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Hierarchical Energy Management System for
Home-Energy-Hubs Considering Plug-in Electric

Vehicles
Hamid Reza Gholinejad, Jafar Adabi, Mousa Marzband, Senior Member, IEEE

Abstract—The escalating demand on Electric Vehicles (EVs)
has enhanced the necessity of adequate charging infrastructure,
especially in residential areas. This paper proposes a smart
charging approach for off-board Electric Vehicles (EVs) chargers
in Home-Energy-Hub (HEH) applications along with DC sources
such as Photovoltaic (PV) and Battery Storage (BS). The
proposed method facilitates smart charging and discharging
of EVs to obtain both Vehicle-to-X (V2X) and X-to-Vehicle
(X2V) operations focusing on the domestic applications integrated
with renewable and storage elements. Furthermore, the optimal
State-of-Charge (SOC) profiles for BS and EV in the HEHs
system is defined by the extended Bellman-Ford-Moor Algorithm
(BFMA). This modified BFMA utilizes the forecasted data such
as solar irradiation, electricity tariff, and power consumption
to gain economic benefits in HEHs with respect to user
and EV requirements. Moreover, the plugging time, duration
and initial/final SOC are fluctuating at each connection due
to the stochastic nature of EV conditions and user settings.
This study presents a laboratory implementation of two-level
Hierarchical Energy Management System (HEMS) for HEHs
with plug-in electric vehicles. In fact, the primary level includes
power converters controller, while the proposed algorithm is
implemented in the secondary level. Finally, the simulation and
experimental results confirm the effectiveness of the proposed
analysis regarding the interaction of HEHs and power grid with
EVs behavior.

Index Terms—Hierarchical energy management system;
Home-energy-hub; Electric vehicle; Vehicle-to-Grid; Smart
charging and discharging.

NOMENCLATURE

Abbreviation
BS Battery storage
BFMA Bellman-Ford-Moor algorithm
CC Constant Current
CCB Current control board
CV Constant voltage
DP Dynamic programming
EV Electric vehicle
EMS Energy management system
HEMS Hierarchical energy management

system
HEH Home-Energy-Hub
MILP Mixed integer linear programming
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PLL Phase-locked loop
PV Photovoltaic
RCC Reduced constant current
PI Proportional-Integral
RES Renewable Energy Source
SOC State-of-Charge
V 2G Vehicle-to-Grid
V 2X Vehicle-to-X
X2V X-to-Vehicle
X Home, Grid, Vehicle, · · ·

Indices
g, t, ev Indices of power grid, time-step,

electric vehicle
j, k Indices of SOC at two consecutive

time-steps
Parameters

iBS
L , iEV

L , iPV
L Inductor currents of BS, EV, and PV

ig, i
∗
gd, i

∗
gq Instantaneous, and references value of

d-axis and q-axis currents of power
grid

vg, vgd, vgq Instantaneous, d-axis and q-axis
voltage of power grid

P
BS||EV
Charge , P

BS||EV
Discharge Maximum charge and discharge power

of the batteries
Lg, ωg, θg L-filter, angular frequency and phase

of power grid
vdc, v⋆dc, Q⋆, P PV

ref Instantaneous and references value of
DC bus voltage, and reference of
power grid reactive power and PV
power

n, nev Number of nodes per time-step
t0, tTarget Start and stop times BS scheduling
tEV
in , t

EV
out Connection and disconnection times of

EV
SOCBS,k

t kth BS SOC of time-step t
SOCBS,j

t+∆t jth SOC of time-step (t+∆t)

SOCBS
t0 , SOCBS

tTarget
Initial and target SOCs of BS

SOCEV
tin , SOCEV

tout
Initial and target SOCs of EV

SOCBS,max
t ,

SOCBS,min
t

Upper and lower limit of BS SOC

SOCEV,max
t ,

SOCEV,min
t

Upper and lower limit of EV SOC

∆SOCBS,(k,j)
(t,t+∆t),

∆SOCEV,(k,j)
(t,t+∆t)

