
Northumbria Research Link

Citation: Huang, Pei-Qiu, Wang, Yong and Wang, Kezhi (2022) A Divide-and-Conquer
Bilevel Optimization Algorithm for Jointly Pricing Computing Resources and Energy in
Wireless Powered MEC. IEEE Transactions on Cybernetics, 52 (11). pp. 12099-12111. ISSN
2168-2267

Published by: IEEE

URL: https://doi.org/10.1109/TCYB.2021.3103840
<https://doi.org/10.1109/TCYB.2021.3103840>

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/47967/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

1

A Divide-and-Conquer Bilevel Optimization
Algorithm for Jointly Pricing Computing Resources

and Energy in Wireless Powered MEC
Pei-Qiu Huang, Yong Wang, Senior Member, IEEE, and Kezhi Wang, Senior Member, IEEE

Abstract—This paper investigates a wireless powered mobile
edge computing (MEC) system, where the service provider (SP)
provides the device owner (DO) with both computing resources
and energy to execute tasks from Internet of Things devices. In
this system, SP first sets the prices of computing resources and
energy whereas DO then makes the optimal response according
to the given prices. In order to jointly optimize the prices
of computing resources and energy, we formulate a bilevel
optimization problem (BOP), in which the upper level generates
the prices of computing resources and energy for SP and then
under the given prices, the lower level optimizes the mode
selection, broadcast power, and computing resource allocation
for DO. This BOP is difficult to address due to the mixed
variables at the lower level. To this end, we first derive the
relationships between the optimal broadcast power and the mode
selection and between the optimal computing resource allocation
and the mode selection. After that, it is only necessary to consider
the discrete variables (i.e., mode selection) at the lower level.
Note, however, that the transformed BOP is still difficult to
solve because of the extremely large search space. To solve
the transformed BOP, we propose a divide-and-conquer bilevel
optimization algorithm (called DACBO). Based on device status,
task information, and available resources, DACBO first groups
tasks into three independent small-size sets. Afterward, analytical
methods are devised for the first two sets. As for the last one,
we develop a nested bilevel optimization algorithm that uses
differential evolution and variable neighborhood search (VNS)
at the upper and lower levels, respectively. In addition, a greedy
method is developed to quickly construct a good initial solution
for VNS. The effectiveness of DACBO is verified on a set of
instances by comparing with other algorithms.

Index Terms—Bilevel optimization, divide-and-conquer, mobile
edge computing, differential evolution, variable neighborhood
search

I. INTRODUCTION

Internet of Things (IoT) equips massive limited-power de-
vices with software, sensors, and network connectivity, with
the aim of bringing the vision of a connected world into
reality [1], [2]. However, IoT devices (IoTDs) cannot support
some emerging applications, such as face recognition [3] and
virtual reality [4], since these applications usually need to be
completed in a short time and require a lot of computing

This work was supported by the National Natural Science Foundation of
China under Grants 61976225. (Corresponding authors: Yong Wang.)

P.-Q. Huang and Y. Wang are with the School of Automation, Central
South University, Changsha 410083, China (Email: pqhuang@csu.edu.cn,
ywang@csu.edu.cn)

K. Wang is with the Department of Computer and Information
Sciences, Northumbria University, Newcastle NE1 8ST, UK.
(kezhi.wang@northumbria.ac.uk)

resources and energy. Despite the growing capabilities of
IoTDs, their computing and battery capabilities are still not
sufficient due to physical size limitations, which poses a great
challenge to execute tasks on IoTDs [5].

Mobile cloud computing (MCC) can relieve the above
challenge by offloading tasks from IoTDs to MCC servers [6].
But MCC servers are typically far from IoTDs geographically,
which gives rise to high latency and energy consumption for
long-distance transmission. As an alternative, mobile edge
computing (MEC) deploys computing resources at the edge of
networks to avoid long-distance transmission, thereby reducing
latency and prolonging the battery life of IoTDs [7]. However,
it is still impossible to avoid manually charging or replacing
batteries of IoTDs due to the finite battery capacity. In some
scenarios, it is not a trivial task. For example, replacing the
batteries of IoTDs located in remote areas, such as deserts and
forests, requires high costs. Recently, wireless power transfer
has been considered as a promising solution to continuously
supply energy for IoTDs, which enables IoTDs to harvest
energy from radio frequency (RF) signals radiated by radio
frequency energy transmitters into the air [8], [9]. As a result,
wireless powered MEC (WP-MEC) that combines MEC with
wireless power transfer can provide both computing resources
and energy to IoTDs [10], [11].

Because MEC servers are resource-constrained compared
with MCC servers, effective resource management is critical
for MEC systems [12], which generally includes two key tech-
niques: mode selection and resource allocation. The former
indicates whether or where to execute tasks, while the latter
is to determine how many resources are allocated [5]. To
date, a lot of methods have been designed. For instance, Chen
et al. [13] adopted game theory method for the mode selection
for a multi-channel MEC system. Pu et al. [14] developed
a novel method for the mode selection in a device-to-device
enabled MEC system, where idle IoTDs act as MEC servers
to provide computing resources to nearby IoTDs. Considering
time-varying network dynamics, Chen et al. [15] applied deep
reinforcement learning to solve the mode selection. Due to
the fact that both mode selection and resource allocation are
related to the quality of service, Lyu et al. [16] researched
joint mode selection and resource allocation problem for
minimizing energy consumption. Wang et al. [17] studied
a multi-unmanned aerial vehicle (multi-UAV) assisted MEC
system and then proposed a bilevel optimization algorithm
to jointly optimize the UAV deployment, mode selection,
and resource allocation. In addition, some researches have

2

also designed resource management methods for WP-MEC
systems. Bi et al. [18] employed the alternating direction
method of multipliers to jointly optimize the mode selection
and transmission time allocation for a WP-MEC system. Zhou
et al. [19] studied joint mode selection and resource allocation
problem for a UAV-enabled WP-MEC system. Du et al. [20]
further considered the workflow scheduling for improving the
energy efficiency of a UAV. Moreover, joint mode selection
and resource allocation for WP-MEC systems are investigated
in [21] to minimize the energy consumption and in [22] to
maximize the residual energy.

However, these studies [13]–[22] assume that the service
provider (SP) and the device owner (DO) belong to the same
entity and they have the common objective. In fact, in complex
MEC systems, multiple entities may be involved and have
different objectives. For example, the objective of SP may be
to maximize its profit or balance the load among MEC servers
[23], while DO aims to minimize the energy consumption
or the completion time [11]. Under this condition, the above
methods are no longer applicable. To this end, some attempts
have been made to use pricing schemes for resource manage-
ment [24]–[26]. Pricing schemes are able to model and analyze
complex interactions among different entities. Through these
interactions, each entity can observe, learn, or predict actions
or states of other entities and then make autonomous decisions
to achieve the optimal resource allocation [27]. For instance,
Wang et al. [28] analyzed the pricing scheme for computing
resources in a UAV-enabled MEC system. Xiong et al. [29]
optimized the price of computing resources for a MEC-assisted
blockchain network. Wang et al. [30] studied the optimal
price-based energy allocation algorithm. Han et al. [31] ex-
plored the pricing scheme in a vehicle assisted-MEC system.
It is worth noting that these methods only study the price
optimization of computing resources. For WP-MEC systems,
DO needs to purchase not only computing resources but also
energy from SP; thus, it is necessary to jointly optimize the
prices of computing resources and energy.

In this paper, we study the price optimization of computing
resources and energy in a WP-MEC system, where DO pur-
chases computing resources and energy from SP to execute
tasks from IoTDs. With the aim of maximizing their respective
total profits, SP optimizes the prices of computing resources
and energy, while DO optimizes the mode selection, broadcast
power, and computing resource allocation under the given
prices. To the best of our knowledge, it is the first attempt to
jointly price computing resources and energy in a WP-MEC
system. The main contributions of this paper are summarized
as follows:

1) Based on the interaction between SP and DO, we formu-
late the price optimization of computing resources and
energy as a bilevel optimization problem (BOP).

2) We derive the relationships between the optimal broadcast
power and the mode selection and between the optimal
computing resource allocation and the mode selection.
As a result, the mixed-variable nonlinear optimization
problem at the lower level is simplified to a discrete
optimization problem.

3) A divide-and-conquer bilevel optimization algorithm

(called DACBO) is devised to address the transformed
BOP. DACBO groups tasks into three independent sets
according to device status, task information, and available
resources.

4) Analytical methods are developed for the first two sets.
Regarding the last one, we design a nested bilevel op-
timization algorithm (called DE-VNS), which combines
differential evolution (DE) with variable neighborhood
search (VNS).

5) Extensive experiments have been conducted on a set of
instances. The results demonstrate the effectiveness of
DACBO by comparing it with other algorithms.

The rest of this paper is organized as follows. Section II
introduces the background about bilevel optimization. The
system model and problem formulation are given in Section
III. Section IV describes the details of our proposed DACBO.
The experimental studies are presented in Section V. Finally,
Section VI concludes this paper.

II. BACKGROUND

A. BOPs

Many optimization problems are hierarchical, where the
performance of the solution produced by the upper-level entity
is affected by the response of the lower-level entity. We refer
to such optimization problems as BOPs [32]–[35], which can
be formulated as follows [36]:

min
xu,xl

fu(xu,xl)

s.t. guj (xu,xl) ≤ 0, j = 1, . . . , pu

xl = arg min
xl

f l(xu,xl)

s.t. glj(x
u,xl) ≤ 0, j = 1, . . . , pl

(1)

where xu = (xu1 , . . . , x
u
nu) and xl = (xl1, . . . , x

l
nl) represent

the upper-level and lower-level solutions, respectively; xui and
xli denote the ith upper-level variable and the ith lower-level
variable, respectively; nu and nl denote the numbers of upper-
level and lower-level variables, respectively; fu(xu, xl) and
f l(xu, xl) represent the upper-level and lower-level objective
functions, respectively; guj (xu, xl) and glj(xu, xl) represent the
jth upper-level and the jth lower-level constraints, respec-
tively; and pu and pl denote the numbers of upper-level and
lower-level constraints, respectively.

