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Abstract

This thesis focuses on solving a challenging problem in the field of computer graph-

ics, namely to model and understand 3D human motion efficiently and meaningfully.

This is vital to achieve the analysis (health & sports science), synthesis (character

animation) and control (video game) of human movements. Though numerous stud-

ies have focused on improving the results of motion analysis, motion synthesis and

motion control, only a few of these studies solved the problems from the fundamental

part owing to the lack of information encoded in motion data.

In my works, the motion of human was divided into the three types, namely

single human motion, multi-people interactions and crowd movement. Subsequently,

I solved the problems from motion analysis to motion control in different types of

motion.

In the single human motion, two types of motion graphs on the motion sequence

were proposed using Markov Process. The human motion is represented as the

directed graphs, which suggests the number of action patterns and transitions among

them. By analyzing the graphs topologies, the richness, transitions flexibility and

unpredictability among different action patterns inside the human motion sequence

can be easily verified. The framework here is capable of visualizing and analyzing

the human motion on the high level of action preference, intention and diversity.

For the two people interaction motion, the use of 3D volumetric meshes on the

interacting people was proposed to model their movement and spatial relationship

among them. The semantic meanings of the motions were defined by such relation-

ship. A customized Earth Movers Distance was proposed to assess the topological

and geometric difference between two groups of meshes. The above assessment

captured the semantic similarities among different two-people interactions, which is
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consistent with what humans perceive. With this interaction motion representation,

the multi-people interactions in semantic level can be retrieved and analyzed, and

such complex movements can be easily adapted and synthesized with low computa-

tional costs.

In the crowd movement, a data-driven gesture-based crowd control system was

proposed, in which the control scheme was learned from example gestures provided

by different users. The users gestures and corresponding crowd motions, repre-

sentable to the crowd motions properties and irrelevant to style variations of gestures

and crowd motions, were modelled into a compact low dimensional space. With this

representation, the proposed framework can take an arbitrary users input gesture

and generate appropriate crowd motion in real time.

This thesis shows the advantages of higher-level human motion modelling in

different scenarios and solves different challenging tasks of computer graphics. The

unified framework summarizes the knowledge to analyze, synthesize and control the

movement of human.
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Chapter 1

Introduction

The modelling and the understanding of 3D human motion have become important

research topics in the field of computer graphics. 3D human motion has been widely

applied in CGI movies, video games, sports training and physical recovering for

the disabled. This is the fundamental component to synthesize, real-time control

and analyze human movement. An overall picture of human motion modelling and

understanding in computer graphics is given in Fig 1.1.

In the entertainment industry, the production of high-quality animations in CGI

movies and video games relies on the realistic motions on the anthropomorphic &

humanoid character and the proper interactions among multiple characters [1–3].For

instance, in the video games, e.g., Assassins Creed and Grand Theft Auto, the most

attractive part is that the protagonist can be conducted to do some realistic motions

and interact with those virtual characters inside the game by players based on their

control and analysis. There are similar situations in CGI movies (e.g. Avatar). In

sports and health science, a candidates motion is captured and analyzed so that the

diagnosis can be provided to the candidate to improve his/her motion in sports and

rehabilitate his/her body [4,5]. Modelling and understanding human motion in the

semantic level can better achieve such tasks.

Though numerous studies have been conducted on human motion synthesis and

analysis, most of them focused on low level motion features (e.g. position, velocity,

acceleration and torque on each joint of human body). As a result, many manual

work are required to understand/represent the semantic meaning of human motion
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1.1. Motivation on This Research 3

and synthesize multi-character with complex interactions. This chapter briefly intro-

duces the techniques in motion analysis and synthesis and highlight the difficulties

to achieve such tasks. Subsequently, three problems to be addressed in this thesis

are introduced, and the summary of our research is made.

Figure 1.1: Human motion modelling and understanding in computer graphics.

1.1 Motivation on This Research

Human body structure and motion data are usually formatted into a hierarchical

skeletal model in computer graphics Fig 1.2. The body dimension is shown as

the joints and bones length, and the motion is represented by the translation and

rotation data of each joint at each frame [6].Based on the mentioned information,

human motions can be rendered and visualized using the character model, and the

intrinsic kinematic and dynamic properties of the motion can be presented. As the

Motion Capture technologies are advancing, natural and realistic human motions can

be easy to record and edit for motion analysis and synthesis. However, as the motion

analysis and synthesis problems are becoming increasingly complex, extracting the

latent information of the movement will be more meaningful. Besides, the mentioned

information is not encoded in the motion data. According to the relevant research in

3
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recent years [7–12], modelling human motions in the higher level is vital to improve

the motion analysis, action recognition and motion synthesis tasks.

Figure 1.2: Hierarchical skeletal structure of human model and it’s motion data

in computer graphics.

In the sports motion analysis, it is critical to assess the high-level skills of motions

rather than low-level kinematic details of the movement (e.g. speed and strength).

For instance, in the boxing training, a boxers skill is assessed by the richness of

attacking/defending actions, flexibility of transitions between attacking and defend-

ing, as well as the unpredictability of these action patterns. Such information is

often used to assess the skill level of a boxer, and it is difficult to be achieved only

by analyzing the kinematics information of the movement. Similar principle can be

adopted to many other sports (e.g. basketball, football and fencing).

Considerable interactions are involved in the human daily movements. The im-

portant semantic meaning of many motions is defined by the information of these

4
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interactions. For instance, in the scenarios shown in Fig. 1.3, these sitting motions

might be considered different from each other because of their different postures. In

human perception, these motions are considered the same type because they share

the similar semantic meaning of “a person is sitting on a chair”. This high-level se-

mantic meaning of the sitting motion is implied by the spatial relationship between

the person and the chair. Such an implicit spatial relationship helps to capture the

semantics of motion, and it is unlikely to be extracted only based on human motion

data. This rule can be generalized to most types of human-object and multi-people

interaction motions. During the process of the motion retrieval and action recogni-

tion, introducing such spatial relationship into the system can improve the retrieval

performance and recognition accuracy. For the motion synthesis, modelling such

spatial relationship can efficiently avoid the collision and prevent output the an-

imation from those artefacts (e.g. penetration of body parts between interacting

characters).

Figure 1.3: Different styles of sitting motions.

During the crowd simulation, people tend to prioritize the overall crowd behavior

rather than the movement of each individual in the crowd. For instance, in the video

game Total War series, one of the important features is to let the player to intuitively

control thousands of troops for different purpose (e.g. attacking, marching, changing

formation and retreating). For this end, crowd motion is always modelled as an

entity, and the control schemes are designed on the top of it. Besides, the motion

pattern of the crowd is hard to learn directly from the human motion data.

Here comes the common problem in the above three topics: learning an intuitive

way to visualize and represent and/or synthesize (multi-) character interaction in a

data-driven manner. The major motivation here is to explore the row motion data

of characters movement and find the semantic level latent information of characters

5
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motions and interactions among. Next, this information is applied to the tasks of

motion analysis/retrieval, synthesis and control to improve the output results.

In general, to model human motion in a meaningful way, so that the knowledge

can be generalized to motion synthesis, motion analysis and action recognition.

The present thesis emphasizes the methods of modelling human motion on different

application fields of computer graphics, and then produce high-quality scenes up to

the industrial criteria (e.g. motion analysis according to human perception, accurate

motion retrieval in complex interactions and simple/intuitive motion synthesis and

control).

1.2 Problem Definition and Proposed Solution

In this section, the following three problems to be solved in the thesis are defined,

and the proposed solutions to tackle the problems are briefed.

1.2.1 Skill Level Sports Motion Analysis

Automatic assessment of sports skills has been an active research area. However,

most existing studies focus on low-level features e.g. movement speed and strength.

In this work, we propose a framework for automatic motion analysis and visual-

ization, which allows us to assess high-level skills e.g. the richness of actions, the

flexibility of transitions and the unpredictability of action patterns. The core of

our framework is the construction and visualization of the posture-based graph that

focuses on the standard postures for launching and ending actions, as well as the

action-based graph that focuses on the preference of actions and their transition

probability. We further propose two numerical indices, the Connectivity Index and

the Action Strategy Index, to assess skill level according to the graph. We demon-

strate our framework with motions captured from different boxers. Experimental

results demonstrate that our system can effectively visualize the strengths and weak-

nesses of the boxers. More details can be found in Chapter 3.

6
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1.2.2 Interaction-based Human Motion Retrieval and Anal-

ysis

Traditional methods for motion retrieval and analysis consider features from indi-

vidual characters. However, the semantic meaning of many motions is defined by

the interaction between characters. There is little success in adapting interaction-

based features in assessing interaction difference, as they are either topologically

different across interactions or high dimensional. In this work, we propose a new

unified framework for motion retrieval and analysis from the interaction point of

view. We adapt the Earth Movers Distance to optimally match interaction features

of different topology, which allows us to compare different classes of interactions and

discover their intrinsic semantic similarity. We demonstrate how the system can re-

trieve interactions of similar semantic meaning filtered by user-given constraints.

We also show how it can assess and visualize the body parts that contribute to the

semantic difference between interactions. We construct a comprehensive kick-boxing

interaction database that is open for public for research benchmark. Experimental

results show that our method outperforms existing research and aligns better with

human perceived interaction similarity. More details can be found in Chapter 4.

1.2.3 Data-Driven Crowd Motion Control

Controlling a crowd using multi-touch devices appeals to the computer games and

animation industries, as such devices provide a high dimensional control signal that

can effectively define the crowd formation and movement. However, existing works

depending on the pre-defined control schemes require the users to learn a scheme

that may not be intuitive. A data-driven gesture-based crowd control system is

proposed, in which the control scheme is learned from example gestures provided

by different users. In particular, a database with pairwise samples of gestures and

crowd motions is built. To effectively generalize the gesture style of different users,

e.g. the use of different numbers of fingers, a set of gesture features is proposed to

represent a set of hand gesture trajectories. Likewise, to represent crowd motion

trajectories of different numbers of characters over time, we propose a set of crowd

7
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motion features that are extracted from a Gaussian mixture model. Given a run-

time gesture, our system extracts the K nearest gestures from the database and

interpolates the corresponding crowd motions to achieve the run-time control. Our

system is accurate and efficient, making it suitable for real-time applications (e.g.

real-time strategy games and interactive animation controls). For more details, see

Chapter 5.

1.3 Related Publications

In this section, we list the following papers which are related to our research in the

thesis. These papers have been published or under revision:

• Yijun Shen, Jingtian Zhang, Longzhi Yang, and Hubert P. H. Shum. Depth

Sensor-Based Facial and Body Animation Control, pages 1-16. Springer Inter-

national Publishing, Cham, 2016.

• Yijun Shen, He Wang, Edmond S. L. Ho, Longzhi Yang, and Hubert P. H.

Shum. Posture-based and action-based graphs for boxing skill visualization.

Computers and Graphics, 69(Supplement C):104-115, 2017.

• Yijun Shen, Longzhi Yang, Edmond S. L. Ho, and Hubert P. H. Shum. Interaction-

based Human Motion Retrieval and Analysis, to be sumbitted to IEEE Trans-

actions on Visualization and Computer Graphics.

• Yijun Shen, Joseph Henry, He Wang, Edmond S. L. Ho, Taku Komura, and

Hubert P. H. Shum. Data-Driven Crowd Motion Control with Multi-touch

Gestures, submitted to Computer Graphics Forum, under minor revision.

1.4 Thesis Structure

The structure of the thesis is as follow: First, we review the related research of mo-

tion analysis and synthesis in Chapter 2. This part covers the state-of-art approaches

in those areas which are related to our research. In Chapter 3, we first introduce

8
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our framework to model the single human movement, and then our method on an-

alyzing and visualizing the skill level of the movement. In Chapter 4, we introduce

our unified framework on modelling, retrieving and analyzing two people interaction

motions. In Chapter 5, we introduce our data-driven method on the crowd motion

control system, which enables the user to conduct arbitrary gesture to generate an

appropriate crowd motion. Finally, a conclusion and discussion of our thesis are

drawn in Chapter 6.

9





Chapter 2

Related Works

Modelling 3D human motions has been an active research area in computer graphics,

computer vision and robotics in recent decades. It becomes the foundation part of

motion synthesis and motion analysis techniques, which have been widely applied in

entertainment industries and physical rehabilitation in the health-care area. Human

motion modelling methods can be considered as the following three aspects: single

person movement, interactions between multiple persons and crowd motions.

Modelling single person movements mainly focus on the detailed information of

his/her motions. It represents the motions into low-level kinematics/dynamics fac-

tors (e.g. velocity, acceleration, force and power) and high-level semantic features

(e.g. transition strategies from one action to another in the motion sequence). This

information can be easily used for motion synthesis and motion analysis of an indi-

vidual person, as discussed in Section 2.1. However, with the demand for achieving

highly realistic scenarios in computer games and animations, modelling interactions

between multiple people play a key role in such a purpose. It mainly focuses on

modelling the spatial relationships between interacting people and this information

will be used to analyze the semantic meaning of the motion. For instance, in the

two people boxing motion, such spatial relationship is represented as one persons

hand fast reaching the opponents body part. More details are discussed in Section

2.2.

Different from the above two aspects, crowd motion modelling does not focus

on the low-level detailed information of each individual’s motions and interactions

11
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between different individuals. It formulates the whole crowd as an entity. Control

schemes are designed on top of the entity to achieve high-level overall movement,

e.g. controlling the whole crowd to go through the constrained environment and

reach the target position. More information is available in Section 2.3.

Our approaches use a large amount of motion capture data, which need to be

pre-processed due to the noise caused by devices and environments. We explore the

mature techniques on refining and denoising the motion capture data in Section 2.4.

Some of them are applied in our research.

2.1 Single Person Motion Analysis

Analyzing 3D human movement from motion capture system are widely used in

healthcare [13–15], sports training [16, 17] and dangerous motion detection [18, 19].

Due to our research interests and the motion database we have created, we focus

on the sports motion analysis and visualization in our thesis. First, we review the

mainstream techniques of sports motion analysis and highlight the weakness of those

approaches compared with our method in Chapter 3. Then, we review the recently

human motion modelling methods with graph representations and dimensionality

reduction techniques. Furthermore, we highlight how our method in Chapter 3

can outperform existing motion modelling methods in visualizing high level skill

information of complex human motions.

2.1.1 Sports Analysis

Helping athletes on skill improving via the visualization of sports motions is a field

that has not been fully explored in the field of sports science. Existing research [20,

21] mainly focuses on the appearance changes of motions when body and motion

parameters are changed. Despite the above two research are a bit early, the criteria of

their sports motion analysis are kept and wildly used in many related researches [22–

25]. For instance, Yeadon [20, 21] has done research on how diving and somersault

motions change when the motions are launched at different timings by using physical

simulation. Though such tools are useful for the athletes to interactively visualize

12
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possible results under different parameters, they can only assess the performance

of sports that do not require complex maneuvers and strategies, such as jumping,

high jumping, sky jumping, or somersaults. In many sports games, the performance

depends not only on physical factors such as velocity, power and strength, but also on

flexibility to switch from one motion to another and richness of the player’s motions.

This high-level information has not been used to visualize the skills of the athlete in

previous research and it is the major difference between our work (in Chapter 3) and

the afore-mentioned ones. In our research in Chapter 3, we combine the approaches

of motion graph [26–28] and dimensionality reduction [29,30] to visualize high-level

skills information of the athletes for the skill assessments.

2.1.2 Motion Graphs for Motion Modelling

The Motion Graph approach [7,26–28,31–33] is a method to interactively reproduce

continuous motions based on a graph generated from captured motion data. Reitsma

and Pollard [34] compared different motion graph techniques comprehensively. Heck

et al. [35] further parametrized the motion space to control how the motions are

generated by blending samples in the motion graph. Such an approach can be used

for interactive character control such as that in computer games. When it comes to

graph construction, [7,31] are the ones most similar to our method in Chapter 3. Min

et al. [7] grouped similar postures and transitions into nodes and edges. Their focus

was the motion variety of synthesized motions so they used generative models to fit

the posture and motion data. Our focus is on skill visualization through the analysis

of postures and motions so we can afford simpler and faster methods of analysis.

Beaudoin et al. [31] cluster postures first then find motion motifs by converting the

motion matching task into a string matching problem. Their priority was to find

motifs that were representative while our focus is to visualize motion details and

statistics to help people assess the skills. Xia et al. [36] constructed a series of local

mixtures of autoregressive models (MAR) for modelling the style variations among

different motions for real-time style transfer. They demonstrated style-rich motions

can be generated by combining their method and motion graph.

Since the Motion Graph produces a lot of edges and nodes without any context,
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it becomes difficult to control generated motion as the user wishes. Safonova and

Hodgins [37] optimized the graph structure by combining motion graph and inter-

polation techniques to improve performance. On the other hand, works to resolve

this problem by introducing a hierarchical structure were proposed [38]. These ap-

proaches add topological structures into the continuous unstructured data so that

the motion synthesis can be done at a higher level. In a sport like boxing, it is

possible to create a motion graph of semantic actions such as attack and defence,

which is known as the action-level motion graph [39,40]. A recent work by Hyun et

al. [41] proposed Motion Grammars to specify how character animations are gener-

ated by high-level symbolic description. Such an approach can be used with existing

animation systems which are built based on motion graphs. Ho and Komura [42]

built a finite state machine (FSM) based on Topology Coordinates [43] for synthe-

sizing two-character close interactions. The sparse graph structure can be used for

controlling the movement of virtual wrestlers in computer games. The purpose of

these approaches, however, is motion generation rather than the visualization of the

player’s skill.

In our research in Chapter 3, we adapted a hierarchical motion graph structure

called the Fat Graph [38] on the action level to analyze the connectivity and the

variety of a captured motion set. In a fat graph, similar nodes are grouped together

as fat nodes, and similar edges are grouped as fat edges, allowing better organization

of motion data. The filtered motion graph is a variation of the Fat Graph, in

which the temporal relationship between poses is considered [44]. Such a structure,

however, is targeted for motion reconstruction and analysis rather than visualization

[45].

2.1.3 Statistical Motion Modelling

Dimensionality reduction methods have been proposed to visualize the overall struc-

ture of captured motions. Grochow et al [29] proposed a method to project the 3D

motions of a human onto a 2D plane, and further reconstruct 3D motions by map-

ping arbitrary points from the 2D plane back onto 3D joint space. PCA [30] and

ISOMAP [46] are proposed to map the motions onto 2D planes. Due to the high
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variation of human motion, local PCA that considers only a relevant subset of the

whole motion database to generate a locally linear space is proposed [47,48]. One can

generate motions from arbitrary points on the plane by interpolating the postures

of the original motion. Meanwhile, non-linear methods [49, 50] and Deep Learn-

ing [51] have also been used to reduce the dimensionality of motions. The Gaussian

Process [52] and the mixture of Gaussian Processes [52] can be used to represent

a set of human postures with a small number of Gaussian parameters. However,

such methodologies do not consider the connectivity structure of the motions. We

apply dimensionality reduction to our graph structure to visualize the connectivity

structure of captured motions on a 2D plane.

Other researchers have focused on the connectivities of motion/actions by meth-

ods such as Markov models. Hidden Markov Model (HMM) [53] has been widely

used in analyzing and synthesizing human motion. Typically, the hidden states

of the HMM refer to the distribution of body poses and the dynamics of the mo-

tions are represented by the transitions between the hidden states. The parameters

of the HMM can be subsequently learned from training data by the Expectation-

Maximization (EM) algorithm. Hara et al. [54] proposed to model daily activities

using HMM in intelligent house. Françoise et al. [55] proposed to use HMM models

for analyzing Tai Chi motion sequences. An early work proposed by Brand and

Hertzmann [56] proposed to learn the dynamics of human motion using HMM in

their motion style synthesis model. Tango and Hilton [57] proposed to learn a HMM

model from captured human motion for synthesizing in-between frames in keyframe

animation. Ren et al. [58] presented a data-driven approach for quantifying natu-

ralness of human motion including those synthesized by HMM. While existing work

focuses on finding statistical distributions of motions, our focus is on visualizing the

motion richness and the transition dynamics for skill assessments.