Changes of BS and EV SOCs when
crosses from node k of time-step t to
node j of time-step (t+∆t)

∆P
BS,(k,j)
(t,t+∆t),

∆P
EV,(k,j)
(t,t+∆t),

∆P
HEH,(k,j)
(t,t+∆t)

Changes of BS, EV, and HEH powers
when crosses from node k of time-step
t to node j of time-step (t+∆t)
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δSOCBS
t , δSOCEV

t Step size of BS and EV SOC
CBS

AH , V BS Battery capacity and battery voltage of
BS

CEV
AH , V EV Battery capacity and battery voltage of

EV
W

(k,j)
(t,t+∆t) Cost function value when crosses from

node k of time-step t to node j of
time-step (t+∆t)

Γ Electricity tariff
I. INTRODUCTION

GROWING demand of plug-in EVs introduces new types
of loads in power systems. Despite the environmental

benefits, EVs contain stochastic charging demand and impose
additional load on power grid [1]. Various charging rates,
initial SOC, and plug-in time are the factors causing stochastic
behavior of EVs [2]. Forming home-scaled energy systems
with real-time multi-objective Energy Management System
(EMS) could be interesting solutions to these challenges. In
fact, the HEH is identified as an integration of a variety
of small-scale energy generators, energy converters, and
energy storage units causing to reduce dependency on power
plants and enhance utilization of Renewable Energy Sources
(RES) [3]. Further, the most suitable EMS structure for the
integrated energy systems is hierarchical architecture [4].
Extensive communication and maximum level of coordination
hinder implementation of fully centralized and decentralized
control structures [5]. In fact, the hierarchical architectures
compromise among other control structures. The couple of
works of literature dealing with the same subject are explained
in details below.

Optimal scheduling of an energy hub including energy
storage system and integrated EV is investigated in [6]. A
mixed integer linear programming (MILP) optimization to
manage the domestic peak load demand for home-scaled
prosumers including PV, BS, and EV is presented in [7].
However, performance of the proposed approach has not
been validated experimentally. Further, a novel and effective
charging method to deal with charging pattern for residential
EVs is introduced in [8]. Nevertheless, the method has
considered only EV charging load pattern, and V2G operation
mode has been ignored. A novel home EMS is presented
in [9] considering energy price and PV power generation
uncertainties along with maximizing plug-in EV battery
life span. Predominantly, home EMSs has been verified
from a simulation perspective, while practical implementation
identifies the key deviations from simulation results. A
multi-functional EV charger is implemented practically in
a grid-connected PV-based home microgrid in [10]. A
novel state-space approximate Dynamic Programming (DP)
approach for fast real-time decision-making in home EMS
is proposed in [11]. The optimal routing of EVs’ SOC
is discussed in [12]. In this respect, the shortest path is
discovered considering limited battery capacity to minimize
the charging times. However, none of the above studies have
considered the stochastic behavior of EVs such as random
connecting time, different plugged-in duration, and different
initial and target SOC.

An effective charging/ discharging method is suggested

in [13] where the experimental results have proved that the
proposed method could significantly reduce the energy cost
and energy dependency on the power grid. Furthermore,
a charging/ discharging framework for EVs for effective
utilization of PV is proposed in [14]. A comprehensive
independent energy system and cost-effective charging would
be achieved by a multi-energy system considering the BS
optimal charging and discharging. Moreover, the real-time
pricing to compute the BS system schedule is considered
in [15], where the EV has accounted for an uncertain load.
An efficient EMS for an integrated system with PV, BS,
and EV to facilitate EV and BS charging is proposed in
[16]. Although the unexpected peak power demand and the
V2G implementation is controlled by the EMS, this method
failed to address the electricity tariff, as EMS is SOC-based.
Hence, the BS and EV are charged even during the high
electricity tariff periods, which is not cost effective. This
requires a comprehensive observation of the multi-energy
system, and hierarchical structure is one of the best candidates
in this regard. Moreover, a charging and discharging strategy
for both the BS and EV for economic energy modeling in
home applications are proposed in [16]. In fact, the model
derives a user-friendly energy scheduling framework for the
smart home, resulting the lowest energy cost. However, these
schemes utilize complex calculations to evaluate the optimal
solutions. A home EMS strategy to coordinate the charging/
discharging operation of the multi-trip EVs is proposed in
[17], which deals with the various charging and discharging
situations. Nonetheless, this strategy is only suitable for the
scenarios with lack of RESs and BSs.

