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Abstract 26 

Atmospheric water harvesting (AWH) has been an appealing prospect for decades to overcome water 27 

scarcity in remote areas. Adsorption-based AWH technologies have gained popularity due to their adaptability, 28 

and applicability using low-grade heat sources. This study presents up-to-date and future possibilities of 29 

adsorbents and systems for adsorption-based AWH. In this review, in-depth advancements in adsorbent 30 

materials are compartmentalized into adsorption equilibrium/isotherms, adsorption kinetics, and thermal 31 

conductivity. Various systems designs and modifications have been reviewed and classified accordingly. Liquid 32 

desiccants i.e., CaCl2 and LiCl-based AWH systems produced in between 0.63 to 1.0 kg/m/d of water. Recently, 33 

metal-organic frameworks (MOFs) are realized as effective adsorbents for AWH. Their excellent hydrophilicity, 34 

structural integrity, and tailorable structures can provide water in high and low relative humidity (RH) areas. 35 

MOF-841 and MOF-801 yielded maximum adsorption uptakes at 25 °C i.e., 0.5 and 0.3 g/g, respectively. MOF-36 

801 showed an excellent water production of 0.2-0.3 L/kg/d at 5%-40% RH and 20-40°C. MOF-303 delivered 37 

~0.7 L/kg/d at 10% RH and 27oC. Cr-soc-MOF-1 and MIL-101(Cr) resulted in maximum adsorption uptakes 38 

i.e., 1.9 g/g and 1.4 g/g, respectively. Future possibilities regarding these captivating and emerging adsorption 39 

technologies are discussed as concluding remarks. 40 

Keywords: atmospheric water harvesting; adsorbents; technologies; systems; metal-organic framework; solid 41 

and liquid desiccants 42 

1 Introduction 43 

Water shortage is among the unavoidable worldwide challenges identified by the United Nation and 44 

the degree of water stress is expected to worsen in the foreseeable future [1]. About 90% of the global 45 
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population resides in developing countries, thus exerting more pressure on water resources due to high 46 

population densities and growth rates [2]. In a recent study, more than 65% population of the world will live 47 

in a water-scarce condition by 2025 because of the growing population density and the lack of modern water 48 

supply infrastructure [3,4]. Moreover, the uneven distribution of freshwater, particularly in geographic regions 49 

historically having sparse rainfalls, face significant public health hazards due to lack of access to water [5]. 50 

Freshwater only constitutes a small portion (i.e., ~2.5%) and saltwater in oceans accounts for the rest (i.e., 51 

~97.5%) of the total global water. However, only 0.4% of the freshwater sources are readily available in the 52 

forms of lakes, soil moisture, atmospheric water vapors, wetlands, rivers, and biota i.e., 67.4%, 12.2%, 9.5%, 53 

8.5%, 1.6%, and 0.8%, respectively [6]. The limited freshwater resources put more than half of the global 54 

population (about 4 billion people) in peril of constant water shortage [7,8]. According to a United Nations 55 

report, 31 countries are at the physical water stress threshold value (i.e., 25 to 70%), and 22 countries are 56 

above the physical water stress threshold value (i.e., >70%) [9]. South and Central Asia, North Africa, and the 57 

Middle East will be under severe water stress by 2050 [10]. Due to the continuous degradation of freshwater 58 

resources and the increasing threat of climate change, developing viable options for freshwater generation for 59 

the water-stressed countries is an urgent matter. Desalination of oceanic water has been proven a viable option 60 

for the provision of fresh potable water but it is only feasible for coastal regions [11–13]. Conversely, in 61 

landlocked regions, especially those in arid and semi-arid climate conditions, AWH could prove as a key to 62 

overcoming the water shortage challenge because it provides safe potable water at a small communal level 63 

without affecting the environment [14]. AWH techniques have been administered dating back to the early 64 

1900s by Edger S. Belden (US661944A). Nowadays, fresh potable water could be provided using AWH (i.e., 65 

~13000 trillion liters readily available for extraction) [6]. The atmosphere contains around ~10% of all 66 

freshwater in the form of molecules [15,16]. Commonly, two methods have been used for the AWH, namely 67 

sub-dewpoint cooling, and adsorption of atmospheric water using desiccants. Fig. 1 compartmentalizes the 68 

three mainstream techniques to capture, collect, and harvest atmospheric water, including (i) active cooling 69 

where water is extracted with an external energy source, e.g., vapor compression, Peltier cooling, and 70 

membrane-assisted harvesting; (ii) passive cooling where water is harvested without an external energy 71 

system, e.g., dew collection, and fog harvesting; (iii) desiccation where air moisture is adsorbed and absorbed 72 

through a sorbent material. In general, a successful AWH technology must fulfill the criteria of cost effective, 73 

energy efficient, safe, chemically stable, and independent of high-grade energy sources. In the context of 74 

thermodynamics, the main design consideration is the energy efficiency of the process [17]. 75 

 76 

Fig. 1 is inserted here. 77 

 78 

The authors aim to review the different AWH technologies, their current applications, prospects, and 79 

challenges. By comparison, adsorption-based AWH technology offers a relatively cost-effective, 80 

environment-friendly, decentralized technique that operates with low-grade thermal energy. To date, 81 

adsorption-based AWH has gained renewed interest by researchers and practitioners due to its adaptability and 82 

mobility [18–21]. Primarily, this review presents the most updated view regarding the adsorption-based AWH 83 

technologies on both system design and the adsorbent materials. Furthermore, the present study compiles a 84 

comprehensive review on the in-depth advancements in adsorbent materials and categorized them into 85 
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adsorption equilibrium/isotherms, adsorption kinetics, and thermal conductivity. So far, many AWH adsorbent 86 

materials and systems have been developed. Capable of sub-dewpoint temperature cooling, an apparatus was 87 

presented in 1963 which consisted of an inclined and a vertical channel [22]. Three years later, a solar still 88 

was introduced, in which ethylene glycol was used as a liquid desiccant for AWH [23]. Almost a decade and a 89 

half later, in 1981, a solid desiccant material was used instead of liquid desiccants for AWH [24]. Nearly, half 90 

a decade later, in 1987, “s” shaped composite desiccant material instead of liquid and conventional solid 91 

desiccants was developed for AWH [25]. In 1998, innovative desiccant materials were developed in Russia 92 

for AWH, capable of collecting 3 to 5 tons of water [26]. Fig. 2 shows some of the published patents in the 93 

field of AWH. To illustrate the growing interest in AWH, the number of research publications depicted in Fig. 94 

3 further reflects the fast-expanding rate of technological development in recent years. 95 

 96 

Fig. 2 is inserted here. 97 

 98 

Fig. 3 is inserted here. 99 

 100 

2 Active and passive AWH technologies 101 

2.1 Vapor compression cycle based AWH 102 

Harvesting condensates is a common practice in large-scale air conditioning applications [27,28]. 103 

Dehumidifiers based on an active air-cooling process mostly consist of a conventional vapor compression 104 

cycle (VCC) of liquid refrigerants to transfer heat between the evaporator (a cold reservoir) and the condenser 105 

(a hot reservoir). Fig. 4 presents the VCC-based AWH process. Similarly, a VCC-based AWH device was 106 

developed for military purposes [29]. The reported water harvesting rate (WHR) for this device was 1.50 kg h-107 
1. Simulation of a small-scale VCC prototype showed a WHR of range 0.92-1.08 kg h-1 under 24 hours 108 

operational time [30]. A VCC system was installed in Iraq under conditions in which the airflow rate across 109 

the evaporator was studied. The maximum water production for this system was 7.9 L per day at an air flow of 110 

230 m3 h-1 [31]. Refrigerants used in these devices predominately were 1,1,1,2-tetrafluoroethane, ammonia, 111 

isobutane and chlorofluorocarbons (CFCs) [32–34]. These refrigerants are known as ozone-depleting 112 

chemicals and have been replaced with more environment-friendly and cost-effective refrigerants, i.e., R143a 113 

[35]. 114 

 115 

Fig. 4 is inserted here. 116 

 117 

2.2 Thermoelectric cooling based AWH 118 

In addition to VCC, the Peltier effect – also known as thermoelectric cooling (TEC) – is another 119 

common approach to reach the dew point temperature [36]. These TEC devices are compact and powered by 120 

direct current. Zhang et al. (2010) performed a feasibility study in remote areas using TEC powered device in 121 

which the optimum temperature of the semi-conductor material for AWH ranges from -130°C to 90°C [37]. An 122 

experimental and simulation study was conducted on TEC processes for water extraction using a material 123 

coded as TEC1-12706, resulting in a WHR per chip of 0.007 kg h-1 at a volumetric air flow of 4.8 m3 h-1 [38]. 124 