Definition 1: A solution x = (xu,xl) is called a feasible
solution of a BOP if and only if:

1) x satisfies all constraints at both levels;
2) xl is the optimal lower-level solution corresponding to

xu 1.

Definition 2: A solution x∗ = (xu∗,xl∗) is the optimal
solution of a BOP if it is the feasible solution with the smallest
value of the upper-level objective function .

1For some complex BOPs, the lower-level optimum may be difficult to
obtain. In this case, the near-optimal solution of the lower-level optimization
problem is also acceptable.

3

Data flow

Energy transfer

circuit

Communication

circuit

Access point integrated with a RF
energy transmitter and an MEC server,

which is managed by SP Energy flow

h1

h2

hn

Energy

harvesting circuit

Communication

circuit

Computing unit

IoTD 1

IoTD 2

IoTD n

A set of IoDTs, which is managed by DO

Fig. 1. WP-MEC system involving a set of n IoTDs and an access point.

B. Bilevel Optimization Algorithms

The traditional bilevel optimization algorithms usually adopt
Karush-Kuhn-Tucker or other optimality conditions to trans-
form BOPs into single-level optimization problems. Represen-
tative studies include branch and bound methods [37], simplex
methods [38], and penalty function methods [39]. However,
these methods are only effective for simple BOPs, such as
linear or convex BOPs [36].

Because heuristic methods have the capability to address
complex optimization problems, many attempts have been
made on them for addressing BOPs. They can be roughly di-
vided into two categories: (1) single-level reduction-based ap-
proaches and (2) nested structure-based approaches. In single-
level reduction-based approaches, BOPs are transformed into
single-level optimization problems and then solved by heuris-
tic methods [40], [41]. In this kind of approach, it often
requires strong assumptions on the mathematical properties
of the lower-level optimization problems, such as linearity,
convexity, or smoothness [36]. To solve more complex BOPs,
nested structure-based approaches have been studied, which
perform the upper-level and lower-level optimization in a
nested manner [42], [43]. Since the assumptions on the math-
ematical properties of BOPs are not required, nested structure-
based approaches are widely used [44], [45]. However, when
the lower-level optimization problem of a BOP is highly
complex, these approaches may suffer from low computational
efficiency as the lower-level optimization usually needs to be
performed for each upper-level solution [46].

III. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a WP-MEC system
involving an access point and a set of n IoTDs, which are
managed by SP and DO, respectively. Since the access point
is equipped with an MEC server and a RF energy transmitter,
this WP-MEC system can provide computing and wireless
charging services for IoTDs. In addition, each IoTD has a
task waiting to be executed, denoted as N = {1, · · · , n}. For
the sake of simplicity, we define the task of the ith IoTD by a
3-tuple: Ui = (Di, Ci, Ti,max), where Di and Ci represent
the size of input data of Ui and the computing resources
required to complete Ui, respectively; and Ti,max indicates
the maximum time allowed to complete Ui. In this WP-MEC
system, DO needs to select one of three execution modes for
each task, which are defined as

1) mi = −1 (i ∈ N), if Ui is executed locally (i.e., the
local mode);

Access Point

MEC Server

Access Point

IoTD i Access Point

IoTD iIoTD i

Energy Harvesting MEC Execution

negligible

WPT

Local Excution

IoTD i

AP

IoTD i

(a)

AP

IoTD i

MEC

Server
AP

IoTD i AP

IoTD i

WPT MEC Excution

negligible

 IoTD i

Energy Harvesting

Local Execution

IoTD i

Access Point

(b)

Fig. 2. Harvest-then-transmit protocol for the studied WP-MEC system. (a)
MEC mode. (b) Local mode.

2) mi = 1 (i ∈ N), if Ui is executed on the MEC server
(i.e., the MEC mode);

3) mi = 0 (i ∈ N), if Ui is not executed (i.e., the non-
execution mode).

The execution modes of all tasks form mode set m =
[m1,m2, . . . ,mn].

Similar to [10], [22], and [47], this paper adopts the harvest-
then-transmit protocol as shown in Fig. 2. Specifically, for the
MEC mode shown in Fig. 2(a), the access point first broadcasts
the energy to IoTDs, IoTDs then simultaneously offload their
tasks to the access point for the MEC execution. However, for
the local mode shown in Fig. 2(b), the local execution can be
performed concurrently with the energy harvesting as IoTDs
are equipped with batteries [47].

Remark 1: For ease of reference, the key notations used in
this section are summarized in the supplementary file.

A. Energy Harvesting

For the energy harvesting in the MEC mode and the
local mode, we assume that the access point simultaneously
broadcasts energy to n IoTDs by pointing n radio beams to n
IoTDs within a fixed duration of Th [47]. We also assume that
the channel gain between the access point and IoTDs follows
the free-space path loss model [18]

hi = 4.11

(
3e+8

4πfcdi

)2

,∀i ∈ N (2)

where fc denotes the carrier frequency and di denotes the
distance between the access point and the ith IoTD.

Let pb = [pb1, p
b
2, · · · , pbn] represent the broadcast power

allocated to all tasks. Then, the energy harvested by the ith
IoTD is given by

Ehi = µThhip
b
i ,∀i ∈ N (3)

where µ ∈ (0, 1) denotes the power conversion efficiency.

4

B. Local Execution

For the local execution in the local mode, the computing
time and energy consumption of Ui are given by [5]

T li =
Ci
rli
,∀i ∈ N (4)

and
Eli = k0(rli)

3T li ,∀i ∈ N (5)

where rli represents the computing capability of the ith IoTD
and k0 is the effective capacitance coefficient of IoTDs.

C. MEC Execution

For the MEC execution in the MEC mode, IoTDs need to
transmit the input data of their tasks to the access point over
the orthogonal channel based on orthogonal frequency-division
multiple access, and the results of tasks are then returned to
IoTDs after the MEC server completes these tasks. Due to the
fact that the size of results is generally much smaller than that
of the input data, we omit the time and energy consumption
for receiving the results as in [7] and [13].

The transmission rate of the ith IoTD is expressed as

Ri = Blog2

(
1 +

ptihi
N0

)
,∀i ∈ N (6)

where B represents the channel bandwidth, N0 is the variance
of complex Gaussian channel noise, and pti is the transmission
power of the ith IoTD. Note that, pti can be pre-configured
according to the capability and location of the ith IoTD [48].

Then, the transmission time and energy consumption of Ui
can be obtained by:

T ti =
Di

Ri
,∀i ∈ N (7)

and

Eti =
ptiDi

Ri
,∀i ∈ N . (8)

In addition, let rc = [rc1, r
c
2, . . . , r

c
n] represent the computing

resources allocated to all tasks. Then, the computing time of
Ui on the MEC server is expressed as

T ci =
Ci
rci
,∀i ∈ N . (9)

Besides, due to the fact that the energy consumption of the
MEC server is generally related to the size of the input data
[47], the energy consumption of Ui on the MEC server is given
by

Eci = k1Di,∀i ∈ N (10)

where k1 is the effective capacitance coefficient of the MEC
server.

As shown in Fig. 2, the completion time of Ui is given by:

Ti =


max{Th, T li }, if mi = −1,

Th + T ti + T ci , if mi = 1,

0, if mi = 0.

(11)

D. Profits of DO and SP

The profit of DO refers to the revenue from the reward after
subtracting the cost of computing resources and energy. If Ui
is successfully completed, DO can obtain a reward. In the local
mode, DO only needs to purchase energy to cover the energy
consumption for completing tasks locally. In the MEC mode,
DO needs to purchase energy for transmitting the input data
of tasks and computing resources for executing tasks on the
MEC server. Note that, if a task is not executed, DO does not
purchase any computing resources and energy. As a result, for
Ui, the profit of DO is given by 2

fdoi (vc,ve,m,pb, rc) =
αDi − vei pbi , if mi = −1,

αDi − vei pbi − vci rci , if mi = 1,

0, if mi = 0.

(12)

where αDi is the reward and α is the reward coefficient 3;
vci and vei represent the unit prices of computing resources
and energy for Ui, respectively; and vc = [vc1, · · · , vcn] and
ve = [ve1, · · · , ven] denote the prices of computing resources
and energy for all tasks, respectively. In this paper, the
discriminatory pricing scheme is studied, in which SP is able
to set different unit prices of computing resources and energy
for different tasks [29].

Therefore, the total profit of DO is expressed as

fdo(vc,ve,m,pb, rc) =
∑
i∈N

fdoi . (13)

The profit of SP refers to the revenue from selling comput-
ing resources and energy after subtracting its cost of energy.
Therefore, for Ui, the profit of SP is expressed as:

fspi (vc,ve,m,pb, rc) =
vei p

b
i − v0pbiTh, if mi = −1,

vei p
b
i + vci r

c
i − v0

(
pbiT

h + Eci
)
, if mi = 1,

0, if mi = 0.

(14)

where v0 denotes the unit price of energy consumed by the
access point.

Therefore, the total profit of SP is calculated as:

fsp(vc,ve,m,pb, rc) =
∑
i∈N

fspi . (15)

E. Problem Formulation

In the studied WP-MEC system, the pricing process of
computing resources and energy is the following:

1) SP first sets the prices of computing resources and energy
(i.e., vc and ve);

2) Based on device status, task information, and available re-
sources, DO develops the optimal response, including the

2Since the energy harvesting time is constant, it can be omitted when
calculating the profit of DO.

3In some scenarios, the reward may be related to Di and/or Fi, or even
a constant. The proposed algorithm in this paper can be easily extended to
these scenarios.

5

The service provider (SP)

 Goal: To maximize its total profit

 Decision variables:

The device owner (DO)

 Goal: To maximize its total profit

 Decision variables:

Fig. 3. Interaction between SP and DO.

optimal mode, broadcast power, and computing resource
allocation (denoted as m∗, pb

∗
, and rc

∗
), to maximize its

total profit under the given vc and ve;
3) Subsequently, SP evaluates its total profit based on vc,

ve, m∗, pb
∗
, and rc

∗
.

