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for Flexible Thin Film Acoustic Wave Devices
Based on Metallic and Polymer Multilayers
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Wai Pang Ng , Senior Member, IEEE, Richard Binns, Qiang Wu ,
Jingting Luo , and Yong-Qing Fu

Abstract—Surface acoustic wave (SAW) devices are
generally fabricated on rigid substrates that support the
propagation of waves efficiently. Although very challenging,
the realisation of SAW devices on bendable and flexible sub-
strates can lead to new generation SAW devices for wearable
technologies. In this paper, we report flexible acoustic wave
devices based on ZnO thin films coated on various substrates
consisting of thin layers of metal (e.g., Ni/Cu/Ni) and/or poly-
mer (e.g., polyethylene terephthalate, PET). We comparatively
characterise the fabricated SAW devices and demonstrate
their sensing applications for temperature and ultraviolet (UV)
light. We also investigate their acoustofluidic capabilities on
different substrates. Our results show that the SAW devices
fabricated on a polymer layer (e.g. ZnO/PET, ZnO/Ni/Cu/Ni/PET) show enhanced temperature responsivity, and the
devices with larger wavelengths are more sensitive to UV exposure. For actuation purposes, the devices fabricated
on ZnO/Ni/Cu/Ni layer have the best performance for acoustofluidics, whereas insignificant acoustofluidic effects are
observed with the devices fabricated on ZnO/PET layers. We propose that the addition of a metallic layer of Ni/Cu/Ni
between ZnO and polymer layers facilitates the actuation capability for the acoustofluidic applications while keeping
temperature and UV sensing capabilities, thus enhancing the integration of sensing and acoustofluidic functions.

Index Terms— Acoustic wave, thin film, flexible, bendable, sensing, acoustofluidics, multilayers.

I. INTRODUCTION

RAPID developments in the fields of biosensing and
microfluidics pave the way for the delivery of effective

lab-on-chip (LOC) devices. LOC, as its name suggests, aims
to bring the whole laboratory processes onto a small chip,
and therefore is presented as an integrated platform capable
of performing different functions such as liquid preparation,
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sampling and sensing [1], [2]. Despite the technological
advancements in these fields, there are remaining challenges,
for instance, integrating two main components that are needed
for delivery of a market-ready LOC product, e.g., sensing
and actuating. Sensors can detect various chemical, biological,
or physical entities, and they are applied in many fields such as
product quality control and assessment, air quality measure-
ments, healthcare, food industry and security. Actuators are
needed in LOC to manipulate liquid or droplets for sample
preparation, treatment, and removal. Combining sensors and
actuators in a single device would reduce the manufactur-
ing complexity of the LOC and thus its cost. This would
be very convenient for healthcare wearable devices, which
are typically employed for single uses. In particular, there
has also been much attention paid to flexible and wearable
devices in recent years for applications such as personalised
or portable healthcare devices [3]–[5], e-skin and human-robot
interactions [6]–[10], and chemical sensing [11]–[16].

Surface acoustic wave (SAW) sensors and actuators can
generate and detect acoustic waves confined dominantly near
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the surface layer using interdigitated transducers (IDTs) on
a piezoelectric layer [17]–[19], and have been investigated
for microfluidics applications [20]–[22]. Different functions
such as streaming, pumping, jetting, and atomization can be
achieved by controlling the frequency and power applied to
the IDT electrodes for a targeted liquid with different material
properties [23]. This feature can be especially advantageous
for non-invasive, rapid and reliable disease diagnosis applica-
tions, minimal liquid consumption, reduced sample analysis
time and therefore reduced cost [22], [24]. Also, SAWs have
been employed for sensing various environmental parameters
such as the temperature and the UV light [25]–[28]. Therefore,
having both capabilities of sensing and fluid actuation, these
devices are attractive to be integrated into LOC platforms.