A TEC based water condensation system powered by solar cells was reported which produced up to 1 L h-1 125 
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[39]. Another study reported water generation through TEC principle, shown in Fig. 5, capable of harvesting 126 

26 ml h-1 of water at 75% RH [40]. Table 1 shows the features of VCC and TEC systems with 7500 L d-1 and 127 

1500 L d-1 water production capacities. These VCC-based devices can be designed to reach dew points less 128 

than 4.5°C but are energy-intensive [41]. 129 

 130 

Fig. 5 is inserted here. 131 

 132 

Table. 1 is inserted here. 133 

 134 

2.3 Membrane-based AWH 135 

Membranes can be used for AWH using active cooling. The efficiency of such methods is mainly 136 

influenced by physical parameters of the membrane i.e., water permeability. Bergmair et al. (2014) performed 137 

an analysis for membrane-based AWH to selectively separate water vapors from the air. These vapors are then 138 

condensed into liquid form. Through system optimization, such membrane-based systems can result in a WHR 139 

of ~9 m3 d-1 as compared to those that produce ~4.5 m3 d-1 without membrane modules. Membrane modules in 140 

atmospheric water generation reduce energy costs by more than 50% [42]. The same research group further 141 

studied the effect of different driving forces across the membrane module on AWH via a combination of 142 

vacuum pump and recirculation of sweep air at low pressure [43]. The vacuum pump and condenser 143 

maintained enough pressure for water permeation through the membrane. Alternatively, the driving force can 144 

be uncoupled when 2°C dew point air is recirculated as a sweeping air through the condenser as the vacuum 145 

pump controls the total system pressure [43]. According to the results, a WHR of 0.26 and 0.21 g min-1 was 146 

potentially available at 32 and 10 L min-1 airflow rates, respectively. The cooling of the recirculated sweep 147 

stream requires a smaller amount of energy as compared to the systems that produce water without 148 

membranes. However, a higher vapor loss rate was reported due to the reduction in permeate side pressure 149 

when the condenser was operating above the freezing point [43]. Additionally, Zhao et al. developed an air 150 

dehumidification cum AWH system using hollow fiber membranes, driven by a dry sweep stream with a 151 

vacuum pressure of 0.17 bars [44]. This system configuration saves energy up to 24.3% based on cooling 1 m3 152 

of air and up to 38.9% based on producing 1 kg of potable water. Wu and coworkers proposed a novel 153 

electrospun, polyacrylonitrile (PAN) nanofibrous membrane with directional water transport capability for 154 

humidity harvesting, as illustrated in Fig. 6 [45]. This hydrophobic/hydrophilic directional-wicking membrane 155 

has the potential to enhance the water harvesting capability of existing membrane-assisted systems. The 156 

variation in pore sizes – smaller and larger pores in the hydrophilic and hydrophobic layers, respectively – 157 

improved water harvesting capacity by ~1.7 times [45]. Similarly, a polymeric electrolyte membrane (PEM) 158 

was developed for an electrochemical air dehumidification system having the potential to decrease humidity 159 

from 90% to less than 30% using a 3V electric field [46]. The moisture removal can be improved by 160 

increasing the humidity and air flow rates on the anode side. The main drawback of this system was the low 161 

coefficient of performance (COP≈0.33) as only 30% of the input power was used by the PEM element [46]. In 162 

the literature, reported power consumption (i.e., 0.16-0.19 kWh kg-1) of membrane-assisted systems was 163 

relatively lower. However, the daily WHR was very small (i.e., 0.2 kg per day), due to the low air flow rate 164 
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(i.e., 0.84 m3 h-1 on average) in their experiments. For membrane-assisted systems, the moisture transfer rate 165 

could be improved to become a competitive option for water vapors concentration [47]. 166 

 167 

Fig. 6 is inserted here. 168 

 169 

2.4 Dew and Fog AWH 170 

Dew and fog AWH are promising methods of passive cooling for water harvesting. Dew formation is a 171 

phase transition, naturally occurring phenomenon in which moisture in the atmosphere shifts its phase on solid 172 

surfaces which have a temperature below the dewpoint of the air [48,49]. The collection of dews can be 173 

considered as an atypical water source as it depends on the manipulation of natural processes. Passive dew 174 

harvesting has resulted a maximum WHR of 0.3 to 0.6 L m-2 per day [50]. For optimum WHR with the 175 

application of zero external energy, the physical properties like hydrophilic nature, size, position (inclination 176 

and orientation), and shape of the radiative condensers could be improved. Despite the improvements, weather 177 

condition influences the performance of the condenser and limits the applicability of this technique to regions 178 

with suitable environmental conditions, rendering it an unreliable source of AWH [50]. The energy 179 

consumption in dew collection is comparatively higher because of high energy input for overcoming latent 180 

heat of evaporation and for sub-dewpoint cooling of the air for AWH [51]. 181 

Fog particles are the micrometric droplets suspended in the atmosphere that grows in size by the 182 

surface tension action of water until they are large enough to be detached and collected by gravity [52]. The 183 

rate of fog harvesting is influenced by the psychrometric properties of the air i.e., absolute humidity, relative 184 

humidity, wind velocity, and fog frequency [52]. Fig. 7(a) illustrates a traditional mesh-collection method of 185 

fog. The fog droplets are trapped when the wind pushes the water droplets against the meshes in a foggy 186 

environment. A lightweight (80 kg at 12 m in height) warka water structure was reported in literature which 187 

consists of a polyester mesh inside a bamboo frame. In warka water structure, fog, rain, and dew particles 188 

grow larger colloids on the mesh and are subsequently collected [53]. Fig. 7(b) documents major milestones 189 

for fog water collection technology, many of which were inspired by mimicking the biological water-harvest 190 

mechanisms evolved for biospecies existing in an arid environment [54–58]. For example, the Namib desert 191 

beetle is a unique pattern in nature that collects water from fog to survive [56]. Table 2 summarizes the 192 

features in selected animals and plants facilitating water harvesting. Fig. 8 further shows the various 193 

technologies to fabricate bioinspired water harvesting materials. In short, fog water collection is a simple and 194 

inexpensive technology, albeit its reliance on climatological conditions makes water yield unpredictable. Low 195 

water productivity, as defined by the ratio of water collected at the sump and the liquid water flux normal to 196 

the mesh, has also been accentuated [54,59]. 197 

 198 

Fig. 7 is inserted here. 199 

 200 

Fig. 8 is inserted here. 201 

 202 

Table. 2 is inserted here. 203 

 204 
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2.5 Biomass gasification AWH 205 

AWH as a byproduct of biomass gasification has been documented. One example is the downdraft 206 

gasifier and biomass-gasification-based AWH system which was feasible for water-deprived and agricultural 207 

regions, as shown in Fig. 9 [60]. This system leverages the heat energy generated from the combustion of 208 

biogas to its benefit by using it in the refrigeration system to condense water. This biomass gasification-based 209 

AWH system has a WHR rate of 0.8-1.2 mL kg-1 of biomass. In conclusion, it was projected that this system, 210 

if fully deployed, could potentially meet the potable water needs of India up to 10-12%. 211 

 212 

Fig. 9 is inserted here. 213 

 214 

3 Principles and features of Adsorption-based AWH 215 

In this section, the principles, and features of the adsorption-based AWH systems are discussed in 216 

detail, as are the water harvesting cycle during adsorption, desorption, and their performance. The 217 

psychrometric representation of a typical adsorption-based AWH system is also presented. 218 

Adsorption-based AWH is a salient way of extracting water from the air as compared to fog harvesting 219 

and dewing because it can harvest water from air with a low moisture-harvesting index (MHI), thereby 220 

expanding the water harvesting capacity at a wider range of temperature and humidity level. Selective 221 

adsorbents or desiccants (i.e., metallic organic frameworks, zeolites, etc.) and their composites have been 222 

utilized in AWH systems [15,51,61,62]. Fig. 10 illustrates a typical adsorption-based AWH system consisting 223 

of an adsorbent layer, a condenser, and an enclosure space. The water harvesting cycle in the system 224 

comprises of (i) adsorption of water at night when adsorbents are in contact with low temperature and high 225 