Consequently, the literature works on home EMS and EV
charging could be classified into different major categories
of (a) optimality, multi-energy systems, and (c) uncertainty
consideration. Among these works, insignificant number of
papers has addressed all three categories as well as power
converters control in real-time experimental tests. Table I
compares a number of papers from this perspective. This table
has also presented the advantages and disadvantages of the
most interesting methods in home EMS and EV charging. This
study has concentrated on the power converters control based
on a two-level (primary and secondary) HEMS architecture for
HEHs considering the stochastic behavior of EVs. The main
contributions of the proposed strategy could be identified as:

• A two-level HEMS for multi-energy systems is designed
to manage and achieve pre-defined user objectives with
simple implementation.

• An optimization algorithm based on the day-ahead and
the instantaneous data to make fast real-time decisions
under the stochastic behavior of EV.

• Satisfactory results in terms of target SOC attainment,
financial benefits, and avoiding batteries overcharging/
over-discharging can be achieved.

• System uncertainties and charging modes such as constant
current (CC) and reduced constant current (RCC) are
considered.

The remaining parts of the paper are organized as below.
Section II gives an overview of the system. Section III
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TABLE I: Comparison of different algorithm in the literature

Method Ref Stochastic
EV

Power
converter
switching

Classification Pros Cons

Mixed-integer linear
programming (MILP)

[18],
[19] ✓ x (a) Flexible and powerful for solving

large and complex problems

Non-linear effects cannot be taken
into account, need to consider the
whole-time horizon at once[20] x ✓ (a), (b)

Particle Swarm
Optimization (PSO)

[21] x ✓ (a), (b) Easy hardware implementation,
strong global search capability, fast
convergence speed, and less
computational complexity

Relatively high computational time,
unsuitable for real-time applications

[22] x x (a), (b), (c)

Model Predictive
Control (MPC)

[23] x ✓ — Robust against uncertainty, multiple
control objective can be
implemented for the same control
strategy

Computational complexity, highly
dependent to control parameters
information[24] ✓ x (a), (c)

Heuristic optimizations
[25] ✓ x (a), (b) Offers a quick solution, easy to

understand and implementation,
practical

Unable to assure optimally of the
obtained results[26],

[27] x x (a), (b)

Stochastic programming

[28],
[29] ✓ x (a), (b), (c) Provide convenient tools to model

uncertainties
Complexity of large multi-stage
stochastic problems

[30]–[32] x x (a), (b), (c)

Rule-based

[33],
[34] x x (a), (b) Simple structure, high reliability,

and practical Unable to deal with large data
[35] x x (a), (b), (c)

Artificial neural
network (ANN)

[36] ✓ x (a), (c) Fast solution for problems in
control and prediction

Complex design and
implementation, requires learning
process[37],

[38] x x (b)

Fuzzy logic control
(FLC)

[39] x x (b) Simple structure, Easy design and
implementation, and handle
nonlinear systems

Depends on appropriate rule-based
algorithms and membership
functions which are commonly
determined on the basis of trial and
error

[40] x x —

Adaptive neural fuzzy
inference system
(ANFIS)

[41] x x (b) Ability to capture the nonlinear
structure of a process, adaptation
capability, and rapid learning
capacity

Large amount of data required and
long training and learning times

[42] x x (b)

DP

[43] x x (a), (b)
Optimal decision capability, proper
to solve more complex problems

Require future data profile to make
a decision, difficult to implement in
embedded devises

[44] x x (a), (b), (c)
Proposed
method ✓ ✓ (a), (b), (c)

discusses the proposed two-level HEMS. Section IV presents
the simulation and experimental results of various case studies.
The paper ends with conclusions in Section V.