Flexible SAW devices with multiple functionalities can
be realised using thin-film acoustic wave actuators, such as
those based on zinc oxide (ZnO) on conformable substrates
of aluminium foil [26], [29], [30] and/or different types of
polymers [31]–[34]. They have been used for sensing and
microfluidics with similar performance to their rigid counter-
parts. However, there are still challenges for thin film flexible
acoustic wave devices on either metal substrates (deforma-
bility/wrinkling of thin metallic layers after multiple use) or
polymer (significant wave damping and reduced efficiency for
acoustofluidics) [33], [34].

In this work, we report three types of flexible and bend-
able SAW devices that are suitable for different sensing and
actuation purposes, which can be effectively integrated into
a lab-on-chip. The devices are composed of a ZnO thin
film (as the piezoelectric layer for acoustic wave generation)
deposited on a layer of metallic or polymer thin films, or both.
We propose a solution to improve the acoustofluidic capability
of SAW devices on polymers by adding metallic films between
the piezoelectric and the polymer layers. The metallic thin
films are consisted of trilayers of nickel, copper, and nickel
(e.g., Ni/Cu/Ni). Ni is resistant to wear and corrosion and plat-
ing metals with Ni can improve their durability and resistance
to corrosion of Cu [35]–[37]. The utilised polymer layer in this
study is polyethylene terephthalate (PET). We characterise
the fabricated devices, demonstrate their sensing capability for
temperature and UV light, and comparatively investigate their
acoustofluidic performances for fluid manipulation. This work
is the extended version of the paper presented at the 2021 IEEE
International Conference on Flexible and Printable Sensors
and Systems (FLEPS) and some of the data was published
in its Proceedings [38].

II. METHODOLOGY

A. Device Fabrication
Three different types of devices were fabricated in this

study. ZnO film with a thickness of ∼ 5 μm was selected
as the piezoelectric layer for all the devices (the cross-section
schematic of the fabricated devices is shown in the figure in
the abstract section). The fabricated devices are composed of
multi-layers of: (a) ZnO/Ni/Cu/Ni (b) ZnO/Ni/Cu/Ni/PET and
(c) ZnO/PET. Ni/Cu/Ni films with their thicknesses of 1, 23,
1 μm for each layer, respectively, were obtained from Shenzen
Vanlead Technology Co. LTD., China. The commercial PET

substrate has a thickness of 125 μm and was bonded to
Ni/Cu/Ni substrates through a roll-to-roll process. For the ease
of recalling the fabricated devices within the text, the Ni/Cu/Ni
trilayers will be named as the “Trimetal” layer throughout the
text.

ZnO film was deposited on the substrates using a direct
current (DC) magnetron sputter. DC power of 400 W was used
for the zinc target with a purity of 99.99%, with Ar/O2 gas flow
rate of 6/13 sccm, and a pressure level of 6 × 10−4 mbar. The
film thickness was controlled to be ∼ 5 μm and uniformity was
achieved by rotating the sample holders during the deposition
process. Interdigital transducers (IDTs) were patterned on
the substrates utilising standard photolithography and lift-off
processes. For the photolithography, S1813 ([39]) was used as
the photoresist and was spin coated on the ZnO coated sub-
strates. Then the substrates were softly baked at 110 ◦C for five
minutes. A mask aligner (EVG620) was utilised for exposing
the substrates to UV light with an intensity of 75 mJ/cm2 for
the duration of 7 seconds and the developing time was
∼ 1 minute. Cr/Au layers with thicknesses of 20/100 nm
were deposited on the substrates using a thermal evaporator
(EDWARDS AUTO306) and the patterns of the electrodes
were obtained using a standard lift-off process. The IDTs were
fabricated with wavelengths, λ, of 64, 100 and 160 μm.