2.1.4 Understanding of Boxing Motion Analysis

In my research topics on Chapter 3, the boxing motions serve as a demonstration.

This is because boxing motions are complex and hard to analyze. Our system is

generic and can be introduced to different sports. Here is an example of human
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criteria to analyze the quality of the boxing motion [59]. Professional boxers are

trained first on some basic postures e.g. defense, stepping and attack, threading

through which are the transitions carried out by the boxer based on the strategy

and the opponent in a match. A good boxer can carry out a variety of transitions at

will to achieve the best outcome. Such information serves as indicators for assessing

the skill level of a player and the same principle applies to many other sports e.g.

tennis, fencing, etc. Unfortunately, there is a research gap in assessing the motions

of the players from a higher-level point of view. Our graph-based representation on

boxing motions helps us to capture such ambiguous information.

2.2 Interaction-based Motion Retrieval and Anal-

ysis

Synthesizing and retrieving multi-people interaction motions is a challenging task

in computer graphics. In such scenarios, the ambiguous spatial relationships be-

tween interacting people are important to describe the motion semantics. Failure

to capture such relationships makes motion synthesis to be difficult to generate na-

ture movement, and retrieval system to get wrong results. In recent years, numerous

researchers have started to explicitly model the spatial relationship between interact-

ing people and introduced it to the motion synthesis system to simplify the process

of generating complex interaction motions [8,42,43,60] , and motion retrieval system

to improve the retrieving accuracy [61–64]. Here, the conventional human-centered

representations for human motion are first reviewed, and their major weaknesses are

discussed. Subsequently, the interaction-based representations are reviewed, and the

difficulties of applying them in motion retrieval and analysis are highlighted.

2.2.1 Human-centered Representations

There is a large body of research about analyzing and identifying human motion

using human-centered features of body movement. In the early research of human

motion retrieval, traditional approaches utilize kinematic features such as joint an-
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gles [65] and joints position-based distance [66] to evaluate different types of motion.

Dynamic features such as forces produced by specific joints provide another mean

to identify human movement [67]. Derived dynamic features such as the center of

pressure can enhance body stability analysis [68].

Although it is possible to analyze individual kinematic and dynamic features,

understanding the logical significance of a motion requires the meaningful combi-

nation of them. Logical rules based on combined kinematic features can be used

as the motion features in motion retrieval [69]. By exploiting the body hierarchy,

kinematic features concerning body parts can provide a higher level evaluation [70].

Movement notation language known as the Laban notation can abstract a short

duration movement [71].

To better reflect the semantic meaning of human motion and minimize the te-

dious manual design, machine learning algorithms based on joint-pair relationship

features are introduced to train classification systems that recognize different type of

motion [72,73]. Learning a distance metric based on a set of single-character posture

feature enhances motion recognition accuracy [74]. Deep learning algorithms such

as the convolutional autoencoders can automatically learn a manifold to represent

a motion from a large amount of data [75].

While these human-centred representations have been effective for interpreting

basic movement, they fall short in representing scenarios involving multiple inter-

acting characters, which is one of the key components in daily movements. For

example, simply considering features from individual characters makes it difficult to

distinguish waving from high-five between two characters.

2.2.2 Interaction-based Representations

Recently, there has been a significant increase in research to analyze the interaction

between multiple characters. The relationships among characters are considered

important features to recognize the semantic meaning of high-level interactions.

Relative kinematic features such as relative joint distance are proposed to rep-

resent the interaction between two characters [76]. The concept of kinematic-based

logical rules can also be extended to represent inter-character kinematic features [69].
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However, the feature dimension increases exponentially when considering multiple

characters. While feature selection [72, 76] can be used to maintain a reasonable

feature dimension, the optimal set of feature depends on the type of interactions. It

is difficult to find a globally optimal set of low dimensional feature to represent all

interaction types.

By considering the skeleton hierarchy of the interacting character as a number

of strings, the Gauss Linking Integral is used to represent how these strings wrap

around each other, thereby representing the interaction of the two characters [77].

Such a representation can be used to synthesize movement by considering close

interaction [48], as well as motion indexing and retrieval [78]. However, the repre-

sentation cannot effectively represent long-distance interaction such as one character

avoiding an attack from another.

The interaction mesh has been proved to be a robust interaction representa-

tion [8]. It considers the joints of the interacting characters and applies Delaunay

Tetrahedralization [79] to generate a mesh structure that indicates spatial proximity.

Using the interaction mesh, interaction among characters can be adapted according

to the user-defined criteria or environment changes [8, 80]. The structure is used

in robotics to represent the interaction between a robot and the environment for

movement adoption [68] and control [81].

There are some attempts to apply interaction mesh in interaction retrieval [62,

63]. However, the results are not satisfying. The major difficulties is that the

topology and dimension of the interaction mesh changes over time depending on

the posture of the interacting characters. In particular, a small change of body

joints can result in a significant topological change of the mesh structure, making it

difficult to compute the difference between two interaction meshes. Previous works

attempt to solve the problem by breaking the distance function into two parts.

For the edges that co-exist in two interaction meshes, a traditional geometry-based

distance function is applied. For those edges that do not co-exist due to topological

difference, the algorithm in [63] assumes zero distance, while that in [62] simply

counts the total number. Since the two parts of the distance function have different

nature, forcing them together creates inconsistent results.
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In Chapter 4, a new unified framework is proposed for the retrieval and analysis

of interaction-based motion. We adapt the interaction mesh structure due to its

robustness and propose to compare two topologically different interaction meshes

using the Earth Movers Distance [82]. Our method in Chapter 4 can discover the

intrinsic similarity between interactions can discover the intrinsic similarity between

interactions and produce superior results compared with existing work.

2.3 Crowd Motion Simulation

Crowd motion simulation has been widely studied under different methodologies

including agent-based models [83–85], fluid-based models [86], optimization [12, 87,

88] and data-driven models [89,90]. Comparatively, the ease of control deserves more

attention and starts to attract more research work. Crowd control has been widely

used in many areas such as entertainment production and urban planning, where

two central issues are control and simulation. Related to our research in Chapter

5, there are mainly three sub-fields where we draw our inspirations upon: gesturing

on multi-touch devices, crowd motion control and formation control.

2.3.1 Gesture Recognition on Multi-touch Device

Since the invention of multi-touch devices, gestures have provided a rich capacity

of control input design. Gestures can be sequenced to express complex control

purposes and are typically represented by time series of positions and velocities. For

any pre-designed stroke patterns, there are some user input variations. Spatially-

based control design [91–93] mainly targets on recognizing stroke patterns out of

variations to improve the expressibility, but with limited understanding on the time

dependencies between strokes. To model temporal or semantic dependencies, rule-

based systems such as gesture formalisation [94], grammar [95, 96], state machines

[97] or syntax [98] are proposed. However, they either lack the accommodation of

user input variations or do not generalise well.

Among the previous research works, Lü & Li’s work [99] is most related to ours.

They present a set of features based on translation, rotation, and scaling of a user’s
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finger configurations to encode strokes and recognise gestures. We use a similar

stroke representation. However, while their work uses these features to form a state

machine to recognize a predefined gesture, we use them to represent gesture data and

design our recognition algorithm. For instance, our minimum oriented bounding box

feature is effective at distinguishing control signals, which is previously not possible

using only the set of features proposed in [99].

2.3.2 Crowd Motion Control

Crowd motion control has been studied extensively, including controlling the whole

crowd [100, 101], subgroups [102, 103], sets of control points [104], and the style

[11, 89].

Field-based control focuses on the design of guidance fields in the environment.

Vector fields are typically used to guide each subgroup of the crowd [105]. In [106],

the user can control crowd motion by adding anchor points to indicate their moving

directions, with which a vector field is generated. In [107], the movement of the

agents is generated by the guidance field that is sketched by the user or extracted

from video. Such a field is used to construct a navigation field that refines the flow

of the crowd by avoiding collisions in the environment. While these approaches

enable the user to control the movement of a crowd easily, the main focus in their

work is controlling the crowd by hand-crafted or extracted fields. In contrast, our

method in Chapter 5 focuses on a data-driven approach that maps control gestures

to basic crowd motions to enable an intuitive and interactive control scheme. This

is facilitated by learning a statistical model from the crowd motions using GMM.

Mesh-based control is another control scheme that evaluates the crowd movement

and formation using mesh deformation. Utilizing a single-pass algorithm, crowd

movements can be evaluated based on a deformable mesh [108,109]. It is also possible

to interactively edit large-scale crowd while maintaining the spatial relationship

between individuals [12]. Voronoi diagram can be used to represent the spatial

relationship between different agents and organize the crowd movement in constraint

space using Torso Crowd Model [110].

One particular problem of exiting methods is the lack of high dimensional control
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signals that can be used to define the movement details of a crowd that consists of

multiple sub-groups. Existing methods typically employ multiple levels of control

rules, such that the user can define the overall crowd movement first, and define

the details of sub-group later. Instead, we decide to embed the control mechanism

into our learned mapping between the control signal and the corresponding crowd

motions. It solves the problem of potentially contradictory control objectives on

different levels, such as different overall crowd and sub-group targets.

2.3.3 Formation Control

Formation control is a technique to control the movement of crowds while maintain-

ing formations. A significant number of papers propose to represent the shape of

the crowd by modelling the geometric relations between individual agents. Mesh-

based methods are very popular because they can easily represent the formation

and accommodate some randomness due to individual motions by controlled mesh

deformation. Laplacian mesh editing [111] controls and combines existing crowd

formations into larger scale crowd animation [104]. An intermediate 2D mesh be-

tween user input and crowd motion can be defined so that crowd formations are

controlled by simple user gestures [108,109]. Spectral analysis smoothly transforms

the crowd from one formation to another which is represented by Delaunay tetrahe-

dral meshes [112]. A local coordinate system called formation coordinates maintains

the adjacent relationship between individuals in the crowd [101]. More variants of

these methods can be found in [113–116].

The Morphable Crowds [11], which is based on data examples of different styles

of crowd motion, is conceptually similar to our work in Chapter 5. While their

method is based on modelling the positions of characters surrounding an individual

in a crowd motion, our method models the full trajectories of characters in the crowd.

Such a full modelling enables us to build up a precise control mapping from the input

to crowd motions, which enhances the quality of controlling and synthesizing new

crowd motions.

Path pattern that consists of flows of location-orientation pairs is also a good

representation of crowd motions, which can be extracted from crowd video [117].
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However, the representation is complicated and is too computationally expensive to

be used for interactive control purpose.

2.4 Motion Capture Data Refinement

The major problem of using motion capture system is to deal with the noisy data

obtained. Usually, the quality of the detected posture is of low resolution and suffers

heavily from occlusion. It is likely to apply machine learning algorithms to enhance

the quality of the data. The idea is to introduce a quality enhancement process

that considers prior knowledge of the human body, which is typically a database

of high-quality postures. In this section, we discuss how body information can be

reconstructed from noisy data.

2.4.1 Posture Enhancement

The body tracked by motion capture system may contain inaccurate body parts due

to different types of error. Simple sensor error can be caused by geometry shape of

body parts and viewing angles. It is proposed to apply Butter-worth filter [118] or

a simple low-pass filter [119] to smooth out the vibration effect of tracked positions

due to this type of error. However, when occlusions occur, in which a particular

body part is shield from the camera, the tracked body position would contain a

large amount of error. Simple filter will not be sufficient to correct these postures.

As a solution, it is proposed to utilize accurately captured 3D human motion

as prior knowledge and reconstruct the inaccurate postures from the motion cap-

ture system. In this method, a motion database is constructed using the carefully

captured 3D motion. There are many open-source motion capture database such

as CMU Graphics Lab Motion Capture Database [120]. Given a captured posture,

one can search for a similar posture in the database. The missing or error body

parts from the motion capture system can be replace by those in the corresponding

database posture [121]. However, such a naive method cannot perform well for com-

plex posture, as using only one posture from the database cannot always generalize

the posture performed by the user, and therefore cannot effectively reconstruct the
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posture.

More advanced posture reconstruction algorithms utilize machine learning to

generalize posture information from the motion database [122–124]. In particular,

the motion database is used to create a low dimensional latent space by dimen-

sionality reduction techniques. Since the low dimensional space is generated using

data from real human, each point in the space represents a valid natural posture.

Given a partially mis-tracked posture from a camera, one can project the posture

into the learned low dimensional space and apply numerical optimization to enhance

the quality of the posture. The optimized result is finally back-projected into a full

body posture. Since the optimization is performed in the low dimensional latent

space, the solution found should also be a natural posture. In other words, the

unnatural elements due to sensor error can be removed. The major problem of this

method is that the system has no information about which part of the body posture

is incorrect. Therefore, while one would expect the system to correct the error parts

of the posture using information from the accurate parts, the actual system may

perform vice versa. As a result, the optimized posture may no longer be similar to

the original capture posture.

To solve the problem, optimization process that considers the reliability of indi-

vidual body part was proposed [47]. The major different from this method compared

with prior ones is that it divides the posture reconstruction process into two steps.

In the first step, a procedural algorithm is used to evaluate the degree of reliability

of individual body parts. This is by accessing the behaviour of a tracked body part

to see if the position of the part is inconsistent, as well as accessing the part with

respect to its neighbour body parts to see if it creates inconsistent bone length. In

the second step, posture reconstruction is performed with reference to this reliability

information, such that the system relies on the more parts with higher reliability.

Essentially, the reliability information helps the system to explicitly use the correct

body parts and reconstruct the incorrect ones. Such a system can be further im-

proved by using Gaussian process to model the motion database, which helps to

reduce the amount of motion data needed to reconstruct the posture [52,125]. Bet-

ter rules to estimate the reliability of the body parts can also enhance the system
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performance [126].

2.4.2 Prior Knowledge

The major research focus of face and posture enhancement is to apply appropriate

prior knowledge to improve data obtained in rum-time. In machine learning based

algorithms, such prior knowledge is usually learned from a database, and represented

in a format that can be efficiently used in run-time.

For motion enhancement, since human-motion is highly nonlinear with large vari-

ation, it is not effective to represent the database using a single model. Instead, many

of the existing research apply multiple local models to represent the database, such

as using a mixture of Gaussian model [52]. It is also proposed to apply deep learning

to learn a set of manifolds that represents a motion database [127]. Pre-computing

these models and manifolds are time-consuming, as it involves abstracting the whole

database. Therefore, lazy learning algorithm is adapted, in which modelling of the

database is not done as a pre-processs but as a run-time process using run-time

information [47, 122]. During run-time, based on the user performed posture, the

system retrieve a number of relevant postures from the database, and model such

a subset of postures only. This method has two advantages. First, by modelling

only a small number of postures that is relevant to the performed posture, one can

reduce the computational cost of constructing a latent space. Second, since the sub-

set of postures are relatively similar, one can assume that they all lay in a locally

linear space and apply simpler linear dimensionality reduction to generate the latent

space. This allows real-time generation of the latent space. With improved database

organization, the database search time can be further reduced and the relevancy of

the retrieved results can be enhanced [44, 128], such that real-time ergonomic and

motion analysis applications can be preformed [128].

Figure 2.1 visualizes how prior knowledge can be estimated from the database.

Each blue circle in the figure represents a database entry, and the filling color rep-

resents its value. The obtained prior knowledge from the scattered database entries

is represented by the shaded area, which enables one to understand the change of

value within the considered space. The left figure shows a traditional machine learn-
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Figure 2.1: (Upper) Traditional machine learning that represents the prior from

the whole database. (Lower) Lazy learning that represents the prior from a subset

of the database based on the online query.
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ing algorithm, in which prior knowledge is obtained as a pre-process, considering all

database entries. During run-time, when a query arrives, the system uses the knowl-

edge to estimate the corresponding value of the query. The right figure shows the

case of lazy learning, in which prior knowledge is obtained during run-time. This

allows the system to extract database entries that are more similar to the query,

and estimate the prior knowledge with only such a subset of data.

2.5 Summary

The existing studies on motion analysis and synthesis techniques can accurately

recognize and flexibly control the motion of a single character. In recent years, re-

searchers focus on using such techniques in complex scenarios (e.g. multiple charac-

ters interactions and character-environment interactions). However, the results are

still unsatisfactory. This thesis will focus on extracting high-level semantic meaning

among the interaction and improve the results of motion analysis and synthesis on

such complex scenes.
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Chapter 3

Graph-based Human Motion

Visualization and Analysis

Computer technologies [129] [130] [131] have taken on a crucial role in modern sports

and health sciences, in revolutionizing the way to observe, analyze, and improve

the performance of both amateur and professional athletes. Computer-managed

weight lifting machines, treadmills and many other training equipments provide

energy consumption or repetition and weight management in many sports clubs.

Virtual reality technology has been applied in various training systems in baseball

[132], handball [133] and tennis [134] to assist more professional sports activities.

Nevertheless, these technologies are only able to analyze motions at a low level,

i.e. recording the timing or repetitions of basic motions and comparing movement

trajectories with those performed by better players. More advanced technologies are

needed for personalized and higher-level analysis comparable to that from human

experts.

In addition to the instantaneous movement features of the sports players, Ex-

perienced sports coaches consider high-level features such as the variety of actions

and quality of transitions from one action to another. Taking boxing as an exam-

ple, professional boxers have in basic actions such as defence, stepping and attack,

threading through which the transitions are carried out based on the strategy and

the opponent’s reactions. The action transitions of a good boxer need to be flexible

and contain great variety to achieve the optimal outcome. Such information often
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serves as an important indicator in assessing the skill level of a player, and the same

principle applies to many other sports such as basketball [41] and fencing [135].

Unfortunately, automatic systems for analyzing and evaluating sports motions at

such a high level is very limited. Based on that observation, our research focuses

on analyzing the higher level information of the sports motion, such as skillfulness,

richness and unpredictability, which are consistent with human standards of evalu-

ations. Then we visualize this high-level information in an intuitive way for people

to understand. Our approach has several potentials, such as the motion evalua-

tion system on sports training session, motion visualization and analysis system on

evaluating the quality of motion capture data.

In this work, we propose a robust visualization system to address the above

limitations, by representing motions as an interactive graph of high-level features,

including the flexibility and richness of the actions as well as the transitions of

actions. Although we use boxing as a demonstration in this work, our method is

generic and can be applied to different sports. Our approach starts with capturing

the shadow boxing training motion of a boxer, in which the boxer performs boxing

with an imaginary opponent. An experienced coach can effectively assess the boxer’s

skill by watching the shadowing boxing motions. As a positive side effect, this

method of motion analysis greatly reduces the complexity of motion capture due

to occlusion and collision and has shown to be very effective in our system. The

motion data is then processed and visualized in two different graphs: the posture-

based graph and the action-based graph, for performance analysis.

In the posture-based graph, the semantic actions segmented from the captured

motion are grouped into clusters based on a customized distance function that con-

siders action specific features. Our system then automatically generates a motion

graph structure known as Fat Graph [38], which uses nodes to represent groups of

similar postures to start and end actions, and edges to represent groups of action.

By applying dimensional reduction techniques, this graph can be visualized in a

3D space for performance analysis and evaluation. The transition capability of the

boxer is visualized by the connectivity of the nodes, where the richness and prefer-

ence of the actions are visualized by the edges in the graph. We further propose a
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skill evaluation metric known as the Connectivity Index which evaluates the richness

of actions and the flexibility of transitions according to the graph.

Whilst the posture-based graph focuses on the variety of basic postures and the

transition flexibility between actions, the action-based graph mainly considers the

richness of actions and the transition probability among them. The action-based

graph is constructed as a customized Hidden Markov Model (HMM) [53], in which

similar actions are grouped into clusters that formulate the nodes. The transition

probability among actions is calculated and is expressed as edges between nodes.

