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ARTICLE INFO ABSTRACT

Article History: Exposure to light affects our physiology and behaviour through a pathway connecting the retina to the circa-
Received 24 May 2021 dian pacemaker in the hypothalamus — the suprachiasmatic nucleus (SCN). Recent research has identified
Revised 18 August 2021 significant individual differences in the non-visual effects of light mediated by this pathway. Here, we discuss
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the fundamentals and individual differences in the non-visual effects of light. We propose a set of actions to
improve our evidence database to be more diverse: understanding systematic bias in the evidence base, ded-
icated efforts to recruit more diverse participants, routine deposition and sharing of data, and development
of data standards and reporting guidelines.
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1. Introduction

The physiology and behaviour of all living species are rhyth-
mic and synchronized to the 24-hour solar day. In humans, these
daily rhythms are synchronized by a central pacemaker — the cir-
cadian clock — located in the suprachiasmatic nucleus (SCN) in
the hypothalamus [1]. The SCN receives information about envi-
ronmental illumination through the retinohypothalamic tract
(RHT), enabling it to synchronize our internal time to the external
light-dark cycle. This clock is the origin of many circadian
rhythms in physiology, including the secretion of hormones, vari-
ation in body temperature, and performance, which persist even
in the absence of a zeitgeber, a stimulus synchronizing internal
with external time. Besides influencing the clock in this funda-
mental way through circadian entrainment, light also directly
influences melatonin production, alertness, cognition, and other
functions [2]. The term “non-visual effects of light” is often used
as an umbrella term for these effects.

The non-visual effects of light are mediated by a multi-compo-
nent photoreceptive system, consisting of rods, cones and the
intrinsically photosensitive retinal ganglion cells (ipRGCs). The
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ipRGCs have unique wavelength-dependent sensitivity arising
from the expression of the photopigment melanopsin. Melanopsin
is sensitive to short-wavelength light [3—-6], with a peak sensitiv-
ity around 480 nm, and encodes environmental light levels inde-
pendent of the canonical photoreceptors — the cones and the
rods, which allow us to see the colourful, detailed and moving
world around us. Historically, its discovery in the mammalian eye
in the late 1990s [7,8] coincided with several converging lines of
evidence pointing to an additional photoreceptor system mediat-
ing light-induced melatonin suppression during the biological
night [9-11].

The seminal discovery of light-induced suppression of endoge-
nous melatonin led to a focused effort, over the past 40 years, to
uncover how light regulates neuroendocrine, circadian and other
non-visual processes. Critically, light exposure at the wrong time,
such as at night, causes our circadian rhythms to desynchronize from
the sleep wake-cycle [12]. The term ‘circadian misalignment’ is fre-
quently used to describe this situation, which occurs during shift-
work, transmeridian travel and extended work shifts [13]. Prolonged
light exposure, especially after dusk, can also adversely impact sleep:
[1] The artificial light we expose ourselves to in the evening at home
suppresses sleepiness and delays sleep onset [14-16]. Given this
important role of light exposure, a critical translational goal is to
maximize its beneficial effects and minimize its possible adverse
effects.
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2. Individual differences in the non-visual effects of light

The non-visual effects of light depend on timing [95], intensity,
[96] wavelength [97.98] and duration [99] of light exposure, and
prior light history [2]. There is converging evidence for individual dif-
ferences in the non-visual response to light in healthy participants,
which are not easy to explain away [17-22]. A recent study by Phil-
ipps et al [17]. demonstrated that melatonin suppression by evening
light could be subject to substantial individual differences. The most
sensitive observer was almost 60 times more sensitive than the least
sensitive observer in their data set. Specifically, the most sensitive
observer experienced 50% melatonin suppression at ~10 Ix (approxi-
mately similar to dim reading light illumination). In contrast, for the
least sensitive observer, 50% melatonin suppression occurred at 400
Ix (similar to bright home illumination). Preceding light exposure
could not account for these differences, also termed "photic history",
desensitizing the evening response to light [23-28].

What gives rise to the stark individual differences in sensitivity to
light (recently reviewed by Chellappa [29])? Retinal illuminance may
vary between individuals due to progressive age-dependent changes
in the lens, causing a reduction in the amount of short-wavelength
light passing through the eye and scatter [30—33], and differences in
pupil size [22,32,34]. Health status and the use of medications may
also change non-visual sensitivity to light [35]. Furthermore, there is
evidence for genetic variability changing the sensitivity of melanop-
sin signalling characteristics [36,37].) Long-term ‘photic history’ at
various time scales, including seasonal changes in the light environ-
ment [38—-42] also contribute to individual differences in sensitivity
to non-visual effects of light [43,44]. A complete understanding of all
the factors underlying the observed individual differences eludes us,
necessitating more principled research.

