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Open research 
All data used in our analyses are publicly available. Lake pollen and local vegetation 
survey data are freely available through Jackson (2019) at 
https://doi.org/10.1002/ecy.2784. Tree abundance in concentric rings from 1 km to 300 
km distance from each lake were estimated using data from the publicly available U.S. 
Forest Inventory and Analysis (FIA) database version 5.1, downloaded in November 
2012 from www.fia.fs.fed.us. We used all available field-measured plot samples during 
the years 2000–2012. These plots were identified as follows: (1) at least one accessible 
forest condition present (FIA Condition table COND_STATUS_CD = 1); standard 
production plot (FIA Plot table QA_STATUS = 1 or QA_STATUS = No Data); and (3) 
plot was measured, as opposed to modeled (FIA Plot table KINDCD not = 4). The 
Bayesian statistical model was coded in R and is available in Data S1 (pollen_model.r) 
and also archived on Zenodo at https://doi.org/10.5281/zenodo.5825842 (Liu 2022). 
  

https://doi.org/10.1002/ecy.2784
http://www.fia.fs.fed.us/
https://doi.org/10.5281/zenodo.5825842


 

  

Abstract  

Despite ongoing advances, quantitative understanding of vegetation dynamics over 

timespans beyond a century remains limited. In this regard, pollen-based reconstruction 

of past vegetation enables unique research opportunities by quantifying changes in plant 

community compositions over hundreds to thousands of years. Critically, the 

methodological basis for most reconstruction approaches rests upon estimates of pollen 

productivity and dispersal. However, previous studies have reached contrasting 

conclusions concerning these estimates, which may be perceived to challenge the 

applicability and reliability of pollen-based reconstruction. Here we show that conflicting 

estimates of pollen production and dispersal are, at least in part, artifacts of fixed 

assumptions of pollen dispersal and insufficient spatial resolution of vegetation data 

surrounding the pollen-collecting lake. We implemented a Bayesian statistical model that 

relates pollen assemblages in surface sediments of 33 small lakes (< 2 ha) in the 

northeastern United States, with surrounding vegetation ranging from 101 to >105 m from 

the lake margin. Our analysis reveals three key insights. First, pollen productivity is 

largely conserved within taxa and across forest types. Second, when local (within 1-km 

radius) vegetation abundances are not considered, pollen-source areas may be 

overestimated for a number of common taxa (Cupressaceae, Pinus, Quercus, and Tsuga). 

Third, pollen dispersal mechanisms may differ between local and regional scales, which 

is missed by pollen-dispersal models used in previous studies. These findings highlight 

the complex interactions between vegetation heterogeneity on the landscape and pollen 

dispersal. We suggest that, when estimating pollen productivity and dispersal, both 

detailed local and extended regional vegetation must be accounted for. Also, both 



 

  

deductive (mechanistic models) and inductive (statistical models) approaches are needed 

to better understand the emergent properties of pollen dispersal in heterogeneous 

landscapes.  
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Introduction 

Global environmental changes can affect vegetation composition at regional to 

global scales, including community turnover (Willis et al. 2010) and ecosystem 

transformations (Nolan et al. 2018, Jackson 2021). These vegetation dynamics can take 

decades, centuries, or millennia to unfold, and have large consequences for global carbon 

and energy budgets (Bonan 2008, Bonan and Doney 2018). A primary approach to 

studying long-term vegetation dynamics is through geohistorical records, using “proxies” 

such as fossil pollen deposited in lakes, wetlands, and hollows. Interpreting changes in 

pollen records across space and over time provide insights into the history of vegetation, 

climate, disturbance, and human impacts on ecosystems (e.g., Marsicek et al. 2018, 

Nolan et al. 2018, Mottl et al. 2021). While analyses of pollen data have been ongoing for 

over a century (Edwards et al. 2017), the urgent need to better understand vegetation 

response to anthropogenic climate change has led to a recent surge in developing and 

applying a variety of quantitative methods for reconstructing past vegetation from fossil 

pollen data (Williams et al. 2011, Mazier et al. 2012, Theuerkauf and Couwenberg 2018, 

Zanon et al. 2018, Dawson et al. 2019, Trachsel et al. 2020). 

 Fundamental to most of these reconstruction approaches is the robust estimation 

of pollen productivity and dispersal. Pollen productivity is typically defined as the 

number of pollen grains produced per-unit relative abundance of a plant taxon. Pollen 

dispersal describes how far airborne pollen grains travel before being deposited. 

Although most pollen grains are deposited near their source, a substantial amount of 

pollen deposited in a lake derives from distant sources owing to the leptokurtic (i.e., fat-

tailed) shape of pollen dispersal kernels (Prentice 1985, Jackson and Lyford 1999). Both 



 

  

pollen productivity and dispersal vary among taxa (pollen taxa are typically defined at the 

genus- or family-level due to the limitations of pollen identification) but are often 

assumed to be invariant within taxa. Thus, beyond the poorly studied effects of 

intraspecific variation, pollen taxa may include multiple species that can differ in pollen 

productivity and dispersal. 

Inconsistent estimates of pollen productivity and dispersal from different studies 

can cast doubt on the reliability and applicability of quantitative pollen-based vegetation 

reconstruction. Pollen productivity estimates for a given taxon can differ by one or more 

orders of magnitude across regions (Prentice and Webb III 1986, Broström et al. 2008, 

Mazier et al. 2012, Li et al. 2018) or time scales (e.g., interannually or decadally -  see 

Kuoppamaa et al. 2009, Minckley et al. 2012), which raises concerns about the 

applicability of pollen productivity estimates across space and time (e.g., Broström et al. 

2008, Li et al. 2018). Therefore, productivity estimates are often validated and applied 

only within the same region (Hellman et al. 2008b, 2008a, Sugita et al. 2010). For pollen 

dispersal, the appropriate spatial scale for relating lake pollen data to the surrounding 

vegetation remains unclear, with a 100-fold difference among studies in assumed or 

estimated pollen-source areas. Specifically, some studies identify the “relevant source 

areas of pollen (RSAP)” (Sugita 1994) for pollen deposited in small and medium sized 

lakes as ranging from a few hundred meters to a few kilometers (e.g., Bradshaw and 

Webb 1985, Bunting et al. 2004, Hellman et al. 2009a, Han et al. 2017), whereas recent 

data-driven studies estimate the primary lake-pollen source area to be on the order of 

hundreds of kilometers for almost all tree taxa (Kujawa et al. 2016, Dawson et al. 2016). 



 

  

Apparent contradictions in pollen productivity and dispersal may arise due to 

poorly specified dispersal kernels or inadequate information on landscape heterogeneity 

(e.g., the spatial distribution of pollen source taxa) (Liu 2015, Li et al. 2018). Notably, 

two prominent types of pollen-vegetation models, ERV models (Prentice and Webb III 

1986, Sugita 1994, Bunting et al. 2013) and STEPPS models (Paciorek and McLachlan 

2009, Dawson et al. 2016), are based on different assumptions. In studies using ERV-

type models, the dispersal-functions (weights) applied to actual or simulated vegetation 

data are constructed a priori, using either distance-weighting heuristics or pollen-

transport models. These dispersal function assumptions (Jackson and Lyford 1999, 

Theuerkauf et al. 2013) underlie estimation of the relevant source areas of pollen 

(RSAP), which are typically hundreds of meters in radius, and determine the areal extent 

of vegetation surveys (Bunting et al. 2004, Hellman et al. 2009a, 2009b, Li et al. 2018), 

which are typically on the order of a few kilometers. In contrast, studies based on the 

STEPPS model (Dawson et al. 2016, 2019, Trachsel et al. 2020) simultaneously estimate 

pollen productivity and dispersal from a network of vegetation and pollen data, and the 

estimated dispersal kernels suggest that vegetation from hundreds of kilometers away still 

strongly influences pollen assemblages. The spatial resolution of vegetation data used in 

the STEPPS model, however, is much coarser than in ERV models. For example, in the 

STEPPs model, “local” vegetation surrounding a lake is represented by mean vegetation 

composition within the corresponding coarse 8 km × 8 km grid cell. This could result in 

misrepresentation of critical local pollen sources  (Paciorek and McLachlan 2009, Liu 

2015), and observed pollen may be misattributed to more distant vegetation.  