RH ambient air, (ii) desorption of water during daytime when the adsorbents are in contact with high 226 

temperature, trapped air, and (iii) condensation of water vapors at a lower temperature. Fig. 11(a) shows the 227 

schematic of the basic adsorption-based AWH system that comprises a desiccant material for the adsorption 228 

and desorption processes along with a condenser. The psychrometric behavior of these AWH systems is also 229 

shown in Fig. 11(b). In the plot, point 1 represents the state of saturation of the adsorbent in a confined space, 230 

whereas point 2 represents the state of desorption of the adsorbent at a higher temperature, thus increasing 231 

humidity ratio. The atmospheric water is then collected at point 3 where water vapor changes into a liquid 232 

form. The adsorption and desorption kinetics of a desiccant material envisage the slope of the line joining 233 

points 1 and 2. The line connecting points 2 to 3 represents the condensation of air up to its dewpoint. The 234 

performance of such systems can be characterized by the following parameters: adsorption capacity per unit 235 

mass of adsorbents (Δx), relative pressure (RP), system’s water harvesting capacity (Mwater), recovery ratio 236 

(RR), specific energy consumption (SECheat), and heat for regenerated air (Wheat). The mathematical 237 

formulations of these parameters are given in Eq. (1)-(6) [63]. 238 

 239 

∆𝑥 = 𝑥𝑎𝑑(𝑇𝑎𝑑 , 𝑅𝑃𝑎𝑑) − 𝑥𝑑𝑒(𝑇𝑑𝑒 , 𝑅𝑃𝑑𝑒)        (1) 240 

𝑅𝑃 =
𝑃𝑣

𝑃𝑠𝑎𝑡(𝑇𝑠𝑜𝑟𝑏𝑒𝑛𝑡)
= 𝑅𝐻 ×

𝑃𝑠𝑎𝑡(𝑇𝑎𝑖𝑟)

𝑃𝑠𝑎𝑡(𝑇𝑠𝑜𝑟𝑏𝑒𝑛𝑡)
        (2) 241 

𝑀𝑤𝑎𝑡𝑒𝑟 = 𝑝𝑎𝑖𝑟 ,𝑠𝑜𝑟𝑏𝑒𝑟 𝑄𝑎𝑖𝑟 ,𝑠𝑜𝑟𝑏𝑒𝑟 𝑡𝑠𝑜𝑟𝑏𝑒𝑟(𝑑𝑑𝑒𝑠𝑜𝑟𝑏𝑒𝑟 ,𝑜− 𝑑𝑐𝑜𝑛𝑑)      (3) 242 

𝑅𝑅 =
𝑀𝑤𝑎𝑡𝑒𝑟

𝑝𝑎𝑖𝑟,𝑠𝑜𝑟𝑏𝑒𝑟𝑄𝑎𝑖𝑟,𝑠𝑜𝑟𝑏𝑒𝑟𝑡𝑠𝑜𝑟𝑏𝑒𝑟𝑑𝑠𝑜𝑟𝑏𝑒𝑟,𝑖
≈

𝑑𝑑𝑒𝑠𝑜𝑟𝑏𝑒𝑟,𝑜−𝑑𝑐𝑜𝑛𝑑

𝑑𝑠𝑜𝑟𝑏𝑒𝑟,𝑖
      (4) 243 
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𝑆𝐸𝐶ℎ𝑒𝑎𝑡 =
𝑊ℎ𝑒𝑎𝑡

𝑀𝑤𝑎𝑡𝑒𝑟
= 𝐶𝑝 ×

𝑇𝑑𝑒𝑠𝑜𝑟𝑏𝑒𝑟,𝑖−𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡

𝑑𝑑𝑒𝑠𝑜𝑟𝑏𝑒𝑟,𝑜−𝑑𝑐𝑜𝑛𝑑
        (5) 244 

𝑊ℎ𝑒𝑎𝑡 = 𝐶𝑝𝑃𝑎𝑖𝑟 ,𝑑𝑒𝑠𝑜𝑟𝑏𝑒𝑟 𝑄𝑎𝑖𝑟 ,𝑑𝑒𝑠𝑜𝑟𝑏𝑒𝑟 𝑡𝑑𝑒𝑠𝑜𝑟𝑏𝑒𝑟(𝑇𝑑𝑒𝑠𝑜𝑟𝑏𝑒𝑟 ,𝑖− 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡)    (6) 245 

 246 

In these equations, xad (Tad , Rad) represents the adsorption curves and xde (Tde , Rde) represents the desorption 247 

curves, pv represents the partial pressure of water vapors, psat denotes the saturated vapor pressure, ρ denotes 248 

density, dcond denotes the saturated humidity ratio, Cp denotes the specific heat capacity, whereas tsorber and 249 

tdesorber denote the periods of adsorption and desorption phases, respectively, and ddesorber, o denote the moisture 250 

content of the desorber outlet air and dsorber, i shows the sorber inlet moisture content. The adsorbent materials 251 

are the essential components of any adsorption-based AWH system, either in solid or liquid form. 252 

Improvement in adsorbent materials leads to a significant amount of energy reduction in AWH systems. 253 

Generally, the adsorbents should fulfill the criteria such as flexibility in hydrophilicity, chemical stability, 254 

adjustable pore volume, sorption kinetics, crystal density, and stability in multiple water harvesting cycles 255 

[15]. The next section deals with the significance and selection of adsorbents that focus on water adsorption 256 

isotherms, adsorption kinetics, thermal conductivity, and thermophysical properties of some potential 257 

adsorbents for atmospheric water harvesting. 258 

 259 

Fig. 10 is inserted here. 260 

 261 

Fig. 11 is inserted here. 262 

 263 

4 Recent developments in adsorbent materials for AWH 264 

The performance of an adsorption-based AWH system is affected by the properties of the material 265 

(i.e., crystal size, adsorption uptake) and component (i.e., thermal conductivity, parasitic heat loss, vapor 266 

transport to a condenser) [51]. Many promising adsorbents have been proposed for AWH including silica gel, 267 

zeolites, metal-organic frameworks (MOFs), and other inorganic and organic materials of hygroscopic nature 268 

(e.g., CaCl2, LiCl) [15,26,64–69]. Silica gel granules and powders are among the most commonly used 269 

inorganic desiccants because they are economical and exhibit high stability, however, their AWH performance 270 

is limited due to less adsorption capacity [70–73]. Different hygroscopic salts (e.g., LiCl, MgSO4) have been 271 

incorporated with silica gel to increase the adsorption capacity but the impregnation of hygroscopic salts results 272 

in corrosion, deliquescence, and spill-over which affects the application of these materials in adsorption based 273 

AWH [74–77]. Some aerogels are also inorganic desiccants and show high adsorption ability, but their 274 

application is restricted because of the requirement of high regeneration temperature [78]. Moreover, various 275 

substrates (e.g., hydrogel beads, metal foams) have been developed and used for AWH [61,64,66,79]. Materials 276 

that tend to deliquesce as they absorb moisture from humid air will result in limited AWH efficiency. Table 3 277 

compiles the key features of moisture adsorbing materials for AWH reported in the literature. The different 278 

parameters such as water harvesting capacity, the energy required for desorption, stability under multiple 279 

cycles, and cost considerations greatly affect the selection of suitable adsorbents for AWH. 280 

 281 

Table. 3 is inserted here. 282 
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 283 

4.1 Adsorption equilibrium/isotherms 284 

The water adsorption uptake is one of the main features for adsorbents performance and a wealth of 285 

research has been conducted for common adsorbents such as silica gel [80,81], zeolite [82,83], activated 286 

alumina [84–86], polymeric and carbon-based adsorbents [87–90]. Despite the lack of standardized criteria for 287 

the selection of adsorbents, the consensus is that materials with a large maximum adsorption capacity for 288 

water molecules and characterized by Type IV or Type V (s-shaped) isotherms are the preferred choice for 289 

AWH. Herein, Fig. 12(a) shows the characteristic adsorption isotherms for moisture uptake [91], and Fig. 290 

12(b) shows the recommended principles for MOF selection based on the capacity, isotherm shape, and 291 

stability in the adsorption and desorption cycles over repeated applications [15]. 292 

 293 

Fig. 12 is inserted here. 294 

 295 

For the adsorbents to operate with these types of isotherms, a strong interaction is required with water 296 

molecules (capture), yet weak enough to release them (harvest) through temperature and pressure swing 297 

adsorption within the AWH cycle [92]. The gravimetric isotherm of adsorbents yields the equilibrium mass of 298 

water taken up in its maximum capability at the given temperature and relative humidity. The water 299 

adsorption isotherm is commonly described by the following parameters: (i) heat of adsorption (kJ mole-1), (ii) 300 

adsorption capacity (g g-1), (iii) KH (slope of isotherm), and (iv) relative pressure α (inflection point of 301 

isotherm) [93]. The shape of adsorption isotherms can reveal important information about the adsorption 302 

dynamics and mechanisms. Fig. 13 shows the water adsorption isotherms of the various forms of microporous 303 

aluminophosphate zeolites (zeolite-13X, ALPO4-34, ALPO4-34, AQSOA-Z02). These zeolites have low 304 

regeneration temperature, and their adsorption is reversible and hydrothermally stable. Fig. 14 shows the 305 

water adsorption isotherms of several promising MOFs for AWH. MOFs have the advantage of being able to 306 

harvest more amount of water with a lower regeneration temperature when compared to other traditional 307 

adsorbents (e.g., silica gel, zeolite) [15]. The s-shaped isotherms of MOFs indicate that a very small change in 308 