II. SYSTEM DESCRIPTION

HEH is equipped with DC source, BS, and EV in this
study. According to Fig. 1, each device is connected to
a common DC bus via the individual DC-DC converters.
A single-phase bidirectional DC/AC converter performs as
an interface between the DC bus and the power grid. The
proposed HEMS consists of two primary and secondary levels.
The primary level generates the switching pulse following the
secondary level references. This level includes measurements
and control system to regulate the voltage and currents based
on the determined power references by the secondary level.
In the primary level, each DC-DC converter is controlled as
a current source with PI controller. The current reference of
parallel DC-DC converters is determined by the secondary
level. In particular,, the secondary level acts as a Central
Control Board (CCB) which determines the current reference
of each converter. In fact, the CCB divides the measured load

current by the number of parallel DC-DC converters [45]. In
the proposed method, the reference currents are determined
according to a multi-objective optimization algorithm. The
single-phase bidirectional DC/AC converter is also controlled
as a current source, which current reference is determined by
the DC bus voltage error. In this regard, the DC bus voltage is
measured to set the current amplitude on AC side [46]. Further,
the grid voltage phase, frequency, and amplitude are extracted
by the phase-locked loop (PLL). In the secondary level, BFMA
is deployed as a popular DP algorithm to adapt the HEMS with
the stochastic behavior of the EV. As illustrated in Fig. 1, the
forecast data (solar irradiance, load demand) and the measured
quantities (batteries’ SOC) are considered as the input data
for the secondary level. This structure could be extended
by considering a couple of neighboring HEHs to achieve a
large-scale integration of RESs, BSs, and EVs. A detailed
description of the proposed secondary level is presented in
the next section.
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Fig. 1: System structure

III. PROPOSED TWO-LEVEL HEMS
As mentioned above, the secondary level input data is

determined by the forecast data, user settings and the measured
quantities. The outputs are optimal charge/ discharge profiles
of BS and plugged-in EV. The power sharing of the system is
determined to achieve the optimal SOCs. The system continues
its operation, even if the EV is disconnected. When the EV is
reconnected, the optimal profile of SOCs should be determined
again based on the new EV status for remained time-steps
of the day. Therefore, the optimization algorithm should be
relatively fast for real-time implementation process. BFMA is
an optimization technique which utilizes to find the shortest
path through a graph [11], [12]. This method breaks up
the complex energy management problems into a series of
sub-problems to speed up the process for real-time decisions
[11]. In the following sections, the principles of conventional
BFMA and modified BFMA are described, respectively.

A. Conventional BFMA

As shown in Fig. 2, the BS charging problem is divided
into a multi-stage decision process. At each time, t, a set of
SOC states, SOCBS,k

t , is estimated, and discretized with steps
(k=1,· · · , n).SOCBS,max

t , SOCBS,min
t , and δSOCBS

t are the
upper limit, lower limit and the step size of SOC, respectively
[47]. The goal is to find the shortest path between the SOCBS

t0
and SOCBS

tTarget
by crossing all possible sets of SOC states. t0

and tTarget are the start and stop time of algorithm, respectively.
Each change of SOC states from SOCBS,k

t to
SOCBS,j

t+∆t, (j=1,· · · ,k,· · · ,n), represents an edge
E(∆SOCBS,k

t ,∆SOCBS,j
t+∆t) in the graph of Fig. 2. Crossing

an edge leads to charge or discharge of the BS, which
corresponding power is obtained by Eq. (1).

∆PBS,(k,j)
(t,t+∆t) = ∆SOCBS,(k,j)

(t,t+∆t)C
BS
AHV BS (1)

where, CBS
AH , and V BS are the BS capacity and voltage,

respectively. Further, SOC change through crossing the edge
is as Eq. (2).