 

  

In this study, we aim to rigorously quantify pollen productivity and dispersal by 

combining the strength of ERV models (a hierarchy of finely resolved vegetation data 

near the lake) and the STEPPS model (geographically extensive vegetation data, 

empirically estimated dispersal, and uncertainty quantification) while overcoming their 

respective limitations. We implemented a Bayesian statistical model to relate pollen 

assemblages at 33 small lakes (< 2 ha) from three study regions in the northeastern 

United States to their surrounding vegetation. Our model is informed by detailed forest 

inventory data resolved at various distances within 1 km from the lakeshore (local), and 

extends from 1 km to 300 km from the lakeshore (regional). Using these data, the 

approach simultaneously quantifies the influences of pollen productivity and dispersal. 

We address the following questions: (Q1) how much do pollen productivity estimates 

vary within taxa across three study regions of different forest types in the northeastern 

US? (Q2) What are the pollen dispersal characteristics (i.e., how does the probability of 

pollen-deposition decline with distance from the pollen source), and how effectively do 

mechanistic models of pollen dispersal capture the observed patterns? Finally, (Q3) how 

important is local and regional vegetation for accurately estimating pollen productivity 

and dispersal? Respectively, these questions correspond to the three major factors 

influencing how pollen deposited in lakes represents surrounding vegetation: pollen 

productivity, dispersal, and landscape heterogeneity. Thus, we expect this work to help 

refine our understanding of pollen productivity and dispersal patterns, and to motivate a 

new generation of quantitative pollen-based reconstructions to understand vegetation 

dynamics. 

 



 

  

Methods 

Study sites and data 

The study area is located in the northeastern United States, and includes 33 small lakes 

(area < 2 ha) from three regions of different forests (Fig. 1). Dense forests around the 14 

Fish Creek (FC) sites in the central Adirondack Mountains in New York consist of old-

growth hardwood and mixed stands (dominant genera are Fagus, Acer, Betula, Tsuga, 

and Picea), selectively logged stands (often dominated by Fagus), and second-growth 

stands (dominated by the aforementioned taxa and Pinus). Nine sites from the eastern 

Adirondack Mountains (EAD), also in New York, are mostly surrounded by second-

growth, mixed hardwood/coniferous forests (dominant genera are Acer, Betula, Fraxinus, 

Pinus, Quercus, and Tsuga), often dominated by Pinus. The 10 southern New England 

(SNE) sites are in Quercus-dominated second-growth forests. Vegetation in these regions 

is described in detail by Jackson (1990, 2019). Using lakes from the three different 

regions, our model will allow uncertainty estimations across different vegetation 

compositions as well as within pollen-taxa (i.e., the species of Betula, Pinus, and Quercus 

differ to some extant among regions). 

Due to the varying taxonomic resolution of pollen identification, pollen types 

grouped by taxa (often genus, sometime species or family) rather than species. Our 

analysis focused on 13 arboreal taxa (Abies, Acer rubrum, A. saccharum, Betula, Fagus, 

Fraxinus, Larix, Picea, Pinus, Populus, Quercus, Cupressaceae, and Tsuga), which 

included all taxa exceeding 5% in pollen assemblages or vegetation proportions at any 

site.  



 

  

We operationally define the “local scale” as within 1 km from the lakeshore and 

the extended “regional scale” as spanning 1-300 km from the lakeshore. This distinction 

is introduced to distinguish major vegetation-survey datasets and accommodate possible 

major differences in pollen dispersal between the two scales in our model. And unlike the 

notion of “background pollen” in ERV models, sites within the same region in our model 

may have different pollen inputs from regional sources owing to vegetation heterogeneity 

at scales of 101-102 km. The pollen sampling procedure and the local vegetation survey 

protocol follow Jackson (1990, 2019). At each of the 33 small lakes, modern pollen 

samples were collected from the top 1 cm of sediments at the center of the lake between 

1986 and 1990. During the same period, trees growing within 1 km around the lakeshore 

were surveyed with varying intensity, including exhaustive or inventory-plot 

measurements within 20 m, and transects of plotless angle-count (Bitterlich) samples. 

Total basal area (m2) was calculated for each tree taxon growing within 1-km radius, for 

each of five distance-intervals from the shore of each small lake: 0-20, 20-50, 50-100, 

100-500, and 500-1000 m. Site information is listed in Appendix S1: Table S1. Pollen 

counts, local basal areas of taxa at each lake, and detailed description of the sampling 

methods and data are reported in Jackson (2019). 

To estimate contemporary vegetation abundances outside the 1-km radius, we 

obtained data from the Forest Inventory and Analysis (FIA) program for 349,309 

individual trees in 7,354 plots between 2000 and 2012 (Fig. 1). Because some plots were 

re-measured during this time, a total of 10,753 plot-level records were used. The total 

basal area (m2) for each tree taxon was calculated for each plot-level record. If a plot 

location was measured multiple times between 2000 and 2012, the mean basal area of 



 

  

each taxon was calculated. For each lake site, we calculated the mean vegetation 

abundances of taxa in ring-shaped bands located at different distances to the lake, and a 

total of 100 “rings” were considered at each lake site. Each ring is 3-km wide. That is, the 

smallest/nearest ring has an inner radius of 1 km and an outer radius of 4 km from the 

lakeshore, whereas the largest/furthest ring has an inner radius of 298 km and an outer 

radius of 301 km from the lakeshore. We chose the ring width to be 3 km because the 

coordinates for FIA plots are “fuzzed” within 0.5-1 mile (i.e., 0.8-1.6 km; O’Connell et 

al. 2017) and some are “swapped” (plot coordinates exchanged between similar private 

forest plots within the same county); therefore, finer rings in this case will not result in 

better resolution. Although vegetation within the 1 km radius was sampled in the late 

1980s, more than a decade before the FIA plots were sampled, the change in vegetation 

composition over that decade (and/or difference due to sampling methods) appears to be 

small (Appendix S1: Fig. S1).  

Furthermore, we assessed spatial patterns of vegetation heterogeneity around each 

lake, using vegetation abundance data from both vegetation surveys at the local scale and 

forest inventories at the regional scale. To do this, we used squared-chord distance (SCD; 

Overpeck et al. 1985) to quantify the dissimilarities between vegetation composition (i.e., 

relative abundances) at different distances from the lakeshore and several “focal” 

vegetation compositions at 0.02, 0.1, 0.5, 1, 9, 27, and 45 km from the lakeshore. 

 

Bayesian model specification  

We developed a Bayesian statistical model that relates deposited pollen assemblages with 

surrounding vegetation at the 33 small lakes. Recall the “pollen source topography” 



 

  

analogy: Essentially, our model is informed by pollen counts from the lakes as well as the 

vegetation distribution maps surrounding the lakes, and estimates taxon-specific pollen 

productivities (estimated for each study region) and parameters describing dispersal 

patterns (estimated for local and regional scales respectively).  

Our model structure is overall similar to the STEPPS approach (e.g., Dawson et 

al. 2016) in terms of the Bayesian implementation and the delineation of a focal area 

around the site and those areas beyond. However, important data choices and model 

implementations differ. Our analysis has two distinct features that accommodate complex 

landscape heterogeneity: (i) the finely resolved and extended spatial information of 

vegetation abundances (the vegetation distribution map), and (ii) the separate, explicit 

treatment of local versus regional dispersal. Specifically, we decomposed pollen 

contributions into local sources (originating within 1 km from the lakeshore) and regional 

sources (originating beyond 1 km from the lakeshore). We estimated taxon-specific local 

contributions, which are the proportions of pollen contributed by local vegetation relative 

to all pollen of the same taxa from all distances. Relative vegetation abundances (i.e., 

vegetation composition) are distance-weighted within their respective scales (local versus 

regional). At the local scale, the taxon-specific influences of vegetation on pollen are 

estimated for the five concentric rings (0-20, 20-50, 50-100, 100-500, and 500-1000 m 

intervals from the lakeshore) at which local vegetation was finely surveyed. At the 

regional scale, the taxon-specific influences of vegetation on pollen are estimated for 

increasing radial rings (1-4, 4-7, 7-10, …, and 298-301 km from the lakeshore).  