The graph is visualized in a 3D space, and the positions of the nodes and edges

are optimized for better visualization. With such a graph, the pattern of action

launching can be easily identified in order to assess the boxing strategy of the boxer.

We further propose the Action Strategy Index to evaluate the unpredictability of

action patterns according to the graph.

With the support of the proposed algorithm, the performance quality can be

analysed as human experts usually do and the potential problems of a player can

be readily identified for sport technical improvement. These edges are also colour

and size coded, with colour indicating the sequence of continuous action pairs and

size representing the probability of such transitions. Examples based on boxing,

basketball and tennis motions are conducted to demonstrate the effectiveness of

the proposed algorithm, and clear differences between the novice and experienced

players are shown.

We conducted experiments on the motions captured from multiple boxers and

evaluate their skills. The corresponding posture-based and action-based graphs were

generated. As shown in Fig. 3.11, we can easily evaluate the skills of different boxers

with our visualization system.

3.1 Contributions in This Chapter

There are three main contributions of this work:

• We propose a framework for high-level skill analysis through automatic motion

analysis and visualization. Given a captured motion from a sports player,
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our system automatically segments the motion into semantic action units and

constructs two graph structures.

• We propose the posture-based graph, which is a variant of the Fat Graph,

to visualize the skills according to different standard postures for launching

and ending actions. It allows the user to identify the correctness of standard

postures and the diversity of actions. We further propose the Connectivity

Index that evaluates the richness of actions and the flexibility of transitions.

• We propose the action-based graph, which is a variant of the Hidden Markov

Model (HMM), to visualize the skill according to different groups of action.

It allows the user to identify the preference of actions and their transition

probability. We further propose the Action Strategy Index to evaluate the

unpredictability of action patterns.

3.2 Overview of Our Method

The overview of our method is shown in Fig.3.1 and the system is divided into two

parts: the motion data pre-processing part and the Posture/Action Graph visualiza-

tion part. The first part captures, analyze and organizes the long motion sequence

of a character and represents it into semantically graph structure. The second part

visualizes the graph representation by projecting entities to appropriate 2D space

via dimension reduction techniques, and the resultant graph can be rendered. The

quantitative results of different skill level motions can be achieved by analyzing

corresponding graph topologies.

3.3 Motion Data Pre-processing

We first capture the motion required for analysis using motion capture systems.

Then, we propose an automatic system to segment long sequences of captured mo-

tion into meaningful actions, which are used as building blocks of our posture-based

and action-based graphs.
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Figure 3.1: Overview of graph-based human motion visualization and analysis

system

Here, we follow the definition from [40], in which a motion is considered to be

a raw sequence of captured human movement, and an action is considered to be a

short, meaningful segment of movement within a motion. In the field of boxing, an

action can be an attack (such as a “left straight”, “jab” or a “right kick”), a defence

(such as “parries”, “blocking” or ”ducking”) , a transition (such as “stepping to the

left”, “stepping forward” or “back step”), or any combination of them.

Postures and actions are good entities for skill visualization, as sports players

typically plan their strategies and evaluate their performances with such terms.

For example, a boxer typically thinks about what sort of attack/defence/transition

should be launched during a match. A coach typically evaluates the overall strategy

in the action level, as well as how well individual postures and actions are performed.

3.3.1 Motion Capture

Although it would be best to capture the motions of all players in multi-player sports

because the data would reflect the features of the motions, capturing multiple players

remains difficult due to the occlusions and collisions among players. Fortunately, it is
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possible to only capture individual motions for our purposes without compromising

the true motion characteristics. In boxing or any other martial arts, there is a

training practice called “shadow boxing”. The boxer imagines a boxing session

with another boxer, and launches boxing actions to interact with such an imaginary

opponent. The boxer launches not only offensive actions such as punching, but also

defence, stepping, and the consecutive combination of all such actions. There are

similar practice methods in basketball and soccer as well, in which players use the

ball to conduct various techniques in the court, imagining that their opponents are

trying to take the ball away from them. The players thus perform various actions to

keep the ball and trick an imaginary opponent. This technique has also been used

by coaches for skill assessment hence is suitable for our analysis. We employed an

optical motion capture system to acquire the performed motion as shown in Fig.

3.2 as it was less intrusive and highly accurate. Also, we preferred to capture long

and continuous clips of motion, such that the player could perform the motion in a

natural manner.

To evaluate the performance of our system for real-people sports motions, we

produce 4 motion sequences of shadow boxing motions performed by 4 boxers with

different skill levels, which were captured at the University of Tokyo. We collect

around 6 minutes of boxing from 4 sets of shadow boxing motions from novice to

professional, as shown in Fig. 3.11. Averagely each motion sequence has around

1.5 minutes at speed of 30 frames per second. So each sequence has around 2700

frames.

3.3.2 Motion Analysis

After data capture, the system automatically segments meaningful actions from the

raw captured motion and identifies the effective joints that contribute the most to

the semantic meaning of the actions.

For boxing motions, we observed that actions normally start and end in a double

supporting state (i.e. both feet touching the floor), as the state is usually dynam-

ically stable. We detect such a state by monitoring the feet height and velocity

and setting corresponding thresholds. This allows us to segment the raw captured
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Figure 3.2: Motion capture on a single human. The shadow boxing motions of

several boxers were captured using an optical motion capture system.

motion into a set of movement segments, which are the periods between every two

successive double supporting states, as visualized in Fig. 3.3 Upper.

We also observed that actions normally require a relatively larger force to be

performed, such as a punch or a step. We define periods with a high-level of force

exertion as the activity segments. Since force is proportional to acceleration, these

segments can be found when the sum of squares of acceleration of all joints is above

a threshold, as visualized in Fig. 3.3 Middle. The threshold is statistically obtained

from the acceleration profile of the motion.

Finally, the actions are composed by using the movement segments as the build-

ing blocks. The timing and the duration of the activity segments are used to deter-

mine if the movement segments should be merged together to form longer segments.

Regarding the relationship of the movement segments and the activity segments,

there could be three possible cases: (1) There is no activity segment inside a move-

ment segment. In this case, the movement segment becomes a single action of pure

body transition. (2) There is one activity segment inside a movement segment.

In this case, this movement segment becomes an action with a special activity. (3)

There are one or more activity segments lying across successive movement segments.
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Figure 3.3: The motion segmentation framework. Upper: The movement

segment is defined as the period between two double support supporting phases.

Middle: The activity segment is defined as the period with high acceleration.

Lower: The action is the combination of movement segment and activity segment.

In this case, the movement segments containing activity segments at the border are

merged to form an action as visualized in Fig. 3.3 Lower. Note that due to this

merging process, the resulting action may contain multiple activity segments. In

our system, we implement an optional step to filter very short actions that are likely

to be generated due to the noise of the supporting feet.

We define the effective joints to be the set of joints to represent an activity

segment. In case (1) above, since the actions contain no special activities, the pelvis

is considered to be the effective joint. In case (2) and (3), the effective joint is

the joint that contributes the most to the sum of squares of the acceleration in the

activity segment. In more complicated actions such as left-right combo punches,

there may be multiple effective joints as there are multiple activity segments. Such

joints are used in later processes to evaluate the similarity of actions.
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3.4 Posture-based Graph

The posture-based graph focuses on evaluating the common postures that are used

to start and end actions. In such a graph, the nodes represent similar postures

and the edges represent similar actions. It allows us to evaluate the consistency of

common postures and the diversity of actions.

3.4.1 Graph Construction

We adopt a Fat Graph structure [38] in the action level [40] to generate the posture-

based graph, as it can effectively simplify the graph representation by grouping

similar postures and actions together. The Fat Graph was originally proposed for

motion synthesis, and thus it is not optimized for skill visualization. We redesign

the algorithms to generate nodes and edges in the Fat Graph for our purpose.

3.4.1.1 Fat Nodes

In our system, the nodes of the Fat Graph, known as Fat Nodes, are the common

starting or ending postures of the actions. We design an unsupervised clustering

scheme for grouping all starting/ending postures into a finite set of posture groups,

which avoids additional labour for posture labelling and grouping. Specifically, we

used k-means to cluster postures. The distance between two postures P0 and P1 is

defined as:

D(P0, P1) =

i=itotal∑
i=0

|θ0(i)− θ1(i)| (3.4.1)

where θ0(i) and θ1(i) represent the 3D joint angle of the joint i in posture P0 and

P1 respectively, and itotal is the total number of joints. Regarding the cluster number

k, a large k would result in many clusters (Fat Nodes), which unnecessarily increases

the complexity of the graph. A small k will cluster very different postures into the

same node, defeating the purpose of the graph. Therefore, we set up a posture

difference threshold empirically based on experts’ suggestions. Based on lots of

tests, we found a suitable Euclidean distance threshold to distinguish different types

of postures in boxing motions. For different types of motions, this process should

be repetitively done. Then, we iteratively search for a proper k by initially setting
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Figure 3.4: Posture-based Fat Graph on single character’s boxing motion. The

Fat Node represents the standard fighting pose. The three outgoing Fat Edges

represent different action groups.

k = 1 and incriminating k by 1 until we find the first value of k that does not

violate the distance threshold. After clustering, we use the mean posture of a group

to represent the corresponding Fat Node. The nodes in the graph represent the

set of standard postures which the player starts the various actions from. In the

case of boxing, they are usually the fighting postures that the boxer uses to guard

his/her face against the opponent, with both feet landing on the ground and keeping

shoulder width apart.

By evaluating the Fat Nodes alone, we can already tell if a boxer has multiple

unnecessary standard postures, or if any standard postures contain potential weak-

ness. In general, experience players have fewer Fat Nodes, such that they can start

actions in a standard posture effectively without the needs of shifting to other ones.

Novice players sometimes may have a particular Fat Node for some particular ac-

tions. This is discouraged in boxing training as such postures hint the opponent as

to what actions are going to be launched.
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3.4.1.2 Fat Edges

We design the edges of a Fat Graph, known as Fat Edges, as directional edges that

represent groups of similar actions. Each edge points from the Fat Node representing

the starting posture to that representing the ending posture.

Similar to the Fat Nodes, we implement an unsupervised clustering algorithm

to group similar actions into Fat Edges. We use k-means to cluster the actions and

search for the smallest acceptable k for a given distance threshold. We define the

actions distance according to the trajectory of the effective joints as explained in

Section 3.3.2. This allows accurate clustering of actions and ensures that the effects

of the effective joints are not smoothed out by other joints.

Formally, the distance between two actions A0 and A1 is defined as:

D(A0, A1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞
if A0 and A1have different sequences

of effective joints

jtotal∑
j=0

fend∑
f=fstart

[A0(j)(f)− A1(j)(f)]

otherwise

(3.4.2)

where A0(j)(f) and A1(j)(f) represent the 3D positions of effective joint j in frame

f in the action A − 0 and A1 respectively, jtotal is the total number of effective

joints in the actions, fstart and fend are the starting frame and ending frame of the

considering effective joint. In case two effective joints with different duration are to

be compared, the shorter one is linearly scaled to the duration of the longer one.

In the field of boxing, a Fat Edge typically contains a set of actions with basic

attacks or defences such as “straight punch”, “hook punch”, “parry”, or a set of

complex actions combining several attacks and defences. Since member actions in a

Fat Edges have to share the same starting and ending Fat Nodes, if an action group

contains multiple starting or ending poses, it is sub-divided into multiple Fat Edges.

Again, by only looking at Fat Edges, one can tell the differences between ex-

perienced and novice players. Experienced players normally have Fat Edges with

similar numbers of actions, as they have mastered a large variety of boxing actions
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and can switch between them effectively using a small number of stable transition

maneuvers. Novice boxers tend to have a larger number of Fat Edges but each

with a small number of actions, due to the inability to reproduce boxing actions

consistently. Fig. 3.4 shows the relationship of Fat Nodes and Fat Edges.

3.4.2 The Connectivity Index

It requires deep knowledge and years of experience to assess one’s skills in sports.

Here, we make use of the posture-based graph and define an index representing the

skill level, allowing more objective and efficient skill assessment.

In many types of sports, there are two important skill indicators. The first one

is the richness of the actions that indicate the resourcefulness of a player. The other

is the flexibility of transitions between states so that the player can switch between

different states at will. Our posture-based graph captures both of the indicators.

The richness can be represented by the number of Fat Edges, indicating how many

kinds of maneuvers the player has. The flexibility is indicated by the connectivity

of the graph, which is inversely proportional to the number of Fat Nodes. A fully

connected graph shows great flexibility because there are transitions between any

two nodes.

Notice that these two factors are somehow contradicting. In general, the richer

the actions are, the greater the number of different starting and ending poses is

hence the poorer the connectivity of actions is. Independently considering either

of them would not suffice. We therefore define a Connectivity Index that evaluates

both the action richness and the action flexibility of a player:

CI =
Number of Fat Edges

Number of Fat Nodes
(3.4.3)

To accurately reflect the skill level of a player, in our implementation, we do

not consider Fat Nodes that are not intentionally created. For example, one of

our boxers tripped over during a session. While it is good that our system can

objectively pick up the posture generated by the accident, we do not include the

corresponding Fat Nodes when calculating the Skill Index. Also, we only consider

Fat Edges that are consistently performed, as those having only a small number
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of member actions could be randomly performed actions. Empirically, we consider

edges having more than 2 member actions.

3.4.3 Visualization System

Here, we describe the design of our visualization system to visualize the posture-

based graph in an effective manner. We also introduce interactive features for the

user to view the graph with different levels of details.

The posture-based graph consists of high dimensional Fat Nodes (groups of sim-

ilar postures of many degrees of freedom) and Fat Edges (groups of similar actions

in the spatial-temporal domain), which presents a challenge for visualization. To

reduce the dimensionality for better visualization, we propose two different schemes

for nodes and edges due to their different nature in this graph. Specifically, we

project the Fat Nodes on a 2D space using Principal Component Analysis (PCA)

as it creates a more consistent low dimensional space compared with other methods

sush as Finite-State-Machine [42,43] or low-dimensional motion manifolds [127]. We

represent Fat Edges with 2D curves and augment the curves with a combination of

geometric primitives to visualize the action features.

3.4.3.1 Visualizing Fat Nodes

Although the degree of freedom (DOF) of human postures are high dimensional (45

DOF in our system), they are intrinsically dependent on each other [29]. In fact,

the Fat Nodes can be represented effectively in a 2D space where nodes of similar

postures are located together while those of different postures are located far apart.

This allows viewers to easily understand the relationship between postures.

For each Fat Node, we obtain the mean posture as its representation. Given

a set of postures, we apply principal component analysis (PCA) to reduce the di-

mensionality to 2. Essentially, we calculate the covariance matrix to evaluate the

intrinsic dependency of the dimensions. We then calculate the eigenvectors from

such a covariance matrix, and use the two eigenvectors with largest eigenvalues to

form a feature vector.

PCA is used as it has shown to be effective on human postures [29]. However,
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since we only have a small number of postures, we believe other dimensionality

reduction techniques would also work.

Figure 3.5: The fatness represents the size of the node. From left to right, the

character becomes larger as the size of the nodes increases.

We render the mean posture of each Fat Node onto a 2D X-Z plan. This allows

the user to identify inappropriately performed postures. In boxing, novice boxers

sometimes lose track of their boxing rhythm, and hence start or end an action with

an inappropriate posture. We use the fatness of the character to represent the

number of member postures in the node, as shown in Fig. 3.5. This allows the user

to easily observe the postures that the player usually uses to start actions.

3.4.3.2 Visualizing Fat Edges

Here, we explain how to visualize the Fat Edges, which contain information of groups

of similar actions.

We do not apply dimensionality reduction techniques directly on the action data

itself because the low dimensional projection would be very complex. Instead, we

propose to visualize each Fat Edge by a 2D curve that represents its mean action

on the X-Z plane. We optimize the angle and sign of these curves to minimize

occlusion. For edges with a starting node different from the ending node, the edge

angle is fixed. The only adjustable variable is the bending side of the curves, which

is essentially the sign of the curves. For those with the same starting and ending
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Figure 3.6: Visualizations of Fat Edges in 1D space. The geometric patterns for

landmark values between -1 and 1. Each pattern represents a landmark posture in

an action. (Lower) Comparison of visualization without/with the patterns. Each

curve represents a group of action. The right image shows the uses of landmark

patterns to identify different types of action.

node, both edge angle and bending side can be controlled. We optimize the signs

and angles of the edges in a greedy manner such that they would blend towards a

less dense region of the graph.

To visually distinguish between different Fat Edges, we add some geometric pat-

terns to the 2D curves. We collect the high-energy frames of all actions and project

them onto a 1D space using the PCA system explained in Section 3.4.3.1. Since

the high-energy frames of different actions are typically distinguishing postures, the

projection essentially maps all action features onto a normalized 1D space in the

range of [−1.0, 1.0]. To visualize the value in this 1D space, we design some geo-

metric patterns for landmark values -1.0, -0.5, 0.0, 0.5 and 1.0 as shown in Fig. 3.6

Upper. The patterns to represent values between two landmarks are obtained by

linear interpolation between nearby landmarks.

We further represent the number of member actions in the edge by the thickness

of the curve. This allows the user to identify the player’s preferred actions. For
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instance, if a boxer relies heavily on single straight punches, the Fat Edge for such

action will be unreasonably thick, while edges for other attacks will be relatively

thin, which demonstrates a potential lack of diversity attacking strategies.

Through the comparison between Fig. 3.6 Lower Left and Lower Right, it shows

that adding the geometric patterns gives a better visualization of actions in the

edges. This strategy presents an intuitive way to show the players preferences over

actions of different complexity.

3.4.3.3 Interactive Features

We integrate some interactive features in our system to display relevant information

based on user input. When the user selects any specific entities in the graph, related

information will be shown.

When a Fat Node is selected, its corresponding Fat Edges will be highlighted

for easier observation. Information about the number of members in that node,

the number of outgoing edges, and a number of incoming edges are displayed in a

sub window. When a Fat Edge is selected or highlighted (because of a Fat node

selection), we render the member actions included, such that the user can understand

the content of the edge.

As an example, in Fig. 3.7, there are three Fat Nodes indicated by red arrows

and numbered as 1, 2 and 3, each visualized as a character with a mean posture

in the node. The sizes of the nodes are indicated by the body fatness. Node 1 is

represented by the most muscular character, which indicates the largest node size.

Nodes 2 and 3 are far thinner. Fat Edges are rendered as curves between nodes such

as the ones shown by 4 and 5. The thicknesses of the edges indicate the frequency

of the actions taken. Edge 5 is thicker than edge 4, suggesting that this boxer takes

action 5 more often. In addition, an edge can be smooth like a circle or bumpy with

geometric patterns. A single pattern means one activity segment such as a single

punch, while multiple patterns indicate a series of activities such as a combo attack.

Our system also supports interactive features. Fig. 3.7 is the result when the user

selects Node 1. All the edges starting from this node are highlighted, each with a

small character performing the action on it.
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Figure 3.7: The posture-based graph of the Boxer S. 1, 2 and 3 are Fat Nodes. 4

and 5 are two Fat Edges. 4 connects Node 2 and Node 3. 5 connects Node1 to

itself.

3.5 Action-based Graph

The action-based graph focuses on evaluating the transition probability from one

action class to another. In such a graph, the nodes represent groups of action with

similar activity segments. The edges represent the transition probability between

two action groups. It allows us to evaluate the pattern of launching actions and

extract the strategy of the boxer.

3.5.1 Graph Construction

We use the hidden Markov model (HMM) to organize the captured motion, as it has

been shown effective in modelling human motion. In the domain of character anima-

tion, HMM has been mostly used in the posture level to create motion graphs [27].