∆SOCBS,(k,j)
(t,t+∆t) = SOCBS,k

t − SOCBS,j
(t+∆t) (2)

If ∆SOCBS,(k,j)
(t,t+∆t) > 0 and ∆SOCBS,(k,j)

(t,t+∆t) < 0,
the BS is discharged and charged, respectively. By
determining ∆PBS,(k,j)

(t,t+∆t), power excess/shortage could be

0

BS

tSOC
Target

BS

tSOC

min

1

,BS
SOC

max

1

,BS
SOC

,maxBS

t
SOC

,max

t t

BS
SOC

+

,min

t t
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SOC

+

,minBS
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SOC

min

23

,BS
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23

,BS
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,BS k
SOC

3

,

2

BS k
SOC

,S k

t

B
SOC

,S k

t

B

t
SOC

+

BS

t
SOC

Fig. 2: Conventional BFMA for optimal routing of SOC

obtained according to the day-ahead PV and load power as
Eq. (3).

∆P
HEH,(k,j)
(t,t+∆t) =

(
P PV
t+∆t − PLOAD

t+∆t

+∆P
BS,(k,j)
(t,t+∆t)

)
∣∣∣∣∣∣ t=t0,··· ,tT arg et

k=1,··· ,n
j=1,··· ,n

(3)

To find the shortest path, the financial profit is considered as
the weight of each edge W

(k,j)
(t+∆t). Therefore, this parameter is

calculated according to the ∆P
HEH,(k,j)
(t,t+∆t) and electricity tariff,

Γ(t+∆t). According, to the pseudo-code shown in Algorithm 1,
the BFMA searches for the shortest path, which indicates the
amount of BS’ SOC between t0 and tTarget.
Algorithm 1 BFMA
Require: Initialization ▷ Hourly prediction data of HEH, SOCBS

t0
,

SOCBS
tTarget

, SOCEV
tin

, SOCEV
tout

, δSOCBS
t , δSOCEV

t , SOCBS,max
t , SOCBS,min

t , SOCEV,max
t ,

SOCEV,min
t , P BS||EV

Charge , P BS||EV
Discharge, and Γt.

D
(

SOCBS,k
t

)
←∞, ∀t ̸= t0 (4)

▷ Set initial distance

D
(

SOCBS
t0

)
← 0, ∀t = t0 (5)

▷ Distance to start node
for t= t0: tTarget do

for k= 1: n do
for j= 1: n do
W

(k,j)

(t+∆t)
=

1(
∆P

HEH,(k,j)

(t,t+∆t)
× Γ(t+∆t)

) ; ∆P
HEH,(k,j)

(t,t+∆t)
> 0 (6)

W
(k,j)

(t+∆t)
= ∆P

HEH,(k,j)

(t,t+∆t)
× Γ(t+∆t); ∆P

HEH,(k,j)

(t,t+∆t)
< 0 (7)

D
(

SOCBS,j
t

)
= min[D

(
SOCBS,j

t+∆t

)
, D

(
SOCBS,k

t

)
+ W

(k,j)

(t+∆t)
] (8)

end for
end for

end for
return Return determine the optimum SOC profile of BS and EV.

As seen before, the conventional BFMA properly provides
the optimal profile of SOC changes, which could effectively
be used in optimal charge and discharge management of BS in
HEH. However, if one or more plugged-in EVs are available
and two or more optimal profiles should be determined,
it cannot be applicable anymore. In the next subsection, a
modification of BFMA is discussed in order to present (or
evaluate) the scalability of the two or more optimal profiles.

