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Abstract

This report presents work on the detection and tracking of people in digital images. The
employed detection technique is based on image processing and classification techniques.
The work uses an object detection process to detect object candidate locations and a
classification method using a Self-Organising Map neural network to identify the
pedestrian head positions in an image. The proposed tracking technique with the support of
a novel prediction method is based on the association of Cellular Automata (CA) and a
Backpropagation Neural Network (BPNN). The tracking employs the CA to capture the
pedestrian’s movement behaviour, which in turn is learned by the BPNN in order to the
estimated location of the pedestrians movement without the need to use empirical data. The
report outlines this method and describes how it detects and identifies the pedestrian head
locations within an image. Details of how the proposed prediction technique is applied to
support the tracking process are then provided. Assessments of each component of the
system and on the system as a whole have been carried out. The results obtained have
shown that the novel prediction technique described is able to provide an accurate forecast

of the movement of a pedestrian through a video image sequence.
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CHAPTER 1 Introduction

Chapter One

Introduction

1.1 Why digital image processing?

Over the last decade, a new application domain of computer vision has emerged dealing
with the analysis of images involving humans. This domain covers, among others, face
recognition, hand gesture recognition and whole-body tracking. The huge interest in this
domain has been motivated by the desire for improved man-machine interaction, for

which, there are many promising applications [1-6].

One of these applications is the automated counting of people, which has been used for
various purposes such as safety monitoring and crowd control, security access control,
counting customers for market surveys, pedestrian flow surveys and building usage
surveys [7,8]. Depending on the purpose, the accuracy required from the people
counting system can vary. For example, for crowd control purposes [9], an estimate of
the number of people in an image is found to be adequate information. On the
other hand for purposes such as counting customers for market surveys, pedestrian flow

surveys and building usage surveys, a higher level of the accuracy is desired.
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Note that, apart from video, a number of other sensor technologies such as light beams,
microwaves, ultra-sound and infrared, have been investigated in order to count people.
However, the video-imaging sensor has proven to be very suitable because of its
reasonable cost, large monitoring area, high speed and suitability for a variety of
conditions [10]. The increasing popularity of digital image processing techniques as a
means to solve the people detection problem is probably also due to the fact that video
cameras, and image processing techniques present a convenient, non-intrusive and cost

effective solution [7,8].

A major problem in the technology exists in how to identify and distinguish between
people in video images, as images of pedestrians are non-rigid objects with a high
degree of variation in size, shape, colour, and texture. The problem is challenging and
has prompted researchers to investigate new methods for solutions in order to increase

the efficiency of counting people by means of video images.
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1.2 Research objectives

The main aim of this study is to research a prospective selection and combination of
techniques for people detection and tracking in video images in order to increase the
accuracy of automated pedestrian tracking. This main aim is expressed in terms of six

objectives in order to provide a structured approach to the research:

1. To develop a theoretical basis for pedestrian detection and tracking then determine
its limitations, by means of researching previous work and the current status of other

ongoing works in similar areas.

2. To develop a theoretical basis for the detection and location of objects within an

image and to estimate their direction and speed.

3. To develop computer programmes in order to demonstrate the validity of the object

detection along with direction and speed estimation.

4. To develop a theoretical basis for predicting pedestrian movement in video images

using a combination of Artificial Neural Network and Cellular Automata.

5. To develop computer programmes in order to demonstrate the validity of this

prediction technique for the tracking of pedestrians through image sequences.

6. To critically analyse the results and provide suggestions for improvement.
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1.3 Outline of the thesis

Before the thesis addresses the particulars of the conducted research, Chapter 2 provides
a general overview of people tracking in video images. This chapter outlines the merits
and drawbacks of this form of tracking, advances that were made in recent years and the

related techniques that have been presented.

Chapter 3 details the techniques used for object detection in a pedestrian image and the
technique for data collection. The chapter then outlines experiments that were
conducted on each component of the object detector, and comments on the outcomes of

these experiments.

The use of a discrete wavelet transform (DWT) for pre-processing in the feature
extraction module is the subject of Chapter 4. This chapter outlines the Feature
Extraction Module (FEM) and describes how to generate texture and Eigenvector
features from the transformed image using the DWT. This chapter then shows graphs of
the FEM results that were obtained using training sets, which consisted of a set of
person’s head images, and a set of other parts of a person’s body or background images,

referred to as non-head images, and discusses the outcomes.

The use of an artificial neural network for a person’s head pattern classification is the
subject of Chapter 5. This chapter outlines the Classification and Clustering Module
(CCM) and details the unsupervised learning neural network with Self-Organising Map

(SOM), the latter’s algorithm and the optimisation of the SOM size. The chapter then
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explains how to generate a person’s head and non-head codebooks. It also outlines the

experiments that were conducted on the CCM and discusses their results.

Chapter 6 examines the overall performance of the proposed pedestrian detection based

classification technique when it processes sequential pedestrian images.

Chapter 7 describes a novel prediction technique based on the association of Cellular
Automata (CA) and the supervised learning neural network with the Backpropagation
learning algorithm. The chapter then gives details of how the CA and NN can be
associated. Experiments were carried out on the feasibility of using NN simulation in

order to support the author’s conjecture.

[n Chapter 8, the prediction module and its block diagram is introduced along with
details of how to capture a pedestrian’s movement behaviour using a CA. The purposes
of using the Neural Network in the prediction module are given. It also outlines the
experiments, which were conducted on the prediction module and discusses the

outcomes of the experiments.

Finally, a conclusion of the presented study and the direction for future work is

provided in Chapter 9.
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1.4 Original Contribution

This research work looks at image processing used for the application of pedestrian
tracking in video images. The motivation behind this work is to improve the efficiency
of automated pedestrian tracking using the image information in a more accurate and
cost effective manner. First, an object detector based on amplitude projections has been
employed to obtain candidate locations for recognition and tracking. Experiments on the
object detector have been performed and presented in Chapter 3. Second, application of
the discrete wavelet transform (DWT) has been made together with a Self-organizing
Map (SOM) neural network to identify a person’s head within an image. This has been
demonstrated in Chapters 4, 5 and 6. Finally, simulations have been used to show that
the association of Cellular Automata (CA) and Backpropagation Neural Network
(BPNN) can be successfully employed as a prediction method for aiding pedestrian

tracking systems in Chapters 7 and 8.

1.5 Published Work

The following are publications made in support of the work detailed in Chapters 7 and 8

of this thesis.

a C. Suppitaksakul, G. Sexton and P.D. Minns, “A prediction technique using the
association of Cellular Automata and a Neural Network”, on Electrical
Engineering Conference 28" EECON-28, Phuket, Thailand, 20-21 October
2005, pp. 969 -972.

a C. Suppitaksakul, G. Sexton and P.D. Minns, “A pedestrian tracking using the
association of Cellular Automata and a Neural Network” on Communication
Systems, Networks and Digital Signal Processing the 5" International
Symposium, Patras, Greece, 19-21 July 2006.
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Chapter Two

Review

2.1 Introduction

The use of computer vision for the analysis of images involving humans or “people
tracking” has grown exponentially over the last decade. It has attracted such great
interest from computer vision researchers because of its potential for application in
areas such as virtual reality (e.g., virtual studio, games, character animation,
teleconferencing), surveillance systems (e.g., access control, supermarkets, department
stores, vending machines, ATMs, traffic), advanced user interfaces (e.g., social
interfaces, sign-language translation), motion analysis (e.g., clinical studies of
orthopaedic patients, personalisation training in golf, tennis, etc.) and model-based

coding (e.g., very low bit-rate video compression) [1].

In each of these areas the requirements of the vision analysis are varied and so different
approaches have been developed to meet the needs of each system. An overview of the
current methods and ongoing research in this area is provided in the following sections:

Sections 2.2 — 2.5 provide a description and summary of the human motion analysis
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methodologies that will be utilised later in this thesis. A discussion of all of the

techniques is not possible due to the vast number available.

2.2 Human motion analysis

Human motion analysis or “people tracking” concerns the detection, tracking and
recognition of people, and commonly the understanding of human behaviours, from
image sequences involving humans [2]. Various surveys on the relevant topics in this
area have been presented since 1994 as can be seen in [2-6]. Each survey used different

criteria to classify the previous works depending on its purpose.

Figure 2.1: A side view image [11]
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Figure 2.2: A top-down view image

One of the applications of human motion detection considered in this thesis is
surveillance. In this application it is only the movement of the subject that is of interest
and which tracking is required for [4]. The tracking is performed on
two-dimensional (2-D) images. Therefore the literatures of interest in this review are
those that are based around methods for tracking human movement that directly focus
on the motion of the whole body and the dimensionality of tracking space
(2-D vs.3-D). The literatures can be grouped using the angle of view criteria; these are
side and top-down views (as shown in Figures 2.1 and 2.2). An overview of the ideas,
concepts and techniques used in the selected works are listed and discussed in the next

sections.
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2.3 2-D approaches using the side view image

In this section, works on “people-tracking” using side view images obtained from a
single static camera as illustrated in Figure 2.1, are discussed. In a side view image a
person’s frontal, rear and lateral information can be obtained and therefore can be used
for detecting, tracking and recognition of persons from the image. Tracking is
equivalent to establishing correspondence of the image structure between consecutive
frames based on features related to position, velocity, shape, texture and colour. The
process of tracking concerns matching between images employing pixels, points, lines
and blobs based on their motion, shape and other visual information [4]. Various

techniques in have been proposed to approach to “people-tracking” as follows:

Shio and Sklansky [12] proposed a method for segmenting and tracking of people in
motion from a sequence of images. The motion field in each frame is obtained by
matching intensity features, which is based on a quasi—cross correlation technique of
successive frames and it is smoothed both temporally and spatially, to remove the
effects of non-rigid motion and measurement errors. Later, it is split into regions having
the same quantized direction of motion. Neighbouring sub-regions are then iteratively
merged based on the direction of motion and the expected size of the bounding box
around a person. The disadvantages of this technique are the processing costs of
gray-scale feature matching and iterative merging of motion sub-regions. No temporal

integration is performed on the segmentation outcomes.
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Segen and Pingali [13] used a model-based algorithm for a motion clustering approach
to object tracking. Features in each video frame are identified and then matched across
frames to produce feature “paths”. Then the system groups short-lived and partially
overlapping feature paths into longer living trajectories representing the motion of
individual persons. Compared to [12], their technique uses less computation in the
matching process and due to their system relies on multiple trajectories so it is more
robust if all matches are correctly resolved. However, the robustness of the matching
process is doubtful being dependent on the condition of natural clothing and non-rigid

human shapes.

Another technique relies on a learning-based approach to detect persons.
Oren et al. [14] applied the object-detection technique using Haar wavelet coefficients
as low-level intensity features for the detection of frontal and rear views of pedestrians
in static images. They segment pedestrians in a number of images and generate a
common template based on Haar wavelets. These transformed templates are used as
features for training a support vector machine (SVM) classifier (a universal feed
forward network that was introduced by Vapnik [15-17]). In the run-time or detection
stage, windows of various sizes are scanned over the image, the selected features are
extracted, and then applied to the SVM classifier to verify whether the desired object is
present or not. An advantage of using the wavelet template is that it is robust and is not
sensitive to spurious details. However, the results presented do not report on the

problem of overlap between objects in the image. A large number of features is required
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to construct a neural classifier and is too large to ensure fast computation; also,

detection has been restricted to rear and front views of pedestrians.

Poggio and Papageorgio [18] modified the object detection approach from [14] for
application into a real-time system. They improved the pattern classification technique
by removing the need to perform the feature selection process. Instead, the entire set of
Haar wavelet features are used to train a SVM classifier that can effectively handle
high-dimensional feature spaces populated by a small data set. By extending the static
representation into the time domain they claimed that the system is able to provide a
level of information approaching that of a dynamic system. The system is able to learn
the important characteristics of the physical structure and dynamics of people as they
appear in the video sequences. In this manner, the need for explicit shape or motion
models is completely avoided. A drawback of this system is in the searching process,
since they applied object templates to match with the objects in the image the process

becomes time consuming.

Statistical shape models have also been applied to detect and track the contours of
persons. An early work was proposed by Baumberge and Hogg [19]. They used the
combination of an Active Shape Model (or Point Distribution Model) and a Kalman
filter for real time pedestrian tracking. In this system, the initial contour position and
scale were calculated by a segmentation scheme using background subtraction. The
active shape models, which represented pedestrians in several shapes based on
B-spline as showed in Figure 2.3, are then applied to contour the pedestrian in the

subtracted image. In the stage of tracking, the Kalman filter is used in order to control
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spatial scale for a feature search over successive frames. This method provides good
results for contouring a moving pedestrian as the pedestrian poses and views are
sufficiently well represented in the training set. Unfortunately, the Kalman filter is
restricted to situations where the probability distribution of the state-parameters is
unimodal. In the presence of occlusion or a cluttered background resembling the objects

being tracked, and complex dynamics, the distribution is likely to be multi-modal [5].

Figure 2.3: Principal component analysis on a data set of pedestrians represented by
B-splines; shown is the shape variation along the principal component [19]

The work of Isard and Blake [20] described a complex motion model with the stochastic
differential equation then combined this approach with deformable templates to track
people. They proposed the CONDENSATION algorithm [21] as a tracking method. The
CONDENSATION algorithm uses “factored sampling” in which the probability
distribution is represented by a randomly generated set. CONDENSATION uses learned
dynamical models, together with visual observation, to propagate the random set over

time. The result is the highly robust tracking of agile motion. However, the
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CONDENSATION tracker has difficulty with real-time implementation for multiple
objects tracking since it requires complicated shape models and a large number of

samples for precise tracking performance.

Recent work by Tissainayagam and Suter [22] applied a cubic B-spline to contour the
silhouette of moving objects and tracked them with a lower dimensional shape space
that proved to be fast and efficient. In order to make the tracker robust and reliable,
when the object of interest is moving with multiple motion they coupled the tracker,
based on a Kalman filter, with an automatic motion-model switching algorithm based
on the interacting multiple model (IMM) algorithm. As the example result of this

method shows in Figure 2.4, the tracker is able to recover from the occlusion.

Figure 2.4: The tracking results from Tissainayagam and Suter [22]

Another recent work of Kang ef al. [23] employs B-spline for contouring the object and
proposes improvement of the CONDENSATION tracker for real-time multiple people
tracking. They introduced Competitive CONDENSATION, based on the
Self-Organizing Map (SOM) as a discrete shape model for human shape representation.
This allows the reduction of the shape space to one discrete valued parameter.

They then used the competition rule, which requires a small number of samples to track
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multiple people. The outcome of this technique, shown in Figure 2.5, is quite promising

and effective as it performed in real-time.

Figure 2.5: The example outcome from Kang et a/. [23]

Silhouettes are also employed as cues for tracking and detection. For instance,
Haritaoglu et al. [24] introduced the W’ system for real-time people tracking in
monochromatic imagery obtained from a stationary camera. W’ uses stereo information
in combination with shape analysis to locate and track people and their parts (head,
hands, feet, torso). The system detects objects through a background subtraction process
and then simply classifies those objects as people, vehicle, or other on the basis of static
size and shape properties and through the analysis of shape periodicities. The shape
information is implemented using a cardboard model that represents the relative
positions and sizes of the body parts. Along with the second order predictive motion
models for the body and its parts, the cardboard model can be used to predict the
positions of the individual body parts from frame to frame. Template matching is

employed to track body parts instead of using the shape model when a person is
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occluded. However, W has a limited capacity to handle occlusion and to identify people

after occlusion.

Later, Haritaoglu et al. [25] developed the Hydra system to deal with tracking multiple
people in monochromic imaginary, which was an essential an extension of the w
system. Hydra attempts to detect the heads of people in groups and track them through
occlusions. It employs silhouette-based shape models and temporal texture appearance
models. Although effective in many situations, these 2-D appearance models will not
cope well with large rotations in depth during occlusions. Hydra is therefore quite
effective at tracking people through occlusions as they walk past one another but it does
not cope well when people leave a group in a different direction from that in which they

entered it.

Apart from the use of silhouettes, colour is another cue that used for tracking people.
Wren et al. [26] presented the use of the smalil blob feature to track a person in an
indoor environment. In their real-time person finder system “Pfinder”, models and
trunks the human body are defined using a set of “blobs”. Each blob is described in
statistical terms by a spatial (x, y) and colour (Y, U, V) Gaussian distribution over the
pixels it consists of. The blobs typically, correspond to the person’s hands, head, feet,
shirt, and pants. A statistical model is also constructed for the background region where
a Gaussian distribution in terms of colour values describes each pixel. At initialisation,
the background model is used to identify a foreground region with pixel values other
than those given the background model. A model-building process follows where blobs

are placed over the foreground region. This process is guided by a 2-D contour shape
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analysis that attempts to identify various body parts using heuristics. Tracking involves
a loop of predicting the appearance of the person in the new image, determining for
each pixel the likelihood that it is part of one the models, and updating the statistical
models. The strength of these approaches is the comprehensive feature selection it
offers, which could result in more a robust performance when the cost of computation is

not a major concern.

Heisele et al. [27] used groups of pixels as basic units for tracking. A clustering
technique that combined colour (RGB) and spatial (x,y) dimensions is used for pixel
grouping, because the adding of spatial information makes clustering more stable than
using only colour information. The obtained pixel groups are adapted iteratively from
one image to the next image using a k-means clustering algorithm. Due to the fixed
number of pixel groups and the encoded one-to-one correspondence over time, tracking
these units is straightforward. Although, the outcomes of the proposed technique have
shown promising initial efficiencies on tracking people, there is no guarantee that units

will remain locked onto the same physical entity during tracking.

McKenna et al. [11,28] introduced an adaptive background subtraction method that
combines colour (RGB) and gradient information to cope with shadows and unreliable
colour cues, to track groups of people. The system tracks people through mutual
occlusions as they form groups and separate from one another. They employed colour
information to disambiguate occlusion and to provide qualitative estimates of depth

ordering and position during occlusion.
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Wenmiao Lu, and Yap-Peng Tan [29] used a colour (HSV) histogram based recognition
technique for tracking moving people. Their system aims to resolve the identity of each
tracked person after an occlusion. The system also uses a background subtraction
method for detecting moving people in the scene and localizes them into confined
regions through an analysis of image moments. Then they employ HSV colour
histograms to each of the people to aid in the tracking process. They claim that their
proposed recognition method is robust. Although the robustness is provided by the

colour-based technique, concern remains regarding the computationally cost.

2.4 2-D approaches using the top-down view image

This section discusses works that detect and track human movement from the top view
image. Top view images are obtained from a camera positioned looking down on a
scene, as in Figure 2.2. Little work has so far been carried out in this area despite the
clear advantage is offers in terms of avoiding the overlap of people present and multiple
occlusions. It also offers the advantage of needing to track movement perpendicular to
the image since depth does not change. This makes this image approach highly suitable

for applications involving people counting.

Rossi and Bozzoli [30] developed a system for tracking and counting moving people in
greyscale images. Their system applied a motion detection module using temporal
change detection and histograms to detect whether any person has entered the scene. In
the tracking stage, a tracking module based on a prediction method using a simple

trajectory module and template matching based on a correlation method with
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a three-step search procedure is applied to follow people until they reach the counting
line. The template matching process in this system was a major drawback because it is
considered to be extremely time-consuming and therefore unsuitable for real-time
applications. Also, the detection mechanism in this system uses motion and therefore
can only be applied to detect people in consequent images which have a static

background.

Zhang and Sexton [10,31,32] applied a Model-specified Directional Filter (MDF) and a
simple circular model matching process to track head locations in the greyscale images.
The MDF is a form of a specially shaped Gaussian filter that combines the general
Gaussian filter with a particular shape model. It is introduced for use as a detector that is
able to provide initial or candidate locations for diminishing the searching time in an
image. A circular matching technique is then applied to contour the pedestrian’s head.
An advantage of this method is it can be applied to detect and track pedestrians in an
image with both static and dynamic backgrounds. However, this technique is found to
have difficulties in detecting unusual head shapes corresponding to pedestrians wearing

hats or with unusual hairstyles.

An algorithm called “Closed-world tracking” used for real-time tracking was proposed
by Intille and Bobick [33]. The tracking method is based on contextual information,
used to simultaneously track multiple, complex, non-rigid objects. In the detection
stage, a YUV-based background subtraction technique that uses colour information was
applied, to remove the background. The thresholding and three dilated operations were

performed to eliminate noise and gather the broken parts of the objects respectively.
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Then a fast bounding box-merging algorithm was employed to cluster the small group
of blobs and the resulting blob image for one frame was provided. Four properties of
each object, which are average colour, position, velocity, and size, are computed and
employed in the tracking process. Unfortunately, the system is found to be very

sensitive to threshold setting in the matching process.

Schofield et al. [7,8] applied a neural network to identify different conditions of the
background scene in order to count the number of people in the image. They used sub-
samples of the binary images of each of the background scenes, which were obtained by
thresholding the background image, as training sets for classification. The RAM-based
neural network classifier is applied to the training set for discriminating between parts
of the background scene and non-background objects. In the form described in this work
it is unable to provide information about the actions or intended actions of people in the
scene and it is unsuitable for application to images with moving backgrounds such as

images of people on an escalator.

Jae-Won Kim et al. [34] proposed an approximated convex hull algorithm to track
passing people into the building for a counting purpose. This work also employs
background subtraction and thresholding methods in the detection process where the
interested regions are provided. A boundary box is then estimated for each of the
regions in order to enclose each object. A sophisticated geometry algorithm is applied
involving the determination of the smallest convex set or "convex hull" containing a
discrete set of points to extract the object features such as area, centre and boundary

inside the bounding box. As argued previously, these features are less changeable
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therefore they can be used for tracking. In the tracking process, the simple convex hull
of each person within the bounding box in the tracking area is approximated. Then the
bounding box is rotated in 15 degree steps as illustrated in Figure 2.6 to provide more
tracking information and in order to make the tracking more accurate. This work
provided a promising 96% accuracy for counting people correctly. However, this

technique is unsuitable for images with dynamic backgrounds.