Our modeling approach is as follows. At site s = 1, …, S (S = 33; s = 1, …, 14 

belong to the FC region, s = 15, …, 23 belong to the EAD region, and s = 24, …, 33 



 

  

belong to the SNE region), observations of lake sediment-surface pollen samples, 

vegetation within 1 km, and FIA plots within 300 km were available as described above. 

To account for observation error, we modeled pollen counts, Ys,t, of taxon t = 1, …, T (T 

= 13) in the sample from site s (where Ys is the vector of site-specific pollen counts, of 

length T) as coming from a multinomial distribution with probability parameters 

determined by the relative pollen load, Ps, for each taxon at that site (Ps is also a vector of 

length T and ∑ 𝑃𝑃𝑠𝑠,𝑡𝑡 = 1𝑇𝑇
𝑡𝑡=1 ): 

𝐘𝐘𝑠𝑠 ∼ Multinomial(𝐏𝐏𝑠𝑠,  N𝑠𝑠)       (1) 

where 𝑁𝑁𝑠𝑠 = ∑ 𝑌𝑌𝑠𝑠,𝑡𝑡
𝑇𝑇
𝑡𝑡=1  is the total number of pollen grains counted in the sample from site 

s, summing across all taxa. 

Ps,t at site s is determined by both local and regional sources of pollen and by the 

taxon-specific pollen productivities, Φr,t (scaling factor, per relative vegetation 

abundances, therefore unitless) for region r = 1,…, R (R =3): 

𝑃𝑃𝑠𝑠,𝑡𝑡 = Φ𝑟𝑟(𝑠𝑠),𝑡𝑡 �γ𝑡𝑡 ∙ 𝑉𝑉𝑉𝑉𝑠𝑠,𝑡𝑡 + �1 − γ𝑡𝑡� ∙ 𝑉𝑉𝑉𝑉𝑠𝑠,𝑡𝑡�    (2) 

where r(s) denotes the region in which site s is location; γt is the taxon-specific local 

weights, representing the proportion of pollen contributed by local trees of taxon t 

relative to all (local and regional) pollen of that taxon. VLs,t is the distance-weighted 

relative abundance of each taxa t within 1 km (local vegetation composition) of site s; 

VRs,t is defined similarly to VLs,t, but for trees occurring beyond 1 km and up to ~ 300 km 

from the lakeshore (regional vegetation composition). 

We modeled the taxon- and region-specific pollen productivities (Φ) 

hierarchically. We expect Φr,t to vary among taxa; in addition, because environmental 

conditions, phenotypes of trees, and growth forms of trees may vary across regions, Φr,t 



 

  

may also vary within taxa across regions. Therefore, for each taxon in region r = 1, …, R 

(R = 3, corresponding to FC, EAD, and SNE), we define the region-level vector of taxon 

productivities, Φr, as varying around the overall taxon-level productivity, Φ* (both are 

vectors of length T). Because the productivity of a taxon is only meaningful relative to 

other taxa (pollen percentages do not measure pollen flux, therefore no absolute pollen 

productivity can be inferred from pollen data), we imposed a sum-to-one constraint for 

the relative productivity parameters using a Dirichlet distribution: 

Φ𝑟𝑟 ∼ Dirichlet(𝛼𝛼 ∙Φ∗)       (3) 

where the scalar parameter, α, was given a relatively non-informative, yet realistic 

uniform prior:  

𝛼𝛼 ∼ Uniform(20,  1000)       (4) 

Sum-to-one constrains are also employed for the overall taxon-level productivities, to 

which we assigned a relatively non-informative Dirichlet prior: 

Φ∗ ∼ Dirichlet(1, . . . ,  1)       (5) 

For the local pollen contributions or weights, γt, that represent contribution of 

local pollen (values between 0 and 1) relative to regional pollen, we specified relatively 

non-informative uniform priors: 

𝛾𝛾𝑡𝑡 ∼ Uniform(0,1)        (6) 

for taxon t = 1, …, T (T = 13). 

To calculate VLs,t and VRs,t, the relative abundances (i.e. the compositions) of 

local and regional vegetation around site s are weighted based on their distances to the 

lake (i.e., forests closer to the lake get a higher weight than those further away from the 

lake): 



 

  

𝑉𝑉𝑉𝑉𝑠𝑠,𝑡𝑡 = ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠,𝑖𝑖,𝑡𝑡
𝐼𝐼
𝑖𝑖=1 ∙ 𝑤𝑤𝑤𝑤𝑠𝑠,𝑖𝑖,𝑡𝑡      (7) 

𝑉𝑉𝑉𝑉𝑠𝑠,𝑡𝑡 = ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠,𝑗𝑗,𝑡𝑡
𝐽𝐽
𝑗𝑗=1 ∙ 𝑤𝑤𝑤𝑤𝑠𝑠,𝑗𝑗,𝑡𝑡     (8)  

where VJCKs,i,t (data, from Jackson 2019) denotes the taxa compositions (proportional 

contribution to the total basal area) within the ith consecutive local ring (i = 1, …, I; I = 5) 

of site s, weighted by the local weights wls,i,t. Similarly, VFIAs,j,t denotes the taxa 

contributions within the jth consecutive regional ring (j = 1, …, J; J = 100) of site s, 

weighted by the regional weights wrs,j,t.  

The outer boundary of the ith consecutive local ring is at DLi (DLi = 20, 50, 100, 

and 1000 meters for i = 1, …, I, respectively) from the lakeshore. The inner-most 

boundary of the most proximate regional ring is at 1 km from the lake shore, and the 

outer boundary of the jth consecutive regional-ring is at DRj (DRi = 4×103, 7×103, 10×103, 

…, and 301×103 meters for j = 1, …, J, respectively) from the lakeshore. Inspired by 

Equation (8) in Prentice (1985), the local and regional distance weights are similarly 

defined (bt  parameters are proportional to pollen fall speeds over wind speed and θ is 

related to the turbulence parameter) as follows: 

𝑤𝑤𝑤𝑤𝑠𝑠,𝑖𝑖,𝑡𝑡 = 1
𝑐𝑐𝑐𝑐𝑠𝑠,𝑡𝑡

�𝑒𝑒𝑏𝑏𝑡𝑡�𝑅𝑅𝑠𝑠𝜃𝜃− (𝐷𝐷𝐷𝐷𝑖𝑖+𝑅𝑅𝑠𝑠)𝜃𝜃�  − 𝑒𝑒𝑏𝑏𝑡𝑡�𝑅𝑅𝑠𝑠𝜃𝜃− (𝐷𝐷𝐷𝐷𝑖𝑖+1+𝑅𝑅𝑠𝑠)𝜃𝜃� �  (9) 

𝑤𝑤𝑤𝑤𝑠𝑠,𝑗𝑗,𝑡𝑡 = 1
𝑐𝑐𝑐𝑐𝑠𝑠,𝑡𝑡

�𝑒𝑒𝑏𝑏𝑡𝑡�𝑅𝑅𝑠𝑠
𝜃𝜃− �𝐷𝐷𝐷𝐷𝑗𝑗+𝑅𝑅𝑠𝑠�

𝜃𝜃
�  − 𝑒𝑒𝑏𝑏𝑡𝑡�𝑅𝑅𝑠𝑠

𝜃𝜃− �𝐷𝐷𝐷𝐷𝑗𝑗+1+𝑅𝑅𝑠𝑠�
𝜃𝜃
� �  (10)                              

where Rs is the radius of the lake at site s, and cls,t and crs,t are standardizing constants 

that ensure that wls,i,t and wrs,j,t sum to 1 across all i and j, respectively:  

𝑐𝑐𝑐𝑐𝑠𝑠,𝑡𝑡 = 1 − 𝑒𝑒𝑏𝑏𝑡𝑡�𝑅𝑅𝑠𝑠𝜃𝜃− (𝐷𝐷𝐷𝐷𝐼𝐼+𝑅𝑅𝑠𝑠)𝜃𝜃�     (11) 

𝑐𝑐𝑐𝑐𝑠𝑠,𝑡𝑡 = 1 − 𝑒𝑒𝑏𝑏𝑡𝑡�𝑅𝑅𝑠𝑠
𝜃𝜃− �𝐷𝐷𝐷𝐷𝐽𝐽+𝑅𝑅𝑠𝑠�

𝜃𝜃
�      (12) 