We adapt the graph into the action level such that we can visualize the transition

probability among actions.

The nodes of the graph represent different action groups. We apply Equation

3.4.2 to group the captured actions into a number of action groups with k-means
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Figure 3.8: Motion representation using HMM. The three HMM nodes represent

action groups. The HMM edges represent transitional probability between them.

clustering. The process is similar to that in Section 3.4.1, in which we define a

threshold based on expert knowledge, and then incrementally increase the number

of classes until the threshold is met. We denote k′ as the total number of groups, |Gi|
as the number of actions in the ith action group (which is used in the visualization

system for visualizing the fatness and the placement of the node and will be described

later).

The edges of the graph represent transitional probability from one action group

to another. To obtain the transitional probability, we go through the sequence of

actions in the captured motion and count the number of occurrences for an action

belonging to group i to be followed by another belonging to group j, which is denoted

as cij. The transition probability of action group i to action group j is defined as:

Tij =
cij∑k′

m=1

∑k′
n=1 cmn

(3.5.4)

where the denominator represents the total number of transition in the whole motion.

Notice that i may be equal to j. In such a case, two actions of the same action group

are launched successively.

The concept of the action-based graph is shown in Fig. 3.8. In general, experi-

enced boxers tend to have a more evenly distributed transitional probability across
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all actions, which means that there should be edges connecting all the nodes. This

indicates that the boxer’s pattern is dynamic and cannot be easily predicted by an

opponent. Conversely, novice boxers may have limited edges and some thick edges

connecting two nodes, which means a high probability to launch those two groups

action consecutively. An opponent may discover such a pattern and counter-act in

advance when the first action is observed.

3.5.2 The Action Strategy Index

In many sports, the unpredictability of action patterns is an important skill in-

dicator. Experienced players would diversify their action patterns such that their

opponents cannot predict the next action. However, novice players tend to perform

actions based on predictable patterns (i.e. the sequence of actions to be launched

continuously), which can be easily identified. For example, a novice boxer usually

perform two straight punches successively. This is because the boxer is not able to

link different types of punches fluently, and therefore would perform the simplest

punches again and again. The proposed action-level graph allows easy observation of

boxing patterns, as we can visualize the transitional probability among actions. We

further propose the Action Strategy Index, which evaluates the unpredictability of

action pattern. We obtain the number of outgoing HMM edges for each HMM node,

forming a set that is denoted as e = {ei} ∀ i ∈ [1, k′], where k′ is the total number

of HMM nodes. Skillful players would have similar values in the e set, while novice

players would have very different values. We therefore define the Action Strategy

Index as the precision of e, that is, the reciprocal of its standard deviation:

ASI =
1

σ(e)
(3.5.5)

where σ represents the standard deviation operator. A high ASI value indicate that

the player’s action patterns are more unpredictable, which indicates a higher skill

level.
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Figure 3.9: Action-based graphs of the same boxer generated by setting the

frequency threshold as (a) 0, (b) 1 and (c) 2. The red shade indicates the inner

circle covering nodes of the frequent class, and the blue shade indicate the outer

circle covering nodes of the rare class.

3.5.3 Visualization System

Here, we explain the visualization system for the action-level graph. The system

allows easy observation of the preference of action and the boxing pattern. Both are

very important aspects to evaluate the high-level strategy of a boxer.

3.5.3.1 Visualizing HMM Nodes

Each action group is represented by its corresponding median action, which is the

action that is the closest to the mean value of the action group during k-means

clustering. We render the nodes using human characters with the starting posture

of the median action. The number of actions in each action group is visualized using

the fatness of the corresponding character. The color of the nodes are randomized.

As mentioned in Section 3.4.1.2, we observe that some boxers, especially novices,

may produce random actions that are not repeatable. Such actions may generate a

large number of thin nodes, which distract the user from evaluating the actions that

are often launched. Therefore, we classify the action groups with |Gi| > a into the

frequent class, and groups with |Gi| ≤ a into the rare class, where Gi is the number

of member actions in a node as defined in Section 3.5.1, a is a preset frequency

threshold. Fig. 3.9 shows the result of setting different values of a. We find that

setting a = 2 generates the best results.

We place the nodes belonging to the frequent class at an inner circle, and those

belonging to the rare class at an outer circle, such that the user can identify them

47



3.5. Action-based Graph 48

easily and decide what to focus on. For the inner circle, nodes are ordered according

to the corresponding value of |Gi|, and are placed evenly at a circle with a smaller

radius. For the outer circle, to minimize edge crossing, we place the nodes at a

position on a circle with a larger radius that is the closest to the nodes with incoming

and outgoing edges. To implement this, we develop a simple optimization algorithm

that optimizes the position of the nodes. During the optimization, we constrain

the position to be at the circle and not overlapping with existing nodes. We then

minimize the sum of distance with respect to the nodes connecting to the current

one.

By default, we render the HMM node belonging to the frequent class with solid

colors, and those belonging to the rare class in semi-transparent colors. This further

avoids the user being distracted by the rarely performed actions.

3.5.3.2 Visualizing HMM Edges

We visualize the edges using 2D curves. While we can render the edges with straight

lines, the resultant group would be difficult to observe as the lines overlap signifi-

cantly. We augmented the edges with a small random curvature to solve the problem.

We also render the edges as semi-transparent such that the users can see through

partially overlapped edges. The thickness of the edge is proportional to Tij calcu-

lated in Equation 3.5.4. As a result, a thicker edge connecting node i to node j

indicates that the boxer often launches action group j after action group i. The

color of the edges are decided based on that of the source node. This helps the user

to identify which action groups the boxer may launch after a particular one.

3.5.3.3 Interactive Features

We also implement some interactive features such that the user can select what

to view. The most important component of the action-based graph is the action

itself. Therefore, we implement an interactive system such that when a user clicks

on a particular HMM node, the median action of the corresponding action group is

displayed. We also highlight the outgoing edges from such a node. This allows the

user to examine individual action group together with the transition probability to
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Figure 3.10: The action-based graph of the Boxer S. 1, 2 are HMM nodes

belonging to the frequent class. 3, 4 are outgoing HMM edges from the node 1. 5, 6

are HMM nodes belonging to the rare class.

the next groups. The information of the node, such as the number of member actions

and the number of out-going HMM edges, are displayed on a separate window.

As an example, in Fig. 3.10, there are 5 HMM nodes belonging to the frequent

class including node 1 and 2. These nodes are visualized with more muscular char-

acters, meaning that the boxer performs them more frequently. There are 3 HMM

nodes belonging to the rare class including node 5 and 6, which are visualized with

thinner characters. Node 1 has 5 outgoing HMM edges, in which edge 3 point to-

wards another node, while edge 4 is a self-connecting edge. Edge 4 is thicker than

the others, indicating that the boxer performs successive actions belonging to node

1 very frequently. The screen is captured when the user selects node 1, and as a

result, all outgoing edges of node 1 are highlighted, and the character representing

node 1 performs the corresponding median action.

3.6 Experimental Results

In this section, we present experimental results. We captured the motions of four

boxers with varying skill levels. We first give detailed motion analysis and visualiza-

tion of individual motions, and then compare them side by side using the proposed
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indexes. This demonstrates that our system is an effective tool for motion analysis,

skill assessment and comparisons. As it is difficult to show the motions in pictures,

we refer the readers to the supplementary video for more details.

The four boxers chosen have different skill levels. As a ground truth, their skills

were evaluated by a professional boxing coach as skilful, medium, medium and novice

respectively, and were denoted as S, M1, M2 and N.

Figure 3.11: Visualizations on different boxing skill level. (Left) The

posture-based graphs and (Right) the action-based graphs for boxer N, M1, M2 and

S (top to bottom) respectively.
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3.6.1 Boxer Evaluation

The boxers’ posture-based and action-based graphs are shown in Fig. 3.11, in which

letter annotations are given to help explain the graphs. These graphs allow users to

assess boxing skills even if they are not familiar with boxing.

3.6.2 Boxer S

The first row of images in Fig. 3.11 shows the graphs of boxer S. The posture-based

graphs shows a main standard posture (a) to start and end actions, which is good

for boxing as it allows the boxer to transit from one action to another effectively

through the standard posture. A large variety of actions (b) can be produced from

such a posture. There is a second posture in which the arms are further apart (c).

This should be avoided as such a posture is weak in blocking attacks. Posture (d)

is generated because the boxer trips over during the training. Our system can pick

up and visualize such a mistake accurately.

The action-based graph of boxer S shows there are many actions in the frequent

group (a) and only a few in the rare group (b). This shows that the boxer is

experienced and his actions are consistent. There is a major movement action (c)

in the frequent group (a), and such an action has good connections to many of the

others. This is good as experienced boxers typically use movement actions to adjust

their position relative to their opponent, and launch attacks when the time is right.

Other actions in the frequent group (a) are variations of attacks. For example, the

more frequently used action (d) is a right-left combo and action (e) is a single right

punch, which shows that the boxer tends to start an attack with the right punch.

It is good to see that attacking actions may connect to each other, which enhance

the unpredictability of the boxer.

3.6.3 Boxer M1

Next, we evaluate the posture-based graph of boxer M1. The boxer has a main

standard posture (a) to launch most of the actions (b). However, he has a secondary

posture (c) for launching some attacks and another (d) for launching a turning
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action. In both postures, the arms are in a low position and cannot guard the

boxer well from the opponent. More importantly, the relatively more frequently

used secondary posture (c) is performed with the foot distance much wider than the

shoulder width. This means the boxer has limited mobility in this posture, as the

legs must move towards each other before another stepping action can be performed.

These observations show that the boxer is not as experienced and consistent as boxer

S.

The corresponding action-based graph shows that there are fewer frequent class

actions (a) but more rare class ones (b) compared to boxer S. This means that that

the boxing action of boxer M1 is less consistent. The boxer has a large number of

movement actions (c) that are connected to all the rest of the action nodes. He

also has a variety of attack actions as shown in other actions in the frequent class

(a). In particular, action (d) is a left-right combo and action (e) is a left punch,

showing that the boxer tends to start an attack with the left punch. Overall, there is

an acceptable number of connections among attacks, demonstrating the acceptable

unpredictability of the boxer.

3.6.4 Boxer M2

For boxer M2’s posture-based graph, there is a main standard posture (a) launching

the majority of actions (b). There are, however, a number of secondary postures

(b), (c) and (d). These postures are all performed sub-optimally with his arms not

guarding the head and should be avoided. Looking closely at the edges (f) going

to posture (c), we can find that the posture is performed as a subtle movement to

prepare various left punches. This should be avoided as the opponent can tell the

moves whenever seeing such a posture. Postures (g) and (h) are very different from

the rest and are geometrically far from the other postures. These two postures are

performed because the boxer unintentionally raises the arms during the capture.

Our system can pick up the mistake and visualize it in the graph.

From boxer M2’s action-based graph, it can be observed that there are relatively

fewer actions in the frequent class (a), but a large number of actions in the rare class

combining (b) and (c). This shows that the boxer is quite inconsistent in the boxing
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actions, and could be because of the lack of training and experience. Different from

the boxers discussed, boxer M2 has the largest action node (d) of left punch. The

second largest action node (e) is a double left punch. The movement action node (f)

is relatively small. This shows that boxer M2 has a different boxing style to use left

punch as a major action to connect to other actions and his left punch is dominant.

Such a boxing style is not advised as a punching action, comparing to a movement

one, consume more energy and expose a larger risk of being attacked.

3.6.5 Boxer N

In the posture-based graph of the novice boxer N, there are two major standard

postures (a) and (b) instead of one. There are a large number of self-connecting

actions (c) and (d) for both postures, as well as a lot of actions (e) connecting

the two. This shows that the boxer is highly inconsistent in the boxing postures.

Posture (a), the more relatively frequently used one, is inferior to posture (b), due

to its wider foot distance. It does not allow the boxer to step freely. Posture (f), (g)

and (h) are all secondary postures with different posture variations. They are all

not well performed due to the low arm positions limiting blocking capability, and

the wide foot width limiting movement capability.

The corresponding action-based graph shows some actions in the frequent class

(a) but a large number of actions in the rare class (b). This means that the novice

boxer cannot perform actions consistently. The action in the rare class (b) are

mainly very long combo that is randomly combined and cannot be reproduced. The

main action (c) is a movement action. Such an action cannot connect to a number

of others in the rare class (b), and many actions in the rare class (b) are not well

connected. This means that the boxer’s action is more predictable, which is bad

in a match as the opponent can guess what the boxer may launch next. The two

more frequently used attack action (d) and (e) are left-right combo and left punch

respectively, showing that the boxer tends to start an attack with a left punch. The

relationship between boxers’ skills and analyzed Connectivity Index results has been

explained in Section 3.4.2.
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3.6.6 Statistical Analysis

Boxer S Boxer M1 Boxer M2 Boxer N

SL Skillful Medium Medium Novice

PN 138 160 112 176

AN 69 80 56 88

Table 3.1: Statistics of the boxing motions assessed by human experts. SL: Skill

Level evaluated by a professional boxing coach. PN: Posture Number (for starting

and ending actions). AN: Action Number.

Boxer S Boxer M1 Boxer M2 Boxer N

FNN 3 (2) 6 (4) 3 (3) 5 (5)

FEN 20 (10) 36 (12) 16 (7) 57 (8)

CI 5.0 3.0 2.3 1.6

Table 3.2: Statistics of the boxing motions in the Posture Graph. FNN: Fat Node

Number (brackets show numbers after removing accidentally created nodes). FEN:

Fat Edge Number (brackets show numbers of consistently performed edges). CI:

Connectivity Index.

Here, we give some statistics about the proposed system.

Table 3.1 shows the skill level assessed by a professional boxing coach, as well

as the number of postures and actions, for each of the boxers considered. Table

3.2 shows the statistics related to the posture-based graph, including the number of

fat nodes and fat edges, as well as the Connectivity Index calculated with Equation

3.4.3. The index evaluates the richness of actions and the flexibility of transitions. It

aligns with the boxers’ skill level and more skillful boxers have higher Connectivity

Indexes. Table 3.3 shows the statistics related to the action-based graph, including

the number of HMM nodes (which is further separated into the number for the

frequent class and the rare class respectively) and HMM edges, as well as the Action

Strategy Index calculated with Equation 3.5.5. It indicates the unpredictability of

a boxer, and more skillful boxers are generally more unpredictable. Again, it aligns
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Boxer S Boxer M1 Boxer M2 Boxer N

NN 7 11 9 16

NNFC 4 3 4 5

NNRC 3 8 5 11

EN 16 27 20 38

ASI 0.572 0.448 0.426 0.378

Table 3.3: Statistics of the boxing motions in the Aciton Graphs. NN: Node

Number. NNFC: Node Number for Frequent Class. NNRC: Node Number for Rare

Class. EN: Edge Number. ASI: Action Strategy Index.

with the boxer’ skill level and more skillful boxers have higher Action Strategy

Indexes. Although we have only used 4 types of shadow boxing motions in our

experiment, we found that the diversity is enough for us to do evaluations and

achieve the convincible results in such specific motions [59, 136].

In terms of the computational cost, we run the proposed system on a laptop

computer with a Core i7-6820HQ CPU, 16GB of RAM and a NVIDIA Quadro

M1000M graphic card. The computational time to analyze the captured motion

(Section 3.3.2) and computing the graphs (Section 3.4 and Section 3.5) ranges from

6 to 9 seconds. Averagely, each sequence has around 2700 frames. The variation of

computational time is mainly due to the iterative k-means clustering algorithm for

both postures and actions, as a larger k requires longer computational time. The

run-time cost is low and we achieve frame rate higher than real-time (i.e. 60Hz).

The frame rate tends to be lower when there are more characters shown in the

graphs.

3.7 Conclusion and Discussions

In this work, we proposed a method to visualize the skills level of boxers using

an automatic motion analysis and visualization framework. The proposed posture-

based graph is a customized Fat Graph that helps us to analyze the quality of

standard postures for launching and finishing actions. The action-based graph is a
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customized Hidden Markov Model that visualizes the transition probability among

actions. We further introduce the Connectivity Index that is deduced from the

posture-based graph and helps evaluation of the richness of actions and the flexibility

of transitions, as well as the Action Strategy Index that is deduced from the action-

based graph and achieves evaluation of the unpredictability of action patterns. The

system is applied to the motion captured from 4 boxers with varying skill levels.

The evaluations from our system align with that of a professional boxing coach.

Although we use boxing as our target sport in the experimentation section, the

underpinning theoretical development can be applied to most sports that require

swiftness, flexibility and creativity, such as tennis, fencing and basketball. The

adaptation of the proposed system to these sports and the comparison of the system

performances on different sports remain as future work.

We focus on analyzing the skill level of the boxers in terms of motion behaviour

such as the richness of the action, the transition of action and the unpredictability of

boxing patterns. We do not evaluate the lower-level parameters such as the speed of

the punches, which has been explored in previous works. It is an interesting future

direction to combine both high-level and low-level evaluation in order to have a full

assessment of the boxers.

There are limitations to our method. First, our method is based on the assump-

tion that sports skills mainly consist of a finite number of key postures and key

actions. Admittedly, not all sports follow this pattern. Second, the visualization

and skill assessment is based on an individual athlete, not considering skills related

to collaborations such as those in group sports, in which the assessment might need

to employ different criteria.

We argue that novice boxers tend to have different posture-based graphs, while

experienced boxers tend to have graphs of a similar topology. This is because unlike

experience boxers who have only 1 to 2 main postures nodes, novice boxers tend to

have more nodes, resulting in a much larger variation on the graph topology. As a

future work, we would like to utilize the system to evaluate a large number of boxers

in different skill levels to verify this argument.
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Chapter 4

Interaction-based Human Motion

Retrieval and Analysis

Modelling and understanding human motion is a central problem for character an-

imation, serious games and human-computer interaction. We observe that the se-

mantic meaning of human movement is usually defined based on the interaction

between multiple characters, instead of individual ones. For example, a punching

movement that hits is semantically different from one that misses. Unfortunately,

there is limited research in analyzing human motion in the sense of interaction, even

less capable of comparing interaction of different classes.

Existing research of human motion modelling and retrieval algorithms mostly fo-

cus on features from individual characters, such as joint positions and joint angles.

Such individual geometric features are limited in modelling the semantic meaning

of complex movement involving two or more interacting characters, such as box-

ing and dancing. They cannot distinguish geometrically similar interactions that

have different semantic meaning. For example, a high-five interaction between two

characters is similar to a waving interaction if we look at the features of individ-

ual characters only. Similarly, they cannot identify the similar semantic meaning

from geometrically different interactions, such as a right punch having some level of

similarity to a left punch when they both hit the opponent.

Interaction-based features are introduced to solve the problem, but many of

them suffer from various limitations. Relative kinematic features such as the joint
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relative distance are used to model movement between characters [76]. However,

the number of feature increases exponentially with the number of considered joints,

and it becomes inefficient to use a high dimensional feature vector to represent the

interaction involving multiple characters. A feature selection pre-process can be

introduced, but there is a side effect that the optimally selected features depend

on the types of interactions. Logical filters are efficient in indexing and modelling

the motion of character using multiple manually defined logical rules [69]. However,

for two or more characters, there will be an exponential number of possible logical

rules, and manually defining the optimal rules requires domain experts’ knowledge.

The Gauss Linkage Integral (GLI) can represent the degree of rotation between

two strings and is applied in analyzing two characters interactions [77]. The prob-

lem is that it models the human body as simplified strings, and cannot effectively

represent long-distance interactions such as one character avoiding a punch from

another. Overall, these interaction-based features either suffer from the problem of

exponentially growing dimension size or perform optimally only for some types of

interactions.