Figure 2.6: The convex hull approximation from Jae-Won Kim e al. {34]
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2.5 Summary

A review of the literature related to human motion analysis or “people-tracking” has
been provided. The scope of this review was limited to those works regarding analysis
of human movement that focus on the motion of the whole body and human detection
and tracking methods in 2-D. Two main approaches were discussed: 2-D approaches
using a side view image and 2-D approaches using a top-down view. Although a
number of promising works in this area already exist, many issues are still open such as
image segmentation, use of models, tracking versus initialisation, multiple persons,
occlusion and computational cost etc. Consequently, some of these issues will be

considered in this thesis.

In the following seven chapters, a novel motion detection and person tracking system
will be developed and analysed. First, the object detection technique used to identify
candidate locations will be presented. The data accumulated from the object detection
technique will be used to build a database, which in turn will be employed as a source of

data for training of neural networks and system testing in subsequent chapters.
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Chapter Three

Object Detection & Data collection

3.1 Introduction

In this chapter, discussions regarding the areas of object detection and data collection
are presented. The purpose of object detection is to detect and locate objects within an
image in order to provide candidate locations for recognition and tracking. These given
locations are used as initialisation for the recognition process and the tracking of
objects. Simple methods based on background subtraction and amplitude projectors are

used on “intensity” or “grayscale” images for object detection.

The object detector consists of three essential parts shown as a block diagram in
Figure 3.1. The first block is the Background subtraction block; the inputs to the block
are the captured image and a previously stored static background image (which is a
previously captured input image without objects present). The output from the block is
the subtraction of the static background image from the input image. The result is an
image that represents objects presence by means of pixels of various intensities, i.e.

shades of grayscale. Such shades of grayscale are redundant information as far as a
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simple detection is concerned and the subtracted image is therefore passed through a
Binary transformation block where it is converted to a binary image that has only two
intensity levels, namely black and white. Then it is passed through a Co-ordinate
provider block where the co-ordinates, which consist of row and column positions of
the objects in the image, are defined and given. In order to view the object locations, the
provided co-ordinates are then fed into an Image marking block where the input image
is plotted using the positions of the co-ordinates obtained. The techniques used in these
four blocks of Figure 3.1 are explained in more detail in the following sections: Section
3.2 background subtraction, Section 3.3 binary transformation and 3.4 co-ordinate

provider.

The outcome of the object detection block is affected by both the data collection and
recognition processes. Consequently, the manner in which data is collected is explained
and demonstrated in Section 3.5. Section 3.6 details experiments and evaluations that
have been performed on this detection method and Section 3.7 summarises and

discusses the outcomes of the detection method.

stored background
u‘nige Co-ordinates
v|r'|pl.lt__,-_ Backgmund N E"lﬂi‘:’lfy N Cg-nrd'jnate l N I'm.ﬁge +lﬂarked
image subtraction T "| transformation "l prowider | marking image
Subtracted E’ﬁlﬂf}? +
image mage

Figure 3.1: Object detection block diagram
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3.2 Background subtraction

Background subtraction is a simple technique used to obtain figure-ground
segmentation. The use of background subtraction is very popular and has been applied
to many works as in [24,27-29]. In this work, background subtraction is employed to
extract objects from the background image. The technique involves subtracting a stored
background image Iper(iyf), Which contains no objects, from the input image I,ea(iyj).
The result of this subtraction provides the contents difference in each pixel position in
terms of intensity. Since the background image was used for subtraction, this resulting

image is called a background subtracted image I,,,(i,j) and it can be defined as [35]:

[sub(i:j):]ped<i:j)“1bac/¢(i:j) 3.1

where [ denotes the pixel row and j the pixel column

The subtraction process is demonstrated in Figure 3.2. The magnified background-
subtracted image is shown in Figure 3.3. Note that due to the presence of negative
intensities the background-subtracted images, shown in Figures 3.2 and 3.3, have been

adjusted for clarity.

The background-subtracted image (/) contains both negative and positive intensities
as can be seen in the histogram illustrated in Figure 3.3. This is simply because the
object intensity could be greater or less than the background intensity in any given
image. For example where the intensity of the object is brighter than that of the

background the difference in contrast is positive and vice-versa.
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Irmage with an Object Background Image Background Subtracted Iinage
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Figure 3.2: The background subtraction process
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Figure 3.3: The background-subtracted image and its histogram

From the histogram it can be assumed that those pixels with an intensity level around
zero corresponds to the background because the area represented by the background in
the subtracted image is larger than that which corresponds to the object. Although, the
backgrounds of both the input image and the stored image are of the same scene, the
subtraction of the two will not lead to zero intensities since the two images are captured
at different times with slightly different light conditions. This also apparent if two

background only images are subtracted, this is shown in Figures. 3.4(a) and (b).

226~



CHAPTER 3 Object detection & Data collection

Background Image {1) Background Irnage (2)

RN

« 107 Histogram of Two Background Subtracted Image
35 T ¥ T T T : :
e L N .
r T L AT S
T : : : : : ;
= : ' ' ] ) :
2 e TRREb hAhiS rRRELEE b R Amemeses PR
k= ; i : ' ‘ :
s L R
s R A B A
e S S & B e A
05 bneae O s Y B 1 EPI SR LN S
o ]
B DO T M 111111 3 T N
20 15 40 -5 0 5 10 16 20

Fixel Intensity Level

Figure 3.4 (b): Histogram of the background subtracted image

From the histogram, it can be concluded that most of the background intensities lie
around the zero area after subtraction. This information is very useful in determining a
threshold to eliminate the foreground from the background. How to use the information

from the histogram to define the threshold is discussed in the next section.
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3.3 Binary transformation

The background-subtracted image shows foreground and background as pixels of
various intensities, which is still too detailed for segmentation purposes, which need
two intensity levels. In order to distinguish between the foreground and background
pixels, two levels of intensity suffice. To reduce the information within Iy, it is
therefore appropriate to transform the background-subtracted image to a so-called
binary image in which each pixel assumes only one of two discrete values, which
correspond to on (binary 1), and off (binary 0) [36]. This binary transformation can be
accomplished through thresholding, which is a simple and fast method [37]. By defining
a range of brightness values in Iy, pixels within this range are regarded as belonging to
foreground whereas all other pixels are considered as being part of the background.
Using the histogram of I, as discussed in the previous section, the threshold can be

defined.

From the histograms in Figures 3.3 and 3.4 (b), it can be assumed that the intensity
values around zero with large numbers of pixels correspond to the background pixels. In
order to distinguish the foreground from the background, two thresholds (negative and
positive), are required for segmentation. Only one threshold will suffice if only the
absolute intensity values of the subtracted image are used. The histogram of the absolute
intensity values is shown in Figure 3.5. The standard deviation of the absolute intensity

histogram is useful in defining the threshold value.
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Figure 3.5: Histogram of absolute background subtracted image

The standard deviation (o), Iy, based on the elements of the absolute subtracted image

is defined as [38]:

n

T lgﬂq DT 62

n

Imcan - Z ll\ub (l ])| (33)

mxXn = 7o

where |Ly(iyj)| is the absolute subtracted image, Ineqn the average value of the subtracted

image, m the number of pixel columns and » the number of pixel rows.
Therefore the threshold value is defined as:

Threshold = Tx1, (3.4)

Where T is the multiplier number in order to adjust the threshold value

29-



CHAPTER 3 Object detection & Data collection

Having defined the threshold; the binary image Ipinary is obtained by applying the

threshold to the absolute subtracted image as follows:

o 1 for \I,,(, )| < Threshold
I7inary( a]) = { ' ’ | (35)

0 for |I,,(i, )H|>Threshold

sub

After thresholding, the foreground intensities can be easily separated from the
background intensities as shown in Figure 3.6. The outcome of thresholding is a binary
image containing white-background and black-objects. As can be seen in the images,
this simple technique is highly effective in the rough extraction of objects from the

background. Experiments carry out on the threshold defining is discussed in Section 3.6.

Threshold setting = 3¢

-

e

" (4 Subtracted image / {b) Binary Image

Figure 3.6: The subtracted image and its binary image
Although, the thresholding process is able to provide a rough location of the object it is
still unclear and the boundaries of the object are disjointed. To enhance the binary
image, one of the so-called morphological operations [37], which are methods for
processing binary images based on shapes, was employed. The method used in this

work relies on so-called erosion operations, these operations use rules that state that the
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condition of any given pixel in the output image is determined by applying a so-called
operation rule of erosion to its neighbouring pixels. The operation rules of erosion are
defined by assuming that if every pixel in the input pixel’s neighbourhood is on (or
equal to one) then the output pixel is on. In a similar manner, if the neighbouring pixels
are off (or equal to zero) then the corresponding pixel in the output image is off. It can
be of arbitrary shape and size, and is represented by a structuring element, which is a
matrix consisting of only 0’s and 1’s. The centre pixel in this structuring element
represents the pixel of interest, while all other elements in the matrix represent the
neighbourhood. Figure 3.7 (b) illustrates the image obtained after the application of the
erosion operation to Figure 3.6. The erosion operation applied used a structuring
element consisting of a 3-by-3 block of pixels containing 1’s. Figure 3.7 (b) shows that
the disjointed boundary of the object is clearer after enhancement. The neighbourhood

choices for erosion are discussed further in Section 3.6.

Threshold geling =30

& d

{(a} Binary ilhage / (b) Enhancedimage

Figure 3.7: A binary image and its enhanced image
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3.4 Co-ordinate generation

The purpose of co-ordinate generation is to obtain the co-ordinates that are used to
locate the pedestrians in the original input image using the information contained in the
binary image. The co-ordinate generation process consists of three processes as follows:
firstly the amplitude projection process secondly the smoothing process and thirdly the
pixels difference process. The three blocks of the co-ordinate generator are shown in

Figure 3.8.

Co-ordinate generation process
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unage -1 projection | Column projectionw methed
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Figure 3.8: The co-ordinate generation process

3.4.1 Amplitude projection

The desired information within the binary image is object size, which consists of a
height and a width. To extract this information, the binary image needs to be projected
onto two graphs where the height and the width of the object within the binary image
are analysed. Information about the approximate size of the person’s image is obtained
by measuring from test images. Examples of a person’s image size are shown in

Figure 3.9, the height of a person (Figure 3.9, H) in the image varies as it moves and the
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size varies between 50-90 pixels depending on a person’s walking-posture, the width
(Figure 3.9, W) in the image is not affected by a person’s walking-posture and the width

range lies between 60-80 pixels.

H : Hetght ~ 50-9% pixzels
W Wadth ~ 60-80 puels

Figure 3.9: Examples of image of people’s walking-posture

To process the projection, each row and column of the binary image is averaged as

follows [39]:

Ph(i) = {;ZI( /) (3.6)
Py(j) = %21 ) 3.7)

where M is the total number of rows, /V the total number of columns

The obtained Ph, a so-called horizontal or row projection, contains information about
people’s height in the image by means of its amplitude. The maximum amplitude,
which equals I, represents a column position that contains no object pixels. Column
positions with a Ph amplitude lower than the maximum has pixels that belong to people
as well as pixels that belong to noise which may be caused by the binary transform

process. Averaging the amplitude of the pixels of the binary image row by row and
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column by column can be regarded as projecting these amplitudes onto one point.

The averaging technique is therefore referred to as amplitude projection.

A similar method has been applied to Py, a so-called vertical or column projection that
contains information about a person’s width in the image by means of its amplitude.
The projections are normalised and their maximum amplitudes set to 1 (no pedestrian’s
pixel presented in that row or column) to simplify the evaluation. Therefore the areas in
the projections with amplitudes of less than one, especially at deep valley areas,
represent the pedestrian’s areas and the approximate height and width of people shown

in Figure 3.9 are very useful in aiding to identify a pedestrian area in the projections.

An example result of Ph and Pv of a binary image are plotted and illustrated in
Figure 3.10. From this figure, it is obvious that the deep valley areas in Pk and Pv occur
due to the replacement of the person’s height and width with their relevant projections.
These areas of the projections with high gradients can be used to define the positions of
the pedestrians. Once the high gradients in the projections have been detected the object
positions can be obtained. Consequently, gradient detection is desired in order to obtain
the object position, however, there are small gradients within the projections, which
cause redundant co-ordinates. Therefore the obtained projections need to be smoothed
or filtered before passing through the pixel difference block. A method used for

smoothing is discussed in the next section.
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Figure 3.10: The horizontal and vertical projections

3.4.2 Smoothing method

Due to the nature of the obtained projections, some filtering is required because of the
presence of small gradients or noise from the projection process. Several techniques are
available for this operation. A simple moving average technique such as median filter
[40] cannot eliminate as much of the noise in the projections as desired. Consequently, a
more complex but more satisfactory type of smoothing is needed.
Steinberg et al. [41] have proposed a smoothing technique which uses a parabolic
function, which can reduce small point-to-point data variations, consequently, this

technique is chosen for this application. Since this smoothing technique is based on
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a parabolic function it is referred to as the least square parabolic smoothing technique

[41] for more details see appendix A.

The smoothed projection, Pgmoomes, is defined as [41]:

Pronea 1 +1) = ——3——x 3G ~T=20k02)Px+1)  (38)
dn(n”-4)

k:(_(nz_l) fo (nz—l)) , I=bxn and b=0,1.2,...m/n

where Px are the samples of projection which need to be smoothed, k the coefficients of
the parabolic function, n the number of the projection or gradient samples in odd

numbers that require smoothing and m the total number of the projection samples.

The number of the gradient samples, n, can be adjusted in order to increase the length of
the smoothing process, as will be explained in the experiment in Section 3.6. After
smoothing by the least-square parabolic technique, the small gradients in the
projections, Pv and Ph, are reduced. An example with Ph has been performed showing
smoothed Ph using 9 projection sample plots in Figure 3.11 (c¢). From these results in
Figure 3.11, it can be seen that the least-square parabolic technique can eliminate the
small amounts of noise within the projection. Although the slopes of high gradients are
steeper than the slopes of the original projection, these are very useful for generating the
co-ordinates that are used to locate the pedestrians. The merit of the steep slope can be
seen when the smoothed projection passes to the next stage of the system described in

the next section.
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Figure 3.11: The horizontal projection and its smoothed

3.4.3 Pixel difference method

The smoothed projections are fed to a pixel difference block in order to generate the co-
ordinates, which are obtained by detecting high gradients in the projections. The
simplest method of gradient detection is to calculate the difference between pixels along
the rows of Pv and the columns of Ph. Before calculating the projections, the response
of the gradient detection must be explained in order to clearly understand the method.
The first calculation of the pixel difference is referred to as the first order pixel
difference. The response of the first order pixel difference is positive when the slope of
the gradient increases (See 2a in Figure 3.12). In contrast, the response is negative, as
the slope of the gradient decreases (See 2b in Figure 3.12). If the response of the second
order pixel difference is calculated then it will contain a zero crossing the direction of

which is determined by the sign of the gradient. If the gradient or first order response is
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positive the zero crossing is in a negative direction [35] (See 3a in Figure 3.12) and

vice versa (See 3b in Figure 3.12).
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g pixel difference gradientz V
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= 4I Second order of
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MNumber of pivels Mumberof pikels

Figure 3.12: The responses of pixel difference detector

To obtain the co-ordinates, the first and second order pixel differences are applied to the
projections. Due to both the increasing and decreasing gradients in the projections it is
possible to indicate the object locations, the second order response is desired because its
zero crossing provides the positive response for either increasing or decreasing
gradients. Then only the positive positions of the second order response are found and

used as components of co-ordinates that consist of row and column positions.
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Figure 3.13: The comparison of the second order response of horizontal projection
using two types of smoothing technique

The technique mentioned above is performed on Pv and Ph in order to obtain co-
ordinates. Each positive position of the second order response provided from Py and Ph,
is used as a row and a column component in each co-ordinate respectively.
Consequently, the number of co-ordinates depends upon the number of high gradients
that are provided from the projections. Figure 3.13 illustrates the second order response
of Phgmoomea using two types of smoothing technique, median filter and the least square

parabolic, in order to compare the results of these smoothing techniques.
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From Figure 3.13, it is clear that the smoothing technique is a significant stage in the
proposed object detection process because of the redundant co-ordinates that will be
generated if the noise in the projections can not be eliminated, leading to costs in
computing time. In addition, these results also show that a simple smoothing technique

is not adequate in this application.

After the co-ordinates are obtained, they are passed through the image-marking block
where, the input image is fed in and cross-signs are applied to it, located by the
co-ordinates obtained providing a marked image. A comparison of the marked images
obtained using both the median filter and least square parabolic with 9-projection

sampling in the smoothing process, is illustrated in Figure 3.14.

The marked image ugsing median filtsr The marked image using least square parabolic

Figure 3.14: The example of the object detection outcomes with two methods

As shown in the marked images, many cross-signs are marked on the image in and
outside of the object area. In order to remove the co-ordinate positions outside of the
object area, the co-ordinates have to be classified before they are plotted on the image.

To classify the generated co-ordinates, it is necessary to ensure that each co-ordinate is
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in the object area. A mean value of a square metric that is captured the pixel of the co-
ordinate and its neighbourhood from the binary image, is used to identify the co-
ordinate locations in the area of interest. If the square metric mean is under 50% of the
representative object value, it is classified as true and plotted on the image, this is
because the mean value of the metric represents the connectivity of the pixel, otherwise
the co-ordinate is ignored. An example of this classification process is shown in Figure

3.15 and the results of its application to the images in Figure 3.14 are illustrated in

Figure 3.16.
' ' Binary image | ' '
i T 1.0 0 0
1 0 0 0 O
The co-erdinate position 1 0 0 0 0
i 0 0 0 0 0
g 0 0 0 0
The mean of this metric is 0.16
- Ifthe mean < 0.5 is plotted otherwise ignore i
H=0
O=1

Figure 3.15: The process of co-ordinate classifying

Most of the co-ordinate positions are now located on the object area, however, there is
still a large number of co-ordinates per object, where in fact, each object requires only
a single cross-sign to identify it. This is because the two projections used to obtain the

co-ordinates are smoothed.
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The marked image using least square parabalic

The marked image using median filtér
e

Figure 3.16: The example of the object detection outcomes with two methods

The task of reducing the level of redundancy is focused on the sampling of the chosen
smoothing method, i.e. the least square parabolic. By increasing the number of gradient
samples of the least square parabolic, the projections of the binary image are smoother,
which in turn results in a decrease in the number of co-ordinates obtained as listed in
Table 3.1. This information is using in selecting of the gradient sample in the smoothing
the projections of the binary image. The criterion for selecting the gradient samples will
be discussed in details in Section 3.6. Some marked images obtained for different levels
of sampling are shown in Figure 3.17. Also Figure 3.18 shows the number of gradient

samples against the number of co-ordinates obtained.

Using 1% madient samplers I
g St "

Figure 3.17: The results of marked images with various numbers of gradient samples
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Table 3.1: An example result of increasing the number of gradient samples of the test
image Figure 3.16
Number of gradient

Nuniber of obtained | Number of gradient | Number of obtained

samples co-ordinates | samples co-ordinates
9 26 31 2
11 17 33 2
13 11 35 2
15 9 37 2
17 3 39 0
19 6 41 1
21 6 43 1
23 3 45 1
25 3 47 1
27 3 49 0
29 2 51 0
- Humber of gradient samples V8 Nwumber of co-ordinates
I T T T

..............

HMumber of provided co-ordinates

5 10 15 20 25 30 35 40 45 0 55
Iunber of gadient samples

Figure 3.18: The graph represents the result of adjusting the number of gradient samples

Further experiments carried out on the adjustment of the gradient samples are discussed

in Section 3.6.
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3.5 Data collection

After the objects in the image have been located using the co-ordinates provided by the
object detection process, the sub-images that contain people’s heads need to be
collected for use as data sets for classification which aims to classify people’s heads.
Unfortunately, the obtained co-ordinates can only be used to roughly locate the
pedestrian, in most cases the location of pedestrian’s head cannot be directly identified.
However, the application of a window around the co-ordinates can solve this problem.
The window selects a co-ordinate as a centre and has to be made big enough to
incorporate the head, even in the event that the selected co-ordinate is on part of the
body. From the information provided about the size of the pedestrian in Section 3.4, it is
found that a suitable window size for this task is 64-by-64 pixels. Having selected the
window area a sub-window large enough to contain a whole head is used to perform a
sub-scan of the selected window region. A suitable size for the sub-window of 32-by-32
pixels was obtained by measuring test images. The sub-window is scanned through the
region in a raster scan pattern using a shift of 4 pixels in each axis; each window will
therefore provide 64 sub-windows. These sub-windows that may contain either head or
non-head images are collected and used as training set in a recognition process to be
discussed in the following chapters. An example of the data collection process is shown

in Figure 3.19.
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Figure 3.19: Image data that obtains from one window

3.6 Experiments

In this section the experiments performed to test the detection method are explained and
the results obtained are presented. The experiments involve threshold adjustment,
changing the size and shape of the neighbourhood in the erosion operation, changing the
number of gradient samples in the smoothing process and simulation of the object

detector as a whole.

3.6.1 Threshold adjustment

This experiment considers the effects of adjusting the threshold level with regard to the
appearance of the threshold-image. The thresholding process is the first block of the
detector having as its input the subtracted image it is therefore important that
appropriate threshold settings are used since the quality of the output will affect the

remainder of the detection process. The initial threshold level is selected using the
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standard deviation (SD) of the absolute subtracted image; this is then increased using

the multiplier (7) as in Eq. 3.4.

The two test images shown in Figure 3.20 are background subtracted and then applied
to the thresholding block. The threshold setting is varied by the multiplier values that

are increased in steps of 0.5 from 1 to 5.

The wmakimage Mot

The lesimage No.2

Figure 3.20: Two test-images for threshold adjusting

Threshold setting =o Threshold setting = o

Figure 3.21: The results of threshold-image, threshold = o.
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In Figure 3.21 the threshold level is set at o, the background and object shadow are still
apparent in the images which indicates that some of the background intensities are
larger than the threshold at . In Figure 3.22 the threshold level has been increased to
2.5c, in this case almost all of the background pixels have been removed with some

shadows remaining. Some of the object pixels have also been removed.