 

  

To facilitate interpretation of model parameters, we also calculate the cumulative 

influence of vegetation at different distances for a typical, 30-meter radius lake: 

𝐹𝐹𝐹𝐹𝑖𝑖,𝑡𝑡 = (1 −  𝑒𝑒𝑏𝑏𝑡𝑡∙�30𝜃𝜃− (𝐷𝐷𝐷𝐷𝑖𝑖+1+30)𝜃𝜃�)/(1 −  𝑒𝑒𝑏𝑏𝑡𝑡∙�30𝜃𝜃− (𝐷𝐷𝐷𝐷𝐼𝐼+30)𝜃𝜃�) (13) 

𝐹𝐹𝐹𝐹𝑗𝑗,𝑡𝑡 = (1 −  𝑒𝑒𝑏𝑏𝑡𝑡∙�30
𝜃𝜃− �𝐷𝐷𝐷𝐷𝑗𝑗+1+30�

𝜃𝜃
�)/(1 −  𝑒𝑒𝑏𝑏𝑡𝑡∙�30

𝜃𝜃− �𝐷𝐷𝐷𝐷𝐽𝐽+30�
𝜃𝜃
�) (14) 

𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗,𝑡𝑡 = 𝛾𝛾𝑡𝑡 + (1 − 𝛾𝛾𝑡𝑡) ∙ 𝐹𝐹𝐹𝐹𝑗𝑗,𝑡𝑡      (15) 

where Fl is the cumulative contribution of pollen from vegetation within different local 

distances (Fl = 100% at 1 km from the lakeshore), Fr is the estimated cumulative 

contributions of vegetation at different regional distances (Fr = 100% at 301 km) when 

the model is only informed by regional vegetation, but not local vegetation. Flr is the 

actual cumulative contribution of pollen from vegetation within different regional 

distances (Flr = 100% at 301 km), which is calculated from Fl, Fr, and the local 

contribution γ.  

 To compare the local contribution (γ) and the cumulative contribution Fr at 1 km 

predicted by regional pollen dispersal (denoted 𝛾𝛾�), we calculate the Localness Index (LI): 

𝐿𝐿𝐿𝐿𝑠𝑠,𝑡𝑡 = 𝛾𝛾𝑡𝑡
𝛾𝛾�𝑡𝑡

        (16) 

𝛾𝛾�𝑠𝑠,𝑡𝑡 =  1 −𝑒𝑒𝑏𝑏𝑡𝑡�𝑅𝑅𝑠𝑠
𝜃𝜃− (1000+𝑅𝑅𝑠𝑠)𝜃𝜃�

1 −𝑒𝑒
𝑏𝑏𝑡𝑡�𝑅𝑅𝑠𝑠

𝜃𝜃− �301×103+𝑅𝑅𝑠𝑠�
𝜃𝜃
�
     (17) 

where 𝛾𝛾�𝑠𝑠,𝑡𝑡 is similar to Fr1,t, but also takes site-specific lake-radius (Rs) into 

consideration. A LI of 1 (one) would indicate that the regional dispersal pattern can 

predict local contribution and suggest similarities in dispersal between the local and 

regional scales. A LI higher (lower) than 1 would indicate that local populations are over- 

(under-) represented by pollen deposited in the lake, after accounting for regional 

dispersal. 



 

  

In Equations (9)-(12), we set θ = 0.1 to represent an unstable “atmospheric 

condition” (temperature decreases with height at a faster rate than the adiabatic lapse rate, 

therefore representing a more turbulent atmosphere) (Jackson and Lyford 1999). We 

explored other values, and θ = 0.1 remained the most appropriate (Appendix S1: Section 

S1, Model Variant 1-2). For each taxon-specific bt, rather than specifying fixed values 

based on pollen fall speeds (e.g., Prentice 1985, Sugita et al. 1999, Sugita 2007a, 

Hellman et al. 2009b), we estimate bt and gave it a positive-valued, relatively non-

informative exponential distribution prior,  

𝑏𝑏𝑡𝑡 ∼ Exp(0.1)        (18) 

Similar to the original interpretation (Prentice 1985), the taxon-specific bt in our analysis 

can be viewed as a composite parameter representing the overall effect of pollen 

deposition velocities of each taxa and the atmospheric conditions operating to transport 

the pollen above the canopy. 

To determine the robustness of our model specification related to the distance-

weighting of local and regional vegetation, Equations (9) and (10), we tested three 

additional models that explored different specifications for θ or wl (Appendix S1: Fig. 

S2-S5). The model presented above was the most parsimonious (less risk of over-

parameterization compared to other models), and thus, we focus on this model 

throughout. 

 

Model implementation  

The model (Data S1; DOI: 10.5281/zenodo.5825842) was implemented in the Bayesian 

modeling software, JAGS version 4.2.0, using R version 3.4.2 and the “rjags” and R2jags 



 

  

(version 0.5-7) packages (Plummer 2003). We ran three parallel MCMC chains for 

3,000,000 iterations. For each chain, the starting values were generated from the prior 

distributions. All chains converged by iteration 2,000,000, and we used the last 1,000,000 

iterations, keeping every 200th sample to reduce within chain autocorrelation and to 

reduce the number of samples stored. Hence, we obtained 5000 independent posterior 

samples per chain, and from these samples, we calculated the posterior median as a point 

estimate of each parameter, and the 2.5th and 97.5th percentiles to quantify the uncertainty 

in each parameter (i.e., 95% Bayesian credible interval [CI]). 

 

Results: Quantification of how pollen represents surrounding vegetation 

Posterior estimates from our model are summarized and presented below. Wherever 

suitable, we also discuss some specific, less-expected results in relation to the model and 

the general understanding of pollen productivity and dispersal. By clarifying these points 

and interpretations in the Results, we can focus on addressing the primary research 

questions in the Discussion. 

 

Model fit 

The Bayesian statistical model captured the relationship between vegetation abundances 

and pollen assemblages, as indicated by the observed versus predicted taxon-specific 

pollen relative abundances (proportions) at each site (Fig. 2). The observed versus 

predicted correspondence was best (R2 > 0.81) for the taxa that are abundant on the 

landscape and that produce a relatively large amount of pollen (Betula, Fagus, Pinus, 

Quercus, and Tsuga) comparing to other taxa. In addition, Larix, which grows in low 



 

  

abundance and in highly localized populations, and Acer saccharum, which is an 

abundant species but a low pollen-producer, also were associated with good fits (R2 = 

0.81 and 0.73, respectively). The fit for Cupressaceae (R2 = 0.49) is dominated by the 

pollen signal of Thuja, since Cupressaceae pollen higher than 0.25% is only found in 

EAD sites with substantial Thuja populations concentrated along some lake margins and 

no Chamaecyparis or Juniperus. The remaining taxa (Abies, Acer rubrum, Fraxinus, 

Picea, and Populus) display intermediate correspondence between observed versus 

predicted pollen relative abundances (0.29 < R2 < 0.45, Fig. 2). In general, the observed 

versus predicted pollen relative abundances varied about the 1:1 line without substantial 

systematic bias (Fig. 2). 

 

Pollen productivity 

The taxon-specific relative pollen productivities at the regional (Φr) and population 

(overall) (Φ*) scales are estimated with high confidence (narrow 95% Bayesian credible 

intervals [CIs]), distinguishing differences in pollen productivity among taxa (Fig. 3). 

Abies, Acer rubrum, and A. saccharum are low pollen producers, with posterior medians 

for relative productivity around 0.02, significantly lower than any other taxa. On the other 

extreme, Betula produces significantly more pollen than all other taxa (posterior median 

of taxon-level estimate is round 0.28, resulting in roughly 14 times higher productivity 

than the aforementioned low-producers).  

For most taxa, the posterior medians of the regional-level productivities (Φr) are 

similar within the taxon across the three regions of different forests, and are contained in 

the 95% CIs of the overall taxon-level productivity (Φ*). The posterior estimate of the 



 

  

scaling parameter, α in Equations (3) and (4), for the regional variability in pollen 

production is not clustered against the specified lower bound of its prior (median and 

95% CI: 91 [69, 126], compared to 20, the lower bound for the prior of α), suggesting 

similar productivity among regions (higher α indicates more similarity across regions). 

