0) can be stabi-
lized for any Sc> 0, if jc1j < Ek2. This is consistent with the results of
McIntyre25 and Singh and Mathur,22 see Fig. 2.

VII. GENERAL STABILITY ANALYSIS
A. Bilharz algebraic criterion

Written with respect to k, the polynomial given by Eq. (51) has
complex coefficients. Bilharz algebraic criterion24,39 guarantees that all
the roots of a complex polynomial of the form pðkÞ ¼ ða0 þ ib0Þk3 þ
ða1 þ ib1Þk2 þ ða2 þ ib2Þkþ ða3 þ ib3Þ lie in the open left half of the
complex k-plane if and only if determinants of three even-order sub-
matrices on the main diagonal (counting from the upper left corner)
of the following Bilharz matrix

B ¼

a3 �b3 0 0 0 0
b2 a2 a3 �b3 0 0
�a1 b1 b2 a2 a3 �b3
�b0 �a0 �a1 b1 b2 a2
0 0 �b0 �a0 �a1 b1
0 0 0 0 �b0 �a0

0BBBBBB@

1CCCCCCA (64)

are strictly positive. In view of Ek=Ro ¼ 1=Re > 0, being applied to
polynomial given by Eq. (51), the Bilharz criterion yields

FIG. 2. Stability maps with codimension-2 points given by Eq. (71) on the neutral stability curve for Ek¼ 1 and (a) Sc¼ 0.25, (b) Sc¼ 0.5, (c) Sc¼ 0.75, (d) Sc¼ 1, (e)
Sc¼ 2, (f) Sc ! þ1. The blue solid line stands for the boundary of the domain of monotonic axisymmetric (MA) instability given by Eq. (70), the red solid line for that of the
oscillatory axisymmetric (OA) instability given by Eq. (68), S stands for the stability domain. The dashed line is the envelope given by Eq. (75) and the dotted-dashed line is
the neutral stability boundary for the diffusionless system given by Eq. (54). The green solid line corresponds to the condition given by Eq. (69).
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m4X4Ro4Scð2Scþ 1Þ þ 6m2X2Ro2ScðEk2 þ Scc2 þ c1Þ
�
þ ðEk2 þ Scc2 þ c1Þ ðScþ 2ÞEk2 þ Scðc1 þ c2Þ


 �
g

� 2ðScþ 1Þ2Ek2 þ Scð2Scc1 þ Scc2 þ c2Þ

 �

> 0; (65)

m4X4Ro4Scð2Scþ 1Þ þm2Ro2X2 2ðSc2 þ Scþ 1ÞEk2



þ Scð2c1 � c2ÞðSc� 1Þ� þ ðEk2 þ Scc2 þ c1Þ ðScþ 2ÞEk2



þ Scðc1 þ c2Þ� > 0; (66)

ScðEk2 þ Scc2 þ c1Þ > 0: (67)

In the following, we will use the inequalities given by Eqs. (65)–(67) to
examine the stability and instabilities of the lenticular vortex in the
presence of differential diffusion of mass and momentum.

B. Monotonic and oscillatory axisymmetric instabilities

1. A codimension-2 point on the neutral stability line

Setting m¼ 0 in Eqs. (65)–(67), we find that for Sc> 0 the base
flow is stable if and only if the following three inequalities are fulfilled
simultaneously:

2ðScþ 1Þ2Ek2 þ Scð2Scc1 þ c2ðScþ 1ÞÞ > 0; (68)

ðScþ 2ÞEk2 þ Scðc1 þ c2Þ > 0; (69)

Ek2 þ Scc2 þ c1 > 0: (70)

Although Sc< 0 might not look physically meaningful, we men-
tion, for completeness, that in this case the inequality given by Eq. (68)
remains the same whereas the inequalities given by Eqs. (69) and (70)
are reversed. It is worth noting that continuation of stability diagrams
to negative values of dissipation parameters can help in uncovering
instability mechanisms.23,24

The expressions in Eqs. (68)–(70) are linear in c1 and c2, which
makes it convenient to represent the criteria in the ðc1; c2Þ-plane,22
where the corresponding stability domain will be given by the intersec-
tion of the half-planes in Eqs. (68)–(70), see Fig. 2.