Threshold setting = 2. 6¢ Threshold setiing =2 56

pceN

Figure 3.22: The results of threshold-image, threshold level at 2.5¢ some residual
background is still around the objects

By further increasing the threshold level, not only are most of the background pixels
removed but also more object pixels. This is not necessarily a problem since the erosion
process is able to replace some of the object pixels that have been removed. Figure 3.23
iHlustrates the results of thresholding the images at 3o, 3.5 and 5o. The larger the
threshold level becomes the more of the object information that is lost. Thus the
criterion used to choose the threshold level is the point at which most of the background

is removed for the loss of less of the object.

47-



CHAPTER 3 Object detection & Data collection

From the results presented, the choice of the thresholding level to produce the binary
image transformation based on the given criterion is 3.50. Although some of the object
information is lost, it can be enhanced by the erosion process discussed in the next
section.

Threshaold setting =85 Threshold seting = 3c

Threshold setting = 3.50 Threshold setiing = 3 50

Thresholdseting =5c Threstiold setling =56

&8 A

Figure 3.23: The results of threshold-image, threshold level at 3¢, 3.56 and 5.

48-



CHAPTER 3 Object detection & Data collection

3.6.2 Changing shape and size of the structuring element in the erosion operation

In this experiment the shape and size of the structuring element is discussed in order to
analyse the affect of the erosion operation on the binary image. The threshold level was
set at 3.50 according to the discussion in the previous section. The structuring element
has a square shape of size of 3-by-3 pixels all containing 1’s, as shown in Figure 3.24.
The square is increased in size using odd numbers (i.e. 5-by-5, 7-by-7). The results of

the tests are illustrated in Figures 3.25 and 3.26.

i1t (1)1 (1]1

117101141
T (i1 ]1]1]1]1
1|1]1]|3 pixels LT[ T 1|1 7 pixels
r[1]1]] T[T [1[1]1

11111111171

F——— Tpixels ——

Figure 3.24: Structuring element size 3-by-3 pixels and 7-by-7 pixels

3-by-3 strueturing etement 3-by-3 structuring element

& ) Y

&

Figure 3.25: The enhanced image using 3-by-3 structuring element
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From the images in Figure 3.25, it can be seen that the boundary disjoints of the image
have been improved but the object still contains unfilled areas. Further increasing the
size of the structuring element results in larger object dimensions though the unfilled
pixels in the objects are now filled. Figure 3.26 shows the result of using a structuring

element of 11-by-11 pixels.

11-by-11 structuring element 11-by-11 structuring element

Figure 3.26: The enhanced images with 11-by-11 structuring element

From Figures 3.25 and 3.26 it has been noted that the larger the structuring element the
larger the object dimensions become. The increase in the number of object pixels as the

structuring element size increases is listed in Tables 3.2 and 3.3.

The three columns in the following tables show: the structuring element dimension, the
increase in the number of object pixels after the erosion and the percentage increase in

comparison to the image prior to its enhancement.
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Table 3.2: The calculatlon results atter erosxon of the left column of Figure 3.23.
nhe Pixel increasing comp

sgtmr:turmg elgment dvmensmn | NUm ‘ e
Threshold image 1545 0
3-by-3 1942 257
5-by-5 2207 42,85
7-by-7 2456 58.96
9-by-9 2702 74.89
11-by-11 2952 91.1

Table 3.3: The calculation results after erosion of the right column of Figure 3.23.

Structuring element dimension Ngn}hie,r Qfgj:ﬁ ;?Exels ';iffs ;?gge:’r:g‘%i‘;:? Ikaerfgg;h;
Threshold image 2033 T
3-by-3 2967 22.97
5-by-5 3488 35.78
7-by-7 3964 47.5
9-by-9 4431 58.98
11-by-11 4913 70.83

The results show that the number of the object pixels increases with the size of the
structuring element. The object image area gets bigger and all the objects in the image
are solid, also the object’s shape is maintained. There is a trade off between increasing
the object size and achieving a solid object shape. When the enhanced image is too
large, when points are plotted onto the object some will be located outside of the actual

object image, also the cost of unnecessary computation is introduced to the detector.

In our application, the 3-by-3 structuring element is found to provide satisfactory
results. This decision is based on the fact that it is able to form a jointed object
boundary, fill most of the empty pixels inside the object and has a negligible affect on
the size of the enhanced image. Although, some of empty pixels still remain, it is very

small number in comparison to the total number of object pixels.
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Having selected two of the parameter settings for the blocks of the object detector.
The last setting parameter, the number of gradient samples of the smoothing process, is

now discussed in the next section.

3.6.3 Changing the number of gradient samples in the smoothing process

As previously demonstrated in Section 3.4.2, the smoothing of the horizontal and
vertical projections can reduce the number of candidate co-ordinates found. In order to
obtain a smaller number of co-ordinates, more representative of the number of peopie in
the image, the number of gradient samples in the smoothing process needs to be
adjusted. The two gray-scale pedestrian images shown in Figure 3.20 are employed for
testing. The initial conditions of the detection need to be defined before performing the
test. In this experiment the initial parameters of the threshold and structuring element

are set as shown in Table 3.4.

Tq}gle 34 Settjn parameters

Setting value

Gradient samples Adjusting
Threshold 3.5c
Structuring element of
erosion operation

3-by-3 pixels

The initial number of gradient samples used is 9 (the smoothing at this sampling level
is negligible), this is then increased to 51 samples. The number of co-ordinates, marked
on the object in the test image is observed, while the step of gradient sample increases.
The relation between the gradient samples and the number of co-ordinate is used to

evaluate the smoothing process; the results are shown in Tables 3.5 and 3.6.
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Table 3.5: The results of increasing the number of gradient samples of the test image

that contams an object in Figure 3.20 No.1 (left column)
Nunber of obtained I Number of gradient

ca-ordinates

co-ordinates samples
9 26 31 2
11 17 33 2
13 1" 35 2
15 9 37 2
17 8 39 0
19 6 41 1
21 6 43 1
23 3 45 1
25 3 47 1
27 3 49 0
29 2 51 0

Table 3.6: The results of inceasing the number of gradient samples of the test image
that contains 2 objects in Figure 3.20 No.2 (right column)

Number of aradient Number of ﬁbfamed Number of gradient Nuimber of obtained
samples : samples co-ordinates

9 39 31 5

1 28 33 4

13 18 35 3

15 15 37 2

17 1 39 2

19 8 41 2
21 7 43 1
23 5 45 3
25 5 47 1
27 5 49 1
29 3 51 1

In the tables the first and third columns show the number of gradient samples and their
resulting co-ordinate responses are shown in columns two and four. The results in
Tables 3.5 and 3.6 show that as the number of gradient samples increases then the
number of co-ordinates decreases. A graph of these results is shown in Figure 3.27.
Some examples of the results of the smoothing process are illustrated in Figures 3.28

and 3.29.
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Figure 3.27: The plotting of the data from Tables 3.5 and 3.6

Increasing the number of samples in the smoothing process the small gradients in the
projections are minimised, which results in a decrease in co-ordinates. From this result a
suitable number of smoothing samples is obtained and is used as the smoothing
parameter setting. A small number of co-ordinates are desired as a reduction in the
number of redundant co-ordinates is obtained, minimising the cost in computing time
and the number of images in the data set. By examining the number of gradient samples
that provides a small number of co-ordinates at satisfactory error levels in people
counting, a range from 25 to 39 gradient samples is deemed suitable. Some co-ordinate
errors are still obtained, however these errors are useful for the training stage as they
provide a balanced data set [42,43]. Consequently, these numbers of gradient samples

are utilized in the following investigations.
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False locations may be caused due to shadows or limbs of the pedestrians’ bodies
(e.g. legs), which cannot be eliminated by the background subtraction or thresholding
processes. Some of these errors can be minimised in the smoothing stage, some errors

still remain though a greatly reduced number.

11 gradient I 31 gradient samplas

o
Figure 3.28: Outcomes of the smoothing process using 11 and 31 gradient samples of
the Figure 3.20 No.I (left column)

11 dient s § 31 gradisnt samples

s

Figure 3.29: Outcomes of the smoothing process using 11 and 31 gradient samples of
the Figure 3.20 No.2 (right column)
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3.6.4 Performing the presented method on sequential images

In this experiment, sequential images are used to evaluate the proposed method.
Two sequences of 13 images are captured with the first image of each sequence shown
in Figure 3.30. The threshold and the number of gradient samples are discussed.
First, an experiment is carried out on the threshold level and discussed in terms of
sensitivity to the detection outcome. The parameter settings discussed in the previous

sections are applied in the test. These values are listed in Table 3.7.

Table 3.7: Setting parameters for testing on threshold changin

Parameters Setting values

Gradient samples 31
Threshold Adjusting
Structgrmg element of erosion 3-by-3 pixels
operation

Testimage No2

Test imagg plo.1

Figure 3.30: The images for testing from two different sources of capturing

According to the previous discussion in Section 3.6.1, the initial threshold setting is

3.50, this is varied by the o to 2.5¢ and 4.5c.
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Table 3.8: The results of adjusting the threshold level of the test image No.1 in
the Figure 3.30 contains one person

fmage frame No. Threshold levels —
1 2 2 2 2 2
2 1 1 1 1 1
3 2 2 1 1 1
4 2 2 2 2 2
5 3 2 2 2 2
6 3 3 2 2 2
7 1 1 1 1 1
8 1 1 1 1 1
9 4 2 1 1 1
10 2 2 2 2 2
11 2 2 2 2 2
12 3 3 2 2 2
13 2 2 1 1 1

Table 3.9: The results of adjusting the threshold level of the test image No.2 in
the Figure 3.30 (contains 2 persons)

Threshold levels
Hitage frame No, . Atk
L 250 3 456
1 3 3 3 2 2
2 4 3 3 3 3
3 4 4 2 2 2
4 4 4 4 4 4
5 5 5 5 4 4
6 5 4 4 4 4
7 4 4 4 4 4
8 3 3 2 2 2
9 7 5 5 5 5
10 6 6 6 6 6
1 3 3 3 2 2
12 4 3 3 3 2
13 4 3 3 3 3

The first column shows the number of the image in the sequence. The remaining
columns show the number of co-ordinates plotted on the images with regards to the
threshold level. The number of co-ordinates is used to evaluate the sensitivity of the

detector as the threshold is adjusted.
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The results in Tables 3.8 and 3.9 show that the change in threshold level through £100%
of standard deviation value has little effect on the number of co-ordinates obtained on
the output image. Consequently, it can be concluded that the detector is not sensitive to

the changing of threshold levels.

The second experiment on the sequence of images is based on the choice of the number
of gradient samples. As aforementioned, the range of gradient samples in which suitable
results are expected to lie is 25 to 39 samples, this range was obtained using the two
initial images. To provide the actual number for use in the detector an investigation of
the effect of varying the number of smoothing samples on the sequence of images is

necessary. The parameter settings are listed in Table 3.10.

Table 3.10: Setting parameters for testing on gradient samples changi

Parameters Setting values

Gradient samples Adjusting from 25 to 39
Threshold 3.5¢c
Structuring element of erosion
operation

3-by-3 pixels

The initial the number of gradient samples is set as 25 and then increased in odd steps to
39 samples, this means that the experiment produces 16 tables of data, 8 for each of the
images. 1t is unnecessary to display all of this data here, it is sufficient to observe
a selection of the results that provide an insight that allows choice of the best number of
gradient samples to be made. Table 3.11 expresses the experimental results attained
from the sequence following test image No.l in Figure 3.30 and Table 3.12 shows the
results attained from the sequence following test image No.2 in Figure 3.30; these

images contain one and two persons respectively.
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Table 3.11: The results of 25 gradient samples of image No. 1 in_F_i_gure 3.30

Niimber of . .
magotame | UGS | coordnates o JUTIELT | Number af abiect | 4 TE LAY
‘ co-ordinates ﬁ) cation 18 locate object . o co-ordinates
1 2 2 0 0 1
2 4 4 0 0 1
3 3 2 1 0 1
4 2 2 0 0 1
5 3 2 1 0 1
6 4 3 1 0 1
7 2 2 0 0 1
8 3 2 1 0 1
9 3 2 1 0 1
10 3 2 1 0 1
Table 3.12: The results of 33gradient samples of image No.2 in Figure 3.30 _
image frame 't‘ﬂ;?gggf cﬁi?d?ﬁrags = oﬁ?aﬁz;?;i! o | Number of object gz‘?::r::::fﬁgg
no. co-ordinatas cmrmspond’ to‘ object {ocate object that error to locate by
location n . co-ordindles
1 3 3 0 0 2
2 1 1 0 1 1
3 3 3 0 0 2
4 4 4 ] Q 2
5 4 4 0 0 2
6 3 3 0 1 1
7 4 4 0 0 2
8 2 2 0 1 1
9 3 3 0 0 2
10 4 4 0 0 2

The first column of the table lists image number in the sequence the second column
shows the number of co-ordinates obtained from the detector. The number of these
co-ordinates that correspond to actual object locations and the number that fail to locate
an object (as shown in Figures 3.31 and 3.32) are given in the third and the forth
columns respectively. The fifth column represents the number of objects the detector
fails to locate (as demonstrated in Figure 3.33) and the last column shows the number of

objects corresponding to by the co-ordinates.
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Zgractient samples arme No

e

Figure 3.31: Demonstrates the number of co-ordinates correspond to the objects

SHyradient swaples Fame No S

Figure 3.32: Shows the co-ordinates that fail to plot on the object area
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Shorwdert sampies Fame Hos

Figure 3.33: The detector fails to detect two objects in the image

From the results of the investigation, the number of gradient samples to be used is
chosen as 31, as this provides the most satisfactory outcome. The correct numbers of
objects are detected in every frame, for both testing images, for only a small number of
errors. Consequently, this number of gradient samples is employed as the setting for the
smoothing parameter in the detector. All of the parameters for proposed the object
detection method have now been defined. The final object detector is now tested using a

different set of sequential images to allow evaluation of the method in the next section.

3.6.5 The object detector simulation

To evaluate the object detection method presented, an investigation utilizing one
hundred sequential images will be employed. The threshold, erosion operator and
smoothing coefficient are as discussed in the previous sections; summarized in

Table 3.13.
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Table 3.13: Setting parameters of the object detector

Parameters

S ngvﬁu&ﬁf
Gradient samples 3]
Threshold levels 3.5¢

Structuring element of
erosion operation

3-by-3 pixels

For each of the one hundred images the number of people identified by the detector is
compared with the actual number of people obtained manually by counting. This allows
the accuracy of the detector to be found as a percentage. The detector is able to provide
an accuracy of around 80.2% over the one hundred images. There are several possible
causes of the failure of the detector. Firstly, the outcome from background subtraction
and binary transformation process may produce pedestrian intensity levels close to those
of the background intensity; this would result in their possible elimination by the
thresholding block. Although some of its intensity may remain and could be improved
by the erosion stage, it may not be sufficient to provide a high enough gradient in the
horizontal and vertical projections. Secondly, if the pedestrian’s location is very close to
the edge of image frame this can also result in failure, since if the distance between the
obtained co-ordinate and the edge of the image is very small, then marking is ignored by
the marking technique used. Finally, the number of gradient samples used in the
smoothing technique may need refining as it was obtained using only two test images.
Some of the results from the detection process are illustrated in Figure 3.34. The
co-ordinates obtained which represent people’s locations are used to create a training set

for a neural network.
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wigd- G-84 -
8:58.30¢

Figure 3.34: The outcomes of the detector (Frame01-Frame08)
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Framdld Frarnn13

Framatl

Frameib

Figure 3.34: The outcomes of the detector (Frame09-Frame16)
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3.7 Summary and discussion

An object detection method has been described and discussed. The three parameters
required by the detector: the threshold level, structuring element size and shape and the
number of gradient samples, have been investigated and suitable values determined. By
experimentation it has been shown that the accuracy of the detector is not sensitive to
the choice of threshold level within a given range, the dominant factor in determining

the detector accuracy is the choice of smoothing parameter.

Although the technique does not provide 100% accuracy, it is sufficient for using as a
data collection method. Due to its small time consumption, approximately 1 second per
image for the whole detection process, an abundance of data that can be obtained in a
short period of time. As aforementioned, provided that the data contains error data as
well as the people’s head data, the training set obtained will be balanced and offer a
suitable test of the recognition method. The data obtained needs to be selected and then
passed through some pre-processing; this is presented in the next chapter, prior to

information extraction for training of the artificial neural network.
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Chapter Four

Feature extraction module (FEM)

4.1 Introduction

Feature extraction is a highly important part of the image classification process applied
in this study, since before the image can be fully classified the features within the image
must be correctly identified. It typically involves two stages: training and classification.
The training stage involves the extraction of features for every image in a training set. In
the classification stage, features are extracted from an unknown image and compared to
the features of each image in the training set. The method of image analysis chosen for

feature extraction is clearly critical to the success of the image analysis [44].

In this work the data image is grey-scale and as such contains some texture information
that could be used to identify and distinguish a person’s head within the image.
Consequently, methods that can extract the texture information from the image are
required. Over the past decade, a number of approaches for texture feature extraction
have been proposed such as Fourier domain energy, co-occurrence matrices, texture

energy measure, Markov random field models, second-order grey level statistics,
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two-dimensional autoregressive model and fractal dimension, to name but a few [45]. In
most of these works, the texture of the feature is analysed for a single resolution, which
provides results with varying degrees of precision and need to be improved. Recently,
the texture extraction method based on multi-channel or multi-resolution analysis, such
as Gabor transform and wavelets, has received a lot of attention [46] and some
promising applications have been proposed [47]. Among these techniques, texture
feature extraction based on the wavelet transform is found to provide some advantages

over the Gabor technique [48].

Other than texture, Principal Component Analysis (PCA) or the Karhunen-Loeve
transform, which have been used in the application of face recognition [49,50], could be
applied to identify a person’s head image. Since each person’s head is different
e.g. hairstyle of head shape. A technique that uses a combination of the wavelet
transform and PCA has been proposed to improve the limitations of PCA in face
recognition {51]. The feature extraction techniques within this chapter are mainly

focused on the texture and PCA extraction methods.

The diagram of the FEM is shown in Figure 4.1. The data image is fed into the
Pre-processing block where the data image is transformed into another form in order to
reduce the dimensions of the image, but retain its significant information; this
transformation is made using the wavelet transform (WT). The result is a transformed
image represented by wavelet coefficients. These coefficients are then passed through
a feature generation block where the coefficients are calculated and represented in term

of features vectors, suitable for recognition. The two blocks of Figure 4.1 are explained
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in more detail in the following sections: Section 4.2 pre-processing method based on the
wavelet transform technique and Section 4.3 presents feature generation methods.
Section 4.4 shows the results of the FEM and finally a summary and discussion is

provided in Section 4.5.

Feature Extraction Module

Tmage
Data |

Features

|
generation = Features

1 Pre-Processing (i

Figure 4.1: Diagram of Feature Extraction Module

4.2 Pre-processing method

Pre-processing is an important step in image recognition. It is used to reduce the size of
the raw data before it is encoded into feature vectors suitable for classification. To
achieve this goal, the wavelet transform (WT) is chosen because its properties make it
an excellent tool for multi-resolution analysis, which is required for feature extraction
[46]. In this section, the fundamental concepts of the wavelet transform are presented

and described.

4.2.1 Wavelet transform (WT)

The wavelet transform is a technique for time-frequency analysis and has become
widely used in signal processing areas. The wavelet transform was developed from
three techniques: 1) filter bank theory, 2) multi-resolution or time-scale analysis,

particularly using pyramid representations and 3) sub-band coding [52]. Consequently,
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the giving of a full wavelet theory overview would require more than a single book;
some books and review papers available can be found in [53-57]. In this section the

basic concepts, which are necessary for this application will be represented.

Since the data image is composed of two-dimensional digital signals the two-
dimensional discrete wavelet transform (2-DWT) must be employed. The one-
dimensional discrete wavelet transform (1-DWT) is explained first in section 4.2.1.1
since the 2-DWT is based on the 1-DWT. Then the more complex 2-DWT is discussed

in section 4.2.1.2. The scaling and wavelet functions are discussed in section 4.2.1.3.

4.2.1.1 The one-dimensional discrete wavelet transform (1-DWT)

The basic process of the one-scale 1-DWT [55] is illustrated in Figure 4.2.

Highpass filter

G @————> hy (x)
x[n]— downzampling _

H (32— 4/(x)
Lowpass filter

Figure 4.2: The basic process of the one-scale 1-DWT

The wavelet transform process consists of a complementary low-pass filter H and high-
pass filter G. The transform can be performed on any one-dimensional signal, x[n],
which is fed to H and G, where x[n] is convoluted with two sets of filter coefficients
that are produced by two separate functions; the scaling function ¢() for H, and wavelet

function y(®) for G. The details of these functions are discussed in section 4.2.3. The
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filtered signals are then downsampled to generate the outputs, which are a low-pass

residue or approximation coefficients A’(x), and the high-pass subband or detail

coefficients D’ (x), each with half the length of x[n] as:

A (x)=[H*x""] (4.1)

(4.2)

42

D/(x)=[G*x""]

where the superscript (j) indicates scale, 42 the downsampling along the filtered signal

and * denotes the convolution operator.

The total signal output from the transform is the same length as the input signal. The
process of downsampling may introduce aliasing into the filtered signals. However,
when the appropriate decomposition and reconstruction filters are used, the aliasing
effect of downsampling is completely cancelled out and it is possible to perfectly
reconstruct the original signal [56]. Since the WT in this work is applied for its ability to
reduce the size of the data image, it is necessary to discuss the decomposition

process only.

Iteration of the filtering and downsampling is performed on A’(x) as shown in

Figure 4.3. The first level transformation provides the second-level approximation and
detail coefficients. If the same process is continually applied to each successive
approximation coefficient, the scale is increased at each level of analysis. As a result of
iterating, the multi-resolution 1-DWT, of which x[n] is decomposed into several scales,

is obtained. An example of a 3-scale 1-DWT scheme is shown in Figure 4.3.
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D(x)

¥

¥

G H+2)
o |
B Hi2{ S Hw) D¥(x)

=T
H 4@1 G H3z> p3(x)
H {2y 4%(x)

Figure 4.3: The 3-scale 1-DWT schemes

4.2.1.2 The two-dimensional discrete wavelet transform (2-DWT)

The two-dimensional discrete wavelet transform is more complex than the

one-dimensional case; its structure is shown in Figure 4.4.

flter along m

filter along n i
G Hiz— pl(x)
G Hy- 8 Hizy— pl(x)
X[m,n]~E
H M2 6 Hiz— lx)
H [Hi2)— 4'(x)

Figure 4.4: The process of the one-scale 2-DWT

As a digital image is a two-dimensional signal, the image transformation is performed
using the 2-DWT, which is developed from the 1-DWT described in Section 4.2.1.
The one-level or one-scale decomposition of the 2-DWT is accomplished by applying

the 1-DWT to each row of the input image, x[m,n]. Following this the same process of
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transformation is applied along each column of the transformed rows. The results yield

four types of coefficients for the one-level decomposition, which are named as follows:

diagonal detail or corner coefficient (D)(x)), horizontal detail coefficient (D|(x)),

vertical detail coefficient (D)(x)) and low-pass residue or approximation coefficient

(A'(x)).