For example, even though Betula populations are composed of B. alleghaniensis and B. 

papyrifera in FC and EAD, but dominated by the abundant populations of B. lenta and B. 

populifolia in SNE, the productivity estimates are still similar across these regions (Fig. 

3). 

In several cases, however, regional-level pollen productivity (Φr) varies by a 

factor of two across regions (Fig. 3). Here, intra-taxon (species- or genus-level) 

differences in productivity may play an important role. Notably, much lower productivity 

of Picea spp. is found in the SNE region (~ half of the productivity of Picea in other 

regions). In this case, P. abies grows in scattered plantations in SNE, whereas Picea in 

the FC and EAD regions is represented by higher regional tree abundances of P. mariana 

and P. rubens. Moreover, Cupressaceae pollen productivity is 70% higher in the SNE 

compared to the EAD and FC regions. This variability may indicate genus-level 

differences: Cupressaceae is represented by Chamaecyparis and Juniperus in SNE, but 

by Thuja in EAD and FC. Finally, Quercus spp. productivity is approximately two times 

higher in the SNE, where the dominant Quercus species (Q. alba and Q. velutina) and the 

climate differ from those of EAD and FC (Q. rubra). In contrast, pollen taxa comprising 

a single species in the study area (Fagus grandifolia and Tsuga canadensis) have more 

similar productivities across regions. However, pollen productivity of Pinus spp. in the 

densely forested FC region is significantly lower (approximately half) than in the other 



 

  

two regions, despite the similarity of dominant Pinus species (P. strobus and P. resinosa) 

in FC and EAD. 

Our relative pollen productivities are subject to the “sum-to-one” constraint, 

whereas ERV type models calculate productivities as relative to the reference taxa.  This 

difference in methodology can potentially affect productivity estimates. However, we 

also found that the general patterns of high versus low pollen producers and regional 

variations in pollen productivity remain robust when relative pollen productivity is 

calculated in relation to a reference taxon (Appendix S1: Fig. S2-S3), regardless of 

whether the reference is set to the productivity of Fagus, which is present at three 

regions, or Tsuga, which is present at the FC and EAD sites and a few SNE sites. 

 

Local pollen contribution and dispersal 

Taxon-specific local pollen contribution (γt, Equation 6), which we operationally define 

as the proportion of pollen deposited in a lake that originated within 1 km from the 

lakeshore, is summarized in Fig. 4. Abies, Betula, Picea, and Populus have the lowest 

local pollen contribution, with medians < 0.1 and upper CI limits < 0.25. Acer rubrum, 

the pollen of which has both anemophily and entomophily characteristics (Batra 1985), 

shows the highest local contribution (median = 0.81). The local contributions for 

Fraxinus and Larix have comparatively large uncertainties, indicating that given the 

available data, our model cannot tightly resolve the local contributions for these taxa. 

However, there are many difficulties in quantifying the influence of taxa that are 

underrepresented in pollen (Parsons et al. 1983), so the true local influence may be very 

high for Larix, because all sites that have Larix pollen present have Larix trees near the 



 

  

lake. Similarly, the true local contribution of Abies may also be high. For the remaining 

taxa (A. saccharum, Fagus, Pinus, Quercus, Cupressaceae, and Tsuga), the local 

contribution is estimated with good confidence (width of CI less than the median 

posterior), and overall, roughly less than half of the pollen originates locally (i.e., within 

1 km of the lakeshore). 

The local pollen contributions vary with distance from the lakeshore (outer 

boundaries of concentric rings at 20, 50, 100, 500, and 1000 m from the lakeshore) (Fig. 

5). For example, local pollen dispersal can be visualized as the estimated cumulative 

influences on pollen (Fl, Equation 13) from vegetation at different distances (Fig. 5). We 

compared these estimated cumulative influences with those based on pre-defined 

functions typically used in distance-weighting (Calcote 1995, Jackson and Kearsley 1998, 

Gaillard et al. 2008). For the majority of taxa, the estimated cumulative influences (Fl) 

are the most similar to the 1/distance2 weighting (steeper than the unweighted and 

1/distance weighting, and generally less steep than weights based on Prentice-Sutton 

equation). The uncertainty estimate (95% CI widths) for Fl is large for Acer rubrum and 

Larix, suggesting that it is possible that pollen grains of these two taxa mainly come from 

populations very close to the lakeshore (i.e., the upper bound of the confidence interval 

reaches 80% of cumulative influence within 50 m).  

We acknowledge that the “true” shape of cumulative influences of local pollen 

may be more complex than Fl. In this regard, despite potential pitfalls associated with the 

increased number of parameters, empirically estimating these weights (e.g., independent 

weights to be estimated at each distance for each taxon) allows a more detailed 

perspective of cumulative influences and how they may differ from those of distance-



 

  

weighting functions (Appendix S1: Fig. S4 and Section S1 - Model Variant 3). We found 

the ultra-local (with 100 m of the lakeshore) populations of Cupressaceae, Fagus, and 

Pinus appear to exert significantly greater influences than all distance-weighting methods 

(CIs higher and do not overlap with those based on distance-weighting). In contrast, 

Populus has significantly smaller influences than all those of distance-weighting 

approaches at all distances. More generally, the influence of ultra-local populations may 

be noticeably strong for Acer rubrum, Cupressaceae, Fagus, and Pinus, as more than 

50% of the local contribution of these taxa is attributed to populations occurring within 

50 m of the lakeshore, which constitutes only ~ 1.6% of the total area within in the 1 km 

local radius (assuming a 30 m radius of the lake). 

 

Regional pollen dispersal 

The importance of regional pollen dispersal is visualized via the cumulative influence 

(Flr, Equation 15) of vegetation at a range of different distances (Fig. 6, cyan lines) and 

the distance at which the cumulative influence reaches 75% (dashed line; influence at 300 

km is 100% by model design). Betula appears to have the furthest regional dispersal, 

reaching the 75% influence at ~ 50 km (the lower CI limit corresponds to ~ 70 km).  

Abies, Acer saccharum, and Fraxinus also show large pollen input from regional sources, 

reaching the 75% cumulative influence at 10-20 km. The 75% cumulative influence for 

Cupressaceae, Fagus, Populus, Quercus, and Tsuga is estimated to be only a few 

kilometers. For Acer rubrum and Larix, most pollen deposited in the lake comes from 

within a couple of kilometers of the lakeshore, indicated by the steeply rising cumulative-

influence curves, which confirms the common notion that pollen from Acer rubrum and 



 

  

Larix are from nearby sources (Bradshaw and Webb 1985, Jackson 1990). However, the 

cumulative influence of Pinus also increases steeply with distance—a surprising finding 

because Pinus pollen is usually considered to be largely from regional sources (Bradshaw 

and Webb 1985). Additional exploratory analysis (Appendix S1: Fig. S4-S5 and Section 

S1 - Model Variant 3) also suggests a strong influence from nearby vegetation: Pinus 

populations within 20 m from the lakeshore may exert strong influence on the pollen 

abundances retrieved from the lake (Appendix S1: Fig. S4).  

A comparison of the regional dispersal curves based on Flr (Equation 15, cyan 

lines in Fig. 6) with those based on Fr (Equation 14, red lines in Fig. 6) suggests the 

potential bias when regional dispersal is estimated solely with regional vegetation data 

(VFIA) and without considering local vegetation (VJCK). We found that, when local 

vegetation data are not used to inform dispersal, regional pollen dispersal of Acer 

rubrum, Cupressaceae, Larix, Pinus, Quercus, and Tsuga are notably over-estimated 

relative to the scenario when such data are considered (Fig. 6). For example, the 

estimated 75% cumulative influence of Quercus is reached at 3 km (local vegetation 

considered, Flr) versus 70 km (local vegetation not considered, Fr), respectively. In 

contrast, and expectedly based on posterior estimates of γ (Fig. 4), the regional dispersal 

estimates for Betula (the taxon with the furthest regional influence), and to a lesser 

extent, for Abies and Fraxinus, are not affected by the incorporation of local vegetation 

data.  