4) SP updates vc and ve and goes to Step 2 until the
stopping criterion is reached;

5) Finally, the optimal vc and ve are output.
Based on the interaction between SP and DO in Fig. 3, a

BOP is formulated, in which vc and ve are optimized at the
upper level, and m, pb, and rc are optimized at the lower
level under the given vc and ve. The goals of both levels are
to maximize the total profits of SP and DO, respectively. The
BOP is formulated as:

P0 : maxfsp(vc,ve,m,pb, rc)

s.t. C1 : vci,min ≤ vci ≤ vci,max, i ∈ N
C2 : vei,min ≤ vei ≤ vei,max, i ∈ N
{m,pb, rc} = arg max fdo(vc,ve,m,pb, rc)

s.t. C3 : mi ∈ {−1, 1, 0}, i ∈ N
C4 : rci ≥ 0,∀i ∈ N

C5 :
∑
i∈N

rci ≤ rcmax

C6 : 0 ≤ pbi ≤ pbi,max,∀i ∈ N
C7 : Eti ≤ Ehi ,∀mi = 1, i ∈ N
C8 : Eli ≤ Ehi ,∀mi = −1, i ∈ N
C9 : Ti ≤ Ti,max,∀mi = −1 or 1, i ∈ N

(16)

where C1 specifies the lower and upper bounds of the price
of computing resources; C2 indicates the lower and upper
bounds of the price of energy; C3 states that DM needs to
select a mode from the local mode, the MEC mode, and
the non-execution mode for each task; C4 represents that
the computing resource allocated to each task cannot be less
than 0; C5 represents the computing resources allocated to
all tasks cannot be greater than the computing capacity of
the MEC server; C6 specifies the lower and upper bounds of
the broadcast power; C7 ensures that the transmission energy
consumption cannot be greater than the harvested energy if
Ui is completed in the MEC mode; and C8 ensures that the
computing energy consumption cannot be greater than the
harvested energy if Ui is completed in the local mode; and C9

specifies the completion time of tasks should not be greater
than the delay constraint.

It can be observed that the lower-level optimization problem
of P0 in (16) is a mixed-variable nonlinear optimization
problem since m is a discrete vector, and pb and rc are
two continuous vectors. It is well known that the single-level
mixed-variable nonlinear optimization problems are difficult
to solve [36], not to mention BOPs involving a mixed-
variable nonlinear lower-level problem. Considering the above
challenge, we first transform P0 into a more tractable form.

F. Problem Transformation

If Ui can be completed in the local mode, C8 should be
satisfied. Since DO can obtain a higher profit by harvesting
less energy according to (12) under the given vei , the equality
holds for C8. Then, based on (3), we can obtain the optimal
broadcast power as:

pb
∗

i =
Eli

µThhi
,∀mi = −1, i ∈ N . (17)

Similarly, if Ui is completed in the MEC mode, the equality
holds for C7. Thus, the optimal broadcast power is given as:

pb
∗

i =
Eti

µThhi
,∀mi = 1, i ∈ N . (18)

In addition, if Ui is completed in the MEC mode, based on
C9, the following constraint should be satisfied:

Th + T ti + T ci ≤ Ti,max,∀mi = 1, i ∈ N . (19)

Re-arranging (19), we can obtain

rci ≥
Ci

Ti,max − Di

Ri
− Th

,∀mi = 1, i ∈ N . (20)

Under the given vci , DO can obtain a higher profit by
purchasing fewer computing resources according to (12).
Therefore, when the equality holds for (20), the optimal
computing resource allocation is obtained as:

rc
∗

i =
Ci

Ti,max − Di

Ri
− Th

,∀mi = 1, i ∈ N . (21)

As a result, as long as m is known, we can obtain pb
∗

and rc
∗

based on (17), (18), and (21). It means that at the
lower level, we only need to consider m. Therefore, P0 can
be reduced into the following equivalent form:

P1 : max fsp(vc,ve,m)

s.t. C1, C2
m = arg max fdo(vc,ve,m)

s.t. C3− C6
C10 : Ti ≤ Ti,max,∀mi = −1, i ∈ N .

(22)

Compared with P0, P1 has the following two advantages:
1) The lower-level optimization problem of P1 is a discrete

optimization problem while that of P0 is a mixed-variable
optimization problem. Clearly, P1 is easier to solve than
P0.

6

2) The number of lower-level variables of P0 is 3n, while
that of P1 is n. Obviously, the search space of the lower-
level optimization problem of P1 becomes smaller.

However, by further analyzing P1, we can find that the
search space of P1 is still extremely large. For instance, for the
given vc and ve, all possible combinations of m are 3n at the
lower level of P1 due to mi ∈ {−1, 0, 1} (∀i ∈ N). It means
that for each upper-level solution, the lower-level optimization
has to face a huge search space. Thus, solving P1 directly may
give rise to poor performance.

IV. DACBO

In this paper, we propose a divide-and-conquer bilevel
optimization algorithm (called DACBO) to tackle P1, which
includes two phases: task grouping and price optimization.
Specifically, DACBO first groups tasks into three independent
sets and then jointly optimizes the prices of computing re-
sources and energy for each of them. In this way, a large-scale
BOP is divided into three sub-problems.

A. Task Grouping

In the task grouping phase, we first introduce the conditions
that need to be satisfied if the tasks can be completed in the
local mode or the MEC mode. Then, the tasks are grouped
into three independent sets based on these conditions.

1) Local mode: Based on C6 and (17), if Ui can be com-
pleted in the local mode, the following constraint should
be satisfied:

Eli
µThhi

≤ pbi,max,∀mi = −1, i ∈ N . (23)

Moreover, based on C10 and (11), the following con-
straint should also be satisfied:

T li =
Ci
rli
≤ Ti,max,∀mi = −1, i ∈ N . (24)

Re-arranging (24), we have

Ci
Ti,max

≤ rli,∀mi = −1, i ∈ N . (25)

2) MEC mode: Based on C6 and (18), if Ui can be com-
pleted in the MEC mode, the following constraint should
be satisfied:

Eti
µThhi

≤ pbi,max,∀mi = 1, i ∈ N . (26)

In addition, according to C4 and C5, the computing
resources available from the MEC server for each task
are limited, that is:

0 ≤ rci ≤ rcmax,∀mi = 1, i ∈ N . (27)

Then, based on (21) and (27), if Ui can be completed in
the MEC mode, the following constraint should also be
satisfied:

0 ≤ Ci

Ti,max − Di

Ri
− Th

≤ rcmax,∀mi = 1, i ∈ N . (28)

Algorithm 1 Task Grouping
1: O = ∅, L = ∅, and R = ∅;
2: for eah task Ui (i ∈ N) do
3: if (26) and (28) are satisfied then
4: if (23), (25), and (29) are satisfied then
5: L = L ∪ {i};
6: else
7: O = O ∪ {i};
8: end if
9: else if (23) and (25) are satisfied then

10: L = L ∪ {i};
11: else
12: R = R∪ {i};
13: end if
14: end for
15: Output: O, L, and R.

It is worth noting that even if Ui can be completed in
the MEC mode, DO is not of interest to this mode when
Ui can be completed in the local mode and the following
constraint is satisfied:

Eli ≤ Eti ,∀i ∈ N . (29)

The reason is that for any given ve, when Eli ≤ Eti , the
energy cost of the MEC mode cannot be less than that
of the local mode. In addition, in the MEC mode, DO
also needs to purchase computing resources. Under this
condition, the cost of the MEC mode is higher than that
of the local mode. Therefore, DO is not of interest to the
MEC mode.

As a result, according to device status, task information,
and available resources, we can group tasks into the following
three independent sets:

1) SetR includes tasks that cannot be completed in the local
mode or the MEC mode. In this case, (23) or (25) is not
satisfied, and (26) or (28) is also not satisfied.

2) Set L includes tasks that cannot be completed in the MEC
mode but can be completed in the local mode. In this
case, (26) or (28) is not satisfied, but (23) and (25) are
satisfied. In addition, L also includes tasks for which DO
is not of interest to the MEC mode although they can
be completed in this mode. In this case, (23)-(29) are
satisfied.

3) Set O includes tasks for which DO is interested in the
MEC mode. In this case, (26) and (28) are satisfied, but
(23), (25), and (29) cannot be satisfied simultaneously.

The above three sets O, L, and R can cover the whole tasks
in N (i.e., O ∪ L ∪ R = N). The process of task grouping
is summarized in Algorithm 1. Next, we explain why O, L,
and R are three independent sets:

1) For each task in R, its execution mode is unique and is
not affected by the execution modes of other tasks in N .
In this case, the prices of computing resources and energy
for this task can be optimized independently.

2) For each task in L, whether it can be completed locally or
not is determined by its device status, task information,
as well as the price of energy set by SP, which is not
related to the execution modes of other tasks in N . In
this case, the prices of computing resources and energy
for this task can also be optimized independently.

7

3) For each task in O, not all offloading requests may be
accepted due to the computing limitation of the MEC
server (i.e., C5). Thus, its execution mode is affected by
the execution modes of other tasks in O. As a result, the
prices of computing resources and energy for all tasks in
O need to be optimized simultaneously.

Therefore, the prices of computing resources and energy for
R, L, and O can be optimized separately.

B. Price Optimization of Computing Resources and Energy
for R

Since Ui (∀i ∈ R) cannot be completed both in the local
mode and in the MEC mode, the optimal mode is m∗i = 0.
In this case, DO does not need to purchase any computing
resource or energy from SP for Ui. As a result, SP can
set the optimal prices of computing resources and energy
(denoted as vc

∗

i and ve
∗

i) to any value within [vci,min, v
c
i,max]

and [vei,min, v
e
i,max], respectively.