The computing of 2-DWT is shown as [52]:

-
J j-l
A (x) = [Hy* Hx* x ]u,z (4.3)
21
D! (x)= Gy* Hx=*x’ “1 4.4)
“’2421
D/ (x)= Hy* Gx*x (4.5)
“’2421
J _ Jj-1
D/ (x) —[Gy*[Gx*x ] w2l (4.6)

where the subscript n (n=0,1,2) denote vertical, horizontal and diagonal detail
coefficients, respectively. ¥ 2,1 (3 1,2) the sub-sampling along the rows (columns).

H and G are the low-pass and high-pass filters, respectively.

The approximation coefficient from the previous scale is used for transformation in the
next scale and the same method is applied for the next scale until the desired scale is
reached. The two-scale 2-DWT scheme is illustrated in Figures 4.5 and 4.6 shows three

scales of decomposition of an image, x[m,n}.
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First scale

G 13— D)@

Second scale
12— D2
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Using for the next
scale decomposition

Figure 4.5: The process of the two-scale 2-DWT

A D,
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Figure 4.6: Steps of the three-scale 2-DWT decomposition: (a) original image;
(b) first, (c) second and (d) third step.
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4.2.1.3 Scaling and wavelet functions

The two sets of filter coefficient used in the low-pass and high-pass filters are obtained
from the so-called scaling, ¢@) and wavelet, y@) functions respectively. There are
a number of wavelet functions or wavelet families that exist. One of them is Daubechies
wavelets, which was discovered by Ingrid Daubechies in 1987 [58]. It has become a
well-known family of orthogonal wavelets, which otfers some compromise between
compact support and smoothness. This is needed for wavelet properties and makes
discrete wavelet analysis practicable [56]. Daubehies wavelets have several types which
produce different numbers of coefficients such as Daubechies 4 coefficients (Daub4),
Daubechies 6 coefficients (Daub6), ... ,Daubechies 40 (Daub40) etc., however, it has
been suggested that Daubechies 4 coefficients is suitable for applications of feature
determination [53]. Moreover, the promising face recognition and the high texture
classification performance of Daubechies wavelets are shown in [44,48]. Consequently,
Daubechies 4 coefficients is chosen for this application. The Daub4 scaling and wavelet

coefficients are shown in Table 4.1.

Table 4.1: List of scaling and wavelet coefficients of Daubechies 4 [53]

N ¢@) W)

0 0.48296291314453 -0.12940952255126
1 0.83651630373781 -0.22414386804201
2 0.22414386804201 0.83651630373781
3 -0.12940952255126 -0.48296291314453

In order to demonstrate the transformation of the 2-DWT, Lena’s gray-scale image,
size 256x256 pixels, is used as the input image for the transformation. The transformed

Lena’s image is shown in Figure 4.7.
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Figure 4.7: The two-scale 2-DWT of Lena’s image

4.3 Feature generation

The three techniques for texture and a technique for Eigenvectors feature generation are
used in this study. In this section the functions used for calculating these features from

the transformed image are introduced and discussed.

4.3.1 Texture features

The wavelet detail coefficients or wavelet detail is found to be rich in statistical
information, which can be used to identify the image in term of texture [59]. Using the
wavelet detail the texture features are obtained by computing the following values:
energy, mean deviation or /;-norm, feature weighting of mean deviation and histogram

qualitative.
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4.3.1.1 Energy and Mean deviation signatures

The energy feature is a set of average energy values, which are obtained from each
wavelet detail so it is referred to as a wavelet energy signature. The wavelet energy
signatures reflect the distribution of energy along the frequency axis over scale and
orientation and have proven to be very powerful for texture characterisation. Since most
relevant texture information has been removed by low-pass filter iterating, the energy of

the approximation coefficients is generally not considered a texture feature [59].

The energy of each wavelet detail coefficient is defined as [59]:

/_”J_ ) 2
E, = N;(Dn (6:,0,)) (4.7)

where E/ is the energy of each wavelet detail, D/ the wavelet detail at each scale, N

the total number of the coefficients in D’

n

b, and by the row and column of D; .

Similarity, the mean deviation (MD) or /; -norm feature of the wavelet details is referred
to as a so-called wavelet mean deviation signature (MD signatures) and can be used as
an alternative texture feature. The MD of each wavelet detail is defined as [59]:

MD =%Z

X,y

D] (b,,b,)| (4.8)

where MD; is the mean deviation of each wavelet detail.
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The numbers of vector components within one feature depend on the number of the
wavelet details obtained from the decomposition. An example of a feature consisting of

six vector components is obtained from the two-scale decomposition (See Figure 4.7).

DOne Energy
feature

Ey

Figure 4.8: One energy feature obtained from the 2-scale 2-DWT image
4.3.1.2 The feature weighting

In 1999, Gaohong et al. [46] introduced feature weighting to improve texture
classification. The result of using feature weighting has been shown to offer excellent
improvement in the performance of texture classification. Consequently, feature

weighting is chosen as a texture feature in this application.

Feature weighting is obtained by the weighting of the MD features (4.2) with their own

degree of dispersion. Each MD feature (Md) contains a number of components as:
Md =[Md,, Md,,...,Md,]" where n is the number of vector components in Md and the

standard deviation (S,) of Md is defined as [46]:

-77-



CHAPTER 4 Feature extraction module (FEM)

S, = \/—%Z(Mdi ~-MY i=1,23,.,n (4.9)
n.—
where M is the mean value of Md defined as:
M:lZMd. (4.10)

Then the weighting vector components of Md are defined as:

M,

d

Md”

!

i=1,2,3,.,n (411

Therefore the feature weighting of Md is expressed as:

Md” = [Md! , Md),...Md"T  (4.12)

4.3.1.3 Histogram signatures

The Histogram qualitative of wavelet details can be used to provide texture features.

Wouwer et al. [59] has introduced the texture feature using the parameters of histogram

modeling, obtained from the wavelet detail. By using a family of exponential functions,

the histogram of wavelet detail is modeled and two parameters of the model are

provided and used as texture features. The first parameter is inversely proportional to

the rate at which the peak decreases ( #) and the second parameter is the width of the

histogram peak () or (variance).

The model parameters ¢ and £ can be defined as [59]:
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T/ B) ¥

a=m, T2/ p) where I'ix)= a[e' Tt (4.13)
| m I’/
p=F (mz ) where F(x)= _—T(3/x)r(l 2 (4.14)

where m; is the mean deviation value (4.8), m; the energy value(4.7).

Since the features are obtained from the histogram of the wavelet detail they are called
wavelet histogram signatures. The number of vector components provided in one
feature of the histogram feature is twice of the number of the components in the energy

feature because two parameters are obtained from each wavelet detail (See Figure 4.8).

One Histogram
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Figure 4.9: One histogram feature obtained from 2-scale 2-DWT image

-79-



CHAPTER 4 Feature extraction module (FEM)

4.3.2 Eigenvectors feature

A PCA is a linear dimensional reduction procedure, which has been used for several
applications such as face recognition, data compression and data dimensional reduction
[49,50]. The PCA for face recognition, commonly known as eigenface, has been
presented in many articles [49,50,60,61,62]. The properties of PCA are such that its
features can be used to identify a person’s face so it is conjectured that it could also be
applied to identify head patterns within an image. Yuen ef al. [51] has pointed out some
limitations of PCA for face recognition when it is used with a large database and has
proposed the combination of multi-resolution using wavelet transform and PCA to
resolve this problem. In this application, the combination of WT and PCA is used for
extracting features from the image of a person’s head. The approximation coefficient
obtained from the wavelet transform is used, and then the PCA is applied to obtain

features.

Let Ax={4x,,k=1,.,M}eR* be an example of vectors, which are formed by the

approximation coefficients row of the transformed image with resolution d x d. Then the

PCA is applied to 4x as follows: Firstly, the mean of the Ax vectors are computed as

[35]:

M
E(Ax)= ﬁ > Ax, (4.14)
k=1
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Then subtracting the mean vector ( E(A4x)) from each vector of Ax as:

Ax = Ax, - E(A4x) (4.15)
The modified version of 4x is Ax = {Ax,,n=1,..N}
Then the covariance matrix of Ax is defined as:
1 ¥ —
Cx=—>" Ax Ax, (4.16)

k=1

As Cx is real and symmetric, finding a set of » orthonormal eigenvectors is always
possible [35]. This set of eigenvectors or a so-called principal component corresponds

to the characteristic vectors of 4x. So it is used for the features of Ax [4].

Eigenvector
feature of Al x)
2z D,
By | <=
- D, D)
| A |

Figure 4.10: One Eigenvectors feature obtained from 1-scale 2-DWT image
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4.4 Results

The collected training set is fed to the FEM in order to produce features. The used
training set contains 192 head and 192 non-head images with size 32x32 pixels per
image as shown in Figures 4.10 and 4.11. The head images were obtained from
32 persons and the non-head images were randomly selected from the whole set of
images collected. These were obtained from the object detector. For each image, four

types of feature will be provided.

Pre-processing using both 1-scale and 2-scale 2-DWT is applied to the training images
to generate one Eigenvector feature (FV;s) and three texture features, respectively. One

FV.i; contains 16 vector components because the obtained approximation coefficient,

A'(x), size of the 1-scale 2-DWT for an image size of 32x32 pixels is 16x16 pixels so

each row of A'(x)provides one Eigenvalue.
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Figure 4.11: Head pattern images
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Figure 4.12: Non-head pattern images
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For the three texture features, energy (FVen), feature weighting (FVry) and histogram
(FVhist), 6 vector components are contained in one feature for FVeyg and FVy, and 12
vector components for FVy;q because 6 wavelet details were provided from the 2-scale

2-DWT image.

These features are plotted to display the distribution of the training data that is to be
used in selecting features for classification. Since there are 6, 12 and 16 components in
each type of feature, it is difficult to show the resulting feature vectors in a two-
dimensional plane. For illustration purposes the feature map between the two chosen
components of each feature type that provide the best view are plotted and shown in the

Figures 4.13-4.16.

pos b | © Head feature 1
+ Mon-head feature + +
R ¢

N2r » -

T 015 1
b
g
=3
frg

0.1 i

+ 4 + + +
0.05 4
0.2 0.25

Figure 4.13: Feature Map using FVeng[1] Vs FVey[4] for Head and Non-head patterns
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Firstly, an example plot of the energy feature vectors (components 1 and 4) belonging to
two classes, head and non-head feature, is shown in Figure 4.13. It can be seen that the
distribution of the data is concentrated in the area with a value of less than 0.05 and
formed as an elongated cluster. Also the boundary of two clusters is very close and

overlaps. Consequently, it is obvious that clustering errors are unavoidable.

Secondly, the plotting of feature-weighting feature using components 4 and 6 is
illustrated in Figure 4.14. The distribution of the data tends to group into two classes
with large within-class variance and small between-class distances. Also, there is some

overlapping of the two classes in some areas so the clustering error cannot be avoided.
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Figure 4.14: Feature Map using FVg[4] Vs FV,[6] for Head and Non-head patterns
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Thirdly, the plotting of the histogram feature, components 1 and 2, is shown in
Figure 4.15. In this case the two groups are dispersed and cannot be distinguished from

each other.
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Figure 4.15: Feature Map using FVhisi[1] Vs FVpisi[2] for Head and Non-head patterns

Finally, the plot of the eigenvector feature using components 1 and 6 is shown in
Figure 4.16. In this type of feature, the two groups are compacted and overlapped. Thus

it is also not easily separable as in the previous case.
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Figure 4.16: Feature Map using FV,;g[1] Vs FV,;[6] for Head and Non-head patterns

4.5 Summary and discussion

A number of different techniques have been investigated to identify suitable feature
generation methods based on the DWT for the representation of a person’s head and
non-head images. The results in Section 4.4 found that head and non-head features
could be uniquely represented using the energy and feature-weighting features, although
there is some intersection areas of two features. This can be seen in Figures 4.12 and
4.13 respectively. For the results of histogram and Eigenvectors features, it can be seen
from Figures 4.14 and 4.15 that the head and non-head features are vague and not easily
separable. However, there is a method that could be used to deal with these vague

features and it will be proposed in the next chapter.
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Chapter Five

Classification and Clustering Module (CCM)

5.1 Introduction

The Classification and Clustering Module (CCM) used to classify a person’s head
features is detailed in this chapter. The technique to be used for CCM is based on an
Artificial Neural Network (ANN) called a Self-Organising Map (SOM). The SOM has
been seen to produce good results for feature classification [63,64,65]. The SOM uses
unsupervised learning in which there is no pre-specified target output node and no
teacher to help it in evaluating an error function that could modify the location of the
output node [66]. This makes it suitable for use as a classifier for a person’s head
features and non-head features that are obtained from the FEM as presented in Chapter
4. The SOM and its application to a person’s head pattern classification are now
described. The chapter is organised into the following sections: Section 5.2 The
Classification and Clustering Module (CCM) using the SOM is described, Section 5.3
how experiments of CCM were carried out on this clustering method and Section 5.4

summarises and discusses the results of CCM.
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5.2 The Classification and Clustering Module (CCM)

An overview of the Classification and Clustering Module (CCM) is shown in
Figure 5.1. The CCM consists of two SOM blocks, a codebook of Head patterns, a
codebook of Non-Head patterns and the Feature measuring block. The two SOM’s are
individually trained by the head and non-head feature vectors. Once both of the SOM’s
have been trained they are used to generate the two codebooks. The outputs of the
codebooks are passed to the feature measuring stage, where the unknown input feature
vector is measured and compared with the obtained vectors from the two codebooks in
order to provide the output class of the input feature. The SOM and its algorithm are
detailed in Section 5.2.1 and the optimal size of the SOM is discussed in Section 5.2.2.
Section 5.2.3 gives an explanation of codebook generation and the feature-measuring

block is presented.

s Head features
s Self-Organizing Wap | Codebook of Head ] Output
(SOM) Pattern w11 T01l1
Tput Featurp
feature | measaring wloll1ll1
|| | Self-Organizing Map | | Codebook of - T
{SOM) non-Head Pattern Head
t " - 4 HNon-Head
on-head features Unknown
Classification and Clustering Module (CCM)

Figure 5.1: An overview of CCM
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5.2.1 The Self Organising Map (SOM)

The SOM, introduced by Kohonen [65,67], uses an unsupervised learning process,
which learns the distribution of a set of patterns without any class information.
A pattern is projected from an input space to a position in the map. The map
information is coded as the location of an activated node. The SOM is unlike most
classification or clustering techniques in that it provides a topological ordering of the
classes. The similarity in input patterns is preserved in the output of the process. The
topological preservation of the SOM process makes it especially useful in the
classification of data that includes a large number of classes [68]. The structure of

a 2-D SOM is shown in Figure 5.2.

' /
oNeNeNoReNeNO N
G OO0 000
o Cutput
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k;\\ A === Reference Vector (m;)
B i&' e,
{ - -
Xil X;2 e Xjm —=—— input feature ith

Xpd Xpg2oienen. Xyt =7 input featire nith

Figure 5.2: Structure of a 2-D Self-Organising Map

Lawrence et al. [68] provides a briet description of the SOM algorithm presented in this

section, for more detail see [67]. The SOM defines a mapping from an input space

R"onto a topologically ordered set of nodes, usually in a lower dimensional space.
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An example of a 2-D SOM is shown in Figure 5.3. A reference vector in the input
space, my =y, fyser ty] €R’, is assigned to each node in the SOM. During
training, each input vector, x, is compared to all of the m;, obtaining the location of the

closest match m (given by |x~m,|=min,{jx—m|} where |a| denotes the norm of

vector a). The input point is mapped to this location in the SOM. Nodes in the SOM

are updated according to

my(t+1) = m, (1) + b, (O] x(6) —m, ()] .1

where ¢ is the time during learning and h.(?) is the neighbourhood function, a

smoothing kernel, which is maximum at m.. Usually, /,(f) = h( v, —F, ,t) where r. and

r; represent the location of the nodes in the SOM output space. r, is the node with the
closest weight vector to the input sample and r; ranges over all nodes. h(?) approaches

0 as \rc —r,‘ increases and also as ¢ approaches o0. A widely applied neighbourhood

function is

h, =a(t)exp —Q—_—’:il— (5.2)
207 (t)

where a(t) is a scalar value representing the learning rate and o(¢) defines the width of

the kernel.

They both generally decrease monotonically with time [67]. The use of the
neighbourhood function means that nodes, which are topographically close in the SOM

structure, are moved toward the input pattern along with the winning nodes. This creates
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a smoothing effect that leads to a global ordering of the map. It should be noted that
o(t) should not be reduced too far, as the map will lose its topographical order if the
neighbouring nodes are not updated along with the closest node. The SOM can be

considered a non-linear projection of the probability density, p(x) [67].

A hr;;ﬁ (‘tj)
™ hcz’ (‘té‘)
‘\K kcﬁ (tE)

Figure 5.3: A 2-D SOM showing a square neighbourhood function which starts as
h.i(ty) and reduces in size to h(t3) over time.
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5.2.2 Optimal size for a Self Organizing Map

It is difficult to determine the number of neurones or the output size of the SOM
accurately at the design stage, because it is data dependent [69]. If the output size of the
SOM is too large, then the clusters will be formed on the decision surface, which can
lead to ambiguous classifications. In addition, if the SOM output size is too small, then
the SOM may be unable to classify the input patterns. Consequently, the SOM output
size needs to be varied during the experimental phase in order to define the most

appropriate output size for the application [69].
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There is a method for determining the output size of the SOM that has been investigated
and presented by Jian and Penman [66]. As the result of their investigation, the
relationships between the size of the input patterns and number of output neurones can

be defined as [66]:

N=Amx2~1 5.3)

where NV defines the number of elements that form an N by N SOM and m the number

of identifiably different input patterns, or input vectors to be resolved.

It is found that if IV is less than Vmx2—1, then the SOM is not be able to learn the
input patterns m and map them onto a unique position on the two dimensional output
surface. In the other word, the classes representing each of the input patterns will

overlap [66].

5.2.3 The Codebook Generation

The purpose of generating the codebook is to create codebook vectors, which represent
winning neurons. The codebook vectors are defined from the information obtained by
the winning neurons of the SOM. Since the SOM has already been trained, the used
training feature is fed through the SOM again as input features in order to define the
winning neuron for each input feature. Then the training feature vector that is pointed to
by the winning neuron is used as the codebook vector of that neuron. If the neuron
represents more than one training feature, these feature vectors are averaged and the

average is employed as a codebook vector for that neuron. Any neurons that have never
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fired or won any of the training features are set to zero. Consequently, the number of

feature vectors within the codebook is equal to the number of SOM outputs.

The use of the codebook in this application is to classify an unknown input feature into
three classes (head, non-head and unknown class) by using the winning neurons of the
two SOM’s as the indexes of the two codebooks. The distance between the input vector
and the two codebooks, head and non-head, is measured and compared in the feature-
measuring block. Then the minimum distance is used to indicate the output class of the

input feature as:

i, = l

dNH, = ’

(5.4)
(5.5)

»f;n - H feode
fin - NHy/&’ode

dH , (dNH,, f,, = [l 01" or Head class
if <dH,)dNH,, f,,= [0 11" or Non— Head class (5.6)
dH, =dNH, f,,= [1 11" or Unknown class

where f

n

is the input feature, H ;.. NH ,,,, the obtained head and non-head codebook
features, respectively; dH , and dNH , are the distances between the input vectors with

head and non-head codebook features, respectively. The superscript ([ ]T) denotes the

transpose of the matrix.

Therefore if dH, is less than dNH, then the input feature, f, , belongs to the head
class. In the opposite case, f,, belongs to the non-head class and if dH , equals dNH ,,

/., is set to the unknown class.
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5.3 Experimental verification

The four types of features obtained from the FEM are used to train the SOM, in order to
cluster the head and the non-head features. Due to some vague outcomes from the FEM,
it is impossible to cluster and distinguish head features from non-head features.
Moreover, it can be difficult to define the number of SOM outputs if these features are
trained with the same training set, since the non-head features are obtained by taking a
random selection from the whole data set. Consequently, the head features and non-head

features need to be trained separately from the method proposed in the CCM.

In defining the number or size of the SOM output, the head feature is chosen and Eq.5.3
is used to calculate the initial SOM size because the number of head patterns per person
is known, 6 patterns per person with a total of 192 patterns from 32 persons. The SOM
size starts with 8x8 neurons with a fixed learning rate of 0.9 and 5000 epochs; it is then
increased in steps of 2x2 neurons in each direction. The experiments were performed by
varying the SOM size between 8x8 and 30x30 neurons. The SOM outputs that won or
fired with the same input features, while the number of SOM dimensions is increased,
can be used as the criterion to decide if the SOM dimensions are sufficiently large. In
addition if the SOM dimensions continue to increase, it will result in some redundancy,
producing no different classification results even though the wining output is different
for each input feature. According to the experiments, it was found that a suitable SOM
for each type of head feature is shown in Table 5.1. The obtained SOM sizes of head

pattern are then employed for setting the SOM size for non-head patterns. The proposed
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technique is applied in Section 5.2.3 the head and non-head codebooks are produced

and the proposed FEM and CCM are evaluated.