To solve these problems, the interaction mesh is proposed to robustly model

interactions with a limited dimension of features [8]. It considers the set of joints

from two or more characters as a point cloud and applies Delaunay Tetrahedral-

ization [79] to connect nearby points, forming a three-dimensional mesh. Previous

works have shown great success in using interaction mesh to retarget multi-character

interaction [8]. However, the major difficulties are that the topology and dimen-

sion of the interaction mesh depend on the postures of the interacting characters,

and therefore changes across different classes of interaction and across frames, mak-

ing it difficult to compute the difference between two interaction meshes. Previous

works attempt to solve the problem by dividing the distance function into two parts.

For the edges that co-exist in two interaction meshes, a traditional geometry-based

distance function is applied. For those that do not co-exist due to the topological

difference, [63] assumes zero distance, while [62] simply counts the total number.

Since the two parts of the distance function have different natures, forcing them

together generates inconsistent results. [137] utilizes an affinity matrix calculated
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based on a heuristic to extract the active joint pairs, but the heuristic requires

domain knowledge and is likely dependent on the types of interaction.

In this work, we propose a new unified framework to analyze and retrieve hu-

man movement from the interaction point of view. We adapt a customized version

of interaction mesh as the feature in our implementation as it is robust and has

achieved promising results. The main contribution of our framework is a distance

function that can compare two topologically different interaction meshes using the

Earth Mover’s Distance [82], which allows us to evaluate the intrinsic similarity be-

tween different classes of interactions robustly. For example, as shown in Fig. 4.1,

“punch + being hit” and “kick + being hit” are usually considered to be different

classes of interactions, but they are similar as they are both “attack + being hit”

interactions. Our system can access the level of similarity between them, allow-

ing us to retrieve interaction with intrinsic correspondence. Experimental results

show that our motion retrieval system aligns much better with human perspective

of interaction similarity comparing with existing algorithms.

Our system also enables a new way of human motion analysis, which can greatly

improve existing motion-based training and monitoring applications. We compare

two interactions and evaluate how individual body parts are similar or different from

the interaction point of view. In particular, we extract a subset of the interaction

mesh between a particular body part and the opponent for each interaction and

compare such a sub-mesh using Earth Mover’s Distance. Such a system works well

for sport training such as boxing and social dancing. In these sports, the players

have to understand how their movement differs from the expert ones in terms of

how they interact with the opponent, instead of simply mimicking the joint angles

of the experts.

4.1 Contributions in This Chapter

We have three major contributions in this work:

• We propose a new framework to evaluate the similarity between interactions

by adapting Earth Mover’s Distance onto a customized interaction mesh struc-
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Figure 4.1: An example of retrieving “left straight punch + being hit” using our

system. Our unified framework can compare different classes of interactions and

discover their intrinsic similarity.

ture. This allows us to evaluate the intrinsic similarity between different classes

of interactions.

• Utilizing the proposed framework, we implement interaction-based motion re-

trieval, which is to retrieve similar motions-based on the context of the corre-

sponding interaction. We also implement interaction-based motion analysis,

which is to analyze how individual body parts interact with the opponent.

• We produce an interaction database that is open to the research community for

benchmarking. This is the first comprehensive database containing different

classes of boxing interaction between two characters.

4.2 Overview of Our Method

The overview of our method is shown in Fig. 4.2 and it is composed of two stages:

pre-processing and motion evaluation.

In the pre-processing stage, given an interaction motion, we first extract volu-

metric features between two characters at each frame by applying Delaunay Tetrahe-

dralization process on the joint positions of both characters. Then we apply spatial

alignment and keyframe extraction on the original features to encode the motion into

a feature vector. This feature vector represents the temporal and spatial information

of interaction motion.

In the motion evaluation stages, we calculate the similarity between two motions

by evaluating the distance between two corresponding feature vectors. Each element

of the feature vector is a volumetric mesh at a certain frame. We use mass transport
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solver to evaluate the topology and geometric difference between two volumetric

meshes. We adapt Dynamic Time Warping to evaluate two feature vectors with

different length.

To evaluate the performance of our system, we build up an interaction motion

database and apply leave-one-out approach: each sample in the database is consid-

ered as the query and the remaining become the data-set to be evaluated.

Figure 4.2: Overview of interaction-based human motion evaluation system.
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4.3 Unified Interaction Comparison

In this section, we explain our unified framework for interaction comparison, which

involves three major components. First, we elaborate the approach to represent an

interaction sequence using a group of customized interaction meshes. Then, with

the help of the Earth Mover’s Distance, we evaluate the difference between two

interaction meshes. Finally, with such a distance metric, we adapt Dynamic Time

Warping to evaluate the difference between two interaction sequences.

4.3.1 Customized Interaction Mesh Structure

Here, we explain how we adapt the interaction mesh structure [8] to represent the

interaction between characters. We explain our system using two characters interac-

tions, but the framework can be extended to a scenario of three or more characters.

The interaction mesh structure is used in our system because it can quanti-

tatively represent the implicit spatial relationship between body segments of two

characters. Given one frame of an interaction, an interaction mesh is created by

generating a volumetric mesh using Delaunay Tetrahedralization [79], considering

the 3D Cartesian joint positions of the interacting characters as vertices. An inter-

action is therefore represented by a series of interaction meshes. The topology and

the dimension of the meshes vary over time according to the changing poses of the

characters.

We customize the process to generate interaction mesh such that the resultant

mesh is more suitable for interaction analysis and retrieval. On top of the set of

vertices generated by the joint positions of the characters as in [138], we also include a

set of vertices by sampling the skeleton structure of the characters using a predefined

length. This allows us to maintain a more uniform density for the mesh, such that

motion retrieval and analysis based on the mesh are not biased to specific joints. In

our implementation, a character consists of 25 joints, which are shown as the red

circles in Fig. 4.3. We uniformly sample body segments using a sampling length of

15cm. For segments that cannot be evenly divided, the remainder is distributed to

vertices in the same body segment. This process creates another 13 vertices, which

63



4.3. Unified Interaction Comparison 64

Figure 4.3: Sampled vertices to create the interaction mesh.

are shown as the blue squares in Fig. 4.3.

To create the interaction mesh, we consider frame t of an interaction between

two characters, and denote Vt as the set of vertices of the characters:

Et
DT = DT (Vt) (4.3.1)

where DT is the Delaunay tetrahedralization process, and Et
DT is the set of edges

created. Different from [138] that considers all edges, we filter Et
DT to remove

all edges connecting to the same character, as those edges do not correspond to the

interaction with the opponent. The resultant set of edges, Et, is known as interaction

mesh of frame t. The blue lines in Fig. 4.4 show the edges before and after filtering.

The temporal sequence of an interaction is therefore represented as a series of

interaction meshes, E ∈ {E0,E1, · · · ,Ettotal}, where ttotal is the total number of

frame in the interaction.

4.3.2 Distance between Interaction Meshes

One of the major features of our interaction representation structure is that it can

represent semantically dissimilar interactions using the topologically and dimension-

ally varying interaction meshes, thanks to the use of Delaunay Tetrahedralization in

evaluating geometry proximity. This allows us to effectively represent interactions

of different semantic meaning (e.g. punching vs. kicking) using a consistent format.
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Figure 4.4: Interaction mesh creation: (a) edges from Delaunay

Tetrahedralization (b) edges after filtering.

Therefore, unlike previous research, our algorithm allows the comparison of two in-

teractions with different semantic meaning, and thereby find out if they have any

intrinsic similarity. To achieve this, we propose a distance function that adapts the

Earth Mover’s Distance (EMD) [82] to find the best correspondence between the in-

put interaction meshes. Such a distance function can effectively compare interaction

mesh of different topologies and dimensions.

Here, we explain how to compute the distance between two interaction meshes

of two-character interactions. The same distance function is used for human-object

interaction, by considering the environment object as the second character.

Given edge ei from interaction i and edge ej from interaction j, we represent

the difference between the two edges using a customized cosine distance function,

which effectively combines the Euclidean distance and orientation distance between

the two edges. It is defined as:

d(ei, ej) = (|ei1 − ej1|+ |ei2 − ej2|)× 1

2
(1− cos θ), (4.3.2)

where | ∗ | denotes Euclidean distance, ei1 and ei2 are the two endpoints of ei con-

necting characters 1 and 2, ej1 and ej2 are that of ej, θ is the angle between the

two edges, and cos θ is calculated by vector dot product. The idea of the equation

is visualized in Fig. 4.5. The cosine term is multiplied by 1
2
such that it has a range
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Figure 4.5: The distance between two edges.

of [0.0, 1.0]. Compared with other designs, such as the weighted sum of distances

and cosine angles, ours does not require any parameter tuning. We then adapt a

mass transport solver [82] to find the optimal edge-level correspondence between two

interaction meshes. The idea is to match the edges by minimizing the overall sum

of distance of all the edges. Given two sequences of interaction meshes EI and EJ,

let us consider one interaction mesh EtI
I ∈ EI at frame tI and one interaction mesh

EtJ
J ∈ EJ at frame tJ . The mass transport solver optimizes a set of unidirectional

flow to map the edges ei ∈ EtI
I to ej ∈ EtJ

J with a minimized overall distance:

f ∗
i,j = argmin

fi,j

(
m∑
i=1

n∑
j=1

d(ei, ej)fi,j

)
(4.3.3)

subjected to:

∑
j=1

fi,j = 1.0 (4.3.4)

∑
i=1

fi,j =
n

m
(4.3.5)

where m and n are the total number of edges in the mesh EtI
I and EtJ

J respectively,

d(ei, ej) is the distance between two edges calculated with Equation 4.3.2, fi,j is the

set of flow values to be optimized. Equation 4.3.4 is a constraint such that in case

an edge is mapped into multiple ones, the sum of all outgoing flows is always 1.0.
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Equation 4.3.5 is another constraint such that the sum of all incoming flows to an

edge is a constant. These two constraints ensure that all edges in EtI
I map to all

edges in EtJ
J evenly.

With the optimal set of flow values f ∗
i,j, the minimum distance between two

interaction meshes is calculated as:

D(EtI
I ,E

tJ
J ) =

m∑
i=1

n∑
j=1

d(ei, ej)f
∗
i,j (4.3.6)

Figure 4.6: The concept of mass transport solver in 2D.

Fig. 4.6 visualizes the concept of the mass transport solver in two 2D scenarios,

in which the red mesh is matched onto the green one. The flow to match the two

meshes is represented by the black arrows, while the corresponding number is the

magnitude of the flow. Fig. 4.6a is a simpler case in which both meshes have the

same number of edges, and a solution of one-to-one mapping can be achieved. On

the other hand, in Fig. 4.6b, since the red mesh has more edges than the green one,

some of the edges in the red mesh match partially to those in the green mesh.
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Finally, the EMD is calculated as the normalized minimal distance:

EMD(EtI
I ,E

tJ
J ) =

D(EtI
I ,E

tJ
J )∑m

i=1

∑n
j=1 f

∗
i,j

(4.3.7)

With Equation 4.3.7, the distance between two meshes, which are usually topo-

logically and dimensionally different, can be calculated.

4.3.3 Distance between Interaction Sequences

Here, we explain how to evaluate the distance between two sequences of interaction.

Using Dynamic Time Warping (DTW) [139], we synchronize the temporal variations

Figure 4.7: An example of Dynamic Time Warping alignment between two

interactions.

over the time series of two contextually similar interactions. Figure 4.7 shows an

example of aligned DTW path among two interactions. Given two sequences of

interaction meshes, EI and EJ , we define a warping path with W pairs of integer

values, p = [(pI1, pJ1) , (pI2, pJ2) , · · · , (pIW , pJW )], to align the two sequences. Using

such a path, for each w ∈ [0,W ], the interaction mesh EpIw
I ∈ EI is aligned with
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EpJw

J ∈ EJ . Therefore, the cost of the path is defined as:

cp(EI ,EJ) =
W∑
w=1

EMD(EpIw
I ,EpJw

J ) (4.3.8)

The DTW distance is defined as the distance using the optimal warping path p∗
with minimal average cost:

DTW (EI ,EJ) = cp∗(EI ,EJ) (4.3.9)

and the interaction mesh distance is defined as the average DTW distance:

DTW (EI ,EJ) =
1

W
DTW (EI ,EJ) (4.3.10)

We normalize interactions spatially to compare them with local coordinates,

thereby eliminating the influence from different world coordinates. In general, there

are two strategies to do so. The first strategy assumes that the interacting characters

have unique identities. We therefore consistently use the same character in different

interactions as a reference to normalize the whole time series of interactions, by

removing its pelvis translation and its horizontal facing angle in the first frame.

The second strategy assumes that the two characters are anonymous. We can then

obtain two normalized results by considering either of them as the reference. In

this case, when comparing interactions, we evaluate both normalized results and

select the one that generates the smaller difference. We opt for the first strategy

since characters in movies and games usually have unique identities. For example,

“a hero kicking a monster” is considered to be different from “a monster kicking a

hero”.

In our implementation, we also speed up the DTW calculating by extracting key

frames from the original motion. Here we adept the similar idea which has been

represented in [140].

In particular, given an interaction motion, we first calculate a self similarity

matrix (SSM ) as shown in Fig. 4.8(b) which represents the distance between all

frame-pairs during the whole motion. We make use of our interaction mesh repre-

sentations and the distance between two frames are evaluated by Equation 4.3.7.

This allow us to extract the key frames based on the change of spatial relationship

between two characters.
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After we achieve the SSM of the motion, we iteratively cluster the temporal

adjacent frames, which are below the distance threshold, into the same group. Once

the iteration is finished, the original motion are divided into several motion segments.

Finally, we extract the central frames of all segments and consider them as the key

frames of the motion.

According to different choices of distance threshold, different number of key

frames are achieved. Based on our experimental results, we found that 9 key frames

can speed up the calculation without introducing a significant error. Fig. 4.9 in-

dicates the reconstruction errors between original motions and different number of

key frames of that motions.

Figure 4.8: An example of (a) the “left punch + being hit” motion and (b) the

self similarity matrix of this motion. The higher similarity is indicated by lower

brightness.

4.4 Interaction-based Retrieval

In this section, we explain how we construct an interaction database, index and

retrieve similar interactions using our algorithm proposed in Section 4.3. Interaction-

based motion retrieval has the advantage of obtaining results that share similar

high-level semantic meaning, which is useful for animation and gaming systems that

involve heavy character interactions.
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Figure 4.9: Reconstruction errors at different number of key frames on: “ Punch

& Avoiding”, “Kick & Avoiding”, “Punch & Hitting” and “Kick & Hitting”.

4.4.1 Interaction Database Construction

We construct a comprehensive interaction database of kick-boxing between two char-

acters. Kick-boxing was chosen as it involves a large variation of movement and is

considered to be one of the most challenging domains of human motion research [40].

Since capturing two people boxing is costly and time-consuming due to the limita-

tion of motion capture hardware, we adapt the interaction synthesis framework

proposed in [40] to synthesize high-quality interaction. The major advantages of

such an approach are that we can guarantee the availability of data for all classes

of interactions, and we can categorize the data with synthesizing parameters, such

as attacker’s punching style and opponent’s defending strategies.

We synthesize interactions as follows. First, we capture the shadow boxing of

a single boxer and construct an action level motion graph [141]. In such a graph,

actions are annotated, and those with similar starting and ending frames are con-

nected. Second, we define a set of semantic interaction classes, in which each class

defines the interaction pattern [39] to be performed by the characters. Third, we

perform temporal tree expansion to synthesize interaction between two characters

using a set of reward functions [40], and extract the interactions that fit into our

pre-defined list of interaction classes. Finally, for each interaction, with the motions
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Overall Interaction Active Character’s Motion Passive Character’s Motion

(1) A Attacks B

(1.1) A Single Punch (1.1a) B Not Being Hit (1.1b) B Being Hit

(1.2) A Multiple Punches (1.2a) B Not Being Hit (1.2b) B Being Hit

(1.3) A Single Punch + Single Kick (1.3a) B Not Being Hit (1.3b) B Being Hit

(1.4) A Multiple Punch + Single Kick (1.4a) B Not Being Hit (1.4b) B Being Hit

(1.5) A Single Kick (1.5a) B Not Being Hit (1.5b) B Being Hit

(1.6) A Single Kick + Single Punch (1.6a) B Not Being Hit (1.6b) B Being Hit

(2) B Attacks A

(2.1) B Single Punch (2.1a) A Not Being Hit (2.1b) A Being Hit

(2.2) B Multiple Punches (2.2a) A Not Being Hit (2.2b) A Being Hit

(2.3) B Single Punch + Single Kick (2.3a) A Not Being Hit (2.3b) A Being Hit

(2.4) B Multiple Punch + Single Kick (2.4a) A Not Being Hit (2.4b) A Being Hit

(2.5) B Single Kick (2.5a) A Not Being Hit (2.5b) A Being Hit

(2.6) B Single Kick + Single Punch (2.6a) A Not Being Hit (2.6b) A Being Hit

(3) Both A & B Attack
(3.1) A Multiple Punches & B Multiple Punches

(3.2) A Multiple Punches + Single Kick & B Multiple Punches + Single Kick

Table 4.1: The semantic interaction classes. “A” and “B” represent the

interacting characters.

of the two characters, we generate the corresponding interaction mesh as explained

in Section 4.3.1.

The complete list of interaction classes used to synthesize interaction is shown

in Table 4.1. Designing such a list requires domain knowledge, and is more of an

art than a science. Our strategy is to enumerate different combinations of boxing

interaction by first deciding which (or both) of the characters attacks, as shown in

the left column of the table. Then, we list the commonly seen attacking patterns

for the attacking character, which refer to the middle column of the table. Notice

that since it is relatively uncommon for a real boxer to kick continuously, we do not

include such a class. For the passive character, the two common motions are being

hit and not being hit. Class 3 in the table refers to the case in which both characters

attack and none of them gets hit. By enumerating the combinations, we obtain 26

interaction classes. With these classes, we synthesize 315 interactions.
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4.4.2 Interaction Retrieval

Here, we explain our interaction-based retrieval system and our interactive retrieval

system with user-given constraints.

We implement an interaction-based retrieval system. Given one interaction, we

apply Equation 4.3.10 to evaluate its difference with respect to all motion in the

database, and retrieve the most similar ones. Fig. 4.1 shows the retrieved results of

using a left straight punch and hit interaction as the query (i.e. class 1.1a in Table

4.1), annotated with the corresponding ranks and differences. The advantage of our

system is that /colorredit compares different types of interactions and discover their

intrinsic semantic similarity. This allows the system to retrieve results that align

with human perception of interaction.

We also implement an interactive retrieval system based on user-provided con-

straints. In particular, a distance constraint and an object collision constraint are

designed. Our system first precomputes the distance between all pairs of interac-

tions in the database using Equation 4.3.10. During run-time, the user provides

a query interaction with constraints. Our system then retrieves the most similar

interaction that satisfy the constraints in real-time. These constraints demonstrate

the potential of applying our system in interactive animation production, in which

the required interaction that fits with the environment and storyboard can be found

automatically. More complex constraints can be designed according to the user’s

need.

Figure 4.10: Interactive retrieval by adjusting the distance between two

characters.
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We have designed the distance constraint as follow:

dmin <
∣∣V0

hips A −V0
hips B

∣∣ < dmax (4.4.11)

where dmin and dmax are the lower bound and the upper bound distance given by the

user, V0
hips A and V0

hips B are the 3D hips positions of the two interacting characters

at frame 0 respectively. This constraint therefore enforces the distance between the

characters during the first frame of an interaction. Fig. 4.10 shows an example

of applying the distant constraint, in which the inner and outer radii of the red

torus represent dmin and dmax respectively, and the blue circle represents the initial

distance between the two characters. Fig. 4.10a shows the initial interaction. When

the preferred distance between the characters increases in Figs. 4.10b-c, similar

interaction that fits the constraints are retrieved.

Figure 4.11: Interactive retrieval by introducing objects.