Equating to zero the left-hand sides of the expressions (68)–(70)
and then solving the resulting equations with respect to c1 and c2, we
find that all the three straight lines intersect at one and the same point
with the coordinates, cf. Ref. 22, as follows:

c1 ¼ Ek2
1þ Sc
1� Sc

; c2 ¼
2Ek2

ScðSc� 1Þ : (71)

At a given value of Ek equation (71), define a spatial curve in the
ðc1; c2; ScÞ-space, which projections are shown in Fig. 3. In particular,
the projection onto the ðc1; c2Þ-plane is

c2ðEk2 � c1Þ � ðEk2 þ c1Þ2 ¼ 0: (72)

At the common point given by Eq. (71), the slopes dc2=dc1 of
straight lines in Eqs. (68)–(70) are, respectively,

r1 ¼ �
2Sc

Scþ 1
; r2 ¼ �1; r3 ¼ �

1
Sc
: (73)

Notice the following relationships between the slopes:

�1 	 r1 > �2
r2 ¼ �1

�1 
 r3 < 0

9>=>; if 1 
 Sc < þ1;

0 > r1 > �1
r2 ¼ �1

�1 < r3 < �1

9>=>; if 0 < Sc < 1:

(74)

For 0 < Sc < 1, we have 0 > r1 > r2 ¼ �1 > r3, meaning
that the slope of the line given by Eq. (70) is steeper than the slope of
line given by Eq. (68), see Figs. 2(a)–2(c). Therefore, the neutral stabil-
ity lines forming the boundary of the stability domain intersect each
other at the point given by Eq. (71) such that c1 > 0 and c2 < 0, see
Fig. 3(a). This singular point on the stability boundary is widely known
in the hydrodynamical literature as a codimension-2 point17 or
Bogdanov–Takens bifurcation point.40 The stability domain is there-
fore convex, with its edge lying in the domain of centrifugal instability
of the diffusionless vortex, see Figs. 2(a)–2(c). On the other hand, dif-
ference of the slopes r1 and r3 from r2 ¼ �1 allows for diffusive
destabilization of centrifugally stable vortices, if the absolute values of
c1 and c2 are large enough, see Figs. 2(a)–2(c).

As Sc approaches 1, the difference between slopes in Eq. (73) is
decreased so that r1 ¼ r2 ¼ r3 ¼ �1 at Sc¼ 1, see Fig. 2(d). This
process is accompanied by the movement of the codimension-2 point
on the lower branch of the curve given by Eq. (72) from c2 !�1

FIG. 3. For Ek¼ 1, projections of the loci of the codimension-2 points onto (a) ðc1; c2Þ plane, (b) ðc1; ScÞ plane and (c) ðc2; ScÞ plane, given by Eqs. (71) and (72). The
dashed curve is the envelope given by Eq. (75).
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along the asymptotic direction c1 ¼ Ek2 as Sc departs from zero to
c1 ! þ1 and c2 !�1 along the asymptotic direction c1 þ c2 þ
3Ek2 ¼ 0 as Sc! 1, see Fig. 3.

At Sc¼ 1, the stability boundaries of the diffusionless system and
the double-diffusive system exactly coincide in the limit of Ek! 0.
However, for Ek 6¼ 0, double diffusion can stabilize centrifugally
unstable diffusionless vortices, quite in agreement with Lazar et al.,12

see Fig. 2(d).
As soon as the Schmidt number passes the threshold Sc¼ 1, the

codimension-2 point re-appears at infinity on the upper branch of the
curve given by Eq. (72) and moves along the asymptotic direction
c1 þ c2 þ 3Ek2 ¼ 0 until it reaches a minimum of this curve at c1
¼ �Ek2 and c2 ¼ 0 when Sc!þ1, see Fig. 3. This qualitative
change in location of the codimension-2 point (cf. Tuckerman40) is
accompanied by the exchange of the stability criteria: the condition
given by Eq. (70) becomes dominating over that given by Eq. (68) and
vice versa, see Figs. 2(e) and 2(f). Notice that Sc¼ 700 in recent
experiments.7

C. Exchange of monotonic and oscillatory instabilities

Actually, the reversed inequality given by Eq. (70) determines the
monotonic axisymmetric (MA) instability, corresponding to a mono-
tonically growing perturbation, while the reversed inequality given by
Eq. (68) stands for oscillatory axisymmetric (OA) instability, i.e., grow-
ing oscillation.