Table 5.1:__I‘l\lus\tr§1\t\cs the used SOM dimension for each type of featuge, /

Feature types , _ SOM size
Energy feature 10x10 neurons
Feature-weighting 12x12 neurons
Histogram feature 10x10 neurons
Eigenvector feature 16x16 neurons

In order to evaluate the proposed FEM and CCM, 345 test-images of head patterns,
which were captured from several frames of sequential images as displayed in
Figure 5.4, are employed. For the test-images of non-head patterns, 300 images obtained
from the collected image data as shown in Figure 5.5 are used and the results of the test

are shown in Table 5.2.

Energy feature Head | 37.10 62.9 D

Non-Head 88.67 24.67 -
Feature-weighting feature | Head 40.87 59.13 -
Non-Head 79.33 20.67 -
Histogram feature Head 58.55 37.39 4.06
Non-Head 59.33 36 4.67
Eigenvector feature Head 36.23 63.77 -
Non-Head 83.00 17.00 -
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Figure 5.4: [lustrates 345 test-images of head pattern, which were captured from
different frames of the sequential images.
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B

Figure 5.5: Illustrates 300 test-images of non-head pattern, which were obtained from
the image data.
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5.4 Summary and discussion

By observing the results from the classification, it can be seen that the histogram feature
provides the best result for classifying the head images out of the four feature types and
the poorest non-head images classifications are also given from the histogram feature as
well. Consequently, it can be concluded that the texture and the Eigenvector features are
not suitable to be employed as features for this application although portions of correct
results are provided. Though the outcomes of the proposed technique for classification
are unsatisfactory, it is premature to conclude that the idea of applying classification to
detect pedestrians does not work. The entire system of a pedestrian detection based

classification technique is demonstrated in the next chapter.
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Chapter Six

Experiments

6.1 Introduction

In this chapter the classification technique to be used in the pedestrian motion tracking
system is proposed and investigated by experimentation, to offer an evaluation of the
performance of the proposed combination of sub-systems. In Section 6.2 a block
diagram of the classification system is presented and explained. Then experiments that
test the ability of the classification system to extract pedestrian head features from
sequential images are performed and analysed in section 6.3. Finally, section 6.4 offers

further discussion of the results obtained and a summary.

6.2 The pedestrian detection based classification technique (PDC)

The PDC as shown in Figure 6.1 consists of four blocks as follows: 1) the object
detector block, 2) the sub-image capture block, 3) the classifier block and 4) the
marking block. The object detector block uses the technique presented in Chapter 3 to

provide initial locations of candidate objects for use in capturing sub-images.
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Then a similar technique to that used in the data collection in Section 3.5 is applied in
the sub-image capture block, where the obtained candidate locations are used to capture
the sub-images with a size of 32x32 pixels each. These are then passed to the classifier
block, which employs FEM and CCM, as presented in Chapter 4 and 5. In the classifier
block, the sub-images are categorised into classes as head, non-head and unknown
classes. The location of the sub-image classified as head images are then passed to the
marking block in which they are used to place crosses on the input image corresponding

their location in the image, as shown in Figure 6.1.

wi {hject Sub-images
} detector ¥ capture

\\i\w

(szs;iﬁer
FEM&UCUM

Tuput image Chutput imsage

The pedestrian detectionbased Classification technique j

Figure 6.1: Shows the entire system of pedestrian detection based classification
technique.

6.3 Experiments

The same sequential pedestrian images and the detection process used in Chapter 3 are
employed in the testing of the classifier system. Each of the four types of feature
extraction and the clustering method as discussed in Chapters 4 and 5 is applied, to
allow a comparison of their performance to be seen. For each image 4 output images
will be obtained. Some examples of the experimental results are shown in Figures 6.2 -

6.5.
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@ (b)

©) | (d)

Figure 6.2: The PDC results using 4 different features as (a) Energy feature,
(b) Feature weighting, (c) Histogram feature and (d) Eigenvector feature

The PDC using 4 features is applied to an example image (Frame 01) containing
multiple pedestrians as illustrated in Figure 6.2. Hence the same detection process is
used so it can be assumed that the results represent the efficiency of the pre-processing
and the classification methods. Each cross-sign is marked on the area that represents a
head feature. The applied method works much as expected as they should have many
cross-signs marked on the objects due to the error from the clustering process as
discussed in Chapter 5. Each type of feature provides a different number of cross-signs,

the histogram feature (Figure 6.2 (¢)) provides the most cross-signs and the eigenvector
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feature (Figure 6.2 (d)) the least cross-signs. Although there are many cross-signs of

errors occurred, it can be seen that the PDC is able to locate the head of pedestrians to

some degree. Another example from later frames (Frame 02) is shown in Figure 6.3.

@ | (b)

() (d)

Figure 6.3: The PDC results of an image Frame 02: (a) Energy feature,
(b) Feature weighting, (c) Histogram feature and (d) Eigenvector feature

The performance of PDC is applied to the image that contains more pedestrians as
illustrated in Figures 6.4. In this case, it is obvious that the initial location provider
obtained the candidate locations and can detect 4 persons within the image. As a result,

the PDC fails to detect the pedestrian’s head that can be seen in Figure 6.4 (b) and (c).
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Also errors increased as the number of pedestrians increases because the distance
between pedestrians is reduced so which may result in gaps being determined as head
features as seen in Figure 6.4 (a) and (c¢) in the gap between two ladies. Another

example (Frame 02) is shown in Figure 6.5.

Frame 01 »

(a) (b)

© (d)

Figure 6.4: The PDC results of the image that contains more pedestrians:
(a) Energy feature, (b) Feature weighting, (c) Histogram feature and
(d) Eigenvector feature
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Frame 02

(© (d)
Figure 6.5: The PDC results of the image Frame 02: (a) Energy feature,
(b) Feature weighting, (c¢) Histogram feature and (d) Eigenvector feature

According to the experimental results, it can be seen that the texture is unsuitable to use
as feature extraction for pedestrian tracking particularly when applied to grayscale
images. Although the PDC works to some degree it is not accurate enough for use in

real applications.
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6.4 Discussion

From the results of running the PDC developed with the sequential images, it can be
concluded that the PDC is able to detect and locate a pedestrian’s head, although many
errors are also obtained. There are two main error sources, firstly, the techniques used to
provide the initial candidate locations are imprecise, and as a result means that the
performance of the rest of the system blocks especially the sub-image capture block is
severely impeded. In the sub-image capture block the scan size becomes larger than
necessary leading to the formation of redundant sub-images. The FEM&CCM block
performs to the same degree of accuracy as presented in Chapter 5. Techniques are

proposed and investigated in Chapter 7 aimed at improving the system performance.
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Chapter Seven

The association of Cellular Automata and Neural Network

7.1 Introduction

In this chapter an introduction to both Cellular Automata (CA) and Neural Networks
(NN) is provided. This is followed by a discussion on how the two can be merged
together to form a predictor. The prediction module proposed in the next chapter is
based on this association and is used to estimate a pedestrian’s location in the following

frames, and hence reduce the search space for objects within the image frame.

The chapter is organized as follows: In Section 7.2, the theory and applications of
Cellular Automata (CA), as used for capturing human movement behaviour is explained
in detail. In Section 7.3, the theory and applications of the NN, as used to classify CA
patterns, is discussed. In Section 7.4, the conjecture of association of CA and NN for the
prediction module is proposed. Simulations are performed to provide support to the
fusing of CA and NN. A discussion and summary of the work presented in this chapter

is given in Section 7.5.
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7.2  Cellular Automata (CA)

Cellular Automata (CA) are mathematical idealizations of physical systems in which
space and time are discrete, and physical quantities take on a finite set of discrete
values. A cellular automaton consists of a regular uniform lattice or array, usually
infinite in extent with a discrete variable at each site or cell. The state of a cellular
automaton is completely specified by the values of the variables at each site. A cellular
automaton evolves in discrete time steps, with the value of the variable at one site being
affected by the values of variables at sites in its “neighbourhood” on the previous time
step. The neighbourhood of a site is typically taken to be the site itself and all
immediately adjacent sites. The variables at each site are updated simultaneously, based
on the values of the variables in their neighbourhood at the preceding time step, and

according to a definite set of “local rules”[70].

In the early 1950°s, CA were first introduced by Von Neumann. At this time the
Universal Turing Machine [71] was the only computing machine available to run this
CA and so was limited in capacity. Since then, many other studies on CA as abstract
models of computation have been made and covered a large scope of applications
including biology, physics, operational research, sociology and computer science [72].
In recent years, CA microsimulation has emerged as an effective technique for
modelling complex behaviours such as the modelling of artificial life. CA
microsimulation has also been successfully applied to the modelling of vehicular flows

and traffic networks as presented by Nagel and Schadschneider in [73,74] respectively.
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They have been proven to provide a good approximation of complex traffic flow
patterns, over a range of densities. While the field of vehicular flow modelling using the
CA is well established, the tasks on modelling pedestrian flow are becoming
increasingly interesting to researchers. Blue and Adler [75-79] applied the CA
microsimulation to model pedestrian flows that are uni, bi-, cross-, and four-directional.
Fukui and Ishibashi [80,81] have also proposed the CA model to mimic pedestrian flow
in order to analyse pedestrian behaviour. As the CA can be used to mimic the pedestrian
movement behaviour, it is conjectured that they could be adopted as a tool for
estimating the pedestrian locations in future frames. Therefore, the principle of the CA
is studied and sought for adopting as a prediction tool. Two fundamental CA models are

discussed one and two-dimensional.

7.2.1 One-dimensional Cellular Automaton

The simplest model is a one-dimensional cellular automaton (1D-CA) used for simple
physical and biological models. It consists of a line of elements in which each site
carries values that are updated in parallel. The neighbourhood of a site is typically taken
to be the two adjacent sites. This characteristic is known as a spatially local rule.

The relationship between sites is depicted in Figure 7.1.

Site

~ Line
Left  Right
neighbours
Figure 7.1: A cell and its neighbours of 1D-CA
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The evaluation of the sites is controlled by a definite set of rules, depending on the
values for a fixed number of preceding steps. Usually, the preceding step is 1. This is
the temporally local rule. Such very simple local evaluation rules can produce very
complex even chaotic behaviour for the overall system. An example of a two-state (0,1)
ID-CA simulation is shown in Figure 7.2. The rules used for the CA in the simulation
are as expressed below:

0if x=[0 0 0Jor[l 1 1]

New state = Ly =il 105 00), (7.2.1)
o 1,00 1 0]

0 1 1,J0 0 1]

Where x is a set of three cells

These rules can also be described pictorially or as the binary calculation shown in

Figure 7.2.
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Figure 7.2: CA rule 126

As time increases, the cells change from state to state in parallel using the CA rules in

(7.2.1). The pattern produced by applying this CA over 20 steps to a given input, is
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illustrated in Figures 7.3 and 7.4. The results show that a pattern is repeatedly
reproduced as the number of steps is increased. By applying a different set of rules to
the CA with the same initial state, a different result is obtained two examples are shown

in Figure 7.5. More CA simulation patterns using different rule sets can be found

in [70].
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Figure 7.3: The result of applying CA rules to two-state ID-CA
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CA simulation
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Figure 7.4: The simulation of 20 steps of two-state one-dimensional CA
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Figure 7.5: Simulation results by applying rule 184 (left) and 30 (right)
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7.2.2 Two-dimensional Cellular Automata

The basic principle of the two-dimensional automata is identical to that of the one-
dimensional cellular automata (discrete space, time and state). The main differences
reside in the neighbourhood. There are several possible lattices and neighbourhood
structures for two-dimensional cellular automata [82]. The first one, defined by Von
Neumann [83], is the square cellular automaton, as illustrated in Figure 7.6 a. A second
important two-dimensional cellular automaton is known as the Moore neighbourhood

cellular automaton as depicted in Figure7.6 b.

b
AN

Von Neumann Moore
neighborhood neighborhoad
(&) (b)

Figure 7.6: Two-dimensional cellular automata

Each cell is only connected to the four or eight neighbours around it respectively. Any
functions on the chosen neighbourhood can then be evaluated. One of the simplest
computations allowed by such an arrangement is a sum of the cell values and has been

widely described in the cellular automaton theory [70,82-85].

As the CA model uses empirical data for defining the CA rule in order to run the
simulation, there will be a number of patterns of CA neighbourhood that can be used for

the model. However, if the model has an automated method for defining the CA rule set
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without using empirical data, it would be useful for CA rule selecting. For this reason,

the model requires a technique that can learn and classify the CA patterns.

With its potential to learn from examples, the application of a NN to classify CA

patterns is described in the next section.

7.3 Neural Network (NN)

A Neural Network (NN) is a computational structure inspired by the study of biological
neural network processing [85]. Although there are many types of neural network, each
NN algorithm is adopted for different purposes. In the presented work the focus will be
on a backpropagation neural network (BPNN) because it is suitable for the required

application of CA pattern classification. Details of the BPNN is now discussed.

The BPNN [86] is a feed-forward Multilayer Perceptron (MLP) consisting of (1) an
input layer with nodes representing the input variables to the problem, (2) an output
layer with nodes representing the dependent variables (i.e. what is being modelled), and
(3) one or more hidden layers containing nodes to help capture the non-linearity in the
data. Using supervised learning with the error-correction learning rule (ECL), these
networks can learn the mapping from one data space to another using examples. The
term backpropagation refers to the way the error computed at the output side is
propagated backward from the output layer, to the hidden layer, and finally to the input
layer. In a BPNN, the data is fed forward into the network without feedback. The

neurons in a BPNN can be fully or partially interconnected. The architecture of a BPNN
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is illustrated in Figure 7.7. These networks are highly versatile and can be used for data
modelling, classification, forecasting, control, data and image compression, and pattern

recognition.
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Figure 7.7: Two-layer BPNN architecture with 3 inputs, 1 output and 3 hidden neurons

The feedforward error-backpropagation (BP) learning algorithm is the most famous
procedure for training NNs. BP is based on searching an error surface (error as a
function of NN weights) using gradient descent for point(s) with minimum error. Each
iteration or epoch in a BPNN constitutes two sweeps: forward activation to produce a
solution, and a backward propagation of the computed error to modify the weights. In
an initialised BPNN, the forward sweep involves presenting the network with one
training set. This starts at the input layer where each input node transmits the value
received forward to each hidden node in the hidden layer. The collective effect on each
of the hidden nodes is summed up by performing the dot product of all values of input

nodes and their corresponding interconnection weights, as described in Eq.(7.2.2).
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Lif Y wx, b,
y= 2 (7.2.2)

0, if Z:’zlw,.x,. <b,

Where p is the output node, X is the input node and W is the interconnection weight.

Once the net effect at that node is calculated using a transfer function to yield an output
between 0 and +1 or —1 and +1. Various transfer functions are described in [87].
The amount of activation obtained represents the new signal that is to be transferred
forward to the subsequent layers that are hidden and output layers. The same procedure
of calculating the net effect is repeated for each hidden node and for all hidden layers.
The net effect calculated at the output nodes are consequently transformed into
activations using a transfer function. The activations calculated at the output nodes
represent the BPNN solution of the training set, which may deviate considerably from
the target solution due to the arbitrary selected interconnection weights. In the backward
sweep, the different or error between the BPNN and target outputs is employed to adjust
the interconnection weights, starting from the output layer, through all hidden layers, to
the input layer. The forward and backward sweeps are performed repeatedly until the
BPNN solution agrees with the target value within a pre-specified tolerance. The
error-backpropagation learning algorithm provides the needed weight adjustments in

backward sweep.
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7.4  Association of the CA and BPNN

The basic principles behind the CA and the BPNN have been discussed in the previous
sections. This section discusses the manner in which the two are associated and used as

a prediction technique. Experiments of the association are conducted and demonstrated.

According to the principle of the CA, the evaluation of each site (in 1D-CA and
2D-CA) is controlled by a set of CA rules that can be regarded as patterns in terms of
vectors. These patterns could be learnt by a BPNN. Therefore, it is conjectured that after
appropriately training the BPNN, it will provide the same result as the CA. If the
conjecture is true, the capturing of pedestrians behaviour from the real image is feasible

and the need to determine the rules for the CA from empirical data can be avoided.

In order to support the conjecture, a simulation of the BPNN is adopted to perform the
same task as the 1D-CA example in Section 7.2.1 the results are provided in the

following section.

7.4.1 1D-CA experiments

In this section an experiment is undertaken to show the ability of a BPNN to learn the

patterns of a 1D-CA and then operate in the same way.

The supervised learning process involves the training of the BPNN, target outputs are
provided to the BPNN for all possible input patterns. The BPNN then uses the deviation

(error) of the BPNN solution from corresponding target value to determine the required
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amount by which each node weight should be adjusted. The inputs and outputs are

determined by consideration of the CA patterns.

In the first experiment, the CA patterns are determined as inputs and the new stage
value is employed as the output target for BPNN. From the 1D-CA example in
Section 7.2.1, the pattern of the 3 inputs and one target output can be represented in
terms of vectors. The total number of patterns is determined by the number of input
cells and the number of values each cell can take, in this example, each pattern has
3 cells and each cell can have one of two possible values (0,1), therefore the possible

number of patterns is 2°=3 patterns with 8 output targets as expressed in (7.2.3).

11 1 00 00

input patterns =1 1 0 0 1 1 0 0 (7.2.3)
10 01 010

output target = [O 111 1 11 O]

In this experiment, a two-layer BPNN, with log-sigmoid transfer function in the hidden
layer and a linear transfer function in the output layer (Figure7.8) is employed. As an
initial guess, three neurons in the hidden layer are used, however, the number of
neurons in this layer is increased if the training performance does not agree with the
target value within the prespecified tolerance. The network has an output neuron since

there is one target for each pattern.

After a training session consisting of 10,000 iterations, the validation error did not reach
the target error (Figure7.9); therefore the number of neurons in the hidden layer is

increased. The experiment is performed 8 times, each time increasing the number of
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neurons by 1, to show the training capability of the BPNN. The results are shown in

Table 7.1.
£
1 \
I+e™
Laog-Sigmoid Transfer Function Linear Transter Function

Figure7.8: Log-sigmoid and linear transfer functions [87]

Table 7.1: Trainin results

Number of |
hidden neurons o
3 1 9 10
4 8 2 80
5 8 2 80
6 9 1 90
7 10 0 100
8 10 0 100
9 10 0 100
10 10 0 100
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Figure7.9: Unsuccessful training result of BPNN with three hidden neurons
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Figure7.10: Successful training result of BPNN with seven hidden neurons

The results show that providing a large enough number of neurons is provided, in this

case a minimum of 7, then the BPNN can be trained to perform the function of the CA.
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It can be seen that this minimum number of neurons is more than twice the number of
inputs. It is surmised that, an initial guess for number of neurons in the hidden layer

should be more than two times of the number of inputs.

The trained BPNN is applied to the same problem as that given to the CA in Figure 7.4
and the same result is obtained. To further substantiate this evidence 6 more CA rule
sets are used to train the BPNN containing 7 neurons and then the output compared to
that of the CA for a given input. The 6 rules used are 184, 30, 55, 90, 163 and 170
(selected at random) and the training results are shown in Table 7.2. The 20 step BPNN

simulation patterns of these rules are illustrated in Figures 7.5 and 7.11.

0

0
163 10 0 100
170 10 0 100
184 10 0 100
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Figure 7.11: BPNN simulation results

From the experimental results, it is clear that any 1D-CA pattern can be learnt by the
BPNN providing strong support to our conjecture. However, in this application
two-dimensional images are being used and therefore it is necessary to extend the

experiments to show that a BPNN can also perform the same as a 2D-CA.
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7.4.2 2D-CA experiments

In this section, experiments are performed to show the ability of the BPNN to learn the
behaviour of the 2D-CA. From Figure 7.6 it is clear that the number of 2D-CA
neighbours in the 2D-CA is greater than in the 1D-CA, therefore this test is focussed on
the training of the BPNN for an increased number of inputs. The Moore neighbourhood,
in which each cell is connected to its eight immediate neighbours, is used, so BPNN
now has 8 inputs and 1 output target. From the 1D investigation in the previous section
it is known that the number of neurons required should be more than double the number
of inputs. As an initial estimate of the number of neurons required in this case, 18 initial

hidden neurons are chosen as illustrated in Figure 7.12.

If each neighbour has two possible states (0,1), then number of possible patterns at the
input to the 2D-CA when the Moore neighbourhood is applied is 28 = 256 patterns. All
256 CA patterns are set as input patterns for the BPNN, the target for each of the
patterns is initially generated randomly and then applied in each test. Starting with 18
neurons in the hidden layer, the test is performed 10 times and the average success rate
is recorded. The number of neurons is then doubled and the test performed again until

the average success rate doesn’t increase. The outcome of this test is listed in Table 7.3.
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2D-{CA pattem reorgamzed
az a vector
1
2
i 4 & 3
p - [—jv 4 BPNN with § mputs, 1 output 0.1
4 % and 18 mitial ludden nevrons .
...... L - Output
= , 6
3 = 8

110 1 Percentof
Number (}f averase Pem:nf of averige Wragg accurate
L error patterns error patterns (%) | patterns (%) |
18 65.7 25.67 74.33
36 35.15 13.73 86.37
72 3.35 1.3 98.7
144 3.35 1.3 98.7

The test is then performed again but between each of the 10 cycles a new set of
randomly generated targets is applied to the BPNN, this shows the ability of the BPNN
to perform under different sets of CA rule. The results of this experiment are shown in

Table 7.4.

Table 7.4: BPNN trainin g

Number of hidden
neurons

results of 256 CA atterns Wlth random target patterns
ilts | Percent of averave
acwratelm ms

_ Number of a&%e"fége

. _ errorpalterns
18 68.3
36 33.2
72 3.5
144 39.1
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The average number of error patterns shows the average number of patterns that did not
agree with their targets. For example in Table 7.3, with 18 hidden neurons an average of
65.7 patterns out of the total of 256 patterns did not agree with the desired target over

the 10 training cycles.