B. Experimental Methods
For device characterisation, the reflection spectra of the fab-

ricated devices were obtained using a vector network analyser
(Keysight N9913A). To measure the temperature coefficient of
frequency (TCF) of the devices, the temperature was varied
from room temperature up to around 100 ◦C in an oven
and verified with a temperature sensor that was attached on
top of the acoustic wave devices. To evaluate the responses
of the fabricated devices with various IDT wavelengths on
ZnO/Trimetal/PET to the ultraviolet (UV) light, the devices
were connected to the vector network analyser and placed
under a UV gun (CS2010; Thorlabs Inc., Newton, NJ).
UV intensity of 151.20 mW/cm2 for the duration of 22 seconds
was applied to perform the experiments. The wavelength of
the UV light was 365 nm. A LabVIEW (National Instruments
Inc.) based program was developed to implement real-time
measurements of frequency changes of the flexible SAW UV
sensors. To observe the effect of viscosity of a droplet on the
resonant frequency of the device, various volumetric solutions
of glycerol and DI water with the following ratios were
prepared; 3:1, 1:1, and 1:3 (DI water/glycerol). Subsequently,
a droplet of 10 μl of each solution from the lowest viscosity
to the highest viscosity was placed on the IDTs of the SAW
device sequentially and the resonant frequency was measured
using the VNA. The surface of the SAW device was cleaned
before applying a new droplet.

For performing acoustofluidic experiments, the surfaces of
the fabricated devices were treated with a hydrophobic layer
of 1% CYTOP solution (L-809A) by dip-coating and were
heated to 150 ◦C for ∼5 minutes. The SAW devices were
connected to an RF signal generator (Marconi Instruments,
9 kHz-2.4 GHz 2024) through a power amplifier (Amplifier
Research, model 75A250) and were acoustically excited.
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A droplet of 1 μl of deionised water was placed in front
of the IDTs, and the droplet movement was captured using
a conventional video camera.

C. Simulation
Finite Element Analysis (FEA) was performed for SAW

device using a commercial package (COMSOL Multiphysics)
with solid mechanics, electrostatics, and pressure acoustic
modules. A 2D layered model utilising a pair of IDTs with
periodic boundary conditions were applied in simulations. The
model included layers of Ni, Cu, Ni, and the piezoelectric layer
of ZnO from bottom to top. These layers were designed with
thicknesses of 1 μm, 23 μm, 1 μm, and 5 μm, respectively.
An IDT comprising finger electrodes made of gold with the
thickness of 120 nm, width of 25 μm, and length of 300 μm
was built on top of the piezoelectric layer. Vibration patterns
and frequency modes were obtained by eigenfrequency calcu-
lations using the COMSOL Multiphysics software.

III. RESULTS AND DISCUSSION

A. Characterisation of SAW Devices
The simulation and experimental reflection S11 spectra of

the fabricated ZnO/TrimetalNi/Cu/Ni devices with different
wavelengths of 64, 100 and 160 μm were obtained using
COMSOL Multiphysics and a vector network analyser, respec-
tively. The results are shown in Fig. 1. The acoustic resonant
frequency ( f ) is determined by the phase velocity of acoustic
wave (ν) in the substrate and the wavelength (λ) of the IDTs
( f = ν/λ). As expected, by increasing the wavelength of
IDTs, the acoustic frequencies of the devices shift towards
lower values. Lamb waves are usually generated in thin
structures, where the thickness of the substrate is smaller than
the designed wavelength. Two types of Lamb waves can be
present in thin membranes at lower frequencies; 1) flexural
or anti-symmetric (A-mode), 2) extensional or symmetric
(S-mode) [40]–[43]. The modes of acoustic frequencies are
labelled in the experimental results as shown in Fig. 1. The
first resonant frequency is asymmetric lamb wave (A0) mode,
the second frequency is symmetric lamb wave (S0) mode,
while the third or further frequency (if any) in the S11 spectrum
corresponds to higher order modes of Lamb waves.