RH or temperature can amplify into a marked difference in water uptake, resulting in an efficient operation in 309 

the water harvesting unit [94]. MOFs are structured forms of inorganic clusters linked by organic molecules 310 

[95]. A study reported the applicability of MOF-801 that can daily harvest the atmospheric water up to ~2.8 L 311 

kg-1 of MOF [67]. Lapotin and coworkers [51] investigated several different microporous zeolites which have 312 

a lower regeneration temperature (i.e., 75°C-95°C). The results found that these zeolites have reversible 313 

adsorption, are hydrothermally stable, and are effective in water harvesting capacity (i.e., ~0.23-0.37 g g-1). In 314 

addition, several highly porous, water-stable MOFs have been recently investigated, including MOF-801 [61], 315 

Ni-BTDD [96], Co-BTDD [96], and Al-fumarate [97]. The geometry, pore size, and chemical stability of 316 

these materials can be altered to tailor different applications. All these adsorbents exhibited a Type IV and 317 

Type V isotherm at low RH which makes them suitable for AWH. 318 

 319 

Fig. 13 is inserted here. 320 

 321 
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Fig. 14 is inserted here. 322 

 323 

4.2 Adsorption kinetics 324 

Heat and mass transfer properties of adsorption-based AWH systems dictate their productivity and 325 

energy efficiency. The adsorbent’s shape, crystal size, packing density, and porosity are among the primary 326 

factors for vapor transport in a packed-bed system [67,98,99]. Fig. 15 shows the material and component-level 327 

properties that govern the system's performance and efficiency. Intra-crystalline and inter-crystalline vapor 328 

diffusion, mass transport, and energy transfer in a packed-bed system can be calculated using Eq. (7-11) 329 

[51,98,100–105] 330 

 331 

∂C

∂t
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rc
2

∂

∂r
(Dμrc

2 ∂C

∂r
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1
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ε
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         (10) 335 

ρcp =
∂T

∂t
= ∇. k∇T + had(1 −  ε)

∂Cμ

∂t
       (11) 336 

 337 

In Eq. (7), C denotes the vapor concentration, Dµ represents the intracrystalline diffusivity, t denotes time, and 338 

rc represents the spherical radius of the adsorbent. The intracrystalline diffusion can be determined by fitting 339 

Eq. (7) of Fick’s law with the experimental data. Importantly, the intracrystalline diffusivity changes with 340 

different uptakes and temperatures, and therefore it is difficult to determine its values for various conditions. 341 

For that, it is necessary to define an average diffusivity for different conditions. With the averaged diffusivity, 342 

Eq. (8) will be used to model the adsorption kinetics. In Eq. (8), Ceq is the equilibrium vapor concentration and 343 

Cμ represents the instantaneous vapor concentration. Notably, radius influences the adsorption kinetics, as the 344 

smaller size crystals will take the adsorption kinetics more quickly and increase the resistance for inter-345 

crystalline diffusion. Furthermore, the intercrystalline diffusion (i.e., water vapor diffusion) is a function of the 346 

particle shape, size, and packing density, and can be estimated by the modified Knudsen equation for tortuous 347 

media using Eq. (9) [105]. In Eq. (9), Dvap represents the vapor diffusivity in air and ε denotes the adsorbent 348 

porosity. Further, the mass transport and heat transfer for the adsorbent can be determined using Eq. (10) and 349 

Eq. (11). In Eq. (11), ρ denotes the average density, had represents the adsorption enthalpy, cp denotes the heat 350 

capacity, and k represents the thermal conductivity. These equations validate the experimental results and found 351 

that low packing densities severely limited the water vapor adsorption rate in a packed bed [106]. To attain 352 

faster adsorption kinetics, different zeolites such as X, Y, AQSOAZ01, and FAPO-34 have been used, but all of 353 

these require more than 100°C regeneration temperature [83,107]. 354 

Recently, various MOFs have been developed and utilized in AWH applications [61,94–96]. Table 4 355 

summarizes some of the promising MOFs with high adsorption capacities. For AWH application, MOFs 356 

stability is critical that can be defined by the number of factors (i.e., linkers, porosity, metal ions, 357 

hydrophobicity). Fig. 16 graphically delineates the thermodynamics and kinetics of MOFs when applied for 358 
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reactions involving hydrolysis. It can be observed that the thermodynamic and kinetic stabilities are linked to 359 

Gibb’s and activation energies, respectively. [15,108]. Several factors can render MOFs kinetic inertness as 360 

attributed to (i) steric hindrance of secondary building units (SBU), (ii) rigidity of SBUs, (iii) configuration of 361 

metal by electronically, (iv) hydrophobicity, and (v) steric hindrance through interpenetration [15]. Steric 362 

shielding (which can hinder the diffusion of water molecules to the metal centers) can be introduced in MOF 363 

structures in three ways; (i) catenation, (ii) SBUs with high-level linkage, and (iii) bulky linkers [15,109]. 364 

Importantly, increasing the MOF's water stability through hydrophobicity, restricts their water adsorption 365 

capability, particularly for AWH application which needs water adsorption at low relative pressures. 366 

 367 

Fig. 15 is inserted here. 368 

 369 

Fig. 16 is inserted here. 370 

 371 

Table. 4 is inserted here. 372 

 373 

4.3 Thermal Conductivity 374 

The heat transfer efficiency of porous adsorbents can be lower because of low thermal conductivity. 375 

Moreover, low mass diffusivity and poor thermal conductivity of adsorbents also result in heavy and bulky 376 

adsorption systems [110,111]. The higher AWH capacity can be achieved for a specific adsorbent by 377 

improving the vapor and thermal transport rates. These concerns are especially important in the designing of 378 

modular beds, where it's typical to pack numerous layers, each with equal contact with moist air. 379 

Characteristically, improving one of these modes of transportation degrades the other. For instance, some 380 

conventional adsorption systems capitalize on the compaction of adsorbents to improve the thermal contact 381 

within the crystals, but this adversely impacts the vapor transport within the adsorbents. The consequences of 382 

developing sorbent-metallic fin composites have also been thoroughly investigated by the sorption heat pump 383 

community, but a considerable drop was noticed at micro and as well as at bulk scale vapor permeability. 384 

Additionally, the thermal mass of the system can be reduced with metal additives [112,113]. The use of 385 

zeolites merged with metallic foams has been investigated to increase the heat transfer phenomenon without 386 

affecting thermal mass [114]. By integrating thin coatings (~1 to 5 mm) of adsorbents with metallic substrates 387 

have been used as an alternative method for the reduction of heat resistance of sorbent beds. This method 388 

relies on decreasing the length of thermal transport and resistance among the adsorbent crystals. Such types of 389 

coatings for various desiccants (e.g., silica gel, MOFs, zeolites) have been developed with great success [115–390 

117]. Another commonly-used technique is by dispersing a low mass percentage of highly thermally 391 

conductive material to enhance the thermal conductivity. The thermal conductivity of the composite 392 

adsorbents has been improved by the number of carbon-based materials, without changing the mass transfer 393 

properties [118]. For example, a carbon-based material (i.e., 2D few layers graphene) demonstrates excellent 394 

attributes in high thermal conductivity, high-temperature stability, and lower molecular weight. By increasing 395 

approx. 3 wt % of these enhancers, could improve the system’s thermal conductivity by 25% [118]. Whereas 396 

several materials (i.e., graphene oxide, carbon nanotubes) did not perform well to enhance the thermal 397 

conductivity of composites because of poor thermal contact [118,119]. The potential downside of introducing 398 
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these additives is the additional vapor transport hindrance, created either by blocking the volume of pores or 399 

by reducing the inter-crystalline volume of voids. Therefore, the carbonaceous nanomaterial additives do not 400 

restrict vapor transport, particularly at low weight. The key task to select the pertinent adsorbent materials for 401 

AWH is to alter the forces among the materials and crystals of adsorbents to increase the contact area [118]. 402 