3. Standardization and the prospect of a non-visual standard
observer

A significant accomplishment in driving forward the integration of
physiologically relevant knowledge in this domain was the development
of the international standard CIE S 026/E:2018 by the International Com-
mission on Illumination (CIE) [45], based on prior scientific consensus
[6]. CIE S026/E:2018 standardizes the spectral weighting functions for
cones, rods and melanopsin, thereby standardizing the metrology for
characterizing light concerning its non-visual effects on humans [46],
and paving the way for building and testing mechanistic models of circa-
dian and neuroendocrine phototransduction.

The concept of the “standard observer” is pervasive in light,
vision, and colour science. One such “standard observer” is implicit in
the photopic luminosity curve V(1) underlying photometric measure-
ments of light [47]. The photopic luminosity curve describes the spec-
tral sensitivity of human observers in response to flickering light in a
paradigm called heterochromatic flicker photometry, which primarily
reflects contributions from the L and M cones [48]. Importantly, dif-
ferent psychophysical paradigms may yield different V(1)-like curves
[49]. It is well known that V(1) underestimates sensitivity to short-
wavelength light even in average data [48], and indeed, “no one is
the mean” [50]. V(4) is implicit in the candela, the only SI unit that
refers to human physiology by incorporating empirical data on spec-
tral sensitivity. V(1) remains the standard function for imaging and
visual display specification in modern technology, ranging from mon-
itors to cameras and smartphones. Another standard observer is the
CIE 1931 colourimetric observer [51], describing the spectral sensitiv-
ity of human colour vision using standard colour matching functions
— X(4), ¥(A) and Z(4). The y(4) curve was by design constrained to be
the same as V(4) [51]. It is important to note that these standard
observer curves based on data from the UK and the US [52,53] It is
clear why standard functions are helpful, namely, to simplify and

standardize metrology. At the same time, an average spectral sensi-
tivity curve cannot represent all human responses to light.

The melanopsin spectral sensitivity curve standardized in CIE
S026/E:2018 comes closest to these types of standard observers. It
shows how a spectrum should be weighted to derive an appropri-
ately weighted quantity. In addition to a standard curve, CIE S026/
E:2018 also contains information for generating age-adjusted spec-
tral sensitivity curves, accounting for age-dependent changes lens
transmission.

A second and more crucial translational question is how these quanti-
ties should be mapped to the physiological response, e.g., the specific
effect of light of a given melanopic irradiance. Given the extensive range
of individual differences in this response to the same corneal stimulus, a
single average dose-response curve will not do the underlying human
diversity justice. Instead, we need new ways to make distributional pre-
dictions rather than point estimates and communicate these clearly.

Evidence-based recommendations for modifying our light environ-
ment and light exposure to enhance its beneficial effects whilst minimiz-
ing negative ones are being sought in architectural lighting design,
lighting regulations, and building standards [2,54,55]. An international
group of experts led by Brown and Wright recently proposed a minimum
of 250 lux (melanopic EDI) daytime level, 10 lux evening level and a 1 lux
maximum as the night level [56]. These recommendations are tied to a
specific observer that is an implied group-average standard model, which
makes these criterion light levels appropriate only for this hypothetical
observer. Developers of guidelines, regulations, and standards need to be
sensitive to such biases in the evidence base.

4. The question of participant diversity: ways to move forward

To what extent do data generated in sleep and circadian research
reflect the whole range of biological diversity? It is now acknowl-
edged that data on psychological phenomena come from Western,
educated, industrialized, rich, and democratic (WEIRD) countries
[57-59], thus creating a biased evidence base. More critically, there
is a “sex data gap”, i.e., the underrepresentation of women as partici-
pants in biomedical research [60—62]. Underrepresentation of spe-
cific groups of people such as Black, indigenous, and other people of
colour has important consequences for biomedical research findings'
generalisability [63]. While some studies have addressed differences
in circadian physiology across sex (e.g. [64—66],) and ethnicity (e.g.
[67,68],), these are not understood or translated systematically.

Realizing that no single laboratory or research group can fully
map out the non-visual responses to light in the face of individual
differences and human diversity, a key imperative is to define,
explore and evaluate new mechanisms to advance our knowl-
edge. We propose the following steps, which go hand in hand:

¢ Understanding systematic bias in the evidence base: When con-
sidering the development of guidelines and recommendations for
what constitutes "good" light exposure, building upon a demo-
graphically biased biomedical evidence base can limit the gener-
alizability and utility of any recommendation. We recommend
systematic surveys of the literature to understand the extent to
which research on the non-visual effects of light represents
diverse populations (for examples of surveys on sex bias in neuro-
science and biomedical research, see [62] and the 10-year follow-
up [61]). Journal editors or relevant scientific societies could com-
mission such surveys.