We have also designed the object collision constraint as follow:

∣∣Vt
j −Vobj

∣∣ > dobj ∀t, j (4.4.12)

where Vobj is the 3D position of an object, dobj is the distance to avoid colliding with

it, Vt
j represents the position of joint j at frame t. We consider all the joints for
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both characters in all the frames for this constraint. This ensures that the characters

do not collide with the objects during the whole interaction. We can apply the

constraint to multiple objects as well. Fig. 4.11 shows an example of applying the

collision constraint. Fig. 4.11a is the initial interaction. In Figs. 4.11b-e, the user

introduces objects that lead to collision. The system then retrieves the most similar

interaction that satisfies the object constraint.

4.5 Interaction-based Motion Analysis

In this section, we explain how we apply our algorithm proposed in Section 4.3

to analyze motions. In particular, we would like to compare two interactions and

evaluate how individual body parts are similar or different in terms of interacting

with the opponent. This technique can enhance sport training such as boxing,

dancing and fencing, in which novice players are usually required to mimic how

experienced players interact with the opponent.

4.5.1 Interaction Sub-mesh Analysis

Here, we compare individual body parts in two interactions in terms of how the parts

interact with the opponent. This involves segmenting the character into multiple

body parts, generating interaction sub-mesh, and evaluating difference.

Figure 4.12: Body parts definition for motion analysis.
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While it is possible to analyze the interaction based on individual vertices as

shown in Fig. 4.3, such a representation is not trivial to human understanding due

to the small size of a vertex. Therefore, we segment the character into 12 body parts

with easily understandable part names, as shown in Fig. 4.12. Each part consists

of a subset of vertices defined in Fig. 4.3. Some vertices belong to multiple body

parts depending on the body hierarchy, such as the elbow belonging to both upper

and lower arms.

Considering one body part of one character, we extract a corresponding sub-

mesh from the interaction mesh, which represents how the part contributes to the

interaction with the opponent. In particular, given an interaction mesh, we extract

the set of edges connecting the vertices of the considered body part to any vertices

of the opponent. Notice that only the vertices with spatial proximity are connected

in the interaction mesh. As we only consider a subset of vertices from the two

characters, we name the generated mesh as interaction sub-mesh.

Figure 4.13: The sub-meshes of two interactions extracted by the right lower arm

of the green character.

Fig. 4.13 shows the interaction sub-mesh generated for the right lower arm of

the green character in two interactions. While both interactions are “right straight

punch + being hit”, the hitting target in Fig. 4.13a is the head, while that in Fig.

4.13b is the torso. As a result, the sub-mesh generated for the former mainly con-

cerns the upper body of the opponent, while that for the latter concerns the middle

part of the opponent. By considering the interaction sub-mesh, we can identify
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such a semantic difference. However, using traditional methods that evaluate each

character independently, it is difficult to achieve similar results.

Given the extracted interaction sub-meshes for the considered body part in all

frames of the two interactions, we first apply Equation 4.3.9 to find out the optimal

temporal alignment p∗ that consists of W warping pairs, i.e. (pIw, pJw)∀w ∈ [1,W ]].

Then, instead of finding the average distance across all frames, we use such an

alignment to calculate a temporal series of frame-based EMD to understand the

temporal aspect of the distance:

EMD(EpIw
Ib ,EpJw

Jb ) ∀w ∈ [1,W ] (4.5.13)

in which EpIw
Ib and EpJw

Jb are the interaction sub-mesh created by body part b for

interactions I and J at frames pIw and pJw respectively. Such a sub-mesh distance

represents how different the considered body part interacts with the opponent in

the two interactions.

4.5.2 Interaction Difference Visualization

Here, we explain our system to visualize the difference for the body parts between

two interactions.

The inputs of our visualization system are a reference interaction and an analyz-

ing interaction. In typical application such as sport training, the former can be an

interaction performed by experts, while the latter can be that performed by novices.

The target is to evaluate how the analyzing interaction differs from the reference

one.

We first evaluate the interaction sub-mesh distances between the two interactions

for all body parts in all frames according to Equation 4.5.13. We then normalize

the distance values into the range of [−1, 1] as:

̂EMD(EpIw
Ib ,EpJw

Jb ) =
EMD(EpIw

Ib ,EpJw

Jb )− μ

3σ
∀w, b (4.5.14)

where μ and σ are the computed mean and standard derivation of all distance

values obtained. We use 3σ as the denominator as it covers 99.7% of the data under

a normal distribution. Values beyond 3σ are capped. We finally map the normalized
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distance values onto a color scale from green to red, such that green color represents

similar body parts, and red color represents difference ones. To enhance visual

quality, we apply a Gaussian filter for filtering the color of each body part.

Fig. 4.14 shows an example of our visualization system, in which the reference

interaction is a punch blocked by the opponent, while the analyzing interaction is a

punch hitting the opponent. The visualization shows that the punch of the attacker,

as well as the head and body of the defender, are the body parts that contributes to

the difference of the interaction the most. Such a different is important in defining

the semantic meaning of the interaction. It is not easy to detect using traditional

distance metric such as joint angle distance.

Figure 4.14: Visualizations of different interactions: (a) Reference interaction (b)

Analyzing interaction (c) Interaction difference visualization (d) Color scale used.

4.6 Experimental Results

In this section, we evaluate the performance of our interaction-based motion retrieval

and analysis system. We compare our method with an interaction-based feature

known as space-time proximity graphs [62], as well as traditional human-centered

features including joint positions [66] and joint angles [65].

The experiments were performed on a computer with dual Intel Xeon E5-2687W

CPUs, a NVIDIA Quadro K4000 display card and 64GB RAM. Using our proposed

method, computing the distance between two interactions took 0.17 second on aver-

age. Precomputing the distances of all combinations of interactions in our database

with 314 interactions took around 3 hours. A single interactive retrieval with user
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Figure 4.15: Similarity matrices evaluated by (a) our method, (b) space-time

proximity graphs [62], (c) joint position distance [66], (d) joint angle distance [65].

constraints took 0.02 second on average. Computing the body part difference visu-

alization between two interactions took 0.26 second on average.

Our interaction database is open for public usage. Please find it in our project

website.

4.6.1 Retrieval Performance Analysis

Here, we access the performance of our interaction-based retrieval by similarity

matrices, as well as the precision and recall graphs.

Fig. 4.15 shows the similarity matrices our method comparing with the others,

in which each pixel represent the similarity between two interactions. Pixel color is

calculated by the normalized distance between the two interaction, and the value 3σ

(i.e. standard derivation) of each method is used as the normalizer of the respective
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Figure 4.16: Precision and recall graph for (a) the overall system, (b-e) the

complexity level 0-3 respectively.

matrix. Darker pixels represent higher similarity. We arrange the motion according

to semantic interaction classes defined in Table 4.1, and mark the X and Y axes

using the class labels. We also highlight the square areas in the matrix that belongs

to the same semantic class with red (class 1), green (class 2) and blue (class 3).

Within each square in class 1 and 2, we further highlight the sub-classes a and b

with black squares.

From the Figure, we can observe that our method has high intra-class similarity

and high inter-class difference.In our method, the retrieval results are more aligned

with diagnosing and more concentrated in each box (class). In particular, com-

paring to [62], our method performs better in more complex interactions, such as

classes 3.1 and 3.2 in which both characters attacks, as well as classes 1.2, 1.4, 2.2,

2.4 in which the attacking patterns are more complex. This is mainly because the

distance function in [62] involves a topology distance term, which performs inconsis-

tently during complex movement. Human-centered features [65, 66] cannot classify

semantic meaning well, resulting in a high inter-class similarity. In particular, they

fail to accurately classify sub-classes that indicate if a character is hit or not.
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Complexity Level Included Semantic Classes

Level 0 1.1, 1.5, 2.1, 2.5

Level 1 1.3, 1.6, 2.3, 2.6

Level 2 1.2, 1.4, 2.2, 2.4

Level 3 3.1, 3.2

Table 4.2: Grouping of semantic interaction classes into different levels of

complexity.

We also compare the methods using precision and recall as shown in Fig. 4.16.

Given a query interaction, only retrieved results within the same semantic sub-

class as defined in Table 4.1 (e.g. class 1.1a) are considered as relevant results. As

shown in Fig. 4.16a, our method consistently outperforms the others. To evaluate

how our system performs in interaction of different levels of complexity, we group

the interaction classes as shown in Table 4.2. Fig. 4.16b-e shows that our system

outperforms the others in all complexity groups. In particular, comparing with [62],

it performs better in more complex interactions.

4.6.2 Alignment with Human Perceived Similarity

Here, we access how our retrieval system aligns with human perception of interaction

similarity.

We conducted a survey of 35 participants (age between 18 and 36) from different

backgrounds. We created a smaller interaction database by randomly selecting 20

interactions from the full database. It generated 210 distinct pairs of interactions

(20C2 +20) for similarity evaluation. Each participant conducted a questionnaire in

which 30 pairs of interactions were drawn in random. The participant graded the

similarity of each pair in a 9 point scale, which 1 representing “totally different” and

9 representing “exactly the same”. We then calculated an average similarity value

for each pair of interactions, which was used as the ground truth.

We compare the normalized distance obtained from different methods with the

ground truth. Fig. 4.17 shows the root mean square error, in which the axes
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Figure 4.17: Root mean square error using human perceived similarity as ground

truth on (a) our system, (b) space-time proximity graphs [62], (c) joint position

distance [66], (d) joint angle distance [65].

list interaction identifications and each pixel represents the error value, with darker

pixels representing the higher error. It is shown that our method aligns the most with

human perceived similarity. The space-time proximity graph performs better than

joint position and angle distances, but has a high error in some specific interactions.

To further evaluate the performance, we group the interactions according to

Table 4.2. Fig. 4.18 shows the root mean square error obtained by all considered

methods in the overall database and individual groups of interactions. It is shown

that our method performs the best in all groups, and the space-time proximity graph

does not work as well on complex interactions.

4.6.3 Interaction Comparison and Visualization

Here, we visualize how individual body parts are similar or different between two

interactions in terms of how they interact with the opponent. More experiments can

be found in the attached video.
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Figure 4.18: Root mean square error for interaction groups of different levels of

complexity.

Figure 4.19: Visualization of difference in interaction: (a) reference interaction

(b) analyzing interaction (c) our method, (d) space-time proximity graphs [62], (e)

joint position distance [66], (f) joint angle distance [65].

Fig. 4.19 shows the case in which the reference interaction consists of an elbow

punch, while analyzing one consists of a hook punch. While all methods can visualize

the difference from the attacker point of view, only our method and the space-time

proximity graph successfully identify the difference from the defender point of view.

That is, the defender is being interacted by a different body part from the attacker.

Fig. 4.20 shows that during complex movement, our system outperforms the

space-time proximity graph. Both interactions are about a kick that hits the op-

ponent on the chest. However, the space-time proximity graph generates a false

negative at the lower body. This is because during a close interaction, there is a lot
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Figure 4.20: Visualization of difference in interaction: (a) reference interaction

(b) analyzing interaction (c) our method, (d) space-time proximity graphs [62].

of topology change in the graph structure, and the topological distance term in that

method performs inconsistently.

4.7 Conclusion and Discussions

In this work, we propose a new method for motion retrieval and motion analysis

from the interaction point of view. This allows us to evaluate movement based

on the high-level semantic meaning of the interaction. Our method can compare

the interaction of different topology and discover their intrinsic semantic similarity.

Experimental results show that it aligns with the human perception of interaction

similarity. We demonstrate how our system can be used to retrieve semantically

similar interactions, and suggest suitable interactions based on a set of user-defined

constraints. We also demonstrate our system on visualizing how individual body

parts are similar or difference between two interactions from the interaction point
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of view.

Our system adapts Earth Mover’s Distance to compare interaction graphs of

different topology. Theoretically speaking, such a design can be applied to other

features such as joint relative distance as well. However, we prefer the interaction

graph structure as it can be used robustly in different kinds of interactions. It can

also discover spatial proximity, which is one important aspect in defining interac-

tions.

We apply Dynamic Time Warping (DTW) to align interactions temporally.

While this allows us to effectively compare interactions that are performed at differ-

ent speed and order, DTW has a side-effect of reducing the importance of temporal

features.

85





Chapter 5

Data Driven Crowd Motion

Control

In Chapter 3 and 4, the research progress of our efficient modelling method on the

single person motion and multiple people interactions have been introduced, along

with their potential applications in computer graphics. In this Chapter, I intro-

duce our research idea in a more complex scenario, crowd motion. Controlling and

simulating crowd motions are also very important in the research area of computer

graphics. The ways of modelling crowd motions are the key components to facili-

tate such tasks. Quite different from the idea of modelling a single person motion /

multiple people interactions, crowd motion is always modelled as an entity and the

control schemes are designed on top of it. In this Chapter, the method of efficient

crowd motion modelling and intuitive control are introduced.

Controlling a crowd using hand gestures captured by multi-touch devices appeals

to the computer games and animation industries. First, multi-touch systems are

getting more and more popular nowadays due to the advancement of hardware.

Second, a crowd has a large degree of freedom, which is difficult to be controlled

using traditional controllers with lower dimensional control signals, such as mice and

keyboards. Multi-touch devices register several simultaneous control inputs, such

that the user can control the complex formation of a crowd intuitively.

The hand gestures captured by multi-touch devices are typically sets of time

series of finger positions. Many existing works show that it is possible to map such
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control signals to a crowd motion using predefined control schemes [108, 109]. This

allows the user to control the formation and movement of the crowd by performing

specific gestures. While these manually designed control schemes are efficient in

crowd control, different systems usually employ different control schemes. This is

because there is an infinite number of possible mappings between the gesture and the

crowd space. Rules need to be explicitly defined to fulfil the control needs optimally.

As a result, the users have to learn the schemes in advance before using the systems.

Unlikely previous work, we learn a mapping that focuses on both user-friendliness

and control expressibility in this work to shorten the learning curve.

To this end, we present different crowd motions to a group of users and ask them

to give their desirable control gestures, which allows us to generalize the preferred

gestures and implement an intuitive control scheme. For every crowd motion in our

training dataset, we ask the users to perform a control gesture that they think to

be the best to create such a motion. It results in a database with pairwise samples

of gestures and crowd motions. During run-time, we obtain a gesture from the

user and find the K nearest gestures from the database. We then interpolate the

corresponding K crowd motions in order to generate the run-time control. Since the

control scheme is learned from different users without prior constraints, our system

is intuitive to use.

One important component of our research is the gesture space representation.

As we do not impose any constraints when collecting the control gestures, a repre-

sentation invariant to individual gesture variations is needed, such as the number

of fingers used, different speed, etc. Users often articulate gestures with one or

both hands, using multiple fingers when performing similar tasks [142]. At the same

time, they show similar variations in their gestures when asked to provide control

for the movement of robot groups [143]. We propose a set of gesture features that

effectively represents a wide variety of gestures while independent to inter-user style

differences. This includes the centroid feature, the distance to centroid feature, the

rotation feature and the minimum oriented bounding box features. We further pro-

pose a distance function to evaluate the distance between two gestures in such a

space in order to obtain the K nearest neighbours of a run-time gesture.
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Similarity, crowds under different scenarios contain variations such as the num-

bers of characters within the crowd, and therefore crowd motions also require a

general representation. Such a representation should ideally parameterize the whole

crowd motion space based on the crowd data. We propose a crowd motion feature

space that models a crowd motion with a Gaussian mixture model (GMM), in which

the trajectory of each character is modelled by the distribution of the Gaussian com-

ponents. The major advantage of GMM is that we can set up multiple Gaussian

components to accurately model the movement of small groups of characters within

the crowd. We further propose a scheme to interpolate multiple crowd motion in

the feature space in order to generate the run-time control signal.

We demonstrate that our system can appropriately output the crowd motion

based on a given gesture. Users can effectively control a crowd of arbitrary size

with intuitive gestures and guide the crowd to navigate through a given virtual

environment. Our system is best to be applied in computer games like the crowd

control systems in real-time strategy games, and in interactive character animation

designs.

Figure 5.1: The overview of our crowd control system.
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5.1 Contributions in This Chapter

This work presents the following contributions:

• We propose a data-driven method for inferring an appropriate crowd motion

based on the gesture input obtained from a touch device. Our approach is

not restricted by a pre-specified control scheme. Instead, the control scheme is

learned as a mapping between user-preferred gestures and corresponding crowd

motions, which encodes both user-friendliness and control expressibility.

• We propose a set of gesture features that are invariant to the variations of the

user’s preferred touch input style such as the number of fingers used. These

features are used for recognising different properties of a user’s multi-touch

input, allowing the system to distinguish between a variety of control signals.

• We propose to represent crowd movement with a set of crowd motion features

that are obtained from GMM. This representation allows modelling different

sub-groups of the crowd and is independent of the number of characters. We

further propose a method to interpolate crowd motion features in order to

generate a new crowd motion that matches the user input the best.

5.2 Overview of Our Method

The overview of our system is shown in Fig. 5.1. In the offline stage, we collect user

data that describe the mappings between gesture inputs and given crowd motions

and create a database. We prepare a number of precomputed crowd motion tra-

jectories (Fig. 5.1a) and obtain the corresponding gesture trajectories (Fig. 5.1b)

from the users. As trajectory information has inconsistent dimensions and ineffi-

cient representation, we propose to map gesture and motion trajectories into their

respective high-level feature space (Fig. 5.1c and d). The correlated gesture and

crowd motion feature spaces generalize and unify the representation of the gesture

and crowd data respectively. In the online stage, our system receives run-time user

gestures and evaluate the corresponding crowd motion. Given the run-time gesture

trajectories (Fig. 5.1e), we calculate its gesture features (Fig. 5.1f) and conduct
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a K nearest neighbours (KNN) search in the database. This allows us to obtain

K similar gestures and their corresponding K crowd motion. We interpolate the

K crowd motion and generate the resultant run-time crowd motion features (Fig.

5.1g), which is finally converted into crowd motion trajectories (Fig. 5.1h) that can

control the run-time crowd. Since the gesture data in the database are obtained

from real user inputs with different variations, our system allows intuitive control of

a crowd in real-time.

5.3 Data Collection

In this section, we explain how we collect user gesture data based on a set of pre-

generated crowd motion data.

We first generate a set of crowd motions with the crowd simulation system pre-

sented in [108,109]. We created 150 motions under 10 different motion classes, which

are shown in Fig. 5.2. Such a set of crowd motions consists of 6 classes of typi-

cal crowd motions, including translate (i.e. characters all moving in a direction),

twist (i.e. characters moving in a circular direction around the centre of the scene),

contract (i.e. characters moving towards the centre of the scene), expand (i.e. char-

acters moving away from the centre of the scene), join (i.e. two groups of characters

moving towards one another), and split (i.e. two groups of characters moving away

from one another). It also consists of 4 classes of more complicated crowd motions,

including split then translate, translate then join, twist while expanding, twist while

contracting. The motion set is designed to demonstrate that our system can handle

typical crowd motions seen in computer games and movies, as well as complicated

motions that consist of combinations of typical motions. Our proposed framework

is easily extensible. Developers can add or remove classes of crowd motions based

on the requirement of the target application.

Ten participants, aged between 20 and 50, were presented with a subset of the

crowd motions using a touch screen. They were asked to provide a corresponding

hand gesture on the screen as if they were controlling each of such motions with two

or more fingers. The participants were not given any instruction about what the
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Figure 5.2: Examples of crowd motion shown to users to collect their control

gestures, with the light blue colour indicating the start of the motion and the dark

blue indicating the end: (a) translate, (b) twist, (c) contract, (d) expand, (e) join,

(f) split, (g) split then translate, (h) translate then join, (i) twist while expanding,

and (j) twist while contracting.
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Figure 5.3: Examples of collected user gesture for different crowd motions, with

the light blue colour indicating the start of the motion and the dark blue indicating

the end: (a) translate, (b) twist, (c) contract, (d) expand, (e) join, (f) split.

gesture should be. They decided the number of fingers to be used, as well as the

durations and the trajectories of the gestures. The orientation of the crowd motion

on the screen was varied to prevent any bias in terms of the positioning of the hands

when recording the gesture. This process results in 150 gestures, corresponding to

the 150 motions in the crowd motion set. Fig. 5.3 shows some example input for

the typical crowd motions.