Table 5 compiles the thermal conductivity of some of the adsorbent materials. Notably, the composite 403 

adsorbents with expanded graphite possess high thermal conductivities [120–124]. To improve the thermal 404 

and vapor transfer simultaneously within the adsorbent material, a new 3-D graphene network material has 405 

been developed [125–127]. The newly developed zeolites and MOFs crammed within these graphene 406 

structures have shown improved thermal and vapor transfer rates attributed to the presence of micro-passages. 407 

 408 

Table. 5 is inserted here. 409 

 410 

5 Adsorption-based AWH systems and technologies 411 

5.1 Solid desiccants-based AWH systems 412 

Adsorption-based AWH can be done using desiccants (i.e., liquid, solid). Kumar et. al proposed a solar 413 

glass desiccant-based AWH system in which different desiccant materials (i.e., silica gel, CaCl2/saw wood, 414 

CaCl2/vermiculite/saw wood) were investigated [128–130]. A composite desiccant (CaCl2 - saw wood) was 415 

developed and six samples were investigated with different concentrations (10%, 20%, 30%, 40%, 50%, 60%) 416 

of CaCl2 in saw wood [128]. The results found that a sample (60% of CaCl2) showed the WHR of 180 mL kg-1 417 

per day. This maximum rate represents a water productivity that is 1.24, 1.63, 2.0, 2.57, and 2.76 times greater 418 

than those having 50%, 40%, 30%, 20%, and 10% CaCl2 concentration, respectively. While silica gel showed 419 

the WHR of 200 mL kg-1 per day [129]. Further, a desiccant material (CaCl2/vermiculite/saw wood) was 420 

developed and showed the WHR of 195 mL kg-1 per day [130]. A combination of desiccant wheels and a VCC 421 

based system was developed for AWH [131]. In this system, the desiccant wheels were used for humidification 422 

of air, while the evaporator was utilized for dehumidification. With this approach, the WHR can be increased to 423 

a significant level. Fig. 17 shows the schematics of two scenarios of the proposed system. The major difference 424 

between both scenarios was that the heat exchanger cooled down the dehumidified air (Adeh) which was passing 425 

through the desiccant wheels as in Fig. 17 (a), while in the case of another scenario, the dehumidified air was 426 

changed with the ambient air as in Fig. 17 (b). Additionally, different patterns of heat pump systems were 427 

investigated. The results found that WHR of this system can be reached to 32.5 kg h-1 while the water 428 

harvesting efficiency (WHE) can be achieved to 1.26 kg kWh-1. 429 

 430 

Fig. 17 is inserted here. 431 

 432 

A desiccant wheel dehumidifier-based prototype has been experimented with for AWH [132]. With 433 

this, a synthetic model was also built-in Transient System Simulation Tool (TRNSYS) which validated the 434 

experimental results. The inlet air was split up into two streams; the major stream went to the desiccant wheel 435 

while the minor stream passed through the heat exchanger to exchange the enthalpy with the regeneration 436 

stream to condense the water. When part of the desiccant wheel reached saturation condition, then it will 437 

ultimately attain the regeneration phase. A sufficient amount of heat was supplied through the hybrid solar 438 
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collectors to the air stream for regeneration purposes. The validated model was then run for various climatic 439 

conditions (i.e., Sydney, Abu Dhabi, and London) to simulate the annual WHR. The results showed that a silica 440 

gel desiccant wheel-based dehumidification system produced a WHR of a range of ~5.2 L per day of water in 441 

Sydney. Whereas the TRNSYS-simulated model predicts approximately 13.8, 18.5, and 10 kL of water in a 442 

year for Sydney, Abu Dhabi, and London, respectively. As described, many conventional porous materials 443 

(silica gel, zeolites, porous carbons) and other materials can extract enough water [133–136]. But all these 444 

materials suffer from major drawbacks such as low kinetics, low water uptake capacity, and high-water 445 

adsorption energy. Therefore, a new series of zirconium-based MOFs have been developed which showed 446 

extraordinary water uptake properties [137,138]. An adsorption-based AWH system was developed in which 447 

porous MOF-801 was used as a desiccant material [67]. Fig. 18 shows the pictorial representation of the 448 

proposed MOF-based AWH device along with the temperature, solar flux, and RH profiles. This prototype 449 

consists of a MOF-801 layer, an acrylic enclosure, and a low temperature condenser. It was noticed that a 450 

temperature swing of 40°C was enough to regenerate the MOF-801 and can harvest ~0.24 L kg-1 of MOF per 451 

day. This prototype was successfully experienced in the climatic conditions of the Arizona desert after being 452 

tested on the roof of an institution [61]. Later on, MOF-801 based system was installed in the Arizona desert, 453 

which was composed of two boxes; one for MOF, and the other box was equipped with a cover [69]. The cover 454 

lid was open at night for an adsorption phase while it was closed during the night for the desorption phase. 455 

After the experiments, it was concluded that ~200-300 mL kg-1 of MOF per day can be achieved at ambient 456 

conditions of range 20-40°C and 5-40% RH. This device was proved as the first breakthrough to harvest 457 

drinkable atmospheric water from the desert air. 458 

 459 

Fig. 18 is inserted here. 460 

 461 

MOF-303 based AWH system was developed which was capable of performing continuous and 462 

multiple water harvesting cycles per day [69,139]. The advantage of MOF-303 is that it is composed of SBUs 463 

and can harvest drinking water even at low RH. This device was first tested at the parent university, where it 464 

showed a WHR of 1.3 L kg-1 per day at conditions of 32% RH and 27°C. Then this system was experimentally 465 

experienced in the Mojave Desert, where it showed an extraordinary performance with WHR of 0.7 L kg-1 per 466 

day at conditions of 10% RH and 27°C. After analysis, it was concluded that this second-generation MOF-303 467 

based AWH system showed 10 times perfection as compared to other systems due to rod-like SBUs of MOF-468 

303 which makes it more stable over many cycles. Moreover, the highly open structure of MOF-303 makes it 469 

more suitable in both adsorption and desorption phases. Logan et al. investigated different hydrolytically stable 470 

MOFs to explore the adsorption/desorption kinetics for AWH and found MOF-808 can achieve the WHR of 471 

~8.6 L kg-1 of MOF per day [140]. MOFs have emerged as the most favorable adsorbents for AWH because of 472 

their reticular chemistry. Some of the important features of reticular chemistry include hydrolytic stability, step-473 

shaped isotherm profile, iso-reticular expansion, ultra-high uptake, SBU modification, and linker functionality 474 

[141]. Further, AWH through composite desiccants represented some extraordinary results. Ji et al. fabricated 475 

and tested a small solar-driven AWH unit in which MCM-41/CaCl2 was utilized as a composite desiccant [142]. 476 

The developed system produced about ~1.2 kg of water per collector area. Wang et al. developed and tested two 477 

solar-driven devices (i.e., concept machine, and semi-open) in which the composite desiccants (i.e., ACF-LiCl, 478 
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ACF-CaCl2) were used for AWH [143]. Fig. 19 and Fig. 20 show the schematics of solar-driven AWH devices. 479 

The performance psychrometric charts of the concept and improved solar-driven devices consist of four main 480 

points in a cycle. ACF-CaCl2 was rolled up in a concept machine while, in an improved device, the corrugated 481 

and flat layers of the ACF matrix with LiCl were placed layer by layer. The results found that the concept 482 

machine-generated water about ~0.3 kg with 2.3 kg of composite material (ACF-CaCl2). Meanwhile, the 483 

improved semi-open type of solar-driven device produced water about ~9 kg with 40.8 kg of composite 484 

material (ACF-LiCl). 485 

 486 

Fig. 19 is inserted here. 487 

 488 

Fig. 20 is inserted here. 489 

 490 

Entezari et al. investigated the ACF material as a host of different hygroscopic salts (i.e., LiCl, CaCl2, and 491 

LiNO3) for AWH [144]. The proposed prototype consists of two chambers, one is an upper chamber with an 492 

aluminum sheet roof and the other is a lower chamber with a condenser. A hydrophobic polysiloxane layer was 493 

utilized at the bottom of the upper chamber to make the system perform in all considered RH. The results found 494 

that this prototype can produce about 1.5 g g-1 of desiccant at 70% RH. Ejeian et al. designed and developed a 495 

prototype in which a new composite material (i.e., LiCl/MgSO4/ACF) was investigated for AWH. The results 496 

showed that it can produce about 0.9 g g-1 of desiccant at 35% RH and found an appropriate choice for AWH 497 

especially in the areas of moderate relative humidity [145]. Wang et al. prepared different composite materials 498 

with varying concentrations of matrices and salts and named as SCCA, SCLI, ASCA, ASLI, ECA, ELI, ESCA, 499 

and ESLI [66]. The results found that the composite ACF performs much better than the pure ACF in terms of 500 

sorption and desorption (i.e., ~0.6 g g-1 at conditions of 20% RH and 77°C). A clean water harvester was 501 

developed in which a new composite material (i.e., sodium polyacrylate graphene framework) was investigated 502 

which efficiently grabs the water vapors and releases enough amount of water [146]. Fig. 21 shows the concept 503 

of PGF along with the developed system. The results showed the WHR of 25 L kg-1 of material per day. 504 