The results show that as the number of hidden neurons increases then the average
number of patterns that result in an error decreases. A satisfactory level of 98%
accuracy from the training was in both tests. However, aithough the BPNN is able to
provide 98% accuracy, the memory required to produce this result was overwhelming
and would be costly to apply in real time. As in the 1D-CA simulation, it was seen that
the BPNN can be trained to learn the 2D-CA patterns and therefore with the same input

the 2D-CA and BPNN will produce the same pattern to an accuracy of 98% on average.
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7.5 Summary and Discussion

The relevant basic theory behind both the CA and BPNN and the manner in which they
can be associated has been presented. From the test results of BPNN training on 1D-CA
patterns, it was found that the relation between the number of BPNN inputs and the
number of hidden neurons could be used to set up an initial number of hidden neurons.
When a small number of input patterns are employed, the initial number of hidden
neurons should be set to at least twice of the number of BPNN inputs. However, the
exact number of hidden neurons required to achieve a suitable error level from the
training cannot be determined. Further experimentation is needed to allow the required
number of hidden neurons to be calculated. As the number of inputs and patterns

increase a longer time is needed for training.

The results of the experiments strongly support the prior conjecture that a BPNN can be
trained to synthesise the CA patterns up to an accuracy of 98%, which is deemed to be
more than sufficient in the application of interest. Consequently, it can be concluded
that the application of fusing a CA and BPNN as a prediction method is feasible. An

investigation of this prediction system is undertaken in the next chapter.
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Chapter Eight

Prediction Module (PM)

8.1 Introduction

In Chapter 7 an investigation into the feasibility of fusing a CA and NN to form a
motion prediction system was carried out and found to be in support of the initial
conjecture. In this chapter the proposed algorithm employed in the prediction module is

tested on actual consecutive images to observe its accuracy.

The chapter is organized as follows: In Section 8.2, the proposed prediction
module (PM) is introduced and detailed. Section 8.3 describes how data is collected for
BPNN training. Experiments are performed in Section 8.4, to observe the ability of the
prediction module to track a pedestrian’s movement through consecutive images.

Finally, an evaluation of the method and conclusions are provided in Section 8.5.
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8.2 Prediction Module (PM)

The proposed prediction module is made up of four parts as follows: 1) Grid-generating
block 2) CA plane to vector block 3) BPNN classification and 4) predicted locations
provider. The block diagram of the prediction module is depicted in Figure 8.1, the

functionality of each block is described in detail below.

Ufi uped cell position |

1
i
l l
Inﬁm‘ zm:e l Caid i CA pi ane Ll BPNN I,J\ Pll?tllfi"{’fl
¥alh vlgects generating { lassification location
ver m: provider | |¥
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) @ |
: 1

The ])18(’&6’?262& nodule

Figure 8.1: A block diagram of the prediction module

8.2.1 Grid-generating block

The purpose of this block is to superimpose a grid on the actual image to allow the CA
algorithm to be applied. The image with object locations, obtained from the object
detector, is fed through the block and the grid is generated. The dimension of the grid is
an essential parameter as it is directly related to the movement of an object between
frames. If a large grid is used then many frames will be required to move an object from
one grid square to another. In contrast, the smaller the grid square requires fewer frames
to move the object between cells. It is desirable that the dimensions of the grid squares
match that of the object (person) dimension in the image. A suitable grid square size

should be able to contain most of the object area as shown in Figure 8.2. The object
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location, obtained from the object detector, is used as an initial position to establish the
grid or lattice on the input image, which is then passed through the CA plane to the
vector block in order to establish the CA plane. Experimental work performed to allow

definition of the grid dimensions are demonstrated and discussed in Section 8.4.

Figure 8.2: The latticed images with two different grid dimensions

8.2.2 CA plane to vector block

After superimposing the grid on the image, the latticed image is used to establish the
CA plane; the information of the latticed image is then mapped on to the CA plane. One
represents a cell occupied by an object and zero represents an empty cell. Consequently,
the dimensions of the CA plane are equal to the number of lattice cells generated on the
image. Since the pedestrian dynamic is generically two-dimensional [88] the 2D-CA
principle is applied to the CA plane after the mapping process. Each CA site and its
neighbourhood is reorganized into vector form then used as an input vector to the
BPNN in order to provide the corresponding output with regards to the input vector.

An example of this process is illustrated in Figure 8.3.
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Figure 8.3: The process of organizing the latticed image to vector form

8.2.3 BPNN Classification

According to the CA algorithm, the CA rule set has to be applied to every cell on the
CA plane in order to have the new stage value. As aforementioned in Chapter 7, the CA
rule set is obtained from empirical data that is unconventional for our application
because the pedestrian movement behaviour concerns more than one CA rule.
Consequently, the BPNN is proposed for use as a classification tool that offers the
following advantages: (i) the behaviour of pedestrian movement can be captured and
learned from actual consecutive images which means the model is independent from the
use of empirical data and (ii) The application of the CA rule to every cell on the CA
plane can be avoided because only the occupied cell is of interest and therefore the cell
with value 1 is located to attain the CA pattern of only that cell, and (iii) it makes the
model more flexible allowing it to be applied to other applications for which the CA

algorithm is suitable.
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The vector from the CA plane is classified by the BPNN to provide an output to be used
to make decisions regarding cell movement and hence object movement in the next

block. The data used to train the BPNN will be discussed in more detail in Section 8.3.

8.2.4 Predicted Location Provider

The function of this block is to obtain the estimated location of the object cell after
recognition processing. The output obtained from the BPNN classification and the
object position on the CA plane are evaluated in this block then the future location on
the CA plane of the following few frames is given. It is used to confirm the location of

the object obtained from the object detector.

8.3 Data collection for BPNN

In this section, the data collection for BPNN training is explained. The data is collected
using actual consecutive images applied to the same process. The required data consists
of input patterns and output targets. The input patterns can be obtained from the CA
plane and passed to the vector block at any time (f) and the output target is taken as the
pattern once the object has passed to the next cell. This may take more than one frame
(t+m) and is dependant on the speed at which the object is moving. The number of
frames taken can be found by observing the point at which the current cell becomes
empty. The input pattern and its target can be collected using this method. The collected

data is used to train the BPNN.
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8.4 The prediction module (PM) experiments

In this section, the experiments performed on the proposed prediction method are
demonstrated and discussed. These experiments are designed to obtain a suitable grid
dimension for the grid-generation block and testing of the tracking process using the

prediction method.

8.4.1 Defining of grid dimension

Due to the link between the grid dimension and the object cell movement it is essential
that the relationship between grid size and the number of required frames to obtain
accurate outcomes is defined. Two types of grid generation, static and dynamic aiso
need to be considered. Firstly, the grid dimension against the number of frames running
per cell movement is investigated using a sequence of images. An example of the test

image is shown in Figure 8.4.

Figure 8.4 shows (a) the initial location of the object and then the location after
(b) 10 frames, (c) 11 frames, (d) 12 frames, () 13 frames, and (f) and 14 frames. This
example shows that for the given grid size of 48x48 pixels then it takes 13 frames for
the object to completely move from one cell to the next. Results obtained using different

grid sizes with the same image sequence are listed in Table 8.1.
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Figure 8.4: An example of the test image for defining the grid dimension against the
number of frame running per cell, (a) The initial image with grid size 48x48 pixels
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Table 8.1: Shows the result of rid dimension adjustin

Grid dimension (pixels) et of running frames per cell
40x40 10
44x44 11
48x48 13
52x52 14
56x56 15

From Table 8.1, it can be seen that when the grid dimension increases the number of
running frames for a cell to move increase. Consequently, it can be concluded that the
number of frames required for cell movement is directly proportional to the grid

dimension.

Two different methods used to establish the grid are now considered. In static grid
formation the grid dimension the initial location of the grid is fixed regardless whether
the object initially appears in one, two or more of the squares. Consequently, it is very
difficult to fit the initial object within a single grid square (see Figure 8.5), which will
result in prediction error. In contrast, the dynamic grid is established using object
locations to determine the initial location of the grid to ensure it lies within a single grid
square. Examples of the dynamic grid are shown in Figure 8.6.

The static Qy'd The statie grid

>

Figure 8.5: The example of the latticed images using the static grid establishing that
the grid is unable to cover the whole object.
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Figure 8.6: The examples of the latticed image using the dynamic grid establishing
that the grid is able to cover object at any locations within the image.

Application of the dynamic gird is used in this system due to its advantages over the
static grid, however, in the case where more than one object exists in the image then it
may not be possible for the grid to align itself such that all objects lie within a single
cell. The occlusion of the objects is also not possible since the lattice is established
using information from the detector which has already separated each object into
individual cells. Figure 8.7 shows an example of a latticed image with two objects, one
is chosen as the object of interest and as a result the other is found on the line adjoining
two cells. Since the CA requires an individual site that is representative of each object it
is necessary to apply further grids for each individual object. Consequently, the number
of CA planes generated individually as layers is equal to the number of objects in the
image, each object therefore has its own CA plane; the prediction can be performed on
each CA plane layer as shown in Figure 8.8. The information on the CA plane, which is

the cell site and its neighbours, is updated and exchanged between the CA planes.
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The latticed image contain

Figure 8.7: The established grid of the interested object does not
cover another object within the image

Latticed muage usingdynanic gid establishing

Cefl mite of the mterexied object

Celf sife of mformation of the orther object

CA planes

Figure 8.8: CA planes of each object by using dynamic grid establishing

-136-



CHAPTER 8 Prediction Module (PM)

Having discussed the factors concerning the generation of the grid on the image
experiments of the prediction method are now performed on the image sequence in the

next section.

8.4.2 The tracking process using the prediction method

The prediction method is applied to the image sequence in order to evaluate its ability to
track the motion of the objects through the sequence. The prediction module requires
three essential parameters regarding the object of interest these are (i) object location,
(ii) direction of movement and (iii) the speed of movement. It is possible to obtain these
parameters from the object detector; the manner in which this is achieved is discussed
detail in the automatic tracking test. Firstly, the method needs to be tested using a

simple case to see how it functions when applied to actual images.

8.4.2.1 The test on the prediction tracking using manual locating

The test is performed on a sequence of images containing bi-directional pedestrian
movement. The initial location direction and speed of the pedestrian in the image is set
manually by pre observation of the sequence. The prediction tracking process is then
monitored step-by-step in order to evaluate its performance. The first image of the test
sequence is shown in Figure 8.9, on which the location and direction are manually
defined and the speed is set at 10 frames per cell. The Von Neumann neighbourhood
shown in Figure 8.10 is employed. Use of this neighbourhood means that the value of
the cell of interest at the next time-step is dependent on the values of the cells above

(north), below (south), right (east) and left (west). Due to the behaviour of human
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movement the forward direction is defined as the direction in which the person is
facing, the Von Neumann neighbourhood sufficiently covers the possibilities for bi-

directional movement.

An example of the test unage

Figure 8.9: The test image with manually set for the location, direction:
moving east and initial of moving speed:10 frames per cell.

Figure 8.10: The Von Neumann neighbourhood

The resuits of using the image sequence starting from Figure 8.9 to test the motion
prediction system are shown in Figure 8.11. The white square on each of the images
represents the cell obtained from the predictor. The dynamic grid generated using the

initial location manually taken from Figure 8.9.
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Figure 8.11: The tracking results of the prediction method

Figure 8.11 shows the ability of the motion tracking system to prediction the
pedestrian’s movement. It can be seen that good predictions of the pedestrian’s

movement are obtained over the first 20 frames of the sequence. Beyond this time the
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location predicted begins to shift in front of the object, until after 50 frames the location
predicted contains only the person head. This suggests that the object began to move
more slowly after the 20" frame, this is because of the camera lens used to capture the
images. Another reason that the whole object is not contained within the predicted cell
is that the pedestrian’s movement is flexible, not limited to lanes as it would be in, for
example, vehicular flow. However, these shortcomings could be compensated for or at
least improved upon by updating of the dynamic grid each time the predicted cell
location changes. For instance, the confirmed location provided by the previous

simulation is used to generate the grid and predict the next movement.

The results obtained by making this suggested improvement are shown in Figure 8.12.
It is seen that the tracking of the pedestrians movement have been improved with the
cell located more accurately upon the object than in the previous test. Consequently,
it can be concluded that the solution conjectured to tackle the shortcomings seen in the

previous test is able to solve these drawbacks.

The proposed prediction method has been seen to provide satisfactory results on an
image sequence that shows one moving pedestrian. It should therefore also provide a
satisfactory level of performance on images containing more than one pedestrian since
the prediction is made on each objects individual CA plane. An experiment is required

to provide confirmation of this statement.
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The same system is now applied to an image sequence contains two pedestrians both of
which are moving; the initial image in the sequence is that of Figure 8.7. There are two

persons moving in the different directions, the speed of their movement is determined as
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is 13 frames per cell as shown in Table 8.1. The results of the simulation, in which the

initial locations directions and speeds of the pedestrians are manually supplied, are

shown in Figure 8.13.
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Figure 8.13: The tracking results of the prediction method
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Figure 8.13 (a) is the initial image and the initial locations of two pedestrian are
manually provided. The outcomes of the motion predictor are seen in Figure 8.13 (b) (c)

(d) (e) and (f) after running 13, 26, 39,52 and 65 frames images, respectively.

Locations plotting of the pediction results
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Figure 8.14: The locations plotting of prediction tracking

The results show that the prediction method is able to provide accurate predictions of
the pedestrian positions over the next several frames. From the experiments it is noted
that the speed of pedestrian’s movement is an essential parameter and has a significant
effect on the prediction accuracy. With respect to the experiments so far, it can be
concluded that the proposed technique is able to perform the desired tracking process. In

the next section the system is automated so that the initial locations direction and speed

are no longer required as initial conditions and its performance is tested.
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8.4.2.2 The test on the prediction tracking using automatically locating

The previous tests have demonstrated that the prediction technique offers the desired
functionality. In order to perform the tracking automatically, the initial information
regarding location direction and speed is obtained from the object detector as discussed
in Chapter 3. Prior to the use of the object detector from Chapter 3, modifications are

required to provide parameters suitable for the prediction module.

The object location needed as an input to the prediction module should locate the centre
of the object, however from the performance indicated in Chapter 3 it cannot currently
provide such accurate information. Changing the number of gradient samples in the
smoothing process can account for the required increase in accuracy. In order to be able
to accurately determine the centre coordinate of the object a reasonable number of
coordinate locations from the object detector is required from which the centre can be
determined. Therefore by decreasing the number of gradient samples, the number of the
coordinates on the object area is increased, as shown in Figure 8.15 (a). From testing,
11 gradient samples are found to be suitable for the application since this produces a

reasonable number of coordinates.

Where only one object is present in the image it is relatively easy to locate the central
coordinate. Subtracting the minimum coordinate position from the maximum in both the
horizontal (column) and vertical (row) dimensions and then adding half of this value to
the minimum coordinate allows the centre to be obtained. The result obtained using the

method described to locate the centre of the object is shown in Figure 8.15 (b).
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The marked image using 11 gradient samples The outsome of the improved ebject eetor

Figure 8.15: The object detector outcome after improving

Where there is more than one object in the image, the vertical and horizontal projections
are used to determine the locations of the different objects. In the example of
Figure 8.16 (a) it is clear by observation especially of the vertical projection that two
distinct regions will be identified representing the two objects, from this information the
centre of each object can then be found as seen in Figure 8.16 (b). This process was also

discussed in Chapter 3.

The outsonte of the improvad object detector

The marked image using 11 gradient samples

(a)-

Figure 8.16: The test of the object detector on the image that contains more than one
object
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The initial direction of movement of each object is also required for the prediction
module. For bi-directional movement this can be obtained by calculating the initial
locations at time ¢ and then the locations at time #+2. The distance between the two
points is defined in term of Ax and Ay. Trigonometry is then used to calculate the

direction in terms of an angle in degrees expressed as:

—an-! [ Y
0 =tan (Ax) (8.1)
Ax=x({t+2)—x(t)and Ay = y(t +2)— y(¢)

where: Ax is the distance between two points in horizontal (column), Ay the distance

between two points in vertical (row) and & the direction of the movement.

An example of obtaining the direction of the movement of an object is shown in
Figure 8.17. From the initial image the coordinate of the object is row: 115 (3(f)) and
column: 54 (x(#)). For the following image the coordinate provided is 120 (3(¢+2)) and

column: 65 (x(¢+2)).

Ax=65-54=11

7 N
herefore: A, 2120-115=5

0 =tan™ (3) =24.44°
11

-146-



CHAPTER 8 Prediction Module (PM)

Figure 8.17: The example image for defining of the direction movement

From the results it is seen that 8 = 24.44° and the positive sign attained from the
subtraction of Ax(f) - Ax(++2) means that the object is moving to the right (East). In this
case the value of O provides confirmation of this direction, for right hand movement 6

should lie within +45°. In contrast if Ax provides a negative sign the direction of
movement should be to the left (West) and © should lie within 180°+45°.
Consequently, it has been seen that this calculation can be used to define the direction of

movement.

Finally, the predictor requires the speed of movement of the object this can be attained
using the information from which the direction of movement was calculated. The speed
of movement is defined as the number of frames per cell; having already found the
distance the object has moved as 11 pixels over a period of three frames and with a cell
size of 48x48 pixels (i.e. the object has to move through 48 pixels to move to the

adjacent cell) then the speed can be defined as a ratio. The speed of movement in this
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example is as follows: the object has moved 11 pixels in 3 frames; therefore it will

move 48 pixels in 13 frames (i.e. the speed is defined as 13 frames per cell).

To show that the suggested modifications to the operation of the object detector are able
to provide suitable information to the prediction module so that it can still accurately
predict the movement of the object without requiring manual initialisation it is

necessary to perform a test.

[nitial zones over which the predictor works need to be defined to ensure that the whole
object appears on the image prior to operation. Without this it may not be possible for
the object detector to determine the movement and speed of the object. In the test the
initial zones are set as 48 pixels from both the left and right sides of the image as shown
in Figure 8.18. The middle line in the figure is used for counting when objects cross

the line.

The outcomes of the test is shown in Figure 8.19, the location, direction and speed, were
calculated as described using the first two images following the object passing the initial
left hand line. The number of locations plotted from the automatic test is less than that
obtained in the manual test because the initial zones shorten the effective image length.
A second test is performed on the image containing two objects, as shown in
Figure 8.20. The object locations and direction of movement are obtained correctly by
the object detector but the speed of the objects is predicted as faster than the actual
speed which leads to prediction error. Instead of using a variable speed calculated for

each object in the sequence, a fixed speed based on Table 8.1 is employed for testing.
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Although, some of the predicted locations attained were ahead of the actual object, the
grid square in which the object is predicted and located is the same; the results are

shown in Figure 8.20.

Initisl.zones for s
: W
d ,

tart the prediction
S A

.

e

Figure 8.18: The initial zones for the prediction applying

Initial image Tha location plotting from object detection & the prediction
I Mhhonds. Savec oy i

X o

L W A

Figure 8.19: The outcomes of automatic tracking
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Further testing has been carried out on images containing a higher density of objects and
it was found that the object detector has difficultly in locating each object correctly.
This leads to problems in the automatic calculation of the direction of movement and

speed of the objects making prediction impossible.

The logati

SN

Figure 8.20: The outcomes of automatic tracking on the image with two objects

8.5 Evaluation of the method

The experiments used to test the ability of the prediction system have supporting have
presented and only the performance of the prediction algorithm is now evaluated. From
the investigations it is clear that the prediction method is able to provide accurate
tracking of the objects movement, especially when the initial object locations, directions
and speeds are manually provided as inputs. However, the limitations of the object
detector during automatic prediction decrease the predictor’s level of performance
especially as the object density of the images is increased, though it is still able to

perform satisfactorily when there is a low object density. Where the object density is too
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high the object detector is unable to provide the required information to the predictor

and so as a whole the pedestrian counter cannot be evaluated.

This is the first time a CA and NN has been utilized for the prediction of pedestrian
movement and it has been shown that provided the desired information can be supplied
to the predictor then it is able to perform the required operation. The limitations in the
system as a whole lie with the object detection process, which has been utilised in this
work to test the prediction technique. The field of initial object detection that can
provide a suitable input to the predictor leaves an interesting platform for further

research work.
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Chapter Nine

Conclusions and Future Work

This chapter provides the conclusion drawn from the experience gained during the
research work and summaries the performance and advantages of the proposed
pedestrian detection and tracking techniques. A discussion of the direction in which this
work can be taken forward and where the findings may be applied in other areas is also

presented.

9.1 Conclusions

The motivation behind this work was derived from the desire to improve the accuracy
and computational cost of pedestrian tracking systems using video images. The studies
were focused on the applications of pattern recognition and classification techniques
with the aim of improving accuracy as presented in Chapters 5, 7 and 8. Not only are
pattern recognition techniques involved in the system, but also image processing plays
an essential role in terms of pre-processing input information (i.e. video images) prior to

being able to apply the use of any recognition technique. The preprocessing was mainly
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dealt with in Chapters 3 and 4 as a pre-requisite to being able to develop and test the

prediction technique.

The object detector in Chapter 3 applies basic image processing techniques to locate the
objects of interest within the image. The results obtained from this relatively simplistic
object detector were deemed suitable for use in the development of the motion predictor
while providing fast processing performance. This allowed a large number of training
sets to be obtained in a short period of time for use in the training of the SOM used as

part of the recognition technique employed later.

The feature extraction technique was discussed in Chapter 4, here it was seen that
texture as an image feature is unsuitable for use as information in the recognition of a
person’s head. Investigation also showed that an individual person’s head is very
difficult to distinguish from others. It was found that the feature extraction technique

has the greatest effect in terms of the classification and recognition tasks.

The novel prediction method presented in Chapters 7 and 8 has proven to provide good
results for prediction when the initial required inputs to the system are supplied
manually, (i.e. the correct inputs are pre-determined). However, the inability of the
object detector to adequately predict the direction and speed of objects in the images
meant that use of the predictor in an automatic mode led to limited accuracy in object
tracking. Nevertheless, from the experiments it can be assumed that providing the object
detector was able to provide the required information that the system would perform as

desired. Since the prediction algorithm is able to learn it is more flexible than those used
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in previous systems and could therefore be applied in other areas such as vehicle

detection or gesture movement detection.

9.2 Future work

The positive results obtained from the testing of the novel prediction method presented
have highlighted the importance and value of this work. However, the initial system
constructed to perform the measurements has physical limitations, which have been

appropriately discussed. One area of further work lies in dealing with these limitations.

The main area of future work resulting from this thesis that needs to be undertaken is
the further development of the object detection system. Although the object detection
process applied in this thesis was produced in order to aliow the development and
investigation of the prediction technique conjectured, in order to make a truly automatic
pedestrian counting system an investigation into more object detection techniques is

required.