Figure 2 provides evidence that a stability boundary consisting of
two straight lines that intersect at a codimension-2 point in the

ðc1; c2Þ-plane exhibits a qualitative change at Sc¼ 1 such that for
Sc< 1 (Sc> 1) the upper (lower) line corresponds to the onset of SA
and the lower (upper) line to the onset of OA. Notice that, as described
above, the location of the codimension-2 point changes with the
change of Scwith a “jump” at Sc¼ 1.

Due to the latter reason, the qualitative fact of exchange in mono-
tonic and oscillatory axisymmetric instabilities at Sc¼ 1, so evident in
the ðc1; c2Þ-plane, is obscured in the plots of growth rates and frequen-
cies of the perturbation vs Sc.

Indeed, in Figs. 4(a) and 4(d), c1 ¼ �4, exactly as in Fig. 5(a),
where a codimension-2 point exists at c2 ¼ 9=5 and Sc ¼ 5=3 > 1,
separating the boundaries of monotonic (Sc< 5=3) and oscillatory
(Sc> 5=3) axisymmetric instabilities. Although the growth rates and
frequencies in Figs. 4(a) and 4(d) computed at c2 ¼ 3 confirm the
order of SA and OA, the exchange between these instabilities occurs
not exactly at Sc¼ 1, but in a neighborhood of this value. According to
Fig. 3(b), the critical value of Sc! 1 as c1 !�1.

Changing the sign of c1 from negative to positive leads to re-
appearance of the codimension-2 point in the second quadrant in the
ðc2; ScÞ-plane, Figs. 5(e) and 5(f). In particular, for c1 ¼ 20 it is situ-
ated at c2 ¼ �441=19 and Sc ¼ 19=21 < 1. The codimension-2 point
separates the boundaries of oscillatory (Sc< 19=21) and monotonic
(Sc> 19=21) axisymmetric instabilities that are in the reverse order
with respect to the case of negative c1. Again, growth rates and fre-
quencies computed in Figs. 4(c) and 4(f) for c2 ¼ �22, confirm that
transition from OA to SA occurs at a value of Sc in the vicinity of
Sc¼ 1. The critical value of Sc tends to 1 as c1 !þ1 in agreement
with Fig. 3(b).

FIG. 4. Growth rates and frequencies for m¼ 0, Ek¼ 1, Ro¼ 1, and (a and d) c1 ¼ �4; c2 ¼ 3, (b and e) c1 ¼ �1; c2 ¼ 3, (c and f) c1 ¼ 20; c2 ¼ �22, demonstrating
exchange of monotonic and oscillatory instabilities near Sc¼ 1, cf. Fig. 2.
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We notice that according to Eqs. (68)–(70), the described qualita-
tive picture with destabilization of centrifugally stable vortices for
Sc 6¼ 1, codimension-2 point, and exchange of instabilities is preserved
even in the limit of vanishing dissipation, Ek! 0, in accordance with
the properties of the McIntyre instability,25 which are typical for a
broad class of dissipation-induced instabilities.24,41

D. OA as a genuine dissipation-induced instability

In Figs. 2 and 5, one can see that the codimension-2 point sepa-
rates the boundaries of the regions of oscillatory and monotonic axi-
symmetric instabilities. The existence of the codimension-2 point
qualitatively distinguishes the diffusive case from the diffusionless one,
where the onset of instability corresponds to the monotonic axisym-
metric centrifugal instability only.