 505 

Fig. 21 is inserted here. 506 

 507 

5.2 Liquid desiccants-based AWH systems  508 

AWH based on desiccant materials (solid, liquid) performs adsorption/ absorption phenomenon during 509 

nighttime and desorption phenomenon during daytime. Liquid desiccant materials appear to offer additional 510 

benefits i.e., higher moisture retention than solid desiccants. Furthermore, liquid desiccants require lower 511 

regeneration temperatures, ranging from 40°C to 70°C [147]. Researchers investigated different liquid 512 

desiccants impregnated with various substances (i.e., cloth, and sand) to enhance water productivity [148–150]. 513 

In this context, an absorption-regeneration cycle of the AWH system was modified by the sultan and coworkers 514 

[151], which was first suggested by Hamed [152]. The modified cycle is composed of four processes: 515 

isothermal absorption, heating of absorbent, isothermal regeneration, and cooling of absorbent. A solar thermal 516 

driven experimental system was developed and tested at Mansoura University, Egypt for AWH in which CaCl2 517 

was used as a desiccant material shown in Fig. 22 [153]. During the nighttime, the finned type of absorber is 518 
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subjected to the atmosphere for absorption of water vapors. Whereas at day time, the finned type of absorber is 519 

tightly covered with a cone type surface and directly exposed to the sun for desorption of water vapors. The 520 

vapor pressure difference between the desiccant material and the surface of the cover causes the water vapors to 521 

evaporate and condense. The system showed the WHR of 0.63 kg m-2 per day with an efficiency ranging from 522 

11.26% to 22.56%. The portable AWH can be possible using this system. 523 

 524 

Fig. 22 is inserted here. 525 

 526 

Another solar-driven based AWH system was developed and investigated in the Helwan University, 527 

Cairo-Egypt in which CaCl2 was used as a desiccant material [154]. Fig. 23 shows the schematic and visual 528 

representation of the developed system with the variation of total evaporated mass, system efficiency, and total 529 

collected water. The system was tested in summer conditions with different materials and the results showed 530 

that the evaporated water for cloth bed was 870 g m-2 per day in September while, in the case for sand bed, it 531 

was 310 g m-2 per day. Moreover, in humid conditions, efficiency of 16.5% and total water of 1200 g m-2 per 532 

day was noted for cloth bed. The six-layers bed showed 10.4% more efficiency as compared to the four-layers 533 

bed and the system efficiencies were 4.8% and 5.9% for areal densities of 10 and 12 kg m-2 for sand bed. 534 

Hamed and coworkers investigated a CaCl2 desiccant solution-based AWH system in the cities of Al-Hada and 535 

Taif in Saudi Arabia. Average freshwater productivity of 1 g m-2 per day was obtained using this system [155]. 536 

 537 

Fig. 23 is inserted here. 538 

 539 

A liquid desiccant-based humidification-dehumidification (HDH) system for AWH was proposed and 540 

investigated [156]. The proposed HDH system produced water at WHR of 8 kg h-1 capacity in which the 541 

desiccant solution was used as a mist to the humidifier, thus outlet air then losses the absorbed moisture as 542 

freshwater. Because of the mass and heat transfer between the air and desiccant solution, the thermodynamic 543 

balancing of such systems becomes necessary to minimize entropy generation [157]. After several studies, 544 

multi-stage HDH systems were considered, the most thermodynamically balanced systems [158]. The “enthalpy 545 

pinch” was introduced to investigate both heat and mass exchange because the “temperature pinch” method 546 

could not considered appropriate to make thermodynamically balanced systems [159]. Till now, water-based 547 

HDH systems have been the main subject of investigation. Fig. 24(a) shows the schematic of the HDH system 548 

for AWH [156]. The proposed HDH system was upgraded with air dryers and multiple extractions for 549 

thermodynamic balancing. LiCl2 was used as a desiccant solution for AWH. To compare between five 550 

extractions, the 1 kJ kga
-1 of enthalpy pinch was selected, whereas 20 kJ kga

-1 was chosen at typical operating 551 

conditions for one extraction. The system performance was analyzed by gained output ratio (GOR) and the 552 

relation of enthalpy pinch with GOR is presented in Fig. 24(b). The results found that GOR varies with the 553 

number of extractions. Additionally, energy consumption also decreases as the number of extractions increases 554 

shown in Fig. 24(b). As the air dryers increase, the WHR was also increased as in Fig. 24(c). Gido et al. 555 

developed a liquid desiccant-based AWH system in which pure water vapors were condensed to collect the 556 

freshwater [160]. Fig. 25(a) shows the proposed system in which the operation of system was modeled by 557 

ABsorption SIMulation (ABSIM) software for thermodynamic analysis [161]. LiCl2 was used as a desiccant 558 
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solution for AWH. In ABSIM modeling, the range of temperatures (7°C to 35°C) and mixing ratios (i.e., 0.006 559 

kgw kga
-1 to 0.024 kgw kga

-1) were investigated. This system can be operated with electrical energy or by a low-560 

temperature heat source. Fig. 25(b) shows the WHR against the various ambient conditions and the optimum 561 

temperatures of the cold and hot streams (necessary for desorber and condenser) are presented in Fig. 25(c) and 562 

Fig. 25(d). The modeling results were compared with locally AWH systems and observed that it can save up to 563 

5% to 65% of the energy requirements because of the mechanism of separation process. The condensation 564 

temperature ranges from 4°C to 15°C varies under different ambient conditions. The proposed vapor separation 565 

technology showed a great potential for AWH because of the quality of produced water and energy 566 

consumption. 567 

 568 

Fig. 24 is inserted here. 569 

 570 

Fig. 25 is inserted here. 571 

 572 

6 Future of adsorption based AWH systems/technologies 573 

The adsorption-based AWH systems have attained so much attention as an environmentally friendly 574 

option in recent years, but unfortunately, they could not establish themselves as a commercial technology. The 575 

main reasons include the lack of knowledge and related fundamental studies about AWH technology among 576 

the designers, developers, industrialists, and end-users. Table 6 shows the comparison among the various 577 

approaches for AWH according to the costs of construction, maintenance, operation, and environmental 578 

effects. It is difficult to install an adsorption-based AWH system in those regions where thermal energy is 579 

reluctantly available because its performance mainly relies on the regeneration of desiccant material. 580 

Therefore, the thermal energy-based system should be designed and developed in the foreseeable future. 581 

Research and development have become a vital program across the globe and have been increased in the field 582 

of AWH with the development of novel materials and modifications in hydrophilic and hydrophobic 583 

properties. However, future research should pay attention on the desorption process and number of 584 

adsorption/desorption cycles in more detail. The researchers pursued several ways to improve systems 585 

efficiencies by providing novel desiccant materials, especially in low RH conditions. The number of adsorbent 586 

materials has been explored in literature due to their unique structures such as MOFs, zeolites, and various 587 

composite adsorbents. But all studies have one similar theme: they only paid attention to the adsorption 588 

uptakes of desiccant materials and overlook other essential parameters like adsorption kinetics. The kinetics 589 

and transport of the desiccant materials directly affect the adsorption-based AWH system's effectiveness, and 590 

size. Tu et al. presented two innovative designs for improvement in energy efficiencies and reduction in 591 

systems size [17]. Fig. 26(a) shows water heated desiccant-coated heat exchanger-based system which has a 592 

conceivable potential to collect the water vapors because water cooling adsorption and condensation were 593 

applied to enhance the RR of feed air and to reduce the SEC of the system. Similarly, Fig. 26(b) shows the 594 

configuration of a desiccant-based heat pump system which is best possible for those areas where continuous 595 

AWH is required. It is evident from this review paper that research towards developing and commercializing 596 

energy-efficient and environmentally friendly adsorption-based AWH systems is well in progress. 597 

 598 
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Fig. 26 is inserted here. 599 