 Finally, our model estimates that the 75% cumulative influence of Picea is 

reached around 50 km when local vegetation is considered, whereas the same cumulative 

influence is reached within a few kilometers when local vegetation is not considered (Fig. 



 

  

6). That is, Picea pollen percentage is well explained by vegetation within a few 

kilometers, but not by local vegetation within 1 km, which is counterintuitive. 

Exploratory analysis (Appendix S1: Section S1 - Model Variant 3) provides a possible 

explanation for this seemingly confusing result: Picea pollen may be surprisingly 

insensitive to its population abundance within 50 m from the lakeshore (Appendix S1: 

Fig. S4), but sensitive to other local populations further away (100-1000 m) and to those 

within a few kilometers (Appendix S1: Fig. S4-S5). However, this level of flexibility of 

distance-weighting is not allowed by the pollen dispersal function in our original model, 

Equations (9) and (10); as a result, our original model may have misattributed observed 

Picea pollen to vegetation further away in order to minimize the influence of vegetation 

within 50 m from the lakeshore.  

 

Comparing the local and regional dispersal  

Localness Index (LI) is shown for all taxa besides Acer rubrum and Larix, which likely 

lack meaningful regional input (Fig. 7). LI is defined as the ratio between the actual (i.e., 

empirically estimated) local contribution (γ, Fig. 4) and the cumulative contribution at 1 

km predicted by Fr (Equation 14, red lines in Fig. 6). We found that many taxa have LI 

values significantly higher or lower than 1 (local populations of trees over- or under- 

represented, respectively), indicating that the dispersal patterns of these taxa differ 

between the local and regional scales. Notably, Quercus and Tsuga, which have local 

relative-abundances typically higher than the regional ones (Appendix S1: Fig. S6, also 

see descriptions in Jackson 1990, 2019), have LI significantly greater than 1. In contrast, 



 

  

Betula and Populus, which have lower abundances by the lakeshores (0-20 m) than 

further away, have LI significantly below 1.  

 

The heterogeneous landscape 

The spatial pattern of vegetation heterogeneity was quantified using SCD to reveal how 

much and how fast vegetation composition changes with distance for several “focal 

vegetation compositions” (Fig. 8, Appendix S1: Fig. S7). Two zones of high 

heterogeneity are revealed: The first zone is located at 0-20 m from the lakeshore, where 

the vegetation composition within this area is substantially different from adjacent 

vegetation at 20-50 m from lakeshore (especially at FC and EAD) and vegetation further 

away from the lakeshore (Fig. 8a, SCDs increased sharply starting 20-50m from 

lakeshore). The second zone is at 1-27 km from the lakeshore. Vegetation compositions 

within areas located 0.02, 0.1, 0.2, and 0.5 km from lakeshore, respectively, are all 

dissimilar from adjacent areas (Fig. 8a-d), although on average, vegetation composition 

within 27 km is similar to that occurring 27-100 km from the lakeshore (Fig. 8f). By 

uniquely combining the finely resolved vegetation abundance data at the local scale (< 1 

km from the lakeshore) and the spatially coarse but extensive FIA information (~ 3 km 

resolution, extending up to ~ 300 km from the lakeshore), both zones of high 

heterogeneity are well represented in our study. 

 

Discussion 

Our results allow examination of currently contested notions of pollen productivity and 

dispersal, supporting some previous findings while contradicting others. First, regarding 



 

  

the intra-taxon variability of pollen productivity (Q1), we found that pollen productivity 

is largely conserved within taxa across three regions with different forest composition 

and pattern (Fig. 3). The greatest intra-taxon difference we observed is less than 

threefold. Second, regarding the overall pattern of pollen dispersal (Q2), the empirically 

estimated 75% cumulative influence of most taxa is reached within a few kilometers, yet 

the exceptions are distinct (e.g., Betula reaches its 75% cumulative influence around 50 

km, Fig. 6). More specifically, although local vegetation generally exerts a strong 

influence on pollen deposition in lakes (Fig. 4), the dispersal patterns at the local scale 

may not be fully captured by the commonly used distance-weighting functions or 

mechanistic model of pollen dispersal (Fig. 5, Appendix S1: Fig. S4). Third, our results 

also examined the pattern of landscape heterogeneity and demonstrated that both detailed 

local vegetation and extended regional vegetation are needed to accurately estimate 

pollen productivity and dispersal (Q3).  Based on these findings, in the following sections 

we suggest best practices for estimating pollen productivity and dispersal, highlight the 

importance of landscape heterogeneity, and identify key challenges. 

 

Estimating pollen productivity and dispersal: Cautions and suggestions 

Our results indicate that pollen productivity, pollen dispersal processes, and the spatial 

arrangement of vegetation abundance (“landscape heterogeneity”) interact to influence 

how pollen assemblages in lake sediments represent surrounding vegetation. Therefore, 

inadequate vegetation information can hamper accurate estimation of both pollen 

productivity and dispersal. Furthermore, erroneous estimation of or inappropriate 



 

  

assumptions of dispersal processes can lead to inaccurate estimation of pollen 

productivity.   

Knowledge of local vegetation composition is particularly important in estimating 

pollen productivity and dispersal. Our results indicate that without finely resolved local 

vegetation abundances, pollen contributions of many taxa (Cupressaceae, Pinus, 

Quercus, Tsuga) from regional sources would be overestimated (Fig. 6), and 

consequently, lead to erroneous productivity estimates. When vegetation abundance is 

only available at coarse resolution (i.e., 3 km intervals in this case), variation in pollen 

assemblages cannot be effectively attributed to spatial variation in vegetation 

composition at finer scales. Instead, variation in pollen assemblages is misattributed to 

differences in vegetation composition further away, biasing pollen productivity and 

dispersal estimates. This phenomenon may explain the large pollen-source areas, on the 

order of 102 km, estimated by STEPPS model studies using coarser vegetation data 

(Paciorek and McLachlan 2009, Kujawa et al. 2016, Dawson et al. 2016). 

Inaccurate assumptions about pollen dispersal can lead to biased pollen 

productivity estimates. Our analysis identified some complex and contextual features of 

pollen dispersal (e.g., the effects of ultra-local and local populations on pollen, Fig. 5, 

Appendix S1: Fig. S4, Fig. 7), which are not fully represented by the mechanistic models 

of pollen dispersal currently applied to pollen–vegetation calibration. Various studies 

have shown that when the effects of dispersal are not properly accounted for, estimated 

pollen productivity is often entangled with dispersal and landscape heterogeneity 

(Bradshaw and Webb 1985, Prentice 1985, Jackson 1990, Jackson and Kearsley 1998). 

The estimates, rather than reflecting the productivity of pollen, only serve as highly 



 

  

contingent correction-factors (Theuerkauf et al. 2016), and therefore lack predictive 

power across regions. 

In particular, inaccurate dispersal assumptions, when combined with finely 

resolved local vegetation abundances, may misattribute pollen variation to vegetation 

variation at the wrong scale (i.e., overemphasizing influence of ultra-local vegetation 

with 100 m of the lakeshore and overlook the site-specific influence of regional 

vegetation) and cause errors in pollen productivity estimates. For example, we found that 

although the relative abundances of Betula vary the most across sites and regions at the 0-

50 m scale (Appendix S1: Fig. S6), empirically the influence from this scale may be 

significantly smaller than predicted by widely used distance weightings (Appendix S1: 

Fig. S4). Meanwhile, Betula relative abundance at 100-500 m (often similar to abundance 

at 500-1000 m within each site, Appendix S1: Fig. S6) explains most of the “local” 

influence— which amounts to less than 10% of cumulative influence (Fig. 4)—and the 

majority of Betula pollen comes from regional sources, reaching 75% cumulative 

influence at ~ 50 km (relative to 100% influence at 300 km by model design, Fig. 6). We 

also found highly similar relative productivities of Betula across the three study regions 

(medians at 0.30, 0.26, 0.23, respectively; for comparison, productivity of Tsuga is 

around 0.08), and strong correspondence (R2 = 0.85) between predicted and observed 

Betula pollen relative abundances. Although many region-specific factors may be at play, 

our result contrasts with the large variation in Betula-pollen productivity in Europe found 

using ERV models—those from lake sites in Germany (Matthias et al. 2012) are 

approximately 4 times higher than those obtained from the Swiss Plateau (Soepboer et al. 