B. Modified BFMA

In this section, in order to achieve two or more optimal
profiles, the conventional BFMA has slightly been changed,
which does not impose mathematical complexity and is
suitable for applications with several optimal charging and
discharging units. Assume that EV is connected at tEV

in

(stochastically) with SOCEV
tin (measured). The EV owner

should set two parameters: (1) unplug time (tEV
out) and (2)

SOCEV
tout

to make EV charge and discharge optimal. Prior to
connecting EV, the system operates on conventional BFMA
results. By EV plugging, SOC measuring and setting the two
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aforementioned parameters, the modified BFMA will run.
Fig. 3 shows the scheme of the proposed BFMA with a

plugged-in EV. Brighter blue and brown semicircles indicate
lower SOC states of EV and BS, respectively. Similarly, the
green and yellow semicircles are the initial and target SOCs
of EV, respectively. In this regard, the number of SOC states
(nodes), at the time-steps that the EV is connected except tEV

in

and tEV
out, is changed. As shown in this figure, for a given SOC

state of BS at each time-step, there would be several SOC
states for EV. In other words, considering the number of SOC
states of EV, nev =

(
SOCEV,max

t − SOCEV,min
t

)/
δSOCEV

t ,
(t = tEV

in + 1, · · · , tEV
out − 1), there will be nev , there will be

nev states for EV per SOC states of the BS. Hence, the total
number of nodes will be n×nev while an EV is connected.

As the number of nodes increases, the more computational
time would be needed. However, it should be noted that
by crossing each possible path, many SOC states would be
eliminated because of the constraints. The ∆SOCBS,(k,j)

(t,t+∆t) and

∆SOCEV,(k,j)
(t,t+∆t) are not allowed to be greater than the certain

amount during a time-step because of the nominal power of
charger and the specifications of the batteries.
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Fig. 3: Modified BFMA scheme for more optimal routing of SOCs
Here, crossing an edge may lead to charge or discharge of

the both BS and EV, simultaneously. Hence, the corresponding
power is obtained from Eq. (9).

∆P
HEH,(k,j)
(t,t+∆t) =


P PV
t+∆t − PLOAD

t+∆t

+∆P
BS,(k,j)
(t,t+∆t)

+∆P
EV,(k,j)
(t,t+∆t)

∣∣∣∣∣∣ t=t0,··· ,tTarget
k=1,··· ,n
j=1,··· ,n

(9)

where,

∆P
EV,(k,j)
(t,t+∆t) = ∆SOCEV,(k,j)

(t,t+∆t) × CEV
AH × V EV (10)

∆SOCEV,(k,j)
(t,t+∆t) = SOCEV,k

t − SOCEV,j
t+∆t (11)

CEV
AH and V EV are the EV capacity and voltage,

respectively. The conventional BFMA pseudo-code will be
modified as shown in Algorithm 2. The nodes range at
different time-steps are changed after the EV connection.

C. Constraints

In order to prevent the increasing time for the charge/
discharge scheduling of multiple EVs, the problem is restricted
to the maximum charge and discharge power of the batteries,
P

BS||EV
Charge and P

BS||EV
Discharge, as shown in Fig. 4. This means that

at a given time-step, ∆SOCBS||EV,(k,j)
(t,t+∆t) , would not exceed the

Algorithm 2 MODIFIED BFMA
Require: Initialization ▷ Hourly prediction data of HEH, SOCBS

t0
,

SOCBS
tTarget

, SOCEV
tin

, SOCEV
tout

, δSOCBS
t , δSOCEV

t , SOCBS,max
t , SOCBS,min

t , SOCEV,max
t ,

SOCEV,min
t , P BS||EV

Charge , P BS||EV
Discharge, and Γt.

D
(

SOCBS,k
t , SOCEV,k

t

)
←∞, ∀t ̸= t0 (12)

▷ Set initial distance

D

(
SOCBS

tEV
in

, SOCEV,k

tEV
in

)
← 0, ∀t = t0 (13)

▷ Distance to start node
for t= tEV

in: tTarget do
if tEV

in +1 < t < tEV
out then kt= n × nev

else kt= n
end if
if tEV

in ≤ t < tEV
out then Jt= n × nev

else if tEV
out ≤ t < tout then Jt= n

else Jt= 1
end if
for k= {1: n for t = tEV

in} do
for j= 1: n do

Check the constraints; ▷ Refer to Fig. 4

W
(k,j)

(t+∆t)
=

1(
∆P

HEH,(k,j)