C. Price Optimization of Computing Resources and Energy
for L

In order to maximize fdoi , DO always selects the more
profitable one between the local mode and the non-execution
mode for Ui (∀i ∈ L). Based on (12), we have

fdoi =

{
αDi − vei pbi , if mi = −1,

0, if mi = 0.
(30)

Therefore, under the given vei , if αDi − vei pbi ≥ 0 (i.e., vei ≤
αDi

pbi
), then DO selects the local mode for Ui; otherwise, DO

selects the non-execution mode for Ui. As a result, we have

m∗i =

{
−1, if vei ≤ αDi

pbi
,

0, if vei >
αDi

pbi
.

(31)

As for SP, since Ui does not require any computing resource
of the MEC server, vc

∗

i can be set to any value within
[vci,min, v

c
i,max]. In addition, regarding ve

∗

i , we have

ve
∗

i =


vei,max, if αDi

pbi
≥ vei,max,

vi,r1 , if αDi

pbi
< vei,min,

αDi

pbi
, if max{vei,min, voTh} ≤ αDi

pbi
< vei,max,

vi,r2 , if vei,min ≤ αDi

pbi
< min{vei,max, voTh}

(32)
where vi,r1 represents a value randomly selected from
[vei,min, v

e
i,max] and vi,r2 represents a value randomly selected

from (αDi

pbi
, vei,max). (32) can be derived through the following

process:
1) When αDi

pbi
≥ vei,max, vei ≤ vei,max ≤ αDi

pbi
always holds.

Therefore, based on (31), m∗i = −1. In this case, based
on (14), fspi = vei p

b
i − v0pbiTh. It can be found that fspi

is proportional to vei ; thus, in order to maximize fspi ,
ve

∗

i = vei,max;
2) When αDi

pbi
< vei,min, vei ≥ vei,min >

αDi

pbi
always holds.

Thus, based on (31), m∗i = 0. In this case, based on

(14), fspi = 0 and ve
∗

i can be set to any value within
[vei,min, v

e
i,max];

3) When vei,min ≤ αDi

pbi
< vei,max, we need to consider the

following two cases:
i) If vei ∈ [vei,min,

αDi

pbi
], then αDi − vei pbi ≥ 0 always

holds. Thus, based on (31), m∗i = −1. In this case,
based on (14), fspi = vei p

b
i − v0pbiTh (i.e., red lines

in Fig. 4). Moreover, it can be found that fspi is
proportional to vei . Therefore, in order to maximize
fspi , ve

∗

i = αDi

pbi
and fspi (ve

∗

i) = αDi − v0pbiTh.

ii) If vei ∈ (αDi

pbi
, vei,max), then αDi − vei pbi < 0 always

holds. Thus, based on (31), m∗i = 0. In this case,
based on (14), fspi is always equal to 0 (i.e., green
lines in Fig. 4).

Then, based on cases i) and ii), we can obtain ve
∗

i over
[vei,min, v

e
i,max]. If fspi (αDi

pbi
) = αDi − v0pbiTh ≥ 0 and

vei,min ≤ αDi

pbi
< vei,max (i.e., max{vei,min, voTh} ≤

αDi

pbi
< vei,max), as shown in Fig. 4(a), it is clear

that ve
∗

i = αDi

pbi
. In addition, if vei,min ≤ αDi

pbi
<

min{vei,max, voTh}, as shown in Fig. 4(b), ve
∗

i can be
set to any value within (αDi

pbi
, vei,max).

D. Price Optimization of Computing Resources and Energy
for O

The price optimization of computing resources and energy
for O can be reformulated as:

P2 : max fsp(vc,ve,m)

s.t. C1′ : vei,min ≤ vei ≤ vei,max, i ∈ O
C2′ : vci,min ≤ vci ≤ vci,max, i ∈ O
m = arg max fdo(vc,ve,m)

s.t. C3′ : mi ∈ {−1, 1, 0}, i ∈ O
C4′ : rci ≥ 0,∀i ∈ O

C5′ :
∑
i∈O

rci ≤ rcmax

C6′ : 0 ≤ pbi ≤ pbi,max,∀i ∈ O
C10′ : Ti ≤ Ti,max,∀mi = −1, i ∈ O.

(33)

Since P2 is a mixed-variable nonlinear bilevel optimization
problem, neither traditional bilevel optimization algorithms nor
single-level reduction-based bilevel optimization algorithms
can be used. Therefore, as mentioned in Section II-B, we need
to adopt nested-based bilevel optimization algorithms, which
solve the upper-level and lower-level optimization problems in
a nested manner. However, the lower-level optimization prob-
lem of P2 is NP-hard [48]. Although deterministic methods,
such as branching, may find the global optimum of the lower-
level optimization problem of P2, they may suffer from a high
computational burden. Compared with deterministic methods,
heuristic methods requires fewer computational burden. Note
that, since the lower-level optimization needs to be performed
for each upper-level solution in nested-based approaches,
the computational cost of population-based heuristic methods
(e.g., evolutionary algorithms) is still unbearable. This is

8

(a) (b)

Fig. 4. Illustration of fspi when vei,min ≤ αDi

pbi
< vei,max. (a)

max{vei,min, voTh} ≤
αDi

pbi
< vei,max, (b) vei,min ≤ αDi

pbi
<

min{vei,max, voTh}

because population-based heuristic methods search for the
optimal solution by using multiple individuals at the same
time. Therefore, a single-point based heuristic method, called
variable neighborhood method (VNS), is developed to solve
the lower-level optimization problem of P2.

As presented in Algorithm 2, VNS consists of two main
parts: initial solution construction and task exchange.

1) Initial Solution Construction: In this part, we employ
the greedy method to quickly obtain a good initial solution.
The detailed process is give as follows. Under the given vci and
vei (i ∈ O), we first calculate the profit improvement of DO
from the MEC mode against the more profitable one between
the local mode and the non-execution mode 4:

∆fdoi = fdoi |mi=1 −max{fdoi |mi=−1, f
do
i |mi=0},∀i ∈ O

(34)
where fdoi |mi=1, fdoi |mi=−1, and fdoi |mi=0 represent the
profits of DO from the MEC mode, the local mode, and the
non-execution mode, respectively (line 2).

Note that, only if ∆fdoi > 0, DO can obtain a positive profit
improvement from the MEC mode. In contrast, if ∆fdoi ≤ 0,
the task has no incentive to send an offloading request to the
access point. Therefore, we define set S = {i|∆fdoi > 0,∀i ∈
O} to record the tasks that send the offloading requests (line
3). Due to the computing limitation of the MEC server, not
all offloading requests of the tasks can be accepted. Therefore,
some tasks are selected from S to be completed in the MEC
mode. In order to maximize the profit of DO under the
computing limitation of the MEC server, we prefer to the tasks
with higher profit improvement and lower computing resource
requirement. To this end, for each task in S, the normalized
profit improvement of DO is calculated:

∆fdoi,norm =
∆fdoi
rci

,∀i ∈ S. (35)

The tasks in S are then sorted in descending order of ∆fdoi,norm
(lines 4-5). After that, we check the tasks in S one by one. If
its computing resource requirement can be satisfied, the task
is added to S1 and the amount of unused computing resources

4Some tasks in O may not be completed in the local mode. For these tasks,
we consider that the profit of DO from the local mode is lower than that from
the non-execution mode.

Algorithm 2 VNS
1: /*Initial solution construction*/
2: Calculate the profit improvement of DO for each task in O: ∆fdoi ;
3: S = {i|∆fdoi > 0, i ∈ O};
4: Calculate the normalized profit improvement of DO for each task in S:

∆fdoi,norm;
5: Sort the tasks in S in descending order of ∆fdoi,norm;
6: S1 ← ∅;
7: S2 ← ∅;
8: rcunused = rcmax;
9: for each task Ui (i ∈ S) do

10: if the computing resource requirement of Ui is satisfied then
11: Add Ui into S1 and update rcunused by subtracting the computing

resources allocated to Ui;
12: else
13: Add Ui into S2;
14: end if
15: end for
16: S2 ← S2 ∪ O\S;
17: Construct m based on S1 and S2 and evaluate the performance of m at

the lower level of P2;
18: /*Task exchange*/
19: for each task Ui (i ∈ S2) do
20: for each task Uj (j ∈ S1) do
21: if ∆fdoi > ∆fdoj then
22: Swap Ui and Uj to form two new sets S′1 and S′2;
23: Construct m′ based on S′1 and S′2 and evaluate the performance

of m′ at the lower level of P2;
24: if m′ satisfies all constriants at the lower level of P2 and the

profit of DO from m′ is bigger than that from m then
25: S1 ← S′1, S2 ← S′2, and m←m′;
26: end if
27: end if
28: end for
29: end for
30: Output: m.

of the MEC server is updated by subtracting the computing
resources allocated to this task; otherwise, the task is added
to S2. After checking all tasks in S, we further add tasks that
belong to O but not belong to S into S2. Then, S1 and S2
are used to construct initial mode set m. To be specific, DO
selects the MEC mode for each task in S1, and selects the more
profitable one between the local mode and the non-execution
mode for each task in S2. Subsequently, the performance of
m is evaluated at the lower level of P2 (lines 6-17).

2) Task Exchange: In order to find a better solution, we
exchange the tasks in S1 and S2. For Ui (i ∈ S2) and Uj
(j ∈ S1), if ∆fdoi > ∆fdoj , we exchange Ui and Uj to form
two new sets S ′1 and S ′2. Subsequently, S ′1 and S ′2 are used to
construct new mode set m′ and its performance is evaluated
at the lower level of P2. If m′ satisfies all constraints at the
lower level of P2 and the profit of DO from m′ is bigger than
than that from m, we update S1, S2, and m by using S ′1,
S ′2, and m′, respectively (lines 18-29). The above process is
repeated until all tasks in S1 and S2 are checked.