 600 

Table. 6 is inserted here. 601 

 602 

7 Conclusions 603 

The present study addresses the current prospects and challenges of various AWH technologies and is 604 

categorized into active cooling i.e., vapor compression, thermoelectric cooling, and membrane-based AWH, 605 

and passive cooling i.e., dew collection and fog harvesting. Throughout the literature, it has been found that 606 

these technologies possess some limits of climate dependency and cost considerations to deliver enough 607 

amount of water. However, the adsorption-based AWH technologies emerged as an attractive option to 608 

harvest water from air anywhere and anytime. Therefore, this work compiles a comprehensive review on 609 

adsorption-based AWH technologies/ systems, and consequently the adsorption equilibrium/isotherms and 610 

kinetics, and thermal conductivity of desiccant materials are discussed with reference literature. It has been 611 

found that the adsorption-based AWH systems performed much better as compared to other AWH 612 

technologies. Among the considered zeolites, maximum equilibrium uptake was found for ALPO4-LTA, i.e., 613 

0.4 g g-1. In addition, the Cr-soc-MOF-1 showed an equilibrium uptake of 1.8 g g-1 while (Cr) MIL-101 614 

showed the maximum equilibrium uptake of 1.4 g g-1. It has been concluded that the MOFs are advantageous 615 

compared to other desiccant materials as they harvest more amount of water and require lower regeneration 616 

temperatures. MOF-801 showed an equilibrium uptake of 0.3 g g-1 and delivered 200-300 mL kg-1 of water at 617 

5-40% RH and 20-40°C and proved as a potential candidate for AWH. Moreover, Zr-MOF-808 showed an 618 

AWH capacity of 8.66 L kg-1 d-1. Similarly, the harvesting capacities of CaCl2 and LiCl-based AWH systems 619 

were found in between 0.63 to 1.0 kg m-2 d-1. The reference studies show that the adsorption-based AWH 620 

technologies have received a lot of attention as an environmentally friendly option but could not succeed to 621 

appear as a commercial technology due to lack of knowledge among the designers, developers, industrialists, 622 

and end-users. 623 
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Fig. 4. (a) Schematic of AWH system based on VCC process [162]. 1158 
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Fig. 5. Schematic of the TEC system installed for water production [40]. 1162 
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Fig. 6. (a) Process of the fibrous membrane fabrication for AWH (b) SEM images of PAN-1060 and PAN 450 1167 
fibrous membranes before and after heat treatment (c) Illustration of water harvesting mechanism by 1168 
membranes [45]. 1169 
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Fig. 7. Fog water harvesting (a) mechanism of fog collection on the mesh [54] (b) progress of major 1172 
developments in fog water collection technology [163]. 1173 
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Fig. 8. Technologies for the fabrication of bio-inspired water harvesting materials [164]. 1177 

 1178 

 1179 

 1180 

 1181 

 1182 

Fig. 9. Biomass gasification based AWH system (a) schematic of a downdraft gasifier used in AWH system 1183 
(b) presentation of biomass gasification based system for AWH [60]. 1184 
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Fig. 10. Illustration of the principle of adsorption based AWH showing adsorption phase during night-time 1188 
and desorption and condensation phase during the daytime. 1189 
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Fig. 11. Representation of a typical adsorption-based AWH system (a) schematic comprises of adsorbent 1193 

material and a condenser (b) psychometric representation showing humidification, condensation, and 1194 

collection processes of atmospheric water. 1195 

 1196 

  1197 



39 
 

 1198 

Fig. 12. (a) Classification of adsorption isotherms from type-I to type-VI, also, desired isotherms (type-IV and 1199 

type-V) for AWH are highlighted [91,165] (b) Presentation of the selection criteria (high stability of water, 1200 

suitable isotherm, efficient adsorption at variant temperatures, and kinetics of materials) for suitable MOFs 1201 

used in AWH [15]. 1202 
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Fig. 13. Graphical representation of water adsorption isotherms of microporous aluminophosphate zeolites for 1205 

AWH extracted from the literature: (a) Zeolite-13X [17], (b) ALPO4-34 [135], (c) ALPO4-LTA [135], and (d) 1206 

AQSOA-Z02 [166]. 1207 
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Fig. 14. Graphical representation of the water adsorption isotherms of suitable MOFs for AWH extracted from 1211 

the literature: (a) MOF-801 [67], (b) MOF-805 [137], (c) MOF-841 [137], (d) MOF-303 [69], (e) UiO-66 1212 

[17], (f) Al-MIL-100 [167] (g) Cr-MIL-101 [168], (h) Cr-soc-MOF-1 [169]. 1213 
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Fig. 15. Illustration of the material and component level properties dictated the adsorption-based AWH system 1217 

performance reproduced from [51]. 1218 
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Fig. 16. Reaction coordinate diagram illustrating the effect of degradation of MOFs with thermodynamic and 1224 

kinetic stability. Cross symbol indicating the route's unfeasibility [15]. 1225 
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Fig. 17. AWH from multi-stage desiccant wheel systems (a) and (b) schematics of two scenarios for desiccant 1229 

wheel heat pump based AWH system (c) representation of studied ambient/inlet and outlet conditions [131]. 1230 

 1231 

  1232 
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 1233 

Fig. 18. Proof of concept MOF-801 based AWH system (a) pictorial representation of MOF-801 based AWH 1234 

prototype. (b) image of the AWH apparatus exposing the MOF-layer (c) AWH device test apparatus at AZ, 1235 

USA. (d) representation of MOF temperature, solar flux, ambient air temperature, condenser, and ambient dew 1236 

point temperature profiles (e) crystal structure of MOF-801, and (f) SEM image of MOF-801 [61,67]. 1237 

 1238 
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 1240 

 1241 

Fig. 19. Small concept ACF-CaCl2 based AWH machine. (a) schematic of AWH machine (b) pictorial 1242 

representation of the test apparatus (c) psychrometric representation of AWH phenomenon (d) structure of ACF-1243 

CaCl2 material used in AWH machine (e) SEM image of ACF matrix with CaCl2. (f) graphical representation of 1244 

the water condensation rate [62]. 1245 

 1246 
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 1248 

Fig. 20. Semi-open solar-driven ACF-LiCl-based AWH device. (a) schematic of AWH system (b) pictorial 1249 

representation of the real test unit (c) psychrometric representation of AWH phenomenon (d) ACF-LiCl material 1250 

used in AWH device (e) SEM image of consolidated composite with LiCl sorbent (f) graphical representation of 1251 

the water condensation rate [62]. 1252 
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 1255 

Fig. 21. Illustration of sodium polyacrylate/graphene framework for AWH from the contaminated air [146]. 1256 

 1257 

  1258 
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 1259 

Fig. 22. Calcium chloride desiccant based AWH system (a) illustration of the experimental unit (b) sectional 1260 

view of the test apparatus (c) area of an absorber of the experimental system at different altitude angles (d) 1261 

energy flow diagram of an experimental system (e) graphical representation of the water production rate with 1262 

system efficiency [153]. 1263 

 1264 

  1265 
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 1266 

Fig. 23. Calcium chloride desiccant based solar AWH system (a) illustration of the schematic diagram of an 1267 

experimental setup (b) physical representation of the test apparatus (c) variation of total evaporated mass in the 1268 

system (d) graphical representation of the system efficiency for cloth bed (e) representation of the water 1269 

collection rate for cloth bed [154]. 1270 

 1271 

  1272 



50 
 

 1273 

Fig. 24. (a) Liquid desiccant-based humidification-dehumidification AWH system (b) representation of relation 1274 

between enthalpy pinch and GOR for various extractions (c) effects of the number of dryers on the WHR of 1275 

system [170]. 1276 

 1277 

  1278 
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 1279 

Fig. 25. (a) Liquid desiccant-based vapor separation AWH system (b) representation of the water production 1280 

rate under ambient conditions (c) and (d) hot and cold stream temperature results for desorber and the condenser 1281 

under ambient conditions [160]. 1282 

 1283 
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 1285 

Fig. 26. (a) Illustration of the solar water heating driven atmospheric water generator (b) representation of solar 1286 

PV powered atmospheric water generator with desiccant heat pump (optimal for those regions where continuous 1287 

water production is required) [17]. 1288 
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  1290 
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List of Tables 1291 

 1292 

Table 1. Summary of the selected VCC and TEC systems for AWH [47]. 1293 

  1294 

Method System Information 
Ambient 

Conditions 

WHR 

(kg h-1) 

UPC 

(kWh kg-1) 
Ref 

VCC 

VCC Frontal area = 0.04 m2 - 0.92 - 1.08 0.22 - 0.3 [30] 

VCC Refrigerant = R22 

Compressor power = 

370W 

Cooling capacity = 1.5 

kW 

35°C, 

20% - 40% 

RH 

0.13 - 2 2.8 - 0.18 [171] 

VCC Airflow rate = 578 m3 h-1 

Compressor power = 

1035W. 