(t,t+∆t)
× Γ(t+∆t)

) , ∆P
HEH,(k,j)

(t,t+∆t)
> 0 (14)

W
(k,j)

(t+∆t)
= ∆P

HEH,(k,j)

(t,t+∆t)
× Γ(t+∆t), ∆P

HEH,(k,j)

(t,t+∆t)
< 0 (15)

D
(

SOCBS,j
t+∆t, SOCEV,j

t+∆t

)
= min[D

(
SOCBS,j

t+∆t, SOCEV,j
t+∆t

)
(16)

D
(

SOCBS,k
t , SOCEV,k

t+∆t

)
+ W

(k,j)

(t+∆t)
] (17)

end for
end for

end for
return Determine the optimum SOC profile of BS and EV.

particular values. Therefore, the unwanted nodes are nullified
and an acceleration factor is introduced. In addition, to protect
the battery from damage at the higher SOCs, the battery
charger should be used in constant voltage (CV) charging
mode. However, the CV mode needed approximately three
times longer duration compared to the CC mode. To improve
the long charging time and preserve the safety feature without
changing the control schematic, RCC mode proposed in [48]
has been adapted to the proposed algorithm procedure. In this
regards, for the SOCs greater than 80%, PBS||EV

Charge would be
decreased. To do this, at the edges ending to SOCs > 80%,
if the ∆SOCs ≤ −10%, the edges’ weigh will be infinite.
As a result, some other nodes would be nullified and the
maximum change of SOCs in charging mode would be more
restricted during a time-step. Thus, the results presented in
the Section III are based on the RCC mode. This way, the
proposed method guarantees the achieving to the target SOC
of BS and EVs, optimal management of RES power and
maximum financial profit of HEH as well as power grid peak
shaving. These incentives motivate customers and power grid
to adopt and financially support such a strategy, respectively.
IV. SIMULATION AND EXPERIMENTAL RESULTS

The performance of the proposed algorithm has been
investigated through the simulation and experimental results.
Detailed features and results assessment are presented below.

A. Simulation

According to Fig. 1, a HEH has been simulated on
MATLAB/ Simulink environment with the specifications given
in Table II. The simulation results are obtained based on four
following case studies (CS).

1) CS1: EV is not connected, t0= 00:00, tTarget= 24:00,
SOCBS

0 = 40%, and SOCBS
Target= 90%.
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Fig. 4: Nullifying the unwanted nodes

2) CS2: EV is connected under two scenarios CS2S1 and
CS2S2 which model the stochastic behavior of the EV
at two connection time-steps as follows. BS parameters
of BS for both CS2S1 and CS2S2 are as the same as
CS1. EV parameters are also randomly considered, as
described in next paragraphs.

a) CS2S1: tEV
in1= 05:00, tEV

out1= 10:00, SOCEV
tin1

= 35%, and
SOCEV

tout1
= 60%

b) CS2S2: tEV
in2= 13:00, tEV

out2= 18:00, SOCEV
tin2

= 20%, and
SOCEV

tout2
= 55%

3) CS3: EV is connected under two scenarios CS3S1
and CS3S2 which study impacts of EV disconnection
before the mutually agreed upon tEV

out on SOCs optimum
scheduling. BS parameters of BS for both CS3S1 and
CS3S2 are the same as CS1. EV parameters are also
randomly considered, as described in next paragraphs.

a) CS3S1: tEV
in1= 10:00, tEV

out1= 23:00, SOCEV
tin1

= 40%, and
SOCEV

tout1
= 85%

b) CS3S2: tEV
in1= 10:00, tEV

out2= 18:00, SOCEV
tin1

= 40%, and
SOCEV

tout2
= 65%

4) CS4: EV is connected in the case of considering load
uncertainty. The BS parameters are the same as CS1, and
EV parameters are manually chosen specially for CS4
as tEV

in = 00:00, tEV
out= 24:00, SOCEV

tin
= 20%, and SOCEV

tout
=

90%.
a) CS4S1: without considering load uncertainty
b) CS4S2: With considering load uncertainty