We have confirmed the wave modes with the help of simu-
lations. Fig. 1(a) shows a comparison between the simulation
and experimental data for the device with an IDT wavelength
of 100 μm as an example together with frequency modes as
insets. The experimentally measured resonant frequencies for
A0 and S0 modes are in good agreements with the simulations
and the discrepancies between simulation and experimental
results can be due to several factors. For example, the selection
of specific numerical simulation parameters such as mesh
and sweep settings can affect the results. Also, the material
properties used in simulation can be slightly different than
the actual values of the samples. Another reason could be the
fabrication-related issues, such as IDT metal deposition and
patterning and imperfection in the ZnO layer, or the Trimetal
layer.

The obtained experimental results for devices on
ZnO/Trimetal substrate for all the designed wavelengths

Fig. 1. (a) Comparisons between simulation and experimental results
of resonant frequencies for the designed wavelength of 100 µm for
ZnO/Trimetal substrate, experimentally obtained reflection spectra for
various wavelengths for (b) ZnO/Trimetal substrate, (c) ZnO/Trimetal/PET
substrate and (d)ZnO/PET substrate.

are illustrated in Fig. 1(b), while Fig. 1(c) and Fig. 1(d)
represent the reflection spectra of devices fabricated on
ZnO/Trimetal/PET and ZnO/PET substrates, respectively.
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Although the total substrate thickness is increased when
a PET layer is added to the Trimetal layers, the acoustic
frequencies are remained unaltered, inferring that the created
mode is evanescent and that the wave is bounded at the surface
of the added PET layer. This can be seen from the exper-
imental results shown in Fig 1(b) and Fig1 (c). Mechanical
interactions between the SAW and subsequent layers influence
the SAW propagation velocity and power dissipation and
attenuation of the waves [44]. As anticipated, the PET layer
leads to significant attenuation of acoustic wave energy into
the substrate and therefore, the resonant peaks are weaker
compared to other substrates. This can be clearly observed in
Fig. 1(c) and Fig. 1(d). Although both of the devices contain
the same PET layer, the device including the 25 μm of
Trimetal layer effectively enhances the acoustic performance.
In other words, the substrates that include Trimetal layers can
be acoustically excited more efficiently at lower frequencies
compared to ZnO/PET devices.

B. SAW Sensing Functions
One of the advantages of SAW actuators is that they can be

used for various sensing applications. The resonant frequency
of SAW devices can be influenced and altered by several
factors including mass loading, conductivity, temperature, etc.
Monitoring the changes in the resonant frequency caused by
these factors can be utilised as a sensing mechanism following
the equation (1) [45]:
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where m is the mass load, σ is the conductivity, T is the
temperature, c is the mechanical constant, ε is the dielectric
constant, P is the pressure, η is the viscosity, and ρ is
the density. TCF is theoretically defined by the following
equation (2) [45]:
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where f0, T are the reference frequency and temperature;
and νp , λ, and α are phase velocity, wavelength, and thermal
expansion coefficient of the device, respectively. With the PET
as the substrate for the SAW device it can cause significant
temperature effect on the device. The TCF value depends on
the defined elements, and by using a PET layer as the SAW
substrate, thermal expansion coefficient is altered dramatically,
which leads to higher absolute values of TCF.

Fig. 2(a) depicts the absolute TCF values of all three types
of SAW devices. As is shown in the obtained data, the TCF
value remains almost constant for ZnO/Trimetal substrate,
whilst it changes significantly with temperature for the devices
that include a PET layer. For the substrate of the PET layer,
the absolute value of TCF can reach very large levels of
1295 and 822 ppm/K for ZnO/PET and ZnO/Trimetal/PET
SAW devices, respectively, and the TCF value decreases

Fig. 2. (a) Absolute TCF values for the three fabricated substrates;
(b) UV Sensing of ZnO/Trimetal/PET substrate.

with the increase of frequency in those devices. It can be
seen from Fig. 2 that ZnO/PET device has the highest TCF
value among these three devices, however, the SAW actuation
is significantly weaker in this type of device compared to
previous ones as will be explained in the next section. This
can be due to the significant loss of acoustic energy in the
polymer layer as energy would also be significantly dissipated
into the soft polymer.