Dedicated efforts towards recruiting diverse participants: To
make biomedical research generalizable requires a broad repre-
sentation of different participants. This could be accomplished
through a variety of means [63,69,70], e.g., by appropriate incen-
tives and penalties from funders and institutions, additional
research support for developing strategies (e.g., the Wellcome
Trust’s Diversity & Inclusion scheme, available to Wellcome-
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funded researchers), patient involvement and co-design mecha-
nisms, and increasing diversity amongst the researchers them-
selves.

¢ Routine deposition and sharing of data in repositories: Data gen-
erated in original research should be made available in a well-
documented format. This is often described under the heading
“open data”. To reflect human diversity in data on the non-visual
effects of light requires a data aggregation effort which allows for
the combination of data from different participant samples, facili-
tating novel analyses by participant characteristics that otherwise
would not be possible.

Indeed, many journals and funders mandate making data avail-
able. Such a mandate can take many forms: Nearly all journals accept
supplementary materials, such that data being reported on become
part of the report itself. Some publishers also publish data-only jour-
nals such as Scientific Data. Furthermore, free repositories can be
used to store and make available data, including FigShare (https://fig
share.org/) and Zenodo (https://zenodo.org/). For sleep data in partic-
ular, the NIH-funded National Sleep Research Resource (NSRR; https://
sleepdata.org/) is a domain-specific example, and NSRR has allowed
novel big-data analyses of existing data [71]. We are at present in
the early stages of developing a novel Circadian Data Hub. There are
some concerns regarding the possibility of reidentifying single partic-
ipants under certain circumstances. These risks need to be carefully
navigated, particularly when considering participants who may have
experienced discrimination [72].

More generally, and supporting the goal of making data available,
the following two action points should also be considered:

¢ Development of meta-data and data standards: Sharing of data is
only useful when the data are in a format that can be understood.
The lack of publicly available or open data in tabulated form
indeed may hinder evidence aggregation and synthesis. If data are
presented in graphical form (i.e. in a figure in a plot), data points
can be estimated using "data thieving" tools like WebPlotDigitizer
[73,74].. While this technique can be used to "salvage" published
data that have a very low probability of being accessible in tabu-
lated form (for some examples, see [56,75,76]), these digital data
extraction techniques necessarily lead to information loss. In cases
where data points overlap, these techniques are of limited use.
Data should be findable, accessible, interoperable, and reusable
(FAIR) [77]. One mechanism by which to achieve interoperability
is the development of explicit meta-data and data standards. Suc-
cessful recent examples for this are the Brain Imaging Data Struc-
ture (BIDS; [78]) and the Human Cell Atlas meta-data schema
(https://github.com/HumanCellAtlas/metadata-schema). of
course, data standards need tooling that makes it easy for data to
comply with the standard. Decisions about data organization and
storage should be standardized and made accessible. When this is
done, it will free up time and resources for other science-related
activities.

e Improving reporting through the development of domain-spe-
cific reporting guidelines: Besides storing and organizing data,
ways to report and document research also need to be standard-
ized to “future-proof” the data we generate [79]. Guidelines, stan-
dard data schemas, and tooling for easy integration into the
research workflow will make our science more robust — and
more generalizable. Guidelines for reporting light exposure in
chronobiology and sleep research have been developed [80,81].
Most recently, the CIE published a technical note on docu-
menting studies examining the non-visual effects of light [82].
Similar recommendations/guidelines exist for actigraphy
[83,84] (reviewed in [85]), pupillometry [86] and melatonin
measurements [87]. Ideally, guidelines and standards should
be developed through a structured process and following

recommendations from the EQUATOR (Enhancing the QUAlity
and Transparency Of health Research) Network (https://www.
equator-network.org/) [88,89].

5. Outstanding research questions

In this review, we have highlighted a series of research questions
which are key to answer in a principled and systematic way:

e What gives rise to the individual differences in human non-visual
sensitivity to light?

e Can these individual differences be related to other factors with
genotypic and phenotypic variability?

e How can we build an inclusive evidence base that reflects the
entire range of human diversity?

¢ How do we reflect human diversity and variation in translational
applications of research, such as recommendations for lighting
and light exposure?

Conclusion

Research on the non-visual effects of light needs to facilitate
the development of an evidence base that recognizes individual
differences and variability. We have proposed concrete steps that
will help achieve this. Biomedical research on the whole requires
wider engagement with diversity and inclusion at all stages of
the research life cycle [90], including hiring, funding allocation
[91,92], and citation practices [93,94]. Research on the non-visual
effects of light is not exempt from that.

Search strategy and selection criteria

Data for this narrative review were identified by searches of
PubMed and Google Scholar, and references from relevant articles
using the search terms “non-visual effects of light”, “melanopsin”,
“individual differences” and related terms. Searches were also formed
based on investigator names. Only full research articles published in
English between 1980 and 2021 were included. Articles were chosen
according to their relevance to the theme as perceived by the
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