Also with the increasing power of the computer, it is possible to perform far greater
levels of processing in real-time. In terms of this system this will allow for more
features to be used to identify objects and allow them to be tracked. This includes

information such as colour to be examined.

A more rigorous investigation of the various operators applied in different sections of

the work for example the erosion function in the object detector or the neighbourhood
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function in the motion predictor needs to be undertaken to find the most suitable shape

for each with respect to this application.

Finally, further experimentation is required on the system when it is applied to the
monitoring of pedestrians in non-controlled environments (e.g. outdoors) over long
durations. This will test the systems durability as the initial conditions change, i.e. as the

light decreases or when it is raining.

-155-



Reference

Reference:

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

91

[10]

[11]

[12]

[13]

[14]

[15]

D. M. Gavrila, “The Visual Analysis of Human Movement: A Survey”, in
Computer Vision and Image Understanding, January 1999, Vol. 73, No. I,
pp. 82-98.

W.H. Liang Wang, and Tieniu Tan, “Recent developments in human motion
analysis”, Pattern Recognition, 2003, Vol. 36, pp. 585-601.

J. K. Aggarwal, Q. Cai, W. Liao, and B. Sabata, “Articulated and elastic non-
rigid motion: a review”, Proceedings of the 1994 IEEE Workshop on Motion of
Non-Rigid and Articulated Objects, 1994, pp. 2 -14.

J. K. Aggarwal, and Q. Cai, “Human Motion Analysis: A Review”, Computer
Vision and Image Understanding, 1999, vol. 73, pp. 428-440.

Thomas B. Moeslund, and Erik Granum, “A Survey of Computer Vision-Based
Human Motion Capture”, Computer Vision and Image Understanding, 2001,
vol. 81, pp. 231-268.

Jessica Jun, Lin Wang, and Sameer Singh, “Video analysis of human dynamics—
a survey”, Real-Time Imaging, vol. 9, 2003, pp. 321-346.

A. ]. Schofield, T. J. Stonham and P.A. Mehta,“Automated people counting to
aid lift control”, in Automation in Construction, 1997,vol.6, pp. 437-445.

A. ]. Schofield, P. A. Mehta and T. J. Stonham, “A System for Counting People
in Video Images Using Neural Networks to Identify the Background Scene”, in
Pattern recognition, 1996,vol. 29, No. 8, pp. 1421-1428.

AN. Marana, S.A. Velastin, L.F. Costa, and R.A. Lotufo, “Estimation of crowd
density using image processing”, in [EE Coll. Image processing for security
applications, Savoy Place, London, March 1997, pp. 11/1-11/7.

X. Zhang and G. Sexton, “Automated human head location for pedestrian
counting”, in IEE IPA, July 1997, pp.535-540.

J. S. McKenna, S. Jabri, Z. Duric, A. Rosenfeld and H. Wechsler, “Tracking
Groups of People”, Computer Vision and Image Understanding, 2000,vol. 80,
No. 1, pp. 42-56.

A. Shino and J. Sklansky, “Segmentation of people in motion”, in IEEE
Workshop on Visual Motion, 1991, pp. 325-332.

J. Segen, and P. Sarma, “A camera-based system for tracking people in real
time”, Proceedings of the [13th International Conference on Pattern
Recognition, 1996.

M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, “Pedestrian
detection using wavelet templates”, in Proc. of IEEE Conference on Computer
Vision and Pattern Recognition, San Juan, 1997, pp. 193-199.

B.Boser, I. Guyon, and V.N.Vapkin, “A training algorithm for optimal margin
classifiers”, presented at Fifth Annual Workshop on Computational Learning
Theory, San Mateo, CA:Morgan Kaufmann, 1992,

-156-



Reference

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Cortes C. and V.N.Vapnik , “Support Vector Networks”, Machine
Learning, 1995, vol. 20, pp.273-297.

V. N. Vapkin, Statistical Learning Theory. New York: Wiley, 1998.

C. Papageorgiou, and T. Poggio, “A pattern classification approach to dynamical
object detection”, in Proc. of the Seventh IEEE International Conference on
Computer Vision, 1999.

A. Baumberg and D. Hogg, “ An efficient method for contour tracking using
active shape models, in Proc. of IEEE Workshop on Motion of Non-Rigid and
Articulated Objects, Austin, 1994, pp. 194-199.

M. Isard and A. Blake, “Contour Tracking by stochastic propagation of
conditional density”, in Proc. of European Conference on Computer Vision,
Freiburg, Germany, 1996.

M. Isard and A. Blake, “CONDENSATION—Conditional Density Propagation
for Visual Tracking”, in International Journal of Computer Vision, 1998, vol.29,
pp. 5-28.

P. Tissainayagam and D. Suter, “Contour tracking with automatic motion model
switching”, in Pattern Recognition, 2003,vol. 36, pp. 2411-2427.

D. K. Heegu Kang and Sung Yang Bang, “Real-time multiple people tracking
using competitive condensation”, in Proc. of 16th International Conference on
Pattern Recognition, 2002.

1. Haritaoglu, D. Harwood and L.S. Davis, “W4: Who? When? Where? What? A
real time system for detecting and tracking people”, in Proc. of Third IEEE
International Conference on Automatic Face and Gesture Recognition. 1998.

I. Haritaoglu, D. Harwood and L.S. Davis, “Hydra: multiple people detection
and tracking using silhouettes”, in Proc. of International Conference on Image
Analysis and Processin, 1999.

C. Wren, A. Azarbayejani, T. Darrell and A. Pentland, *“ Pfinder: Real-time
tracking of the human body”, in IEEE Transcations on Pattern Analysis and
Machine Intelligence, 1997, vol. 19, No. 7, pp. 780-785.

B. Heisele, U. KreBel and W.Ritter, “Tracking Non-Rigid, Moving Objects
Based on Color Cluster Flow”, in IEEE, vol. No. 1997, pp. 257-260.

J. S. McKenna, S. Jabri, Z. Duric, A. Rosenfeld and H. Wechsler, “ Tracking
interacting people”, in Proc. of Fourth IEEE International Conference on
Automatic Face and Gesture Recognition, 2000.

Wenmiao Lu, and Yap-Peng Tan, “A color histogram based people tracking
system”, in The 2001 IEEE International Symposium on Circuits and
Systems, ISCAS 2001.

M. Rossi and A. Bozzoli, “Tracking and counting moving people”, in Proc. of
ICIP-94, IEEFE International Conference on Image Processing, 1994.

X. Zhang and G. Sexton, “Automatic pedestrian counting using image
processing techniques”, Electronic letters, 1995, vol. 31, pp. 863-865.

-157-



Reference

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

X. Zhang and G. Sexton, “A New Method for Pedestrian counting”, presented at
Image Processing And Its Applications, 1995.

Stephen S. Intille, and Aaron F. Bobick, “Closed-World tracking”, in Proc. Int.
Conf. Comp. Vision, 1995.

Jae-Won Kim, K.-S.C., Byeong-Doo Choi, and Sung-Jea Ko, “Real-time
Vision-based People Counting System for the Security Door” , in The 2002
International Technical Conference On Circuits/Systems, Computers and
Communications (ITC-CSCC 200), 2002, Phuket, Thailand.

Rafael C. Gonzalez, Richard E. Woods, Digital image processing, Addison-
Wesley, Wokingham, 1992.

MATLAB: Image Processing toolbox User’s Guide Version 2,7The
MathWorks.Inc., 1998.

John C. Russ, The image processing handbook, 3 ed. CRC Press, Boca Raton,
Heidelberg, Springer-Verlag, 1999.

Pratt, William K., Digital image processing, 2" ed., New York, N.Y., Wiley,
1991.

M. Sonka, V. Hlavac and R. Boyle, Image processing analysis and machine
vision, 2" ed., PWS Publishing, London, 1999.

MATLAB: Signal Processing toolbox User’s Guide Version 4.2,The
MathWorks.Inc.,1999.

C. A. Steinberg, S. Abraham and C. A. Caceres, “Pattern Recognition in the
clinical electrocardiogram”, IRE Trans. Bio-med. Electron, vol. BME-9, Jan
1962, pp. 23-30.

Tarassenko L., A Guide To Neural Computing Applications, Arnold, London,
1998.

Bishop CM., Neural Network For Pattern Recognition, Oxford University Press,
Oxford, 1995.

R. Porter and N. Canagarajah, “ Robust rotation-invariant texture classification:
Wavelet, Gobor filter and GMRF based schemes”, in IEE Proc.-Vis. Image
Signal Proces., June 1997,vol. 144, No. 3, pp. 180-188.

J. Zhang and S. Oe, “ Texture Image Segmentation Method Based on Wavelet
Transform and Neural Network ”, in IEEE Conference, 1998, pp. 4595-4600.

W. Gaohong, Zhang Y. and L. Xinggang, “Wavelet Transform-based Texture
Classification with Feature Weighting”, in IEEE Conference, 1999,pp. 435-439.

M. Unser, “Texture Classification and Segmentation Using Wavelet Frames”, in
IEEE Trans. Image Processing, November 1995,vol. 4, No.11, pp. 1549-60.

T Chang and C. —C. J Kuo, “A Wavelet Transform Approach to Texture”, in
IEEE Conference, 1992,pp. IV661-4.

M. Kirby and L Sirovich, “Application of Karunen-Loeve Procedure for
Characterization of Human face”, IEEE Trans. Paitern Anal. And Mach.
Intell., 1990, vol. 12, No. 7, pp. 103-108.

-158-



Reference

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

J. Daugman,” Face and Gesture recognition: Overview”, IEEE Trans. Pattern
Anal. And Mach. Intell., 1997, vol. 19, No. 7, pp. 675-76.

P. C. Yuen, D. Q. Dai and G. C. Feng, “ Wavelet-based PCA for Human Face
Recognition”, in IEEE Conference, 1998, pp.223-228.

G. Van de Wouwer, “Wavelets for Texture Analysis”, PhD thesis, University of
Antwerp, 1998.

James S. Walker, A Primer on Wavelets and their Scientific Applications,
Chapman& Hall/ CRC, 1999.

G Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge
Press, USA, 1996.

Sergio J. Garcia Galan and Nuria Gonzalez Prelcic , “ Uvi_Wave Wavelet
toolbox user’ guide”, University of Vigo, 1996.

M. Misiti, Y. Misiti, G Oppenheim and J. M. Poggi, MATLAB: Wavelet
toolbox User’s Guide, The MathWorks.Inc., 1996.

C.S. Burrus, R.A. Gopinath and Haitao Guo, “Introduction to Wavelets and
Wavelet Transforms”, Prentice Hall, Inc. New Jersey, 1998.

E. Aboufadel and S. Schlicker, Discovering wavelets, John wiley & Sons ,INC,
1999.

G. Van de Wouwer, P. S. Cheunders and D. Van Dyck, “ Statistical Texture
characterization from Discrete Wavelet Representations”, IEEE Trans. on Image
Processing, April 1999, vol. 8, No. 4, pp. 592-598.

M. Turk and A. Pentland, “Eigenfaces for Recognition”, in Journal of Cognitive
Neuroscience, 1991,vol. 3, No. 1, pp. 71-86.

D. L. Swets and J. Weng,“Using discriminat eigenfeatures for image retrieval”,
in IEEE Trans. on Pattern Anal. and Mach. Intell., 1996, vol. 18, No. 8, pp. 831-
836.

A. O’Toole, H Abdi, K Deffenbacher and D. Valentin, “Low-dimensional
representation of faces in higher dimension of the face space”, in J. Opt. Soc.
Am. A., 1993,vol. 10, No. 3, pp. 405-411.

Ugur Halici and Guclu Ongun, “Fingerprint Classification Through Self-
Organizing Feature Maps Modified to Treat Uncertainties”, Proceeding .of
IEEE, October 1996,vol. 84, No. 10, pp. 1497-1512.

D.R. Hush and B. G. Horne, “Progress in supervised neural networks”, /EEE
Signal Processing Mag., 1993, pp. 8-39.

T. Kohonen, Self-Organization and Associative Memory, 3 ed, Berlin:
Springer Series in Inform. Sci., 1989.

H Jiang and J Penman, “Using Kohonen Features Maps to Monitor the
Condition of Synchronous Generators”, in IEEE, 1994, pp. 89-94.

T. Kohonen, Self-Organization Maps, 2" ed., Berlin: Springer, 1997.

-159-



Reference

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

S. Lawrence, C. L. Giles, Ah Chung Tsoi and A. D. Back, “Face Recognition:
A Convolutional Neural-Network Approach”, in IEEE Trans. on Neural
Networks, 1997,vol.8, No. 1, pp. 98-113.

DTI, Neural Computing Learning solution: Best Practice Guidelines for
Developing Neural Computing Applications, DII’s Neural Computing
Technology Transfer Programme, London, 1994.

S. Wolfram, Theory and Applications of Cellular Automata: Selected Papers,
1983-86 (Advanced Series in Complex Systems), Singapore, World Scientific
Publishing, 1986.

E. Goles, S. Martinez, Neural and Automata Networks: Dynamical Behavior and
Applications, Kluwer Academic Publishers, Dordrecht, 1990.

N. Takashi,* Jamming transition induced by a stagnant street in traffic-flow
model”, Physica A: Statistical and Theoretical Physics, September 1993,
vol. 198, No. 1-2, pp. 108-116.

K. Nagel and S. Rasmussen, “Traffic at the edge of chaos”, In: Artificial life IV,
Proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems, 1994, pp. 222-225.

A. Schadschneider, “Traffic flow: a statistic physics point of view”, Physica A:
Statistical Mechanics and its Applications, 2002, vol.313, No. 1-2, pp. 153-187.

Blue V. J., Embrechts M. J. and Adler J.L, “Cellular automata modelling of
pedestrian movements”, IEEE [nternational Conference on Computational
Cybernetics and Simulation, 1997, vol.3, pp. 2320-23.

Blue V. J. and Adler J.L., “Cellular automata microsimulation for modelling
bi-directional pedestrian walkways”, Transportation Research Part B:
Methodological, 2001, vol.35, No. 3, pp. 293-312.

Blue V. J. and Adler J.L, “Cellular Automata Model Of Emergent Collective
Bi-Directional Pedestrian Dynamics”, Artificial Life VI, The Seventh

International Conference on the Simulation and Synthesis of Living Systems,
Reed College, Portland Oregon, 1-6 August 2000.

Blue V. J. and Adler J.L, “Modeling Four-Directional Pedestrian Movements”,
Presented at the 79th Annual meeting of the Transportation Research Board,
January 2000, and accepted for publication by Transportation Research Record,
Journal of the Transportation Research Board.

Blue, V.J. and Adler, J.L, “Using Cellular Automata Microsimulation to Model
Pedestrian Movements”, Proceedings of the 14th International Symposium on
Transportation and Traffic Theory, A. Ceder ed. Elsevier Science Ltd., July
1999, pp. 235-254.

Fukui-M and Ishibashi-Y, “Jammimg transition in cellular automaton models for
pedestrians on passageway”, In Journal of the Physical Society of Japan,
November 1999, vol. 68, No. 11, pp. 3738-9.

Fukui-M and Ishibashi-Y, “Self-Organized Phase Transitions in Cellular
Automaton Models for Pedestrians”, In Journal of the Physical Society of Japan,
August 1999, vol. 68, No. 8, pp. 2861-63.

-160-



Reference

[82]

[83]

[84]

[85]

[86]

[87]

[88]

S. Wolfram, “Statistical mechanics of cellular automata”, Review of Modern
Physics, July 1963, vol.55, No.3, pp. 601-644.

J. Von Neumann, “Theory of self-reproducing automata”, A.W. Burk Editor,
University of Illinois Press, 1966.

N.H. Packard and S. Wolfram, “Two dimensional cellular automata”, in Journal
of Statistical Physics, 1985, vol.38, No. 5/6.

V. Rao, H. Rao and V.B. Rao, C++ Neural Networks and Fuzzy logic, 2 ed,
Berlin: Springer, 1997.

[. A. Basheer and M. Hajmeer, “Artificial neural networks: fundamentals,
computing, design, and application”, Journal of Microbiological Methods, 2000,
vol.43, pp. 3-31.

M.T. Hagan, H. B. Demuth and M. Beale, Neural Network Design, PWS
Publishing Company, Boston, USA,1996.

C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz, “Simulation of
pedestrian dynamics using a two-dimensional cellular automaton”, Physica A:
Statistical Mechanics and its Applications, 2001, vol. 295, No. 3-4, pp. 507-525.

-161-



Appendixes

Appendix A: Least-square Parabolic Smoothing and Differentiation

To find the number of points over which a least-square parabola can be fitted to provide the
best compromise between smoothing and signal degradation, it was necessary to develop a
general expression for the value of the smoothed data in terms of the number of sample

points.

The equation of such a parabola is

Y =aq, +a1x+a2x2, (A-1)

where Y is the value of the parabola at sample number x and ay, a; and a; are constants.

If X' =0 is defined as the location of the parabola at any sample point k is

Y, =a, +ka, +ka,, (A-2)

_((n—l))<k<((n—1))
2 ) L 2

The difference between the value of the parabola (ex) and the data sample (¥y) is

where

1
e/c :Yk _Y;c

e, =a,+ka +k'a,-Y,

ke (A_3)
The total mean square difference is then
k=2 ke(roh2

Z e’ = Z (a, +ka, +k’a2—-y,), (A-4)

k=—(n-1)/2 ke=m(n=1)12

where n is the odd-numbered point



To minimize the mean square difference, (A-4) is differentiated with respect to ag, a; and a»,
and the resultant three derivatives are set to zero. These equations are then solved
simultaneously to obtain the values of ag, a; and a,, which will determine the parabola that

provides a least mean-square fit with the n samples of the data.

This process yields the following three sets of values for ag a; and a,, for the

least-square parabola:

3 kz(i’:m ) )
a, = ————X (Bn" =T7-20k")y
’ 4”(712_4) k=—(n=1)/2 ¢
12 k=(n-1)/2
4, = ——————X ky
] ”(’72 -1) k=—(nZ—1)/2 ¢
180 k=(n-1)/2
a, = > -’ =D/12y,

( 1)(” - 4) =—(n=1)/2

The value of the smoothed data is the value of the parabola at X= 0, or merely ay. Therefore

the set of ay is applied to perform as the smoothing method.
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Abstract

This paper describes a new movement prediction
technique for use in conjunction with a pedestrian tracking
system. The proposed prediction technique aims to learn the
behavior of pedestrian movement directly from images, it is
based on an association of Cellular Automata (CA) and a
Neural Network (NN). A CA is applied to capture the
pedestrian movement, The derived CA patterns are then
used to train the NN. The trained NN is used for simulating
pedestrian movement, and then used to estimate the
pedestrian future position. The results indicate that the
effectiveness of the technique depends on the following
factors: the number of pedestrians and the movement
patterns. Applications of the technique on other objects
apart from pedestrians are introduced.

Prediction, Pedestrian movement behavior,
Cellular Automata, Neural Network.
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1. Introduction

In the last decade, the use of computer vision for
“human motion analysis” [1] has grown exponentially,
because of its promising applications such as visual
surveillance, perceptual user interface, motion analysis and
model-based coding. This attracts many researchers in
gxploring new techniques for the application of human
motion analysis, which involves the detection, tracking and
recognition of consecutive human images. One of the main
areas explored so far is the technique used for tracking
human images. Prediction techniques have been used to
support human tracking in various manners and purposes.
Moeslund and Granum [2] employed prediction using a
model of velocity and acceleration to estimate the 3D pose
of a human arm. Rohr [3] applied a Kalman filter, which is
used for estimating the current movement state of 3D
positions and posters, in order to predict the human pose in
consecutive frames. Rossi and Bozzoli [4] used a simple
trajectory model to provide a reasonable estimate of the
regions of interest for tracking people movement in
consecutive frames.

This paper presents an alternative prediction
method, which like Rossi and Bozzoli [4] is used to support
the tracking of human movements. However, in the present
study rather than using the simple trajectory model, the
association of CA and NN is used instead. The proposed
prediction algorithm can be split into two parts: the
movement behavior captured by using a CA and the use of
a NN for CA pattern learning and simulating. In Section 2,
the principle of CA and NN are briefly introduced. An
association of CA and NN and the application of a CA to

capture pedestrian movement and the NN to learn the CA
patterns are explained in Section 3. In Section 4,
experiments which were carried out on actual consecutive
images are demonstrated. Finally in Section 5, the
conclusions regarding the proposed technique are reported.

2. The principles of the CA and the NN

In this section, the principles of CA and NN are
briefly explained in order to provide an overview of these
two tools.

2.1 Cellular Automata

Cellular Automata (CA) are mathematical
idealizations of physical systems in which space and time
are discrete, and physical quantities take on a finite set of
discrete values. A cellular automaton consists of a regular
uniform lattice or array, usually infinite in extent with a
discrete variable at each site or cell. The state of a cellular
automaton is completely specified by the values of the
variables at each site. A cellular automaton evolves in
discrete time steps, with the value of the variable at one
site being affected by the values of variables at sites in its
neighborhood on the previous time step. The neighborhood
of a site is typically taken to be the site itself and all
immediately adjacent sites. The variables at each site are
updated simultaneously, based on the values of the
variables in their neighborhoods at the preceding time step,
and according to a definite set of “local rules”[5].

CA were first introduced by Von Neumann in the
early 1950s. His CA has computing capabilities of the
Universal Turbine Machine [6]. Since then, many other
studies on CA as abstract models of computation have
been made and cover a large scope of applications such as
physics, image processing, and computer science [5]. In
recent years, CA microsimulation has been successfully
applied to model vehicular flows and traffic networks [7,8]
then extended to model pedestrian flow [9-12].