The growth rate of the oscillatory instability is smaller than the
growth rate of the centrifugal instability, see Fig. 4. However, in con-
trast to McIntyre,25 who found such modes within the domain of cen-
trifugal instability and concluded that they are not important with
respect to centrifugally unstable modes that are always destabilized
first in his setting, we discovered the conditions when the oscillatory
axisymmetric modes are destabilized first and thus determine the
onset of instability.

Hence, the oscillatory axisymmetric instability is a genuine
dissipation-induced instability,24,41 which is as important as the mono-
tonic axisymmetric one despite its relatively low growth rate, because
in a large set of parameters the oscillatory axisymmetric modes are the

first to be destabilized by the differential diffusion of mass and
momentum.

E. Sufficient conditions for the vortex stability at any
Sc>0

Notice that the family of straight lines given by equating to zero
the left-hand side of the inequality given by Eq. (68) and parameter-
ized with Sc has a non-trivial envelope, see Fig. 6(a). To find it, we dif-
ferentiate the left-hand side by Sc, express Sc from the result to
substitute it back to Eq. (68). This yields the following parabola in the
ðc1; c2Þ-plane:

c1 ¼
c22

16Ek2
; (75)

shown as a dashed curve in Figs. 2, 3, and 6. One can see that as Sc
increases from 0 to infinity, the OA-boundaries are accumulating and
ultimately tend to the line

c2 ¼ �2ðEk2 þ c1Þ (76)

that passes through the point c1 ¼ �Ek2 and c2 ¼ 0 in the ðc1; c2Þ-
plane, see Fig. 6(a).

This implies that in all the points inside the parabolic envelope
given by Eq. (75) the vortex cannot be destabilized via the oscillatory
instability mechanism, no matter what is the value of Sc> 0. To the

FIG. 5. Stability maps for Ek¼ 1 and (a) c1 ¼ �4, (b) c1 ¼ �1, (c) c1 ¼ 0, (d) c1 ¼ 1, (e) c1 ¼ 10, (f) c1 ¼ 20 with the codimension-2 points at (a) c2 ¼ 9=5 and Sc¼ 5/
3, (e) c2 ¼ �121=9 and Sc¼ 9/11, and (f) c2 ¼ �441=19 and Sc¼ 19/21. At the codimension-2 point Sc ! 1 as jc1j ! 1, in accordance with Fig. 3(b).
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best of our knowledge, this explicit result has never been reported in
the literature.

On the other hand, the family of straight lines given by equating
to zero the left-hand side of the inequality given by Eq. (70) varies
between the line c1 ¼ �Ek2 at Sc¼ 0 and the line c2 ¼ 0 at Sc!1,
see Fig. 6(b). Therefore, the whole lower part of the parabola given by
Eq. (75) can belong to the domain of monotonic axisymmetric insta-
bility in the limit of infinite Sc> 0.

Consequently, the area in the ðc1; c2Þ-plane, limited by the
criteria

c1 	 �Ek2; c2 	 0 (77)

corresponds to the stability domain, no matter what is the value of
Sc> 0. This is in agreement with the analysis of the case c2 ¼ 0 based
on Eq. (63) and generalizes the results of McIntyre25 and Singh and
Mathur22 due to more comprehensive structure of parameters c1 and
c2 given by Eq. (52).

F. Non-axisymmetric case

Finally, we notice that the stability defined by the set of inequal-
ities in Eqs. (65)–(67) obtained from the Bilharz criterion does not
exhibit dependence on the azimuthal wavenumber m, despite the left
sides of the inequalities not containing m explicitly, making the non-
axisymmetric and axisymmetric criteria match exactly.

We may emphasize that we limited ourselves by the lowest-order
in e terms in the asymptotic expansion of expressions (28) that in this
particular class of problems has led to the dispersion relation that does
not distinguish between the neutral stability curves of axisymmetric
and non-axisymmetric instabilities, although it was possible to catch
non-axisymmetric instabilities in the same order approximation, e.g.,
in the studies of magnetorotational instability.20,23

On the other hand, as we have seen from the literature review in
Sec. I, axisymmetric instability is a prevailing type of instability in the
studies of circularly symmetric vortices and, perhaps, due to this

symmetry the non-axisymmetric instabilities will reveal themselves in
the next-order terms of the geometric optics method.