Devices fabricated on ZnO/Trimetal/PET layers showed
a strong temperature-induced responsivity with distinct
frequency peaks in acoustic characterisation. Therefore,
we selected this type of substrate to investigate its response to
high intensity UV exposures and explore the effects of IDT
wavelengths. Based on the equation 1, the frequency change
due to UV exposure can be attributed to two main factors, e.g.,
(a) the conductivity change in ZnO, and (b) the temperature
change caused by the UV exposure. The frequency shift based
on the conductivity change can be described utilising the
equation (3) [46]:

� f

f0
= �ν

ν0
= −k2

2

1

1 + (ν0Cs/σs)2 (3)

where k2 is the coupling coefficient, Cs is the capacitance per
unit length of the surface, and σs is the sheet conductivity.
Recently we reported that increasing the UV intensity also
increases the sheet conductivity in the ZnO thin film and that
the frequency shift caused by UV-induced temperature change
can be negligible compared to the total frequency shift in high
intensities of UV exposure [47]. In this study, we selected
a fixed intensity of UV exposure, and we investigated the
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effects of various wavelengths to the response of the fabricated
devices to the UV exposure. Fig. 2(b) depicts normalised fre-
quency differences versus reference frequency for UV intensity
of 151.20 mW/cm2 and the duration of 22 s. As shown in this
figure, asymmetric lamb wave mode (A0) is more responsive to
the UV light and the value of normalised frequency difference
is higher in this mode of frequency compared to the rest.
Also, devices with higher designed wavelengths show a more
significant change compared to smaller wavelengths. There-
fore, devices with higher designed wavelengths calibrated at
their lower frequency modes might be more desirable for the
applications where the UV intensity needs to be carefully
monitored. Further investigations on other various possible
wavelengths and substrates in the future would help obtain
an empirical equation to explain this effect and generalise the
conclusion.

In the next set of sensing experiments, we selected
ZnO/Trimetal/PET substrate with the wavelength of 100 μm
and measured the responses of the device to various viscosi-
ties. For this purpose, we prepared various glycerol volumetric
solutions, with glycerol to DI proportions of 0% (DI), 25%,
50%, and 75%. We placed 10 μl droplet of each solution
on top of the IDTs and recorded the S11 spectra, respectively.
The results are plotted in Fig. 3. The nominal frequency of the
device is ∼17.93 MHz and addition of the droplet on the IDTs
results in a shift in nominal frequency towards lower values.
The corresponding nominal frequencies with the presence of
the droplet are 17.87, 17,86, 17.85, and 17.83 MHz for DI,
25%, 50%, and 75% of glycerol respectively. The changes
we observe in the acoustic frequency by loading droplets
could be a combination of mass-loading, dielectric loading
and viscosity changes. By placing a water droplet, compared
to the case where there is no droplet present on the IDTs,
the frequency shift would be mostly dominated by the mass
or dielectric loading. However, since the density is changed
from 1 to 1.19 g/cm3 (e.g., from water to 75% Glycerol,
respectively), the mass difference would be negligible. There-
fore, further change in the acoustic frequency would be mostly
attributed to the viscosity change According to equation (1),
mass-loading and increased viscosity lead to a larger shift in
the frequency, which is in agreement with the experimental
results depicted in Fig. 3(a). Sample S11 spectra in a narrowed
frequency range for these solutions are presented in Fig. 3(b).

C. Acoustofluidic Performance
In the next set of experiments, the microfluidic actuation

capability of the fabricated devices was tested.
Fig. 4(a) illustrates the pumping speeds of the droplet for

the device with the wavelength of 100 μm fabricated on
ZnO/Trimetal layers versus different powers at an operating
frequency of 14 MHz. For this experiment, a droplet of 1 μl
was placed in front of IDTs. The droplet started to move
with the applied power of 3.8 W and by further increasing
the applied power, the droplet was pumped at higher speeds
up to 9.55 mm/s with a power of 7 W and then decreased
to 5.2 mm/s by applying a power of 7.8 W. The decrease in
speed after 7 W could be due to the heating effect, which
means that at higher powers, not all the energy is transferred

Fig. 3. (a) Frequency values for different viscosities; (b) Sample S11
plots for various Glycerol volumetric solutions in DI.

to the droplet and part of energy is converted to heat and
might be dissipated into the film. In addition to the loss of
energy transferred to the droplet, the resonant frequency of the
device is altered due to heating that also degrades the pumping
performance. During the pumping process, deformation of the
ZnO/Trimetal SAW device can be observed, and device has
bent upwards due to the bimetallic effect caused by the SAW
induced heating.