5.4 Gesture Space

The success of finding a good mapping between the gesture and crowd motion space

lies in their corresponding parametrization, such that the variation of the data can

be captured. For gestures, we find that the combination of multiple features provides
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a powerful representation. In this section, we propose a set of gesture features that

can be extracted from raw gesture trajectories. Such features form the gesture

space, which is a low dimensional, continues space in which each point represents

one gesture. It allows us to compare and distinguish gesture effectively.

Our concept of a gesture space is similar to the idea of Motion Fields [144], in

which the authors propose a high-dimensional continuous space that incorporates

the set of all possible motion states in character motion. However, unlike character

motion, the way a user performs a particular gesture can vary significantly from

person to person. For example, users can use a different number of fingers to perform

the same intended gesture. Our proposed gesture space consists of a set of features

that are independent of such inter-user variations, while capable of capturing the

intent of the input. This allows us to robustly distinguish between different types

of user gesture.

5.4.1 Gesture Trajectories

Here, we define the representation of raw gesture trajectories and explain the process

to resample the gesture with a spline function.

A raw gesture is described by the set of trajectories corresponding to the finger

inputs provided by a user. The touch screen records the position of each touch

points in discrete time intervals. As a result, a gesture Graw is defined as a set of

trajectories:

gn(t) ∀ n ∈ [1, N ], t ∈ [1, Tn], (5.4.1)

where N is the total number of trajectories, Tn is the total number of time intervals

(i.e. points) in the trajectory n, the representation gn′(t′) indicates the 2D location

of a specific trajectory n′ at a specific time t′. Similar to existing research [92,93,145],

we normalize the gesture by translating and uniformly scaling the whole gesture. In

particular, the whole gesture is translated such that the minimum x and y position

in the gesture is at the origin. We calculate a scaling factor λ to scale the gesture

uniformly:

λ = 1/max(dv, dh), (5.4.2)
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where dv and dh are the maximum vertical and horizontal distance among all points

respectively. After normalization, all trajectory points are within the range [0, 1]×
[0, 1].

We assume all touch trajectories have a similar number of time intervals, as a

gesture usually starts and ends with all fingers touching and leaving the screen at

a similar time. This allows us to utilize spline functions for approximating and

resampling touch trajectories to the same length. In our implementation, we apply

the Hermite spline [146] to approximate each of the n touch trajectories. Then, we

uniformly resample each trajectory from Tn points to TH points. The choice of value

for TH is important since undersampling would remove too much information from

the original gesture, but oversampling would add unnecessary details and increase

computational overhead in later stages. We follow the suggestion in [145] and set

TH = 64, which works effectively in all of our experiments. As a result, we define a

gesture G as:

gn(t) ∀ n ∈ [1, N ], t ∈ [1, TH ], (5.4.3)

where T is the pre-defined sample number.

There are multiple advantages for approximating and resampling the gesture

with a spline function. First, different touchscreens have a slightly different sample

rate. Resampling the trajectories allows the system to work robustly with different

hardware. Second, it unifies the density of points in a trajectory, which helps us

to more accurately identify a gesture using a gesture database. Third, from our

discussion with practitioners, crowd control is usually based on the geometry of the

trajectories instead of the speed of performing them, as the movement speeds of

a crowd are usually constrained in graphics systems. Resampling the trajectories

allows us to remove the speed factor from the trajectories. If the gesture speed

is needed, it can be calculated before the resampling stage and stored as an extra

feature.

5.4.2 Gesture Features

Here, we define a set of high-level gesture features extracted from the gesture trajec-

tories. Such features are designed to represent the essential components of a gesture
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in low dimension, making them effective in identifying gestures. Also, they are inde-

pendent of the number of touch points. As a result, with gesture features, gestures

of different touch points can be directly comparable.

The centroid feature represents the average position of the user’s touch inputs

over time. It captures the general shape of the gesture and is independent of the

number of touch points. It is defined as a column vector:

C(G) = [cG(1), cG(2), ..., cG(TH)]
T , (5.4.4)

where cG(t) is the centroid at time t:

cG(t) =
1

N

N∑
n=1

gn(t). (5.4.5)

The distance to centroid feature represents the distance of each touch point

relative to the centroid over time. It allows us to capture the spread of the gesture.

It is defined as:

S(G) = [sG(1), sG(2), ..., sG(TH)]
T , (5.4.6)

where sG(t) is the spread at time t:

sG(t) =
1

N

N∑
n=1

|gn(t)− cG(t)|, (5.4.7)

where | ∗ | represents the Euclidean norm, cG(t) is calculated in Eq. 5.4.5.

The rotation feature represents the average cumulative change in rotation over

time of the touch inputs around the centroid. Such a feature allows us to capture

the overall rotation in the gesture. It is defined as:

R(G) = [
0∑

t=0

rG(t),
1∑

t=0

rG(t), ...,

TH∑
t=0

rG(t)]
T , (5.4.8)

where rG(t) is the average change in rotation at time t:

rG(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if t = 0

1
N

∑N
n=1 arctan

(gn(t)−cG(t))×(gn(t−1)−cG(t−1))
((gn(t)−cG(t))·(gn(t−1)−cG(t−1))

,

otherwise

(5.4.9)

The minimum oriented bounding box feature represents the minimum and

maximum dimension of the minimum oriented bounding box (MOBB) of the touch
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inputs at each time step. It allows us to represent the movement variation of the

gesture over time, which can approximate the area of the gesture. Given a set of

touch points at time t, gn(t), we apply the rotating calipers method [147] to calculate

the minimum rectangle bounding the points. We extract the width, bw(t), and the

height, bh(t) of the rectangle, and define the feature as:

B(G) = [(bw(0), bh(0)) , (bw(1), bh(1)) ,

..., (bw(TH), bh(TH))]
T ,

(5.4.10)

Finally, the gesture space is formed by concatenation of the four gesture features.

As a result, a gesture G can be represented by a point in the space with the feature

vector:

G = [G(G), S(G), R(G), B(G)]T . (5.4.11)

5.4.3 Distance between Two Gestures

Here, we explain how we compare gestures using gesture features in the gesture

space.

Given two gestures G0 and G1, we define the distance as

D(G0, G1) = αDTW(C(G0), C(G1)) +

βDTW(S(G0), S(G1)) +

γDTW(R(G0), R(G1)) +

δDTW(B(G0), B(G1)),

(5.4.12)

where DTW provides a distance between two vectors using dynamic time warping

[148], and α, β, γ, and δ, are weights for each feature. We empirically found that

α = 0.04, β = 0.36, γ = 0.36, and δ = 0.24 work well in our dataset.

It is possible to combine all 4 features into one vector and then do DTW based

on it. However, for more complex features such as spreading fingers while moving all

touch points to the right, people may perform different features in different speed.

For example, one may spread very quickly while moving slowly, while another may

spread very slowly while moving quickly. So we need to align individual features

independently.
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The feature set and distance metrics together determine the well-represented

gesture space where algebraic operations can be sensibly defined. It forms the basis

of the control scheme learning in later sections.

5.5 Crowd Motion Space

In this section, we present our formulation of a crowd motion space, which is con-

ceptually similar to a gesture space. We consider the set of movement trajectories

from the characters of the crowd and represent the overall crowd movement with a

set of features modelled by a mixture of Gaussian processes.

5.5.1 Crowd Motion Trajectories

Here, we represent the motion of a crowd using the trajectories of the characters in

the crowd.

A crowd motion C is defined as a set of trajectories:

cm(s) ∀ m ∈ [1,M ], t ∈ [1, S], (5.5.13)

whereM is the total number of character in the crowd, S is the duration of the crowd

motion, the representation c′m(s
′) indicates the 2D location (c′m(s

′).x, c′m(s
′).y) of a

character m′ at time s′. Similar to the gesture trajectories, we normalize the crowd

motion trajectories by translating the whole motion such that the starting point is

at the origin.

We also resample the crowd motion trajectories from S points to SH points using

the Hermite spline [146] and set SH = 64 [145], as we do for the gesture trajectories

in Sec. 5.4.1. As a result, a crowd motion C is defined as:

cm(s) ∀ m ∈ [1,M ], t ∈ [1, SH ]. (5.5.14)

For the sake of calculation simplicity, we express the trajectory of the m′th char-

acter, cm′(s), as a vector of serialized X and Y positions:

cm′(s) = [cm′(1).x, c1(1).y, cm′(2).x, c1(2).y, · · · , cm′(SH).x, cm′(SH).y.]
T . (5.5.15)
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5.5.2 Crowd Motion Features

Next, we present our crowd motion features that describe the high-level features of

a moving crowd. Such features are independent of the number of characters in the

crowd. They can also be used to interpolate two crowd motions in order to generate

new ones.

Since the character trajectories in a crowd are controlled by one input gesture, we

assume that there exists a linear low dimensional space that can represent the tra-

jectories of all characters. Trajectories can be treated as functions. Essentially, each

crowd motion is a series of 2D functions that define the trajectories of all characters.

This allows us to construct a low-dimensional space and represent the motion tra-

jectories of all characters using Functional Principle Component Analysis (FPCA).

FPCA projects a group of functions linearly into space where a mean function and

functional variations serve as the basis of function representation, similar to PCA

but on a function level. The mean function, c̄s where s ∈ [1, SH ], can be computed

by averaging the motion trajectories of all characters. Then, a set of eigenfunctions,

EC
V , and a set of eigenscores, EC

S can be computed. The eigenfunctions describe the

principle movement over time of all characters in the crowd, and the eigenscores rep-

resents how the movement of a character can be projected into the low dimensional

space. The trajectory of the m′th character can be recovered as:

cm′s = c̄s + EC
V E

C
Sm′ , (5.5.16)

where EC
Sm′ is the Eigenscore of the m′th character.

Figure 5.4 gives an intuitive illustration on how FPCA is used to map the original

crowd motion, “translate” in this case, into the low dimensional space. On the right

side of the figure, the red arrow represents the mean movement of the whole crowd

and green arrows (Eigenfunctions) represent the major variation components among

the mean movement. Eigensocre is a mapping function to map the original variation

of the crowd movement into eigenfunctions.

Although FPCA gives a compact representation, it does not generalize enough

to take all the input variations into account such as different numbers of trajectories

or style variations of the same motion. This motivates us to further generalize the
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Figure 5.4: The illustration of using FPCA to map original crowd motion into

low dimensional space.

representation. We discover that the high-level visual observation of the general

motions can be described by the eigenscore distributions. As a result, modelling

the crowd motion trajectories of the whole crowd can be considered as modelling

the distribution of the eigenscores of the characters. This high-level model allows

us to interpolate the distribution of eigenscores, instead of the actual trajectories,

between two crowd motions effectively. In addition, such a distribution-based repre-

sentation does not depend on the number of characters and does not explicitly map

the trajectories of the characters from one crowd to another.

Since the eigenscores of a group of similar motions usually exhibit multi-modality,

we propose to use GMM to model the distribution of the eigenscores. There are three

main advantages. First, the non-linearity of GMM fits the trajectory data well.

Second, the multi-modality nature of GMM captures semantic-level meanings such

as the crowd being split into multiple groups, which cannot be modelled easily with

a single model. This is particularly relevant to crowd motion such as splitting and

joining. Finally, multiple GMMs can be easily interpolated and the interpolation

has visual as well as semantic meanings, which is important to generate new crowd

motions.

There are two import issues in applying GMMs to model the data, which are

the optimal parameters and the number of components of the model. We apply

the Expectation-Maximization algorithm [149] to optimize the parameters for the

distribution of eigenscores, φ(EC
S ). The component number essentially allows the

system to accurately model multiple sub-groups in the crowd motions. In theory,
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it is possible to automatically determine that by iterating from one and choose the

smallest value that reaches the required data likelihood. In practice, we found that

users rarely split a crowd into more than two subgroups, even with two hands con-

trolling the crowd. As a result, two Gaussian components are enough to model our

database. For simpler motion with only one sub-group, the two components in the

GMM blends together to represent the distribution of character trajectories. If more

complicated crowd motions with multiple sub-groups of characters are involved, an

analysis of data likelihood should be performed and more components can be used.

Therefore, the crowd motion features of a crowd C is defined by a vector:

C = [c̄s, E
C
V , φ(E

C
S )]

T , (5.5.17)

where c̄s is the mean trajectory, EC
V is the set of eigenvectors, and φ(EC

S )
T is the

distribution of the eigenscores modelled by GMM. Conceptually, our crowd motion

feature is similar to the morphable motion primitives [150, 151]. The difference is

that it is applied on a crowd instead of an individual motion.

Here, we include an optional step to improve the performance of our system. We

observe that there is an intrinsic redundancy in the crowd motion trajectories as the

characters’ trajectories are not arbitrary. Therefore, it is not necessary to use all the

eigenvectors EC
V as the features. In fact, we only use the first 15 principal components

returned by FPCA and the recovered trajectories from Eq. 5.5.16 achieves < 1%

error for all the crowd motion in our database. This not only reduces computational

cost but also removes noises that may exist in the motion data.

5.6 Crowd Motion Control

In this section, we explain how a run-time gesture can be identified based on the

set of gestures in the database. Then, we explain how such a gesture generates the

corresponding crowd motion.
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5.6.1 Run-time Gesture Representation

Here, we explain how we represent a gesture using neighbour ones in the database,

which allows us to understand the crowd motion the user intended to perform.

We have collected a set of gestures with the corresponding crowd motions as

explained in Sec. 5.3. The gesture space is non-linear due to the complex nature

of hand gesture. Modelling the whole space with high degree non-linear functions

would require a large amount of gesture data, which is labour intensive to obtain

and would limit the feasibility to increase the gesture types. Instead, we propose

to model a local area of the gesture space that is relevant to the run-time gesture

using a linear function. Such a method works robustly even with smaller database

and generates reliable results.

Figure 5.5: Generating crowd motion with the run-time gesture. The circles

represent gestures in the gesture space, with the hollow one representing the gesture

obtained in run-time. Based on the run-time input, we obtained the K nearest

gestures, visualized by the double lines. The triangles represent crowd motion in the

crowd motion space. We find the crowd motions corresponding to the K nearest

gestures, pointed out by the black arrows. We finally interpolate these crowd

motions to create the run-time crowd motion represented by the hollow triangle.

In particular, given a run-time gesture, Gr, we utilize Eq. 5.4.12 to evaluate

its distance with the stored gestures in the database. We represent Gr using a set

of K nearest neighbours, Gk ∀ k = [1, K]. The neighbours are associated with

the corresponding weights, wk ∀ k = [1, K], which are inversely proportional to
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the distance with respect to the runtime gesture. The particular weight wk′ that is

corresponding to the gesture Gk′ is defined as:

wk′ =
1

D(Gr, Gk′)
/

K∑
k=1

1

D(Gr, Gk)
, (5.6.18)

where the summation term acts as a normalization factor to ensure that all the

weights sum up to 1.0. In our experiment, we found that K = 10 produces good

results. This process is visualized in the left part of Fig. 5.5.

Since our gesture database is relatively compact, a brute force search is quick

enough to find the K nearest neighbours in real-time. For a larger database, we

may organize the database with data structures such as the k-d tree to speed up

searching.

While it is possible to apply methods such as regression to evaluate the run-time

gesture, we find that KNN is the most reliable way, mainly because our gesture

database contains a variety of gestures, where the sample size is big enough to

locally approximate the gesture manifold as hyper-planes. In theory, if the database

is dense enough, it could be possible to use the most similar gesture only. However,

KNN is more robust against outliers, and constructing a dense database is labour

intensive.

5.6.2 Run-time Crowd Motion Creation

Here, given the K nearest neighbours of the run-time gesture, we interpolate the

corresponding K crowd motions in the database in order to generate the run-time

crowd motion.

Given a run-time gesture, the obtained K nearest gestures, Gk ∀ k = [1, K], are

corresponded with K crowd motions, Ck ∀ k = [1, K], according to the database.

The run-time crowd motion, Cr = [c̄rs, E
Cr

V , φ(ECr

S )]T , is evaluated as the weighted

sum of the K crowd motions. This process is visualized in the right part of Fig. 5.5.

Such an interpolation involves interpolating the crowd motion features individually

as follows.

The run-time mean crowd trajectory can be obtained by vector sum, as all mean
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trajectories in the database has the same size SH :

c̄rs =
K∑
k=1

wkc̄ks . (5.6.19)

Similarly, we interpolate and create a new set of eigenvectors:

ECr

V =
K∑
k=1

wkE
Ck

V . (5.6.20)

To ensure orthonormalization of the new eigenvectors, we apply the modified

Gramm-Schmidt method presented in [152].

Figure 5.6: Cross-fading problems of interpolating multiple Gaussians: (Left)

Mixing two GMM (each with two components) can generate different results

depending on how the Gaussian components are matched. (Middle) The desired

result that retains the features of the source GMMs. (Right) The undesired result of

cross fading.

The blend weights wk is important to ensure the quality of the resultant GMM,

which account for the naturalness of the generated crowd motion. Considering that

our gesture-motion pairs in the database are very distinctive and that both the

gesture space and crowd motion space can be modelled by the local hyperplane, we

use wk′ in Eq. 5.6.18 as the blend weights for the crowd motion wk. The underlying

assumption here is that similar gesture in the gesture space would indicate similar

crowd motion in the crowd motion space.

Finally, we propose a mass transport solver based method to combine multiple

distributions of eigenscores and generate φ(ECr

S ). A naive one-to-one combination

of the Gaussian components of two GMMs does not work well. As shown in Fig.

5.6, assuming each GMM has two components, depending on how we match the
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components, blending two GMMs has two possible outputs. One of them retains the

features from the source GMM, while the other does not as Gaussian components of

very different parameters are blended, resulting in a scenario known as cross fading.

We follow the displacement interpolation method presented by [153] here. First,

given two GMMs, we establish the correspondence of their Gaussian components.

Each Gaussian component is defined by a mean value and a covariance value. We

evaluate the correspondence using the mass transport solver [108], in which the

source and target are set as the Gaussian means of the Gaussian components. Sec-

ond, we produce a weighted sum of the Gaussian mean and covariance of each

matching Gaussian component, in which the weights are obtained by Eq. 5.6.18, in

order to generate a combined GMM. We iteratively combine all the GMMs in the

K nearest crowd motions and obtain φ(ECr

S ).

5.6.3 Crowd Motion Synthesis

Here, we explain how we apply the crowd motion created in the last section to

control a run-time crowd.

Assume that the user is controlling a group ofM characters. Given a user gesture,

we obtain the corresponding crowd motion Cr = [c̄rs, E
Cr

V , φ(ECr

S )]T as explained in

Sec. 5.6.2. We first utilize the distribution of the eigenscores, φ(ECr

S ) to sample

M eigenscores. Second, we apply the eigenscores with the mean trajectory c̄rs and

eigenvectors ECr

V to generate M crowd motion trajectories using Eq. 5.5.16. Third,

we apply a mass transport solver [108] to find out the optimal matching between the

controlling characters and the calculated crowd motion trajectories. This is done

by setting the positions of the characters as the source and the starting points of

the trajectories as the target. By using the mass transport solver to evaluate the

matching, we avoid visual artifact in which characters have to move a long distance

before reaching the starting point of their corresponding trajectories. Finally, the

characters move to the starting point of their respective trajectories, and then follow

the trajectories, in order to produce the overall motion.