 

  

2007) and Estonia (Poska et al. 2011). The difference between assumed and actual 

dispersal pattern may explain the anomaly. 

To overcome these issues, we offer two general suggestions for estimating pollen 

productivity and dispersal from empirical data. First, the spatial resolution and areal 

extent of the vegetation survey must be adequate. For studies using small lakes, the 

survey resolution at the local scale should be adequate to distinguish populations in the 

immediate vicinity of the lake (< 50 m) and those beyond (50 m to 1 km); This is not 

only because of the strong influence of ultra-local vegetation (Sugita 1993), but also 

because vegetation composition and abundance at this scale is often notably variable 

within regions (Fig. 8). This emphasis in resolution may be less important for larger lakes 

due to the non-linear relationship between circumference and area. The vegetation survey 

area, regardless of lake size, should extend to span the other high-heterogeneity zones 

(Fig. 8, see result section “The heterogeneous landscape”). For sites in this study, this 

heterogenous zone spans to ~ 30 km. Future studies should consider the extent of this 

zone in developing models. Second, the effects of pollen productivity, dispersal, and 

landscape heterogeneity must be considered simultaneously. In particular, because 

current models may inadequately represent some important features of pollen dispersal 

(Jackson and Lyford 1999), it may be desirable to estimate local and regional pollen 

dispersal using statistical models fitted to empirical data (Klein et al. 2003) rather than 

purely mechanistic pollen-transport models. 

 

Complexity in the heterogenous landscape  



 

  

Our findings point to the important role of vegetation heterogeneity surrounding a lake in 

determining pollen-assemblage composition (Fig. 8, Appendix S1: Fig. S7), which 

provides a critical addition to previous studies. Here, landscape heterogeneity should not 

be confused with  simple patchiness, in which different patches of vegetation are 

randomly distributed with constant probability or form a monotonic gradient with 

distance to the lake (Sugita 1994, Hellman et al. 2009b, 2009a). Instead, we use 

landscape heterogeneity to refer to the observation that local and even regional 

populations of trees are, in general, distributed non-randomly with respect to proximity to 

lakes (Appendix S1: Fig. S6), owing to at least two factors (Jackson 1990, 1994, 2012). 

First, depositional basins are often associated with microclimates and microenvironments 

unrepresentative of the broader landscape (e.g., cold-air drainage, wet margins, fire 

breaks). Second, lakes themselves are not randomly distributed on the landscape, but are 

often restricted to specific, and sometimes idiosyncratic, topographic, edaphic, 

hydrological, and lithological settings that may or may not be representative of the 

broader region.  It is worth noting that these biasing factors do not necessarily affect 

studies using moss polsters, in which sites can be selected randomly (Bunting et al. 2013, 

Li et al. 2017). 

The non-random distribution of vegetation interacts with pollen transport 

processes to create complex patterns of pollen dispersal. First, we found that depending 

on the taxon, ultra-local populations (e.g., within 50 m of the lakeshore, Appendix S1: 

Section S1 - Model Variant 3) may exert influences significantly smaller or greater than 

those predicted by heuristic distance-weighting or by Prentice’s function (Appendix S1: 

Fig. S4). In particular, considerable pollen contributions from populations of Acer 



 

  

rubrum, Fagus, and Pinus were estimated within 20 m, 50 m, and 20 m of the lakeshore, 

respectively. This phenomenon could be due to “gravity deposition” (i.e., anthers, 

microsporangia, and pollen falling from branches overhanging the lake surface (Tauber 

1965, Jacobson and Bradshaw 1981)), deposition of pollen clumps rather than individual 

grains (e.g., a tetrad of Pinus grains will fall 4 times faster than a single grain), or other 

physical processes of pollen transport that are not fully considered in current models 

(e.g., Theuerkauf et al. 2016, also see discussions in Jackson and Lyford 1999, 

Theuerkauf et al. 2013). In contrast to the strong influence of ultra-local populations for 

some taxa, we found that Picea pollen is virtually unaltered by populations within 50 m 

of the lake, which is counterintuitive given its apparent high production, large grain size, 

and evidence from other regions (Jackson and Smith 1994). This may be due to the local 

growth form of Picea on the lake margin at our sites, which often comprised stunted 

individuals on waterlogged histosols. Second, many taxa have a Localness Index (LI) 

significantly different from 1 (Fig. 7), indicating that local populations of many taxa are 

over- or under- represented relative to regional populations, after accounting for regional 

pollen dispersal. In general, taxa (e.g., Quercus and Tsuga) that are more abundant near 

the lakes than across the region (Appendix S1: Fig. S6, also see descriptions in Jackson 

1990, 2019) tend to have LI > 1 (local population over-represented in pollen), which 

likely allowed additional pollen grains or pollen clumps to be transported to the lake. In 

contrast, Betula and Populus have LI < 1 (local population under-represented in pollen), 

which may be driven by the low abundances (and lack of pollen input from ultra-local 

sources) of these taxa by the lakeshores (0-20 m) than further away. Together, these 

complexities challenge our current understanding and representation of pollen dispersal 



 

  

processes: Although pollen dispersal has been represented by a single function (known or 

to be estimated) in most previous studies, the actual pattern may be subject to multiple 

distinct processes and require more complex representations. 

The complex patterns of vegetation distribution and dispersal also present 

implications and challenges for pollen-based vegetation reconstruction. Our productivity 

estimates may apply reliably to a range of lake sizes and the spatial extent of 

reconstruction, because unlike many other attempts, they are not entangled with factors 

such as dispersal and landscape heterogeneity. These productivity estimates can also 

serve as priors for multi-scale reconstruction such as REVEALS/LOVE (Sugita 2007a, 

2007b) or large-scale efforts such as those using the STEPPS models (Dawson et al. 

2016). In contrast, the empirically estimated dispersal is specific to lake size because it 

accounts for multiple pathways of pollen transport, ranging over scales from 1 m to 100 

km, and the relative influence of these pathways may change with the size of the 

depositional basin. For example, gravity deposition is governed by trees along the 

lakeshore. As the radius of a lake increases, lake area increases more steeply than the 

length of its shoreline, and hence the influence of gravity deposition per unit lake area 

decreases rapidly. To gain predictive understanding of how pollen dispersal scales with 

lake sizes for reconstruction, empirically estimated dispersal across different lake sizes 

and regions can be compared to develop qualitative insights that can be further tested by 

process-based models. 

 

Addressing long-standing challenges 



 

  

Our study revisits several long-standing, interlinked issues in the quantitative application 

of pollen percentages in vegetational inference: the intra-taxon variability of pollen 

productivity, the physical processes governing pollen transport, and the role of landscape 

heterogeneity for understanding links between vegetation and pollen (Webb and 

McAndrews 1976, Jacobson and Bradshaw 1981, Bradshaw and Webb 1985, Prentice 

1985, Jackson 1994, Davis 2000). Numerous solutions have been proposed to address 

these issues, and understanding of pollen–vegetation relationships have advanced 

considerably over the past several decades. However, as our results have shown, the 

solutions developed to date are incomplete, and are subject to ancillary assumptions 

(Oreskes et al. 1994). As efforts at reconstruction of past vegetation continue, it is 

important to be clear about limitations of these partial solutions. Otherwise, there is an 

increasing danger that untested assumptions embedded in these partial solutions over 

time are likely to be taken for granted, i.e., “ignorance creep” (Jackson 2012).  

Much remains unknown concerning the variability of pollen productivity and the 

nature of pollen dispersal. With regard to productivity, our analysis suggests that it may 

be much more conserved within pollen taxa than previously suggested, including in 

recent syntheses (Mazier et al. 2012, Li et al. 2018), and intra-taxon variation (less than 

three-fold in our analysis) may be explained by differences in species and environmental 

conditions (Fig. 3). To determine the influence of phylogeny versus environmental 

factors, future studies could integrate species characteristics and environmental 

information into the estimation of pollen productivity. For example, Equation (2) in our 

framework could be modified to estimate species-level productivity (as nested within 

taxon-level productivity) and the effect of environmental covariates such as temperature 



 

  

and precipitation. Comparative studies of pollen productivity similar to our analysis here 

need to be carried out across regions and vegetation types. 