DBT = 

26.7°C, 

WBT = 

19.4°C 

1.5 0.69 [29] 

TEC 

      

TEC TECs = 18 in series 35°C, 

70% - 

100% RH 

20×10-3 – 106×10-3 2.5 – 1.22 [40] 

TEC Photovoltaic power = 

145 W 

- 2×10-3 – 4×10-3 - [172] 

TEC Weight = 7 kg 

Cold side fins area = 

0.216 m2 

23.1°C – 

24.5°C, 

65% - 95% 

RH 

 

11.2×10-3 - 25.1×10-3 5.21 - 2.33 [173] 
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Table 2. Features of the selected animals and plants studied for AWH. 1295 

Animals/Plants Species Mechanism Information learned Ref. 

Insects (Beetles) Stenocara sp. 

 

[174] 

Heterogeneous 

wettability 
[175] 

Spider 
Uloborus 

walckenaerius 

 

[174] 

Laplace pressure 

gradient 
[55] 

Reptiles 

(lizards) 
Moloch horridus 

 

[174] 

Grooves [176,177] 

Cactus Opuntia microdasys 

 

[174] 

Grooves [178] 

Grass 
Stipagrostis 

sabulicola 

[174] 

Grooves [179] 

 1296 
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Table 3. Compilation of some of the potential adsorbent materials for AWH. 1298 

MOFs and Zeolites used in AWH systems 

Material 
Gravimetric 

uptake (g/g) 

Regeneration 

temperature 

(oC) 

Adsorption condition 

Adsorption 

enthalpy 

(KJ/L) 

Harvesting 

capacity 

(g/g) 

Ref 

   T 

(oC) 

RH 

(%) 

Vapor 

pressure 

(mbar) 

   

MOF-801 0.38 85 25 70 22.2 3050 0.25 [61,67] 

Co-BTDD 0.87 55 25 70 22.2 3050 0.72 [96] 

Cr-soc-

MOF-1 

2 - 25 70 22.2 - - [169] 

Al-

Fumarate 

0.34 65 - - - 2780 0.33 [15,97] 

AQSOA 

Z02 

0.3 95 - - - 3420 0.23 [94,166] 

AlPO4-LTA 0.38 75 - - - 3050 0.37 [135] 

AlPO4-34 0.29 75 - - - 3220 0.28 [135] 

Hygroscopic and Inorganic/Organic materials used in AWH systems 

Material Host materials System 

Relative 

humidity 

(%) 

Quantity 

of 

material 

Harvesting capacity Ref 

CaCl2 Silica gel Solar 

driven 

50-80 10 kg  3-5 L [180] 

CaCl2 Cloth Tilted 

glass flat 

plate solar 

collector 

24-76 - 1.5 L/m2 per day [148] 

CaCl2 SiO2 Glass 

cylindrical 

absorber 

50-100 10 kg 5 L [26] 

CaCl2 MCM-41 Solar 

driven 

78-92 1 kg 1.5 L [142] 

CaCl2 Sand Solar 

driven still 

40 1 kg 1 L/m2 per day [155] 

CaCl2 Wick Solar 

driven still 

50 3.7 kg 1.4 L/m2 per day [181] 

CaCl2 Activated carbon - 30 - 0.23 g/g [182] 

CaCl2 Alginate-derived 

hydrogel matrix 

- 26 - 660 kg/m3 of bulk material [64] 

LiCl Sand Scheffler 

reflector 

solar 

thermal 

system 

36-68 1.5 kg 0.115 L/day [183] 

LiCl Active carbon felt Semi open 

system 

85 40.8 kg 14.7 L [66,184] 

LiCl Nanocarbon hollow 

capsule 

Metallic 

cookie 

box 

15-80 - 1.6 g/g [185] 

CuCl2 Silica fibrous filter Bilayer 

water 

collection 

device 

15-60 1 kg 0.35 L [186] 
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LiBr Porous carbon - 70 - 0.6-1.1 ml/g [187] 

Super 

hygroscopic 

hydrogel 

- Box type 

system 

80-90 1 kg 10 L/day [188] 

 1299 

  1300 
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Table 4. Summary of the selected MOFs with high adsorption properties and performances. 1301 

Material Linker 

Topology 

pore 

structure 

Stability 
Pore 

size(Å) 
α 

dcryst(g 

cm 3) 

qmax 

(g g-1) 
Vp(cm3g-1) Ref 

Cr-soc-

MOF-1 

 

TCPT 

 
- 

Over 100 

adsorption 

cycles, no 

loss in Δq is 

reported 

- 0.69 - 1.95 2.1 [169] 

MIL-101(Cr) 

 
BDC mtn,3D - 29,34 0.46 0.61 1.73 1.68 

[168,189],[

93] 

CO2Cl2(BTD

D) 

 

BTDD - 

Over 30 

adsorption 

cycles, 

6.3% loss in 

Δq is 

reported 

- 0.29 - 0.97 - [96] 

MOF-

841(Zr) 

 

MTB flu.3D - 9.2 0.22 1.05 0.51 0.53 [137] 

Y-shp-MOF-

5 

 

BTEB shp,1D 

After 1000 

adsorption 

cycles, 9% 

loss in qmax 

with 

significant 

hysteresis is 

reported 

12 0.63 0.97 0.48 0.63 [190] 

MOF-

303(Al) 

 

PDC - 

Over 5 

adsorption 

cycles, no 

loss in qmax 

is reported 

- 0.13 - 0.45 0.54 [69] 

MOF-

801(Zr) 

 

FA fcu,3D 

Over 5 

adsorption 

cycles, 

material is 

stable 

4.8,5.6,

7.4 
0.09 1.68 0.36 0.45 [137] 

UiO-67 BPDC fcu,3D  
8.8,16.

6 
0.56 1.04 0.3 0.99 [191] 

MIL-53(Al) BDC sra,1D - 7-13 0.75 - 0.40 0.51 [192],[93] 

MIL-160(Al) 

 

FDC, 

furan 
yfm,1D 

Over 10 

adsorption 

cycles, no 

loss in Δq is 

reported 

5 0.09 - 0.38 0.40 [193] 

CAU-10(Al)-

H 

 

1,3-BDC  

Over 9 

adsorption 

cycles, no 

loss in Δq is 

reported 

7 0.16 1.37 0.37 0.43 [194],[195] 

UiO-66(Zr) 

 
BDC fcu,3D 

Over 2 

adsorption 

cycles, no 

7.4 0.31 1.23 0.37 0.35 
[196],[197]

,[137] 



58 
 

loss in qmax 

is reported 

Al-fumarate 

 
FA - 

Over 4500 

adsorption 

cycles, no 

loss in Δq is 

reported 

- 0.27 - 0.45 0.48 [198] 

MIP-200(Zr) 

 
MDIP - 

Over 1-10 

adsorption 

cycles, 6% 

loss Δq is 

reported, 

and over 

10-40 

adsorption 

cycles, no 

loss in Δq is 

reported, 

- 0.18 - 0.45 0.40 [199] 

 1302 

  1303 
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Table 5. Thermal conductivity of different adsorbents with different measurement techniques in the literature. 1304 

Material 
Thermal conductivity 

(Wm-1k-1) 

Temperature 

(°C) 

Measurement 

method 
References 

Silica gel 0.147 21.85 Transient hot strip [200] 

Silica gel material with 

CaCl2 and graphite 
0.41 34.85 - [201] 

Composite silica gel KSK 

with CaCl2 
0.112 19.85 Transient hot wire [202] 

Graphite with silica gel 3.7-19.1 - - [124] 

Graphite with metal 

chloride 
10-40 - - [121] 

SAPO-34 CHA + Al 9   [203] 

AQSOA FAM-Z01 0.376 19.85 Laser flash [204] 

Activated Carbon 0.5 - - [205] 

Monolithic carbon 0.35-0.44 - - [206] 

MOF-5 0.32 26.85 Heat flow method [207] 

  1305 
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 1306 

Table 6. Comparison among the various methods for AWH reported in the literature [162]. 1307 

 1308 

 1309 

Comparison 
Fog mesh Vapor compression Peltier effect Adsorbent material 

High Moderate Low High Moderate Low High Moderate Low High Moderate Low 

Appropriate for 

areas with high 

humidity 

✓   ✓   ✓   ✓   

Appropriate for 

arid areas with low 

humidity 

  ✓   ✓  ✓  ✓   

Construction cost  ✓   ✓   ✓   ✓  

Energy cost   ✓ ✓     ✓   ✓ 

Environmental 

effect 

  ✓  ✓    ✓   ✓ 

Maintenance cost   ✓  ✓    ✓   ✓ 

Operational cost   ✓  ✓   ✓   ✓  