For handling collision detection and avoidance, we implemented the high-level

crowd motion synthesis and the low-level character collision avoidance as two sep-
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arate levels. The high-level system provides the desired position of all characters

in the crowd, while the low-level system resolves their positions locally. In our

experiments, the low-level system considers the potential penetration among char-

acters and resolves the penetration by estimating a new position with a spring-mass

model based on the penetrated depth and direction. Other more advanced collision

avoidance systems can be directly employed in our framework.

We apply the full body motion synthesis method in [40] as an offline process to

generate full-body running motion based on the point-based movement trajectories.

This involves creating a motion graph that consists of different running actions and

evaluating the optimal action to perform in order to follow the trajectories. We

also apply the physical modelling method in [121] to create physically plausible

movements. This allows us to resolve body part level collisions and penetrations

effectively.

5.7 Experimental Results

In this section, we provide both qualitative and quantitative evaluations of our

proposed system.

All the experiments are run with one core of a Core i7 2.67GHz CPU with 1GB

of memory. For the multi-touch input, we used a G4 multitouch overlay from PQ

labs, attached to a 24” Acer S240HL LCD monitor. In general, the system runs in 40

frames per second, which is higher than the real-time requirement of 30 frames per

second. However, there is a slow-down when computing a new crowd motion from a

hand gesture, which takes 330 ms, including 300 ms for the KNN searches, 12 ms for

generating the crowd motion features, 4 ms for generating and assigning trajectories

to characters. We believe that adapting a multi-thread implementation framework

can create a more consistent frame rate. Also, more efficient search algorithms such

as k-d tree search can further reduce the computational time.
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Figure 5.7: Examples of user input (upper of each sub-image) and the

corresponding crowd simulation (lower of each sub-image) for (a) translate, (b)

twist, (c) contract, (d) expand, (e) join, (f) split, (g) split then translate, (h)

translate then join, (i) twist while expanding, and (j) twist while contracting. The

light blue color indicates the start of the input/crowd motion and the dark blue

color indicates the end.

5.7.1 Qualitative Evaluations

Here, we evaluate our system qualitatively with different experiments. The readers

are referred to our supplementary video for more results.

First, we evaluate the effectiveness of our method by producing a set of crowd

motions from a number of user inputs. Fig. 5.7 shows some user gestures and

their corresponding simulated crowd motion. Our system generates crowd motions

that accurately reflect the different user gesture types. It also works well under

different initial positions of the characters. The number of touch points provided for

the gestures does not affect our system’s ability to produce the appropriate crowd

motion.

We setup some virtual environments and ask a user to use our system to control

the navigation of the crowd. Fig. 5.8 (upper) shows a corridor environment. The

initial crowd cannot fit through the narrow corridor. The user, therefore, applies a

contract gesture to reduce the size of the crowd, and two translate gestures to move

the crowd through the corridor. Finally, the user applies an expand to expand the
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Figure 5.8: Screenshots of controlling the crowd in complex environments: a

crowd to navigate through (upper) a corridor environment, and (lower) a more

complicated environment with an obstacle.

crowd to its original size. Fig. 5.8 (lower) shows a more complicated environment, in

which there is an obstacle in the middle of a corridor. The user successively applies

the gestures translate, split, translate, join and translate such that the crowd can

avoid the obstacle and reach the other side of the environment. The user finally ap-

plies a twist gesture such that the crowd can rotate inside the circular environment.

These experiments show that our system can potentially be applied to console games

that require crowd control, such as real-time strategy games.

Figure 5.9: Screenshots of a user controlling a crowd in a complicated scenario

with dynamic obstacles.
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We generate a high-quality, complicated scenario in which 100 characters avoid a

number of dynamic moving cars, as shown in Fig. 5.9. The user controls the crowd

movement with our touch-based system that offers intuitive control of the timing

for the change of formation. Multiple gestures are required to steer the crowd.

This kind of real-time, precise, interactive control is difficult to be achieved with

existing systems. As this demo focuses on demonstrating the animating power of

the system for generating realistic scenes, we implement a Gaussian filter to smooth

the crowd motion transitions. Gaussian filter has been widely used in motion

stitching to smooth out glitches between different motion clips [154–157]. Motion

Stitching means combining multiple short motion clips to generate a long motion

sequence. It is a very popular techniques in computer graphics to create animations.

Here we also use Gaussian filter to smooth out the glitches between different crow

motion segments to create a high quality crowd motion sequence.

Figure 5.10: The synthesized expand crowd motion using the database built

with (left) Henry et al. and (right) RVO2.

While we propose to utilize [108, 109] to generate examples for constructing

the crowd motions in the database, the overall framework is independent of the

underlying method to generate the crowd motions. Basic crowd simulation systems

that control characters by setting the starting and goal positions can effectively

generate the database and produce comparable results. To demonstrate this, we

perform an experiment to utilize the Reciprocal Velocity Obstacle (RVO) 2 system

[158] to generate the crowd motion database and synthesize new crowd motions

based on the user inputs. We compare the newly created results with those generated
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by our existing database, as shown in Fig. 5.10. We find that while the two databases

result in crowds of different behaviour due to the different training data, the resultant

crowd motion quality is comparable. This demonstrates the generalizability of our

control system.

5.7.2 Quantitative Evaluations

Here, we give an illustration on how our proposed gesture features are discriminative

on different types of users’ input gestures. Fig. 5.11 respectively shows the proposed

features (Section 5.4.2) on different types of users’ input. In Fig. 5.11(a), The

user gestures for controlling the “translate” crowd motion show the most significant

change in the centroid of the users touch inputs. The “expand” and “contract”

motions both indicate a large variation in centroid position along the y axis. In Fig.

5.11(b), this feature clearly shows that it can distinguish between three significant

subsets of gesture styles, coupling the join & contract, split & expand, and the

translate & twist types of gesture. It is obvious that this feature is capable of

distinguishing those types of users’ input into 3 different subsets. As a consequence,

this feature is unable to separate the inputs inside this subset but it is considered

by using other proposed features. In Fig. 5.11(c), most of the gesture types show an

insignificant rotation of user inputs. But there are large rotations which are shown

by “twist” and some of “ translate” motions. This feature indicates the presence of

a twist style in user input and for distinguishing this from other styles of gestures.

In Fig. 5.11(d), the Minimum Oriented Bounding Box (MOBB) feature is able

to clearly separate between the contract & expand gestures from the split & join

gestures, something that is not seen in the basic Distance to Centroid feature shown

in Fig. 5.11(b).

According to the above quantitative results, each proposed feature has a strong

capability to distinguishing some specific types of users’ gestures. We linearly com-

bine these features so that they are complementary to be discriminative on majority

types of users’ input gestures.

In order to test if our proposed gesture features are discriminative, we conduct

leave-one-out cross validation using the gestures for the 6 types of typical crowd
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Figure 5.11: Proposed features in Section 5.4.2 on different types of users’ input.

(a) Centroid feature, (b) Distance to Centroid feature, (c) Rotation feature and (d)

Minimum oriented bounding box feature.

motions (i.e. translate, twist, contract, expand, join, split).

We first use the gesture features of one gesture as testing data for classification,

and that of all other gesture as training data. We then obtain theK nearest gestures.

Within them, we conduct a weighted nearest neighbour voting with the weight

obtained from Eq. 5.6.18, where the gesture type with the highest total weight is

considered to be the recognized type. We finally check if such a type is the same

as the real gesture type of the testing data. We iteratively evaluate all gestures and

calculate the average accuracy.

Figure 5.12: Confusion matrix of 6 typical motion types. The cell in column i,

row j indicates the proportion of all ith test gestures recognized as the jth output

gesture.

Fig. 5.12 shows the confusion matrix of this analysis. It shows that the pro-

posed gesture features are discriminative in order to accurately identify an unknown

gesture. The average classification accuracy is 87.5%. For all gesture types except
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contract, the accuracy is over 89.6%. The contract type has a lower accuracy of

62.5%, as some of the gesture samples are very similar to those in the join type.

5.8 Limitations

Our system does not consider the mapping between the gestures and the full-body

motions of the characters. Although this is an interesting idea, such a mapping will

suffer from the ambiguity such as the walking phase as presented in [159], and extra

parameter inputs will be required. Instead, the detailed movements (e.g. walking or

jumping motions) are modeled by another sub-system given the computed trajec-

tories. Splitting the mapping into two sub-systems leaves the degrees of freedom to

the animators for designing their preferred movements. This idea is similar to the

framework proposed by [109].

Data collection could be non-intuitive. The final motion quality depends on

the representativeness of the database. Currently, the crowd motions can be easily

generated because most of the trajectories can be represented by some close-form

function plus noises. However, to collect more complex gestures, more work needs

to be done by generating corresponding crowd motions. The situation could be

mitigated by two facts. First, the system once trained can be used everywhere so

no re-training is needed. Second, for complex motions, they could be decomposed

into simpler ones which we already have in the database.

We only consider zero-order information (i.e. positions). Higher-order informa-

tion such as motion and gesture velocities are not incorporated, which may limit the

representational power of the features. However, mapping motion information on

multiple orders at the same time can be tricky because it can sabotage the repre-

sentational power of the features and the KNN mapping. The usage of higher-order

features will be experimented in the future.
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5.9 Conclusion and Discussions

In this work, we propose a data-driven approach for crowd control using a multi-

touch device. Our method learns from a set of user-performed gestures and allows

a user to intuitively control a crowd. To achieve this, we propose a set of gesture

features that represent high-level information of the user-performed gestures. We

also propose a method to extract crowd motion features using a mixture of Gaussian

processes. Given a run-time gesture, we perform a KNN search in our gesture

database and find the K corresponding crowd motions. We then combine the K

crowd motions to control the run-time crowd. Our system runs in real-time and has

high control accuracy.

Like many existing systems, the simulation time increases with the number of

characters. However, our system is relatively computationally efficient with a large

number of characters. This is because the majority part of the system is based on

the extracted motion features and gesture features, which are independent of the

number of characters. The only step that is computationally proportional to the

character number is the synthesis of the final crowd motions.

A run-time crowd motion is generated by interpolating multiple instances in the

database. Theoretically speaking, given the right gesture, it is possible to interpolate

two classes of crowd motion (e.g. translate and join) to generate a new run-time

motion. However, it rarely happens in practice due to the relatively wide range of

gestures we collected to cover the possible variation within the same class. As a

result, the interpolation performed is mostly intra-class.

Theoretically, the mapping could be contaminated if the gesture-motion pairs are

not generated well, such as two similar gestures generating very different motions

or vice versa. In practice, we find that KNN helps to reduce the effect of outlier

mappings, as multiple motions/gestures are combined, and less similar ones are

given smaller weights. Also, the mapping in our database is very descriptive thanks

to the distinctiveness among the types of basic motions, which results in a set of

distinctive corresponding gestures. More complex motions can be decomposed into

the combinations of basic ones to avoid over-complicated motion-gesture mappings.
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Chapter 6

Conclusions and Discussions

In the present thesis, the studies on modelling the human motions in motion analysis,

motion retrieval/recognition and crowd motion control, namely the hot topics in the

field of computer graphics, are introduced. Human motion modelling is an essential

part of the advanced approaches of these topics. Due to the lack of information in

underlying human motion data, achieving such tasks is still a big challenge. In the

research here, the latent information behind human motion was found and modelled

meaningfully. Besides, the motion analysis, motion retrieval and crowd motion con-

trol systems were designed on the top of the proposed motion representations. The

proposed systems, capable of analyzing and retrieving human motion in semantic

level in Chapter 3 and 4), and intuitively controlling crowd motion in Chapter 5, are

demonstrated. According to experimental results in each chapter, the research here

also can be summarized as “handling human motions from single person movement

to multi-people interaction, then to the crowd movement” in computer graphics. The

summary of contributions in this thesis is presented in the following section Section

6.1.

6.1 Summary of Contributions

This section summarizes the research contributions of this thesis. According to

the contributions, the significance of human motion modelling to different tasks of

computer graphics research is demonstrated.
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• In Chapter 3, an automatic analysis and visualization system is proposed to

assessing high-level skills of sports motions on a single person. In our experi-

ment, the boxing motion was only tested, whereas our method is generic and

can be applied to different sports (e.g. basketball and fencing). In sports

training sessions, we found that human experts assess the athletes skills based

on such features as the diversity of actions, transitions flexibility and unpre-

dictability of action pattern. Based on the above observation, we first proposed

two types of motion graphs on the athletes motion capture data. The Posture-

based Graph is a variation of Fat Graphs [160] and it indicates the quality of

static postures for initiating and completing actions. The Action-based Graph

is formulated by Hidden Markov Model and it indicates the flexibility of tran-

sitions between different actions. We further analyzed topology structures of

proposed graphs and raised two numerical assessment mechanisms which are

Connectivity Index and Action Strategy Index. The Connectivity Index is

calculated from Posture-based Graph, suggesting the diversity of actions and

the flexibility of transitions between different actions. The Action Strategy

Index is calculated from Action-based Graph and it reveals unpredictability

of action patterns. With the graph representations of human motion and suit-

able assessment mechanism, common human movements can be assessed on

the level of preference, intention and diversity.

• In Chapter 4, we proposed a unified framework for motion retrieval and anal-

ysis on the multi-people interaction movements. , Again, in our experiment,

the results of two-character boxing motions were only demonstrated. However,

our framework is easy to generalize into common types of interactions, e.g. “a

person is sitting on the chair” (human-object interaction) and “ two people are

shaking hands” (daily social behavior).Based on the previous research in hu-

man motions and scenes understanding [9,10,61,78,161], the spatial relation-

ship between interacting humans or objects is critical to specify the semantic

meaning of the motions. A customized Interaction Mesh was proposed upon

the interacting characters during the motion. This mesh structure encodes

the information of each characters motion and spatial relationships among
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interacting characters. The difference between interactions was assessed by

proposing Earth Movers Distance onto the corresponding meshes. The intrin-

sic similarity among different classes of interactions can be easily captured by

our framework. Furthermore, interaction-based motion retrieval and analysis

mechanisms were designed on the top of the proposed framework, which im-

proves the results in content-based retrieval and semantic-level motion analysis

system. According to the experimental results, motion retrieval and analysis

by our framework are aligned with human understanding of motion semantics.

• In Chapter 5, a data-driven approach is proposed for crowd motion control

via multi-touch device. Basically, our system takes users gesture as input and

infers an appropriate output crowd motion. The underlying control scheme

is directly learned from the mapping between user preference gestures and

corresponding crowd motions, which is not pre-defined by developers. As a

result, our system achieves intuitive crowd motion control which does not re-

quire users to learn the control scheme before controlling the crowd motion.

Specifically, we proposed a set of gesture features which represents the intrin-

sic properties of different types of users input. These features are invariant

to the difference of the users preferred touch input style e.g. the number of

fingers used. Subsequently, a set of crowd motion features extracted from

crowd motion was proposed using FPCA and GMM. These features allow

the modelling of the crowd into different sub-groups and are irrelevant to the

number of agents inside the crowd. We then build up a two-layer database

which includes the collected gestures from different users and corresponding

crowd movements. During run-time, when a user inputs an arbitrary gesture,

our system will extract the gesture features and conduct a KNN search in

the gesture feature database. Finally, the corresponding crowd motions in

the database are interpolated to generate new crowd movement that is ap-

proximately aligned with user input. According to the experimental results,

our system is accurate and efficient enough to achieve real-time crowd motion

control. It can be used for in real-time applications, e.g. video games and

interactive animation controls.
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6.2 Discussions and Future Works

This section discusses some potential research directions for our subsequent works.

The following three subsections outline our subsequent works on Chapter 3, 4 and

5 respectively.

6.2.1 Extend Motion Graph in Computer Animation

In Chapter 3, we proposed graph representations on the sports motions to extract

high-level information of sports skills. However, such representations have a wider

range of potential in computer animation.

In the future, we wish to extend the proposed algorithm to the field of computer

animation. Currently, when synthesizing animations by motion graphs, experienced

animators are required to tell what motions are missed or badly captured. With

our system, it is possible to analyze the connectivity and variety of a motion set,

which are two critical factors in motion synthesis. However, how to generalize these

findings to give the high-level suggestion, such as proposing the motions to capture,

remains an open problem.

In addition, Combining with semantic information extracted from the framework

in Section 4.5.2, we would like to develop a visualization system to take the adver-

sarial nature of sports. For instance, although two boxers might have roughly the

same skill level, in a match, one’s skill composition might give him/her advantages

over the other. This kind of analysis would be very useful in preparation for a game

or predicting the result.

6.2.2 Generalization on Interaction Analysis

In Chapter 4, a 3D volumetric mesh representation of two characters interaction is

proposed, and a customized Earth Movers Distance is put forward to assess the topo-

logical and geometric difference between two meshes. The above assessment captures

the semantic similarities among different interactions that are closely aligned with

human perception. Such a framework can be used in other areas of research, e.g.

object retrieval and scene understanding
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One future direction is to apply our system to assess human-environment in-

teraction. The challenge is to design an algorithm to sample feature points on the

environment to generate the interaction graph. Unlike the human body, the environ-

ment does not have a fixed topology, and therefore points sampled may be different

depending on the geometric features. Our method does not need to uniquely iden-

tify the sampled points, which is opposed to previous work [62], making it suitable

for the points sampled on the environment.

Another future direction is to adapt our method for modelling and evaluating

interactions to the 3D object retrieval research. Retrieving 3D objects is also an

active research in computer graphics, which it has broad applications in industries.

The major difficulty is that there are a large topological and geometric variations in

intra-class 3D objects [162–164]. For example, in our daily life, we have seen a lot of

chairs with different supporting topology structures such as five wheels or four legs.

Retrieving such objects via topological and geometric analysis raises a large false

positive and false negative. Inspired by previous works on [10, 165], we found that

the semantic of the 3D object is also implied by an interaction between human and

object and be irrelevant to local geometric variations. For example, a chair can be

represented by “a person is sitting it” and a desk can be represented by “a person

is writing on it”. The proposed framework can be used to extract such interaction

information from the human-object scenario and improve the retrieval results.

Similar to 3D object retrieval, understanding 3D scenes is also a popular research

direction in the field of computer graphics and computer vision. According to the

previous research on [140,166–168], human-object and object-object interactions in-

formation are introduced into a complex 3D environment to achieve accurate and

efficient 3D scenes recognition. For instance, in the scene of a parlour, the inter-

action information is represented by spatial relationship between different types of

furniture, e.g. “tea table is placed next to the sofa, and TV is in front of the sofa”,

and between human and furniture, e.g. “a person is sitting on the sofa and facing

the TV”. Based on such spatial information extracted by our framework, 3D objects

in the complex scene can be accurately identified and labelled.
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6.2.3 Further Improvement on Crowd Motion Control

In Chapter 5,two representative features on users gesture and crowd motions are

proposed. These features help our system quickly and accurately generate appropri-

ate crowd motions from arbitrary users input gestures. This framework can be used

for real-time control in video games. However, there is still a space for improvement.

Our crowd control system analyzes the gesture in a discrete manner. Each ges-

ture controls the crowd in a short time interval. One possible solution is to apply

the continuous recognition algorithms proposed in [67], in which the input gesture

continues to be recognized using a variable size sliding window.

An interesting research direction is to introduce more intra-class differences in

the crowd motion. For instance, a spread-out translate crowd motions and a con-

densed one can be generated. Subsequently, the corresponding gesture inputs can

be collected from the user into the database. As a result, a small gesture difference

will generate a small variation of the crowd motion, which helps to achieve the fine

control of the crowd.

Another interesting direction is to embed the dense interactions among agents

in the crowd motion. Previous research proposed to model the interaction among

different characters as spatial-temporal constraints and to synthesize such interac-

tions by the space-time optimization [169]. However, the computational cost for

such optimization increases exponentially in the crowd motion, and it is difficult to

achieve real-time control. Combining with our works in Chapter 4, the optimization

process is expected to be simplified, and the crowd motion with detailed interactions

is expected to be controlled in real time among agents of the crowd.
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