We also investigated the pumping capability of the devices
fabricated on ZnO/PET layers. However, due to the excessive
acoustic energy loss into the polymer layer, we did not observe
any significant acoustofluidic functions (except significant
internal streaming effect) on these substrates. In order to solve
this issue, the pumping capability of devices fabricated on
ZnO/Trimetal/PET layers was explored. Fig. 4(b) depicts the
obtained results for the applied power at 8.2 MHz, where
a droplet of 1 μl was placed in front of the IDTs with
the wavelength of 160 μm. In this case, pumping occurred
from 1.6 W up to 4.5 W. The pumping speed started from
0.008 mm/s for the power of 1.8 W and reached its maximum
of 0.52 mm/s at the applied power of 3.6 W. After this point,
further increasing RF power led to lower speed for pumping,
which could be a result of significant heat generation at such
higher powers.

The lack of acoustofluidic activity in ZnO/PET substrates
could be attributed to the following reasons. In the devices
composing Trimetal layers and by considering the 5 μm
thickness of the ZnO film, deposition of IDTs on top of the
substrates would create vertical electric fields under IDTs,
which are stronger than the lateral fields along the λ/4 gaps
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Fig. 4. (a) Pumping velocity of ZnO/Trimetal; (b) Pumping velocity of
ZnO/Trimetal/PET.

(16 μm and higher) between the opposite polarity IDT fingers.
The vertical fields also couple to the predominant piezoelectric
constant of ZnO. As a result, energy trapping in the relatively
thick Trimetal layers concentrates the acoustic energy in the
lower loss materials, avoiding crystal grain boundary losses in
ZnO and polymer losses in PET. By comparing the results
among these three substrates, we can see clearly that by
adding a metallic layer between the piezoelectric and polymer
layers has prevented the excessive loss of acoustic energy and
has significantly improved the acoustofluidic capability of the
device.

IV. CONCLUSION

We have introduced three types of flexible and bendable
SAW devices utilising ZnO thin film as the piezoelectric
layer deposited on thin metallic (Ni/Cu/Ni, Trimetal), poly-
mer (PET) layers and combined Ni/Cu/Ni and PET. We inves-
tigated the TCF responses of the fabricated SAW devices to the
temperature changes. We observed that devices which included
PET layer in their substrate showed stronger response to the
ambiance temperature change due to the lower thermal con-
ductivity of polymers, e.g., ZnO/PET and ZnO/Trimetal/PET.
Although the PET layer itself reduces the quality factor and
efficiency of the acoustic operation of the devices as discussed,
introducing a Trimetal layer between the ZnO and PET layers
enhances the acoustic efficiency. These devices with various
wavelengths were exposed to UV exposure to explore their
responses. We observed that devices with larger wavelengths
have a stronger response to the exposure of UV. We also tested
all types of fabricated devices for their microfluidic pumping

capability. Among these substrates, the devices fabricated on
ZnO/Trimetal had the best performance for actuation. On the
other hand, the devices fabricated on ZnO/Trimetal/PET led to
an actuation capability, which wasn’t feasible for the devices
on polymer substrates. Therefore, addition of thin metallic
films between ZnO and polymer layers not only maintains
various sensing capabilities of the sensor, but also leads to
enhance the actuation capability of ZnO/polymer substrates.
The proposed fabricated devices can be utilised as an inte-
grated, mechanically conformal platform for wearable devices.
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