2.1.1 One-dimensional Cellular Automaton

The simplest model is a one-dimensional cellular
automaton (1D-CA). It consists of a line each site carries
values, which are updated in parallel. The neighborhood of
a site is typically taken to be the two adjacent sites. This
characteristic is known as a spatially local rule. The
relationship between sites is depicted in Fig. 1.
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Fig. 1: A cell and its neighbors of 1D-CA
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The evaluation of the sites is controlled by a
definite set of rules, depending on the values for a fixed
number of preceding steps. Usually, the preceding step is 1.
This is the temporally local rule. Such very simple iocal
evaluation rules can produce very complex even chaotic
behavior for the overall system. An example of two-state
(0,1) 1D-CA simulation is shown in Fig. 2. The used CA
rules in the simulation are set as following: the new state of
the cell will be white (0) if all three cells are white or black
(1). Otherwise, the new state of the cell will be black (1).
The new state and the CA rules can also be expressed as:

0if x=[0 0 Oler[l 1 i
Ui x=01 1 OLIL O 01,
New state = 0o .o 1 0] [4))

[0 1 1,0 0 1

Where x is a set of three cells

Over time, the cells change from state to state by
using CA rules in (1). The pattern obtained from a
simulation for 20 steps is illustrated in Fig. 3. As the results
from the simulation, the self-reproduce the patterns are
more complex if the step of simulation is increased.
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Fig. 2: One-step of applying CA rules to two-state 1D-CA
2.1.2 Two-dimensional Cellular Automata

The basic principle is identical to a one-
dimensional cellular automaton. The main differences
reside in the neighborhood. There are several possible
lattices and neighborhood structures for two-dimensional
cellular automata (2D-CA) [13]. The first one, defined by
Von Neumann [14], is the square cellular automaton, as
illustrated in Fig. 4 a. A second important two-dimensional
cellular automaton is known as the Moore neighborhood
cellular automaton depicted on Fig.4 b.

In the two cases shown, each cell is connected to
either the four or the eight neighbors around it, respectively.
Any function on the neighborhood can then be evaluated
accordingly. One of the simplest computations allowed by
such an arrangement is a sum of the cell values and has
been widely described in cellular automaton theory [5,13].

This study is interested in the 2D-CA, which will be used
to capture pedestrian movement. The adaptation of the 2D-
CA to our application is described in Section 3.
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Fig. 3: The simulation of 20 steps of two-state 1D-CA
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Fig.4: Two-dimensional cellular automata

2.2 Neural Network

A Neural Network (NN) is a computational
structure inspired by the study of biological neural network
processing. In this study, a Backpropagation Neural
Network (BPNN) is used because it is suitable for our
application.

The BPNN is a feed-forward multilayer
perceptron (MLP) consisting of (1) an input layer with
nodes representing input variables to the problem, (2) an
output layer with nodes representing the dependent
variables, and (3) one or more hidden layers containing
nodes to help capture the non-linearity in the data. Using
supervised learning with the error-correction learning rule
(ECL), these networks can learn the mapping from one
data space to another using examples. The term
backpropagation refers to the way the error computed at
the output side is propagated backward from the output
layer, to the hidden layer, and finally to the input layer. In
the BPNN, the data are fed forward into the network
without feedback. The neurons in the BPNN can be fully
or partially interconnected [15]. The architecture of the
BPNN is illustrated in Fig. 5.
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Fig.5: The BPNN architecture with 3 input, 3 hidden nodes
and 1 output node
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3. The association of CA and BPNN

The principles of the CA and the BPNN have been
explained in the previous section. This section describes
how the CA is associated with the BPNN to provide a
prediction technique. According to the principle of a CA,
the evaluation of a site (in 1D-CA and 2D-CA) is controlled
by a set of CA rules that can be regarded as patterns in
terms of vectors. These patterns could be used to train
BPNN. Therefore, it is conjectured that after the BPNN is
trained, it should behave the same as the CA models. If the
conjecture is true, capturing of pedestrian behaviors from
real images is feasible and the defining of CA rules from
empirical data can be avoided.

A grid is required to be superimposed on the
image in order to applying the CA, to capture the pedestrian
dynamic that is generically two-dimensional in nature [12]
therefore the 2D-CA is used. Each grid size depends on the
people dimension that turn up in the image; however, the
grid should be big enough to contain most of the people
dimension as illustrated in Fig. 6. While the pedestrian
appears in the image, the grid is established and a CA
pattern, which contains the site and its neighborhood, is
captured. Then it is employed as the BPNN input. The
pedestrian position in the next few frames, which depends
on the speed of the pedestrian, is used as the target for the
BPNN to provide its training. After training the BPNN is
used for pedestrian dynamic simulating, instead of using the
CA rule set. The proposed prediction technique block
diagram is illustrated in Fig. 9. Experiments that were
carried out to prove the conjecture are demonstrated in
Section 4.
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Fig.7: A site with Moore neighborhood

4. Experiments

In order to prove our conjecture, the experiment
is carried out on the BPNN simulation and compared to a
CA simulation. Firstly, we apply the CA patterns of (1) for
training BPNN. The set of three cells, x, is fed through
BPNN as inputs (3 inputs nodes) and the new state, 0 or 1
(1 output node), is the target of BPNN. For the number of
hidden nodes, we begin with 3 nodes and increase 1 node
each time of new training in case that training fails. The
number of hidden nodes is increased in order to achieve
the goal of training. The result of the BPNN simulation
provides the same outcome as the CA simulation showed
in Fig. 3. More experiments were carried out using
different CA rules in the simulation then extended to 2D-
CA. In the experiment of 2D-CA, the number of BPNN
inputs and CA patterns are increased according to Moore
neighborhood as shown in Fig. 7and Fig. 8 illustrated the
pedestrian movement simulation on the CA plane. The
BPNN and CA produced the same outputs, showing that
the BPNN was able to follow the CA.
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Fig. 8: The pedestrian movement simulation 6 steps of
two-state 2D-CA

As the result of the CA simulation offer proof that
the BPNN can be used instead of the CA simulation, the
test is extended to a prediction experiment. Actual
consecutive images were used for testing. The prediction
requires the pedestrian location and direction in the
simulation; the initial pedestrian location and direction
were manually set. 2D-CA with Moore neighborhood,
shown in Fig. 4(b), was applied for the test. The speed of
pedestrian movement was assumed to be constant at 6
frames per cell. As a result, it is can be seen that the
pedestrian position in the next several frames can be
estimated and tracked. The outcomes of the prediction
process are shown in Fig. 10.
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Fig.9: The block diagram of the prediction technique
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Fig.10: The images of the prediction outcomes

5. Conclusion and discussion

The concepts of a new prediction technique have
been presented. The co-operation of CA and BPNN is
applied to actual images to support tracking used for
classifying the input CA pattern then employed for
simulation. In fact the presented technique is required to
use with a detection method in order to provided an
automated system for pedestrian tracking.

However, the results indicate the effectiveness of
the technique depends on the following factors: the number
of pedestrians and the movement patterns that concern
probability, speed and direction of pedestrian movement.
These factors are topics for further investigation and studies
in order to improve the effectiveness of our prediction
method. Besides, the automated pedestrian tracking with
the proposed method is also focused for the further study.

The prediction technique could be extended to
support tracking systems for other applications that the CA
can be applied such as the vehicles tracking, path planning
for robot movement etc.

References

[1] DM. Gavrila, “The Visual Analysis of Human
Movement: A Survey”, in Computer Vision and Image
Understanding, Vol. 73, No. 1, January 1999, pp. 82-98.
[2] T. B. Moeslund and E. Granum, “Multiple cue used in
model based motion capture”, in The fourth International
Conference on Automatic Face and Gesture Recognition,
Grenoble, France, March 2000.

[3] K. Rohr, “ Human movment Analysis Based on
Explicit Motion Models, chap. 8, pp. 171-198, Kluwer
Academic, Dordrecht/Boston, 1997.

[4] M. Rossi and A. Bozzoli, “Tracking and counting
moving people,” presented at Proceedings. ICIP-94, IEEE
International Conference on Image Processing, 1994.

[5] S. Wolfram, Theory and Applications of Cellular
Automata: Selected Papers, 1983-86 (Advanced Series in
Complex Systems), Singapore, World Scientific
Publishing, 1986.

[6] E. Goles, S. Martinez, Neural and Automata Networks:
Dynamical Behavior and Applications, Kluwer Academic
Publishers, Dordrecht, 1990.

{71 K. Nagel and S. Rasmussen, “Traffic at the edge of
chaos”, In: Artificial life IV, Proceedings of the Fourth
International Workshop on the Synthesis and Simulation
of Living Systems, 1994, pp. 222-225.

[8] A. Schadschneider, “Traffic flow: a statistic physics
point of view”, Physica A: Statistical Mechanics and its
Applications, 2002, Vol.313, No. 1-2, pp. 153-187.

[9] Blue V. J., Embrechts M. J. and Adler J.L, “Cellular
automata modelling of pedestrian movements”, [EEE
International Conference on Computational Cybernetics
and Simulation, 1997, Vol.3, pp. 2320-23.

[10] Fukui-M and Ishibashi-Y, “Jammimg transition in
cellular automaton models for pedestrians on
passageway”, In Journal of the Physical Society of Japan,
November 1999, Vol. 68, No. 11, pp. 3738-9.

[11] Fukui-M and Ishibashi-Y, “Self-Organized Phase
Transitions in Cellular Automaton Models for
Pedestrians”, In Journal of the Physical Society of Japan,
August 1999, Vol. 68, No. 8, pp. 2861-63.

[12] C. Burstedde, K. Klauck, A. Schadschneider and J.
Zittartz, “Simulation of pedestrian dynamics using a two-
dimensional cellular automaton”, Physica A: Statistical
Mechanics and its Applications, 2001, Vol. 295, No. 3-4,
pp. 507-525.

[13] S. Wolfram, “Statistical mechanics of cellular
automata”, Review of Modern Physics, July 1963, Vol.55,
No.3, pp. 601-644.

[14] J. Von Neumann, “Theory of self-reproducing
automata”, A.W. Burk Editor,University of Illinois Press,
1966

[15] 1.A. Basheer and M. Hajmeer, “Artificial neural
networks: fundamentals, computing, design, and
application”, Journal of Microbiological Methods, 2000,
Vol.43, pp. 3-31.

= = y ord A o .
maszAnmamadaanssu i afaf 28 (EECON-28) 20-21 qa1ay 2548 um1Inendosssumans

972
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Abstract — This paper describes a pedestrian tracking
system that uses a new movement prediction technique based
on an association of Cellular Automata (CA) and a Neural
Network (NN). The proposed prediction technique aims to
learn the behaviour of pedestrian movement directly from
images. CA are applied to capture the pedestrian movement.
The derived CA patterns are then used to train the NN. The
trained NN is employed to simulate pedestrian movement,
and then to estimate the pedestrian future position. The
results indicate that the effectiveness of the technique
depends on the following factors: the speed of pedestrians
and the movement patterns. Other applications of the
technique are also mentioned.

Keywords: Prediction, Pedestrian, Cellular Automata, Neural
Network.

I. INTRODUCTION

Over the last decade, the use of computer vision for
“human motion analysis” [1] has increased exponentially
because of its promising applications such as perceptual
user interface, visual surveillance, motion analysis and
model-based coding. This attracts many researchers in
exploring new techniques for the application of human
motion analysis, which involves the detection, tracking
and recognition of consecutive human images. One of the
main areas explored so far is the technique used for
tracking human images. Prediction techniques have been
used to support human tracking in various manners and
for varying purposes. Rohr [2] applied a Kalman filter,
which is used for estimating the current movement state of
3D positions and postures, in order to predict the human
pose in consecutive frames. Moeslund and Granum [3]
performed prediction using a model of velocity and
acceleration to estimate the 3D pose of a human arm.
Rossi and Bozzoli [4] used a simple trajectory model to
provide a reasonable estimate of the regions of interest for
tracking people movement in consecutive frames.

This paper presents an alternative prediction method,
which like Rossi and Bozzoli [4], is used to support the
tracking of human movement. However, in the present
study rather than using the simple trajectory model, the
association of CA and NN is applied. The proposed
prediction algorithm can be split into two parts: the
movement behaviour captured using CA and a NN to
learn and simulate the CA pattern. In Sections II and III,
the principle of CA and NN are briefly detailed. The
association of CA and NN and the application of CA to
capture pedestrian movement and the NN to learn the CA
patterns are explained in Section IV. In Section V,
experiments which were carried out on actual consecutive

images are demonstrated. Finally in Section VI, the
conclusions regarding the proposed technique are reported.

[I. THE CELLULAR AUTOMATA

Cellular Automata (CA) are mathematical idealizations
of physical systems in which space and time are discrete,
and physical quantities take on a finite set of discrete
values. A cellular automaton consists of a regular uniform
lattice or array, usually infinite in extent with a discrete
variable at each site or cell. The state of a cellular
automaton is completely specified by the values of the
variables at each site. A cellular automaton evolves in
discrete time steps, with the value of the variable at one
site being affected by the values of variables at sites in its
neighbourhood on the previous time step. The
neighbourhood of a site is typically taken to be the site
itself and all immediately adjacent sites. The variables at
each site are updated simultaneously and according to a
definite set of “local rules”’[5]. CA were first introduced
by Von Neumann in the early 1950s. His CA has the
computing capabilities of the Universal Turing Machine
[6]. Since then, many other studies on CA as abstract
models of computation have been made and cover a large
scope of applications such as physics, image processing,
and computer science [5]. In recent years, CA
microsimulation has been successfully applied to model
vehicular flows and traffic networks [7,8] then extended
to model pedestrian flow [9-11].

A. One-dimensional Cellular Automaton

The simplest model is a one-dimensional cellular
automaton (1D-CA). It consists of a line of sites each
carrying values that are updated in parallel. The
neighbourhood of a site is typically taken to be the two
adjacent sites. This characteristic is known as a spatially
local rule. The relationship between sites is depicted in
Fig. 1. The evaluation of the sites is controlled by a
definite set of rules, depending on the values for a fixed
number of preceding steps, usually taken as 1. This is the
temporally local rule. Such very simple local evaluation
rules can produce very complex even chaotic behaviour
for the overall system. An example pattern obtained from
a two-state (0,1) 1D-CA simulation is shown in Fig. 2.
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Fig. 1. A cell and its neighbours of 1D-CA
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Fig. 2. The simulation of 20 steps of a two-state 1D-CA

The CA rules applied in the simulation are: the new state
of the cell will be white (0) if all three cells are white or
black (1). Otherwise, the new state of the cell will be
black (1). The new state and the CA rules can also be
expressed as (1):

0if x=[0 0 Olorl 1 1]
New state = Ly sz L 0L 00l ®
1 0 L0 1 0],

[0 1 1,00 0 1]

Where x is a set of three cells

Over time, the cells change from state to state using the
CA rules in (1). As in the results of the simulation, the
self-reproducing pattern becomes more complex as the
number of steps in the simulation is increased.

B. Two-dimensional Cellular Automata

The basic principle is identical to a one-dimensional
cellular automaton. The main differences reside in the
neighbourhood shape. There are several possible lattices
and neighbourhood structures for two-dimensional
cellular automata (2D-CA) [12]. The first one, defined by
Von Neumann [13], is the square cellular automaton, as
illustrated in Fig. 3a. A second important two-dimensional
cellular automaton is known as the Moore neighbourhood
cellular automaton, depicted in Fig. 3b. In the two cases
shown, each cell is connected to either four or eight
neighbours. Any function on the neighbourhood can then
be evaluated accordingly. One of the simplest
computations allowed by such an arrangement is a sum of
the cell values and has been widely described in cellular
automaton theory [5,12]. This study is interested in the
2D-CA, which will be used to capture pedestrian
movement. The adaptation of the 2D-CA to our
application is described in Section IV,
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Fig. 3. Two-dimensional celfular automata

III. NEURAL NETWORK

A Neural Network (NN) is a computational structure
inspired by the study of biological neural network
processing. Supervised training of the NN is required in
this application, however since the number of input
patterns is not significant then the training speed of the
network is not a major concern. The use of a feed-forward
multiplayer perceptron (MLP) with an error back-
propagation learning algorithm is therefore deemed to be
sufficient in this application. The MLP consisting of (1)
an input layer with nodes representing input variables to
the problem, (2) an output layer with nodes representing
the dependent variables, and (3) one or more hidden
layers containing nodes to help capture the non-linearity
in the data. Using supervised learning with the error-
correction learning rule (ECL), these networks can learn
the mapping from one data space to another using
examples. The term back-propagation refers to the way
the error computed at the output side is propagated
backward from the output layer, to the hidden layer, and
finally to the input layer. In the MLP, the data are fed
forward into the network without feedback. The neurons
in the MLP can be fully or partially interconnected [14].

IV. THE ASSOCIATION OF CA AND MLP

This section describes how the CA is associated with
the MLP to provide a prediction technique. A block
diagram of the system is illustrated in Fig. 4. According to
the principle of a CA, the evaluation of a site (in 1D-CA
and 2D-CA) is controlled by a set of CA rules that can be
regarded as patterns in terms of vectors. These patterns
could be used to train MLP. Therefore, it is conjectured
that after the MLP is trained, it should behave the same as
the CA models. If the conjecture is true, the capture of a
pedestrian’s behaviour from real images is feasible and
the definition of CA rules from empirical data can be
avoided.

A grid is required to be superimposed on the image in
order to applying the CA, to capture the pedestrian
dynamic that is generically two-dimensional in nature [11]
and therefore the 2D-CA is employed. Each grid size
depends on the dimension of the person in the image. The
grid should be big enough to contain most of the person,
as illustrated in Fig. 5. While the pedestrian appears in the
image, the grid is established and a CA pattern, which
contains the site and its neighbourhood, is captured. This
is then employed as the MLP input. The pedestrian
position in the next few frames, which depends on the
speed of the pedestrian, is used as the target for the MLP
to provide its training. After training, the MLP is used for
pedestrian dynamic simulating, instead of using the CA
rule set. This offers three advantages: (i) the behaviour of
pedestrian movement can be captured and learned, which
makes the model independent from the use of empirical
data, (ii) The application of the CA rules to every cell on
the CA plane is avoided and (iii) it makes the model more
flexible allowing it to be applied in other applications for
which the CA algorithm is suitable. Experiments that were
carried out to investigate the conjecture and are
demonstrated in Section V.
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Fig. 4. The block diagram of the prediction technique

Fig. 5. An obtained latticed image from the grid generating

V. EXPERIMENTS

The experiment is carried out on the MLP simulation
and compared to a CA simulation in order to prove our
conjecture. A MLP with log-sigmoid transfer function in
the hidden layer, linear transfer function in the output
layer and a gradient decent algorithm is employed in the
NN. Firstly, the MLP with is trained using the CA
patterns of (1). Sets of three cells, x, are fed into the MLP,
which has 3 inputs nodes. The MLP then evolves itself by
correctly weighting the nodes in the hidden layer to
achieve the desired output (1 output node) for the given
input. The initial number of nodes in the hidden layer is
three and is increased by 1 each time the desired output is
not attained. As shown by the training results in Table I, it
is found that the MLP operates as per the CA when the
number of hidden nodes is twice that of the number of
input nodes. Multiple experiments were performed using
different CA rules and the results obtained supported the
initial conjecture. The experiments were then extended to
2D-CA. Simulation of the 2D-CA required the number of
MLP inputs and CA patterns to be increased according to
the neighbourhood used. The simulation of a pedestrian’s
movement on the CA plane is illustrated in Fig. 7. The
MLP and CA produced the same outputs, showing that the
MLP was able to follow the CA.

TABLE 1
TRAINING RESULTS

Number of Training results of 10 times :lfcrgzgstf(l)j
hidden neurons Successful Unsuccessful training (%)

3 I 9 10

7 3 2 80

5 3 2 80

5 9 1 90

7 0 0 100

3 10 0 100

0 0 0 100
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Fig. 7. The pedestrian movement simulation 6 steps of two-state 2D-CA

This shows that the MLP can be used instead of the CA
simulation. Finally the experiment is extended by using
actual image data. The prediction technique requires the
pedestrian’s initial location and direction, which in this
case have been manually set. 2D-CA with Von Neumann
neighbourhood, shown in Fig. 3(a), was applied. The
speed of pedestrian movement was assumed to be
constant at 10 frames per cell obtained by inspection. The
test image with the initialisation and the simulation results
are illustrated in Figs. 8 and 9, respectively. As a result, it
is can be seen that the pedestrian position in the next
several frames can be estimated and tracked to a
satisfactory degree. The error observed occurs as a result
of the grid applied to divide into cells the image. The grid
is established around the pedestrian’s initial location and
is constant until they leave the image. This could be
improved by regenerating the grid as the pedestrian moves
from cell to cell. Another source of error arises from the
speed at which the pedestrian moves, because the camera
lens used to capture the images is convex.

An example of the test image

Fig. 8. The test image with manually set for location and direction



Fig. 9. The tracking results of the prediction method

The results obtained by performing the grid regeneration
at each cell are shown in Fig. 10. It is seen that the
tracking of the pedestrian’s movement is improved with
the cell located more accurately upon the object than in
the previous test. The technique is able to predict up to 50
frames ahead when the average walking speed is set at 10
frames per cell. However, the speed per cell will vary as
the size of the grid changes.

VI. CONCLUSION AND DISCUSSION

The concepts of a new prediction technique have been
presented. The co-operation of CA and MLP has been
applied to actual images to support tracking used for
classifying the input CA pattern then employed for
simulation. The presented technique requires use of an
object detection method that can supply the initial location
and direction of the pedestrian in order to provide an
automated system for pedestrian tracking.

It has been shown that the position of the pedestrian can
be accurately predicted up to 50 frames ahead. Errors
attained in excess of 50 frames may be in part due to the
convex shape of the camera lens. Since the experiment
was performed for only a single pedestrian in the
sequence of images, the motion dynamic was not chaotic
as has been shown in the demonstration of the CA.
However, if the number of pedestrian in the image
sequence increases the cells in the CA plane become
occupied, which would result in chaotic behavior.
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Fig. 10. The tracking results of the improved prediction method

The results indicate that the effectiveness of the
technique depends upon the following factors: the
movement patterns that concern probability, speed and
direction of pedestrian movement. These factors are topics
for further investigation. The number of pedestrians is
another factor requiring further discussion, as the
investigation presented here looks at the system
performance for when only a single pedestrian is present
in the image. Further more the development of a suitable
detection method is required in order that a fully
automated pedestrian tracking system based on the
prediction technique can be achieved.

The prediction technique could be extended to support
tracking systems for other applications for which the CA
can be applied such as vehicle tracking or path planning
for robot movement.
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