Due to the discrete variables at the lower level, it is likely
that the landscape for the upper level optimization problem
of P2 is disconnected [36]. In this case, traditional methods
may result in poor performance. To this end, DE, a simple and
effective evolutionary algorithm proposed by Storn and Price
[49], is adopted to address the upper-level optimization prob-
lem of P2. The overall process of the nested bilevel optimiza-
tion algorithm (called DE-VNS) is presented in Algorithm 3.
In the initialization, population P0 = {x0

1,x
0
2, · · · ,x0

NP } is

9

Algorithm 3 DE-VNS
1: t = 0; // t denotes the generation number
2: Randomly generate population P0 = {x0

1,x
0
2, · · · ,x0

NP }, in which
each individual represents the prices of computing resources and energy
for the tasks in O and NP denotes the population size;

3: for i=1:NP do
4: Perform Algorithm 2 to obtain the corresponding optimal mode set

for x0
i ;

5: Evaluate the performance of x0
i at the upper level of P2;

6: end for
7: FEsu = NP ;
8: while FEsu < MaxFEsu do
9: Implement the mutation and crossover operators of DE on Pt to

generate offspring population Qt = {qt1,qt2, · · · ,qtNP };
10: Pt+1 ← ∅;
11: for i=1:NP do
12: Perform Algorithm 2 to obtain the corresponding optimal mode

set for qti ;
13: Evaluate the performance of qti at the upper level of P2;
14: Perform the select operator of DE to select the better one between

xti and qti , denoted as xt+1
i ;

15: Pt+1 ← Pt+1 ∪ xt+1
i ;

16: end for
17: FEsu = FEsu +NP ;
18: t = t+ 1;
19: end while
20: Output: the best individual in Pt+1.

first randomly initialized, in which each individual represents
the prices of computing resources and energy for all tasks in O
and NP denotes the population size. Then, VNS in Algorithm
2 is adopted to obtain the corresponding optimal mode set for
each individual. After that, the performance of each individual
is evaluated at the upper level of P2. During the evolution,
offspring population Qt = {qt1,qt2, · · · ,qtNP } is generated
from Pt = {xt1,xt2, · · · ,xtNP } via the mutation and crossover
operators of DE, where t denotes the generation number.
Subsequently, the corresponding optimal mode set for each
individual in Qt is obtained via VNS and the performance
of each individual in Qt is evaluated at the upper level of
P2. Finally, the selection operator is performed to select the
better one between xti and qti (i = 1, . . . , NP) into the
next population Pt+1. The above procedure repeats until the
stopping criterion is met, i.e., the maximal number of the
upper-level fitness evaluations (FEs) (denoted as MaxFEsu)
is reached. Afterward, the best individual in Pt+1 is output.

E. Discussion

As shown in Fig. 5, we summarize the challenges and our
techniques used in this paper. In order to solve challenge 1,
we simplify P0 into P1. Subsequently, the task grouping is
performed to tackle challenge 2. In addition, a nested bilevel
optimization algorithm combining DE with VNS is proposed
to solve challenges 3-5 derived from the price optimization of
computing resources and energy for O. Moreover, we develop
the analytical methods for the price optimization of computing
resources and energy for L and R.

V. EXPERIMENTAL STUDIES

A. Competitors

Existing studies rarely design bilevel optimization methods
for BOPs involving a continuous upper-level optimization

TABLE I
PARAMETER SETTINGS OF THE STUDIED WP-MEC SYSTEM

Parameter Value Parameter Value
Di, i ∈ N [0.1,100] KB Ci, i ∈ N [1,1000] MCycles

Ti,max, i ∈ N 2 s fc 915 MHz
µ 0.8 Th 0.5 s

rli, i ∈ N 0.5 GCycles/s k0 1e-28
B 1 MHz N0 1e-10 W

pti, i ∈ N 0.1 W k1 1e-10
v0 0.1 per J α 5e-4

vei,min, i ∈ N 1 per W vei,max, i ∈ N 20 per W
vci,min, i ∈ N 1 per GCycles vci,max, i ∈ N 20 per GCycles

rcmax 10 GCycles pbi,max, i ∈ N 5 W

problem and a discrete lower-level optimization problem.
Therefore, it is difficult to directly use existing methods
as competitors. For this reason, we fine-tuned two existing
methods as competitors:
• Bilevel DE (BIDE) [44]: It uses the continuous version

of DE at the upper level, while the discrete version of
DE is adopted at the lower level. The main difference
between the discrete and continuous versions of DE is
that the discrete version of DE needs to implement the
rounding operator after the crossover operator. In the
rounding operator, if the value of a variable (ranging from
0 to 1) is not less than 0.5, DO will select the MEC
mode for the corresponding task. It is worth noting that
the mutation and crossover operators used in BIDE and
DACBO are the same, i.e., “DE/rand/1” mutation opera-
tor and the binomial crossover operator [50]. In addition,
a recently proposed strategy [51] is incorporated into DE
at each level. This strategy stores the successful difference
vectors and reuses them in subsequent generations, which
can improve the search capability of DE.

• Bilevel genetic algorithm (BIGA) [45]: It adopts genetic
algorithm (GA) as the search engine at each level. Note
that, the simulated binary crossover and the polynomial
mutation are employed at the upper level for the contin-
uous optimization problem and the singe-point crossover
and the bit-wise mutation are used at the lower level for
the discrete optimization problem.

B. Parameter Setting

Table I summarizes the parameter settings of the studied
WP-MEC system [18], [47]. Besides, ten instances with differ-
ent numbers of IoTDs were used to evaluate the performance
of DACBO, i.e., n = 20, 40, · · · , 200. It is assumed that all
IoTDs were randomly distributed in a circular area with a
radius of 5 m and the access point was located in the center
of the area.

The parameter settings of DACBO and the two competitors
were given as follows. For DACBO and BIDE, the crossover
control parameter and the scaling factor of DE were set to
0.9 and 0.9, respectively. For BIGA, the crossover probability
of the simulated binary crossover, the mutation probability
of the polynomial mutation, and the mutation probability of
the bitwise mutation were set to 1.0, and 1/D, and 1/D,
respectively, where D represents the length of individuals.
In addition, the distributed indexes of the simulated binary
crossover and the polynomial mutation were set to 20 and 20,

10

Challenge 1:
The lower level optimization

problem of 𝒫0 is a mixed-variable
nonlinear optimization problem

The original bilevel
optimization

problem 𝒫0 in (16)

Transform 𝒫0 into 𝒫1 in (22), in
which the lower level optimization
problem is a discrete optimization

problem

The transformed
bilevel optimization
problem 𝒫1 in (22)

Challenge 2:
The search space of 𝒫1 is

extremely large

Divide tasks into three small-
size sets: ℛ, ℒ, and 𝒪 in

Section IV-A

Price optimization of
computing resources and

energy for 𝒪 in Section IV-D

Price optimization of
computing resources and

energy for ℒ in Section IV-C

Price optimization of
computing resources and

energy for ℛ in Section IV-B

Analytical method

Challenge 5:
The landscape for the continuous
optimization problem at the upper

level in (33) is disconnected

Analytical method

Challenge 3:
𝒫2 in (33) is a mixed-variable
nonlinear bilevel optimization

problem

Challenge 4:
The discrete optimization

problem at the lower level in
(33) is NP-hard

Nested bilevel optimization
algorithm (DE-VNS） VNS DE

Challenge

Our technique

Fig. 5. Challenges and our techniques used in this paper.

respectively. NP was set to 30 at the upper level of DACBO,
both levels of BIDE, and both levels of BIGA. The upper-level
optimization of each algorithm was terminated at 30, 000 FEs
(i.e., MaxFEsu = 30, 000). Additionally, in BIGA and BIDE,
for a given upper-level solution, the maximum number of
FEs for the lower-level optimization (denoted as MaxFEsl)
was set to 3, 000. Each algorithm was independently run 30
times on each instance. We implemented all the experiments
in MATLAB and tested them on a personal computer with
Intel Core i7-7500 CPU @2.70 GHz and 8 GB of RAM.

C. Performance Metric

In this paper, the average total profit of SP over 30 runs
was selected as the performance metric to evaluate the per-
formance of the three compared algorithms. However, for
solution {ve,vc,m} obtained by an algorithm in one run,
if m is not optimal corresponding to {ve,vc}, it may give
rise to inaccurate evaluation about the average total profit of
SP. Therefore, the following steps were implemented. For the
given {ve,vc}, the analytical methods introduced in Sections
IV-B and IV-C were used to obtain m∗i (i ∈ R∪L). As for O,
we run the lower-level optimization 30 times independently
for {ve,vc} and recorded the best mode m∗i (i ∈ O) 5. Note
that, in order to obtain m∗i (i ∈ O) that is as close as possible
to the true optimal mode, we adopted GA used at the lower
level of BIGA as the optimizer and set the population size and
the maximum number of FEs for the lower-level optimization
to 5 ∗NP and 10 ∗MaxFEsl, respectively.

D. Results and Discussions

In this section, we employed BIDE and BIGA to directly
solve P1 and compared the performance of BIDE, BIGA,
and DACBO. In Table II, we presented their results, where

5The above process was executed for performance evaluation after the
algorithms had terminated, rather than during the running of the algorithms;
thus, the running time of the above process was not counted in the running
time of the algorithms.