VIII. CONCLUSION

We considered a model of a baroclinic circular lenticular vortex
with a Gaussian profile of angular velocity both in radial and axial
directions, immersed in a vertically stratified viscous fluid in the pres-
ence of diffusion of a stratifying agent and rotation of the coordinate
frame related to the ambient fluid. This setting is substantially more
comprehensive than those of the previous works that, in particular,
were limited by the assumption of barotropy, did not take into account
rotation of the frame and diffusion of mass and momentum, or set the
Schmidt number equal to unity.

We have derived an original dimensionless set of equations on
the f-plane, describing the dynamics of the vortex immersed in a verti-
cally stratified fluid and then linearized it about a base state that we
have found explicitly. The linearized equations of motion were further
expanded in terms of asymptotic series by means of the geometric
optics approximation17,20,22–24,38 to produce a set of the amplitude
transport equations. The latter offered us an opportunity to derive an
exhaustive but elegant third-order polynomial dispersion relation gov-
erning the local stability of the vortex.

In the diffusionless limit and in the case where magnitudes of
both damping mechanisms are identical, we obtained a generalized
Rayleigh criterion for centrifugal instability in terms of the shear and
buoyancy parameters c1 and c2 and shown that it reduces to the par-
ticular cases known in the literature.

Applying the algebraic Bilharz criterion to the complex disper-
sion relation, we derived new rigorous stability criteria in terms of c1
and c2 as well as the Schmidt and Ekman numbers related to the dif-
ferential diffusion of mass and momentum. We visualized these crite-
ria in the ðc1; c2Þ-plane and revealed a codimension-2 point splitting
the boundaries of oscillatory and monotonic axisymmetric instabilities
that can affect both centrifugally stable and unstable diffusionless
flows.

FIG. 6. (Dashed) For Ek¼ 1 the parabolic envelope given by Eq. (75) of (a) a family of straight lines given by Eq. (68), parameterized by 0 < Sc < 30, that determine the
boundary between the domain of stability and oscillatory axisymmetric instability. Inside the parabolic region, there is no oscillatory axisymmetric instability for all Sc> 0. (b) A
family of straight lines given by Eq. (70) parameterized by 0 < Sc < 30, which determine the boundary between the domain of stability and monotonic axisymmetric instability;
all the lines in this family have a common point at c1 ¼ �Ek2 and c2 ¼ 0.
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The oscillatory axisymmetric instability was found to be a genu-
ine dissipation-induced instability because of its absence in the diffu-
sionless case. Nevertheless, we have described explicitly a parabolic
region in the ðc1; c2Þ-plane that is free of oscillatory axisymmetric
instabilities, no matter what the value of Sc> 0 is.

In contrast to the work of McIntyre,25 we found conditions when
oscillatory axisymmetric modes are the first to be destabilized by dou-
ble diffusion and thus are dominant even despite the growth rate of
the oscillatory instability being generally weaker than that of the cen-
trifugal instability.9 Finally, we provided a sufficient condition for the
stability of a baroclinic vortex at arbitrary Sc> 0 generalizing that of
the previous works by McIntyre25 and Singh and Mathur.22

This study conclusively proved the decisive role of the Schmidt
number and therefore the differential diffusion of mass and momen-
tum for the stability of lenticular vortices and, particularly, for the exci-
tation of genuine dissipation-induced oscillatory instability. A
codimension-2 point found on the neutral stability curve is proven to
govern the exchange of monotonic and oscillatory instability as the
Schmidt number transits through unit value. All the results are pre-
served even in the limit of vanishing dissipation, which is a typical
property of dissipation-induced instabilities.24,41

We have thus developed new analytical criteria for an express-
analysis of stability of baroclinic circular lenticular vortices for arbi-
trary parameter values that is believed to be an efficient tool for
informing future numerical and experimental studies in this actively
developing field.
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