With regard to pollen dispersal, our results suggest that the widely used 

mechanistic pollen-transport models with a priori parameter values (e.g., the Prentice-

Sutton model, Prentice 1985) and distance-weighting function (Calcote 1995, Jackson 

and Kearsley 1998, Gaillard et al. 2008) may capture the general pattern of local dispersal 

(Fig. 5), but with potential caveats suggested by Model Variant 3 (Appendix S1: Fig. S4 

and Section S1). Also, pollen dispersal patterns differ between local and regional scales 

(Fig. 7, a localness index value of 1 indicates the same dispersal pattern between local 

and regional scales). Advancing the understanding of pollen dispersal may require dual 

application of deductive (i.e., mechanistic pollen-transport models) and inductive (i.e., 

semi-mechanistic and phenomenological models in which dispersal patterns are 

statistically estimated using empirical data) approaches. Most dispersal studies to date are 

based on the Prentice-Sutton model (Prentice 1985b), which assumes that pollen grains 

are transported in the atmosphere similar to ground-level Gaussian plumes. However, it 

has been suggested that a Lagrangian stochastic model may better capture the outcome of 

long-distance pollen dispersal (Kuparinen et al. 2007, Theuerkauf et al. 2013, 2016, 

though not everywhere Wan et al. 2020); more tests on different regions and models are 

needed. Because multiple physical processes govern pollen transport, a single 

mechanistic model or dispersal kernel may ultimately be elusive (Jackson and Lyford 

1999). It is therefore important to develop semi-mechanistic (e.g., this study and Klein et 

al. 2003) and phenomenological models (Kujawa et al. 2016, Dawson et al. 2016) of 

pollen dispersal. In addition, statistically fitted semi-mechanistic and phenomenological 



 

  

models such as the STEPPS (Dawson et al. 2016) can provide formal and coherent 

quantification of uncertainties.  

Understanding and quantifying how pollen represents vegetation is at the heart of 

pollen analysis. Much has been learned since the initial proposals for quantitatively 

linking pollen and vegetation percentages (Davis 1963), but some key questions may be 

better answered with alternative and emerging techniques. Manipulative experiments 

(e.g., isotope labeling of pollen grains (Colwell 1951); experimental pollen release and 

monitoring (Raynor et al. 1974, 1975)), which have become uncommon in today’s 

studies, may effectively disentangle the relative importance of multiple pollen-transport 

processes operating at varying spatial scales. Although radioisotopic labeling is no longer 

feasible, genetic markers can be useful in tracing dispersal of pollen (Dawson et al. 

1997). Remote sensing techniques (e.g., using drones) could be leveraged to facilitate or 

even replace laborious vegetation survey (e.g., Williams et al. 2009, 2011), whereas 

machine learning approaches may be powerful for extracting vegetation information from 

remotely sensed images (Zanon et al. 2018). These approaches, together with iterative 

improvements to statistical and simulation models of pollen productivity and dispersal, 

will build toward a rigorous inferential basis, maximizing the unique potential of fossil 

pollen records in understanding and addressing global ecological and environmental 

challenges. 
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Figure Legends 

Figure 1. The study sites include 33 small lakes (area < 2 ha) located in three regions in 

the northeastern United States: 14 lakes in Fish Creek, New York (FC, blue squares), 

nine (9) in the eastern Adirondack Mountains, New York (EAD, yellow spades), and 10 

in the southern New England including Massachusetts, Connecticut, and Rhode Island 

(SNE, green triangles). Because some sites are closely clustered and their symbols largely 

overlap on the map, the positions of the symbols are slightly jittered for clearer 

presentation. Correspondence between letters and sites is given in Appendix S1: Table 

S1. Locations of Forest Inventory and Analysis (FIA) plots measured between 2000 and 

2012 are represented by the small, dense, gray points.  

 

Figure 2. Observed versus predicted pollen relative abundances (proportions), where the 

predicted values are represented by the posterior means for Ps,t (see Equations (1) and 

(2)). Taxon-specific coefficients of determination (R2) are based on a linear regression 

(solid line) of observed versus predicted values, overlaid with the 1:1 line (dashed line). 

Site symbols (letters) are described in Appendix S1: Table S1 and the region color-

scheme is defined in Fig. 1.  

 

Figure 3. Posterior estimates (median and 95% credible interval [CI]) of the relative 

pollen productivity. Taxa are alphabetically ordered along the x-axis, and region-level 

productivity (Φr, Equations (2) and (3); shown in blue, yellow, and green symbols) are 

shown in relation to the overall productivity (population-level, across all sites, Φ*, 



 

  

Equations (3) and (5); shown in black diamonds). The region-level productivities within 

each region and the population-level productivities all sum to one, respectively. For 

productivity scaled to reference taxa, see Appendix S1: Fig. S2-S3. 

 

Figure 4. Posterior estimates (median and 95% credible interval [CI]) of the local 

contribution from within 1 km radius, γt (see Equations (2) and (6)), of vegetation to 

pollen relative abundances. Taxon-specific γt is assumed to be the same across all sites.  

 

Figure 5. Posterior estimates for the cumulative influence of local vegetation at different 

distances from a lakeshore, Fl (Equation (13)), within 1 km of a typical, 30 m radius lake. 

Estimates from the model (orange points [median] and orange shaded area [95% CI]) are 

compared with cumulative influences based other widely-used distance weighting. The 

weighting using Prentice-Sutton equation (thick solid line) is based on pollen fall speeds 

compiled in Jackson and Lyford (1999), with parameters corresponding to neutral 

atmospheric conditions). A cumulative influence of 1 (100%) represents the total 

influence of all pollen that originated locally, where the total local influence relative to 

local and regional combined is given by γt in Fig. 4. 

 

Figure 6. Posterior estimates for the cumulative influence of regional vegetation at 

different distances from a lakeshore, Flr (Equation (15)), from >1 km to 300 km, for a 

typical, 30 m radius lake. Estimates (medians [solid lines] and the 95% CIs [colored 

shading]) are shown for regional distances from 3 km and up to 300 km, based on 

assuming no local vegetation contribution (Fr, Equation (14); red lines) and based on 



 

  

including local vegetation contribution (Flr, Equation (15); cyan lines) (Figs. 4 and 5). 

Dashed horizontal line indicates 75% cumulative influence. A cumulative influence of 1 

(100%) represents the total influence of all pollen that originated regionally, where the 

total regional influence relative to local and regional combined is given by (1-γt) in Fig. 4. 

 

Figure 7. Localness Index (LI, Equation (16)) is defined and calculated as the ratio 

between the actual local contribution (γt, Fig. 4) and the cumulative influence at 1 km 

from the lakeshore predicted by regional pollen dispersal (γ ̃s,t, Equation (17)). Horizontal 

dashed line indicates LI = 1; Posterior medians (symbols) and 95% CIs for LI are overlaid 

for all sites within a region (14, 9, and 10 sites respectively for FC, EAD, and SNE).  CIs 

that significant higher (lower) than 1 would indicate that local populations are over- 

(under-) represented by pollen deposited in the lake, after accounting for regional 

dispersal. Because Acer rubrum and Larix likely lack meaningful regional input (see 

result section “Local pollen contribution and dispersal” and discussion section 

“Comparing the local and regional dispersal”), their LI values cannot be accurately 

estimated and therefore were masked in grey. 

 

Figure 8. Spatial pattern of heterogeneous landscapes calculated from local and regional 

vegetation data. The dissimilarities, measured by the squared-chord distance (SCD), are 

shown for “focal vegetation” within (a) 20 m, (b) 100 m, (c) 500 m, (d) 1000 m, (e) 9 km, 

(f) 27 km, and (g) 45 km of a lakeshore. For focal vegetation within each of the 

aforementioned concentric ring, the dissimilarity between the its composition and the 

vegetation composition at a given distance from the lakeshore (x-axis) is calculate. Pollen 



 

  

records from different forest types typically have SCDs > 0.2 (dashed lines). For clarity, 

we show the regional mean here; site-level dissimilarities can be found in Appendix S1: 

Fig. S7. Lines are colored by region. 
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