TABLE II
RESULTS OF DACBO AND THE TWO COMPETITORS IN TERMS OF THE

AVERAGE TOTAL PROFIT OF SP.

n
BIDE BIGA DACBO

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

20
3.4148e+2 (4.6544e+0) ↑ 3.3935e+2 (8.9212e+0) ↑

3.4609e+2 (2.1235e+0)[1.35%] [1.99%]

40
4.8710e+2 (2.1031e+1) ↑ 4.7009e+2 (2.2985e+1) ↑

5.3763e+2 (4.6501e+0)[10.37%] [14.37%]

60
5.7884e+2 (1.5758e+1) ↑ 5.6675e+2 (2.8098e+1) ↑

7.0914e+2 (8.7725e+0)[22.51%] [25.12%]

80
6.0513e+2 (2.6902e+1) ↑ 5.5650e+2 (3.6681e+1) ↑

7.6755e+2 (1.3840e+1)[26.84%] [37.92%]

100
6.8413e+2 (2.2255e+1) ↑ 6.0464e+2 (3.4952e+1) ↑

8.7530e+2 (1.5404e+1)[27.94%] [44.76%]

120
6.9712e+2 (3.1566e+1) ↑ 6.2828e+2 (4.0854e+1) ↑

9.3915e+2 (1.5264e+1)[34.71%] [49.48%]

140
7.7855e+2 (2.9308e+1) ↑ 7.1280e+2 (4.1079e+1) ↑

1.0622e+3 (1.7471e+1)[36.43%] [49.02%]

160
7.9595e+2 (3.0746e+1) ↑ 7.0768e+2 (4.0829e+1) ↑

1.1585e+3 (2.1564e+1)[45.54%] [63.71%]

180
8.5760e+2 (3.6570e+1) ↑ 7.6804e+2 (5.1921e+1) ↑

1.2869e+3 (2.6290e+1)[50.05%] [67.55%]

200
8.7877e+2 (4.1630e+1) ↑ 8.1902e+2 (4.9973e+1) ↑

1.3621e+3 (2.4448e+1)[55.00%] [66.31%]
↑ / ↓ / ≈ 10/0/0 10/0/0

“Mean” and “Std Dev” represent the average and standard
deviation of the total profits of SP over 30 runs. In addition,
percentages in the square brackets indicate the performance
improvement of DACBO against each competitor. To test the
statistical significance between DACBO and each competitor,
the Wilcoxon’s rank-sum test at a 0.05 significance level was
performed. In Table II, ”↑”, ”↓” and ”≈” indicate that the
performance of DACBO is better than, worse than, and similar
to the competitor, respectively.

As shown in Table II, DACBO provides a better average
total profit of SP than BIDE and BIGA on each instance.
In terms of the performance improvement, DACBO shows
obvious advantages on most instances compared with BIDE
and BIGA. Specifically, the performance improvement of
DACBO against BIDE can be greater than 20% and 30%
when 60 ≤ n ≤ 100 and 120 ≤ n ≤ 160, respectively.
When n ≥ 180, DACBO achieves more than 50% perfor-
mance improvement against BIDE. Compared with BIGA, the
performance improvement of DACBO can achieve 14.37%,

11

40 80 120 160 200
0

400

800

1200

1600

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e

DACBO
BIDE
BIGA

Fig. 6. Average running time of DACBO, BIDE, and BIGA.

TABLE III
RESULTS OF DACBO AND THE TWO COMPETITORS WITH THE

DIVIDE-AND-CONQUER STRATEGY IN TERMS OF THE AVERAGE TOTAL
PROFIT OF SP.

n
BIDE BIGA DACBO

Mean (Std Dev) Mean (Std Dev) Mean (Std Dev)

20
3.4536e+2 (2.4383e+0) ≈ 3.4523e+2 (4.4660e+0) ↑

3.4609e+2 (2.1235e+0)[0.21%] [0.25%]

40
5.3309e+2 (5.1402e+0) ↑ 5.2930e+2 (1.1924e+1) ↑

5.3763e+2 (4.6501e+0)[0.85%] [1.57%]

60
7.0161e+2 (1.3835e+1) ↑ 6.9515e+2 (2.9238e+1) ↑

7.0914e+2 (8.7725e+0)[1.07%] [2.01%]

80
7.2680e+2 (1.7214e+1) ↑ 6.8324e+2 (2.8833e+1) ↑

7.6755e+2 (1.3840e+1)[6.84%] [12.34%]

100
7.7458e+2 (2.2761e+1) ↑ 7.1238e+2 (3.1876e+1) ↑

8.7530e+2 (1.5404e+1)[7.29%] [22.87%]

120
8.0557e+2 (3.1519e+1) ↑ 7.4345e+2 (2.9547e+1) ↑

9.3915e+2 (1.5264e+1)[16.58%] [26.32%]

140
8.9081e+2 (3.6438e+1) ↑ 8.3150e+2 (4.2365e+1) ↑

1.0622e+3 (1.7471e+1)[19.23%] [27.74%]

160
8.9802e+2 (3.2629e+1) ↑ 8.4618e+2 (5.0934e+1) ↑

1.1585e+3 (2.1564e+1)[29.01%] [36.91%]

180
9.2706e+2 (3.6570e+1) ↑ 9.1600e+2 (5.0754e+1) ↑

1.2869e+3 (2.6290e+1)[38.81%] [40.49%]

200
9.7769e+2 (4.1630e+1) ↑ 9.5126e+2 (6.8667e+1) ↑

1.3621e+3 (2.4448e+1)[39.31%] [43.19%]
↑ / ↓ / ≈ 9/0/1 10/0/0

25.12%, and 37.92% when n = 40, 60, and 80, respectively.
In addition, when 100 ≤ n < 160 and n ≥ 160, DACBO can
improve more than 40% and 60% average total profit of SP,
respectively. Moreover, DACBO performs statistically better
than BIDE and BIGA on each instance. Fig. 6 summaries
the average running time of BIDE, BIGA, and DACBO in
one run on each instance. It is clear that DACBO is much
faster than BIDE and BIGA. For instance, when n = 200, the
average running time of BIDE, BIGA, and DACBO in one run
is 1599.17 s, 1171.29 s, and 48.39 s, respectively.

The performance superiority of DACBO can be explained
as follows. For both BIDE and BIGA, the dimensions of the
search space (i.e., the numbers of variables) at the upper and
lower levels are 2n and n, respectively. As stated in [46], BOPs
with more than 25 variables at each level can be regarded as
large-scale BOPs (note that we tested 20 ≤ n ≤ 200 in this
paper). Obviously, BIDE and BIGA face large-scale BOPs,
thus resulting in poor performance. Instead, DACBO uses the
divide-and-conquer strategy, which divides P1 into three sub-
problems and solves them separately. Compared with P1, the
smaller-scale optimization problems are more tractable; thus,
DACBO achieves excellent performance.

One may be interested in the performance difference among
BIDE, BIGA, and DACBO if the divide-and-conquer strategy
is incorporated to BIDE and BIGA. Specifically, we only
used BIDE and BIGA to address the price optimization of
computing resources and energy for O, and employed the

analytical methods used in DACBO to address the joint
price optimization of computing resources and energy for
R and L. Under this condition, the main difference among
BIDE, BIGA, and DACBO is that the prices of computing
resources and energy for O are optimized by BIDE, BIGA,
and DE-VNS, respectively. Table III shows the results of
BIDE, BIGA, and DACBO. We can observe that in terms of
the average total profit of SP, DACBO is better than BIDE
and BIGA on each instance. In addition, as the number of
IoTDs increases, DACBO achieves increasing performance
improvement compared with BIDE and BIGA. Specifically,
when n = 20, DACBO provides 0.21% and 0.25% perfor-
mance improvement against BIDE and BIGA, respectively.
However, when n = 200, the performance improvement of
DACBO is 39.31% and 43.19% against BIDE and BIGA,
respectively. According to the Wilcoxon’s rank-sum test at a
0.05 significance level, DACBO outperforms BIDE and BIGA
on nine and ten instances, respectively, and performs similarly
with BIDE on one instance.

The reasons why DACBO performs better than BIDE and
BIGA can be explained in the following two aspects.
• Fig. 7 presents the average numbers of lower-level FEs

required by DACBO, BIDE, and BIGA. It is clear that
BIDE and BIGA need more FEs than DACBO. It is
because population-based heuristic methods are adopted
at the lower levels of BIDE and BIGA, while the single-
point based heuristic method (i.e., VNS) is employed at
the lower level of DACBO. Therefore, when only limited
FEs can be provided for the lower-level optimization, the
lower-level solution found by BIDE and BIGA may be
far from the true optimum and give rise to inaccurate
performance evaluation at the upper level.

• The studied BOP has a strong conflict between both
levels. Specifically, compared with the true lower-level
optimum, an inaccurate lower-level optimum may result
in better upper-level performance [52]. Note, however,
that, BIDE and BIGA may obtain different lower-level
optimum for the same upper-level solution in different
runs. As a result, some poor lower-level optimum may
be retained due to the good performance at the upper
level. In contrast, DACBO can obtain a stable lower-level
optimum for the same upper-level solution in different
runs; thus, the above issue can be alleviated.

Additionally, it is worth noting that the performance of
BIDE and BIGA in Table III has an edge over that in Table
II, which verifies the effectiveness of the divide-and-conquer
strategy.

Remark 2: In the supplementary file, we also investigated
the effectiveness of task grouping, the effectiveness of the
greedy method, and the performance of different pricing
schemes.

VI. CONCLUSION

In this paper, we studied a WP-MEC system. In this system,
the price optimization of computing resources and energy
was formulated as a BOP, in which the prices of computing
resources and energy were optimized at the upper level for

12

40 80 120 160 200
100

101

102

103

104

N
um

be
r

of
 F

E
s

DACBO
BIDE
BIGA

Fig. 7. Average number of lower-level FEs required by DACBO, BIDE, and
DIGA.

SP, and the mode selection, broadcast power, and computing
resource allocation were optimized at the lower level for
DO. This BOP was then transformed into a tractable form,
where only the mode selection was considered at the lower
level by taking advantage of the relationships between the
optimal broadcast power and the mode selection and between
the optimal computing resource allocation and the mode
selection. To solve the transformed BOP effectively, a divide-
and-conquer bilevel optimization method, called DACBO, was
proposed. DACBO first divided the transformed BOP into
three sub-problems by grouping tasks into three independent
sets. Afterward, for the first two sets, we devised analytical
methods. In terms of the last one, DACBO employed DE and
VNS as optimizers at the upper and lower levels, respectively.
Moreover, a greedy method was designed to quickly construct
a good initial solution for VNS. DACBO was applied to
ten instances with differential scales and compared with two
bilevel optimization methods. The results demonstrated the ef-
fectiveness of DACBO. In addition, we verified the superiority
of the pricing scheme proposed in this paper.

REFERENCES

[1] Z. Yang, Y. Ding, Y. Jin, and K. Hao, “Immune-endocrine system in-
spired hierarchical coevolutionary multiobjective optimization algorithm
for IoT service,” IEEE Transactions on Cybernetics, vol. 50, no. 1, pp.
164–177, Jan 2020.

[2] P. Huang, Y. Wang, K. Wang, and K. Yang, “Differential evolution with
a variable population size for deployment optimization in a uav-assisted
iot data collection system,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 4, no. 3, pp. 324–335, 2020.

[3] M. S. Hossain and G. Muhammad, “Emotion recognition using secure
edge and cloud computing,” Information Sciences, vol. 504, pp. 589 –
601, 2019.

[4] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service entity
placement for social virtual reality applications in edge computing,” in
IEEE INFOCOM 2018 - IEEE Conference on Computer Communica-
tions, April 2018, pp. 468–476.

[5] P. Q. Huang, Y. Wang, K. Wang, and Z. Z. Liu, “A bilevel optimization
approach for joint offloading decision and resource allocation in co-
operative mobile edge computing,” IEEE Transactions on Cybernetics,
vol. 50, no. 10, pp. 4228–4241, 2020.

[6] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp.
84–106, 2013.

[7] K. Wang, P. Huang, K. Yang, C. Pan, and J. Wang, “Unified offloading
decision making and resource allocation in ME-RAN,” IEEE Transac-
tions on Vehicular Technology, vol. 68, no. 8, pp. 8159–8172, 2019.

[8] M. Zhang, J. Huang, and R. Zhang, “Wireless power transfer with
information asymmetry: A public goods perspective,” IEEE Transactions
on Mobile Computing, vol. 20, no. 1, pp. 276–291, 2021.

[9] B. Clerckx, R. Zhang, R. Schober, D. W. K. Ng, D. I. Kim, and H. V.
Poor, “Fundamentals of wireless information and power transfer: From
RF energy harvester models to signal and system designs,” IEEE Journal
on Selected Areas in Communications, vol. 37, no. 1, pp. 4–33, Jan 2019.

[10] X. Hu, K. Wong, and K. Yang, “Wireless powered cooperation-assisted
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 17, no. 4, pp. 2375–2388, April 2018.

[11] G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang, “Energy-delay
tradeoff for dynamic offloading in mobile-edge computing system with
energy harvesting devices,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 10, pp. 4642–4655, Oct 2018.

[12] C.-H. Hong and B. Varghese, “Resource management in fog/edge
computing: A survey on architectures, infrastructure, and algorithms,”
ACM Computing Surveys, vol. 52, no. 5, Sep. 2019.

[13] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, October 2016.

[14] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D fogging: An energy-efficient and
incentive-aware task offloading framework via network-assisted D2D
collaboration,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 3887–3901, Dec 2016.

[15] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 4005–4018, June 2019.

[16] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task offload-
ing and resource optimization in proximate clouds,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 4, pp. 3435–3447, April 2017.

[17] Y. Wang, Z. Y. Ru, K. Wang, and P. Q. Huang, “Joint deployment and
task scheduling optimization for large-scale mobile users in multi-uav-
enabled mobile edge computing,” IEEE Transactions on Cybernetics,
vol. 50, no. 9, pp. 3984–3997, 2020.

[18] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Transactions on Wireless Communications, vol. 17, no. 6, pp.
4177–4190, June 2018.

[19] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, “Computation rate maximization
in UAV-enabled wireless-powered mobile-edge computing systems,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 9,
pp. 1927–1941, Sep. 2018.

[20] Y. Du, K. Yang, K. Wang, G. Zhang, Y. Zhao, and D. Chen, “Joint
resources and workflow scheduling in UAV-enabled wirelessly-powered
mec for IoT systems,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 10, pp. 10 187–10 200, Oct 2019.

[21] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Transactions on Wireless Communications, vol. 17, no. 3, pp.
1784–1797, March 2018.

[22] P. Liu, G. Xu, K. Yang, K. Wang, and Y. Li, “Joint optimization for
residual energy maximization in wireless powered mobile-edge com-
puting systems,” KSII Transactions on Internet & Information Systems,
vol. 12, no. 12, pp. 5614–5613, 2018.

[23] S. Kim, S. Park, M. Chen, and C. Youn, “An optimal pricing scheme for
the energy-efficient mobile edge computation offloading with ofdma,”
IEEE Communications Letters, vol. 22, no. 9, pp. 1922–1925, Sep. 2018.

[24] K. Ma, C. Wang, J. Yang, C. Hua, and X. Guan, “Pricing mechanism
with noncooperative game and revenue sharing contract in electricity
market,” IEEE Transactions on Cybernetics, vol. 49, no. 1, pp. 97–106,
Jan 2019.

[25] J. Nicolaisen, V. Petrov, and L. Tesfatsion, “Market power and efficiency
in a computational electricity market with discriminatory double-auction
pricing,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 5,
pp. 504–523, Oct 2001.

[26] S. Son and K. M. Sim, “A price- and-time-slot-negotiation mechanism
for cloud service reservations,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), vol. 42, no. 3, pp. 713–728,
June 2012.

[27] N. C. Luong, P. Wang, D. Niyato, Y. Liang, Z. Han, and F. Hou,
“Applications of economic and pricing models for resource management
in 5g wireless networks: A survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 4, pp. 3298–3339, 2019.

[28] X. Wang and L. Duan, “Dynamic pricing and capacity allocation of
UAV-provided mobile services,” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, April 2019, pp. 1855–1863.

[29] Z. Xiong, S. Feng, W. Wang, D. Niyato, P. Wang, and Z. Han,
“Cloud/fog computing resource management and pricing for blockchain

13

networks,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4585–
4600, June 2019.

[30] Z. Wang, K. Huang, X. Yang, X. Wan, Z. Fan, and Y. Xu, “Price-based
resource allocation in wireless power transfer-enabled massive mimo
networks,” Sensors, vol. 19, no. 15, pp. 1–17, 2019.

[31] D. Han, W. Chen, and Y. Fang, “A dynamic pricing strategy for vehicle
assisted mobile edge computing systems,” IEEE Wireless Communica-
tions Letters, vol. 8, no. 2, pp. 420–423, April 2019.

[32] T. Ding, C. Li, C. Yan, F. Li, and Z. Bie, “A bilevel optimization model
for risk assessment and contingency ranking in transmission system
reliability evaluation,” IEEE Transactions on Power Systems, vol. 32,
no. 5, pp. 3803–3813, Sep. 2017.

[33] J. Xie, Y. Mei, A. T. Ernst, X. Li, and A. Song, “A bi-level optimization
model for grouping constrained storage location assignment problems,”
IEEE Transactions on Cybernetics, vol. 48, no. 1, pp. 385–398, Jan
2018.

[34] M. Razmara, G. R. Bharati, M. Shahbakhti, S. Paudyal, and R. D.
Robinett, “Bilevel optimization framework for smart building-to-grid
systems,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 582–
593, March 2018.

[35] R. M. Kovacevic and G. C. Pflug, “Electricity swing option pricing
by stochastic bilevel optimization: A survey and new approaches,”
European Journal of Operational Research, vol. 237, no. 2, pp. 389
– 403, May 2014.

[36] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization:
From classical to evolutionary approaches and applications,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 276–295,
April 2018.

[37] J. Bard and J. Moore., “A branch and bound algorithm for the bilevel
programming problem,” SIAM Journal on Scientific and Statistical
Computing, vol. 11, no. 2, pp. 281–292, 1990.

[38] H. Önal, “A modified simplex approach for solving bilevel linear
programming problems,” European Journal of Operational Research,
vol. 67, no. 1, pp. 126 – 135, 1993.

[39] E. Aiyoshi and K. Shimizu, “A solution method for the static constrained
stackelberg problem via penalty method,” IEEE Transactions on Auto-
matic Control, vol. 29, no. 12, pp. 1111–1114, December 1984.

[40] Yuping Wang, Yong-Chang Jiao, and Hong Li, “An evolutionary al-
gorithm for solving nonlinear bilevel programming based on a new
constraint-handling scheme,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 35, no. 2, pp. 221–
232, 2005.

[41] A. Sinha, T. Soun, and K. Deb, “Using karush-kuhn-tucker proximity
measure for solving bilevel optimization problems,” Swarm and Evolu-
tionary Computation, vol. 44, pp. 496 – 510, 2019.

[42] X. He, Y. Zhou, and Z. Chen, “Evolutionary bilevel optimization based
on covariance matrix adaptation,” IEEE Transactions on Evolutionary
Computation, vol. 23, no. 2, pp. 258–272, 2019.

[43] A. Sinha, P. Malo, and K. Deb, “Evolutionary algorithm for bilevel
optimization using approximations of the lower level optimal solution
mapping,” European Journal of Operational Research, vol. 257, no. 2,
pp. 395–411, 2017.

[44] J. S. Angelo, E. Krempser, and H. J. C. Barbosa, “Differential evolution
for bilevel programming,” in 2013 IEEE Congress on Evolutionary
Computation, 2013, pp. 470–477.

[45] Y. Huang, K. Wang, K. Gao, T. Qu, and H. Liu, “Jointly optimizing
microgrid configuration and energy consumption scheduling of smart
homes,” Swarm and Evolutionary Computation, vol. 48, pp. 251 – 261,
2019.

[46] P. Q. Huang and Y. Wang, “A framework for scalable bilevel optimiza-
tion: Identifying and utilizing the interactions between upper-level and
lower-level variables,” IEEE Transactions on Evolutionary Computation,
vol. 24, no. 6, pp. 1150–1163, 2020.

[47] J. Feng, Q. Pei, F. R. Yu, X. Chu, and B. Shang, “Computation offloading
and resource allocation for wireless powered mobile edge computing
with latency constraint,” IEEE Wireless Communications Letters, vol. 8,
no. 5, pp. 1320–1323, Oct 2019.

[48] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-
efficient admission of delay-sensitive tasks for mobile edge computing,”
IEEE Transactions on Communications, vol. 66, no. 6, pp. 2603–2616,
2018.

[49] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[50] X. Wang, Z. Dong, and L. Tang, “Multiobjective differential evolution
with personal archive and biased self-adaptive mutation selection,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, vol. 50,
no. 12, pp. 5338–5350, 2020.

[51] A. Ghosh, S. Das, A. K. Das, and L. Gao, “Reusing the past difference
vectors in differential evolution—a simple but significant improvement,”
IEEE Transactions on Cybernetics, vol. 50, no. 11, pp. 4821–4834, 2020.

[52] M. M. Islam, H. K. Singh, and T. Ray, “A surrogate assisted approach
for single-objective bilevel optimization,” IEEE Transactions on Evolu-
tionary Computation, vol. 21, no. 5, pp. 681–696, 2017.

Pei-Qiu Huang received the B.S. degree in au-
tomation and the M.S. degree in control theory and
control engineering both from the Northeastern Uni-
versity, Shenyang, China, in 2014 and 2017, respec-
tively, and the Ph.D. degree in control science and
engineering, Central South University, Changsha,
China, in 2021. His current research interests include
evolutionary computation, bilevel optimization, and
mobile edge computing.

Yong Wang (M’08–SM’17) received thePh.D. de-
gree in control science and engineering from the
Central South University, Changsha, China, in 2011.

He is a Professor with the School of Automa-
tion, Central South University, Changsha, China. His
current research interests include intelligent learning
and optimization and their interdisciplinary applica-
tions.

Dr. Wang is an Associate Editor of the IEEE
Transactions on Evolutionary Computation and the
Swarm and Evolutionary Computation. He was a

recipient of Cheung Kong Young Scholar by the Ministry of Education, China,
in 2018, and a Web of Science highly cited researcher in Computer Science
in 2017 and 2018.

Kezhi Wang (M’15–SM’20) received the B.E.
and M.E. degrees from the School of Automation,
Chongqing University, China, in 2008 and 2011,
respectively, and the Ph.D. degree in engineering
from the University of Warwick, U.K., in 2015. He
was a Senior Research Officer with the University
of Essex, U.K., from 2015 to 2017. He is currently
a Senior Lecturer with the Department of Computer
and Information Sciences, Northumbria University,
U.K. His research interests include mobile edge
computing, intelligent reflection surface, and ma-

chine learning.

1

Supplementary File for “A Divide-and-Conquer
Bilevel Optimization Algorithm for Jointly Pricing

Computing Resources and Energy in Wireless
Powered MEC”

NOMENCLATURE

α The reward coefficient
m The mode set
pb The broadcast power allocated to all tasks
rc The computing resources allocated to all tasks
vc The price of computing resources for all tasks
ve The price of energy for all tasks
N The set of IoTDs
µ The power conversion efficiency
B The channel bandwidth
Ci The computing resources required to complete Ui

Di The size of input data of Ui

di The distance between the access point and the ith
IoTD

Ec
i The computing energy consumption of Ui on the MEC

server
Et

i The transmission energy consumption of Ui

Eh
i The energy harvested by the ith IoTD

El
i The computing energy consumption of Ui on the ith

IoTD
fdo The total profit of DO
fsp The total profit of SP
fc The carrier frequency
fdoi The profit of DO from Ui

fspi The profit of SP from Ui

hi The channel gain between the access point and the ith

IoTD
k0 The effective cacitance coefficient of IoTDs
k1 The effective capacitance coefficient of the MEC

server
mi The execution mode of Ui

n The number of IoTDs
N0 The variance of complex Gaussian channel noise
pbi The broadcast power allocated to Ui

pti The transmission power of the ith IoTD
pb

∗

i The optimal broadcast power allocated to Ui

pbi,max The upper bound of the broadcast power allocated to
Ui

Ri The transmission rate of the ith IoTD
rci The computing resources allocated to Ui

rli The computing capability of the ith IoTD
rc

∗

i the optimal computing resource allocated to Ui

rcmax The computing capacity of the MEC server
T c
i The computing time of Ui on the MEC server
Th The energy harvesting time
T l
i The computing time of Ui on the ith IoTD
T t
i The transmission time of Ui

Ti The completion time of Ui

Ti,max The maximum time allowed to complete Ui

Ui The task of the ith IoTD
v0 The unit price of energy consumed by the access point
vci The unit price of computing resources for Ui

vei The unit price of energy for Ui

2

S-I. ADDITIONAL EXPERIMENTS AND DISCUSSIONS

A. Effectiveness of Task Grouping

TABLE S-I
RESULTS OF DACBO-WOT AND DACBO IN TERMS OF THE AVERAGE TOTAL PROFIT OF SP.

n
DACBO-WoT DACBO

Mean (Std Dev) Mean (Std Dev)
20 3.4563e+2 (1.9305e+0) ≈ 3.4609e+2 (2.1235e+0)
40 5.3723e+2 (4.9855e+0) ≈ 5.3763e+2 (4.6501e+0)
60 7.0398e+2 (1.4306e+1) ≈ 7.0914e+2 (8.7725e+0)
80 7.6446e+2 (1.2579e+1) ≈ 7.6755e+2 (1.3840e+1)

100 8.6672e+2 (1.5339e+1) ↑ 8.7530e+2 (1.5404e+1)
120 9.2947e+2 (1.8687e+1) ↑ 9.3915e+2 (1.5264e+1)
140 1.0475e+2 (1.8386e+1) ↑ 1.0622e+3 (1.7471e+1)
160 1.1470e+3 (1.8176e+1) ↑ 1.1585e+3 (2.1564e+1)
180 1.2686e+3 (2.4280e+1) ↑ 1.2869e+3 (2.6290e+1)
200 1.3420e+3 (2.1437e+1) ↑ 1.3621e+3 (2.4448e+1)

↑ / ↓ / ≈ 6/0/4

In order to verify the effectiveness of task grouping, we designed a variant of DACBO, called DACBO-WoT. DACBO-WoT
does not group tasks into three sets and directly adopts DE-VNS to jointly price computing resources and energy for all tasks.
Table S-I presents the results of DACBO and DACBO-WoT. From Table S-I, in terms of the average total profit of SP, DACBO
obtains the better result than DACBO-WoT on each instance. In addition, according to the Wilcoxon’s rank-sum test at a 0.05
significance level, DACBO beats DACBO-WoG on six instances. Overall, the task grouping can improve the performance of
DACBO, especially on instances with a larger number of IoTDs.

3

B. Effectiveness of the Greedy Method

TABLE S-II
RESULTS OF DACBO-WOG AND DACBO IN TERMS OF THE AVERAGE TOTAL PROFIT OF SP.

n
DACBO-WoG DACBO

Mean (Std Dev) Mean (Std Dev)
20 3.4661e+2 (8.7389e–1) ≈ 3.4609e+2 (2.1235e+0)
40 5.3780e+2 (4.5728e+0) ≈ 5.3763e+2 (4.6501e+0)
60 7.1531e+2 (1.1548e+1) ↓ 7.0914e+2 (8.7725e+0)
80 7.4152e+2 (1.6904e+1) ↑ 7.6755e+2 (1.3840e+1)

100 7.7291e+2 (2.0276e+1) ↑ 8.7530e+2 (1.5404e+1)
120 7.9194e+2 (2.2444e+1) ↑ 9.3915e+2 (1.5264e+1)
140 9.1949e+2 (2.8146e+1) ↑ 1.0622e+3 (1.7471e+1)
160 1.0126e+3 (2.2288e+1) ↑ 1.1585e+3 (2.1564e+1)
180 1.1179e+3 (3.2397e+1) ↑ 1.2869e+3 (2.6290e+1)
200 1.2009e+3 (3.5696e+1) ↑ 1.3621e+3 (2.4448e+1)

↑ / ↓ / ≈ 7/1/2

In this paper, a greedy method was used to generate an initial solution for VNS. To investigate the effect of the greedy
method on the performance of DACBO, a variant of DACBO, called DACBO-WoG, was designed, in which the order of
tasks was generated randomly instead of using the greedy method. The results of DACBO and DACBO-WoG are presented
in Table S-II. From Table S-II, in terms of the average total profit of SP, DACBO outperforms DACBO-WoG on seven out of
ten instances according to the Wilcoxon’s rank-sum test at a 0.05 significance level. The comparison reveals that the greedy
method does improve the performance of DACBO.

4

C. Performance of Different Pricing Schemes

In this subsection, we are interested in studying the performance of different pricing schemes. We compared our pricing
scheme with the following three pricing schemes:

• Minimal pricing scheme: For each task, vci and vei are set to vci,min and vei,min, respectively.
• Maximal pricing scheme: For each task, vci and vei are set to vci,max and vei,max, respectively.
• Random pricing scheme: For each task, vci and vei are set to any value within [vci,min, v

c
i,max] and [vei,min, v

e
i,max],

respectively.

0

300

600

900

1200

1500

20 40 60 80 100 120 140 160 180 200

A
v
er

ag
e

to
ta

l
p
ro

fi
t

o
f

S
P

n

Minimal price scheme Maximal pricing scheme

Random price scheme Our price scheme

Fig. S-1. Results of the four pricing schemes in terms of the average total profit of SP.

Fig. S-1 presents the average total profits of SP resulting from the four pricing schemes on ten instances over 30 runs. As
shown in Fig. S-1, our pricing scheme consistently performs the best among the four pricing schemes, followed by the random
pricing scheme. Thus, the superiority of our pricing scheme has been verified.

5

D. Sensitivity in Relation to F and CR in DACBO

Fig. S-2. Results of DACBO with 25 different combinations of F and CR in the case of n = 20.

To study the sensitivities of F and CR in DACBO, we tested DACBO with 25 combinations of F and CR in the case
of n = 20, in which F and CR are selected from two sets F = {0.1, 0.3, 0.5, 0.7, 0.9} and CR = {0.1, 0.3, 0.5, 0.7, 0.9},
respectively. Fig. S-2 presents the average total profits of SP resulting from DACBO with 25 combinations of F and CR. It
can be seen from Fig. S-2 that the performance of DACBO is not sensitive to the combinations of these two parameters, in
addition to the combinations of CR ≥ 0.3 and F = 0.1 as well as CR = 0.9 and F = 0.3.

View publication statsView publication stats

https://www.researchgate.net/publication/355120752

	DACBO
	DACBO-Supp