Fig. 5 illustrates the SOC of BS and EV according
to the CS1, CS2S1, and CS2S2. This figure shows the
effect of random re-connection of the EV on BS charge/
discharge scheduling. EV parameters including the connecting/
disconnecting time-steps, initial SOC and target SOC are

TABLE II: Simulation specifications
Description Value Unit
DC bus voltage 400 V
RMS voltage of power grid 230 V
BS and EV voltage 228, 114 V
BS and EV capacity 136, 102 Ah
PV maximum power and voltage 5450, 288 W, V
SOCBS,min

t , SOCBS,max
t , δSOCBS

t 20, 90, 5 %
SOCEV,min

t , SOCEV,max
t , δSOCEV

t 20, 90, 5 %
PBS

Charge, PBS
Discharge 9.3, 12.4 kW

P EV
Charge, P EV

Discharge 1.7, 3.5 kW
Switching frequency 20 kHz
Power grid frequency 50 Hz
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Fig. 5: SOC optimal profiles of BS and EV for CS1, CS2S1, and
CS2S2

determined randomly at the plugging time-step in the ranges
of Eq. (18) to Eq. (9). Hence, stochastic behavior of EV could
be modeled.

20% ≤ SOCEV
tin ≤ 50% (18)

40% ≤ SOCEV
tout

≤ 90% (19)

00:00 ≤ tEV
in ≤ 22:00 (20)

tEV
in ≤ tEV

out ≤ 24:00 (21)
As shown in Fig. 5, the BS charge and discharge scheduling

are determined based on the results obtained at time-step 00:00
(CS1). At 05:00, the system specifies the charge and discharge
scheduling of both EV and BS at the same time for 10:00
and 24:00 (CS2S1), respectively. Similarly, by reconnecting
the EV at 13:00, the algorithm is run again and updates the
charge and discharge schedules of EV and BS for 18:00 and
24:00 (CS2S2), respectively. Therefore, SOC profile of BS
with two-time random re-connection of EV follows the blue
curve by 05:00. At the time interval of 05:00 to 13:00, it
changes according to the green curve and for hours-ahead, it
matches the red curve changes. Further, Fig. 5 shows the SOC
profile of EV. Refer to this figure, not only EV is not charged
at a fixed rate, but also it operates three times in V2H mode.
This indicates how much EV is flexible to take part achieving
problem objective.

In the case of disconnecting EV before the pre-defined
time, tEV

out , the proposed HEMS should be run to deal with
the stochastic variation effects of the EV on the BS charge
scheduling. To do this, the EV’s parameters are determined
randomly with the disconnection time-step, which randomly
changes between tEV

in and tEV
out . In this regard, at a time-step

before tEV
out , EV is suddenly disconnected. This is modeled

by defining a flag that indicates whether EV is connected or
disconnected. The number of flags is multiplied by EV power
in Eq. (9). Therefore, EV disconnection leads to a change in
the amount of power excess/ shortage of HEH, the weight
of the remaining paths, and the optimal BS profile changes,
subsequently. If EV is disconnected at a moment between two
consecutive time-steps, the algorithm works based on the last
scheduling until the start of the next time-step. Then, it acts as
described above. In order to minimize the fluctuations of such
possible problems, shorter time-steps could be applied, which
is not needed in the application of this article according to the
problem objectives. However, results of sudden disconnection
before tEV

out for 1-hour time-steps is shown in Fig. 6. As presents
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Fig. 7: SOC optimal profiles of BS and EV and the load power
profiles for CS4

in this figure for EV, the green area corresponds to case that its
connection/ disconnection time-steps are determined according
to the random approach (CS3S1). Previously, these random
parameters are presented in the definition of CS3. However,
with the sudden departure of EV at 18:00, its SOC does not
follow the last path obtained any more (CS3S2). Hence, SOC
changes depicted in the red zone are not followed by EV and
as a result, SOC of the EV does not reach the specified target
value. Further, the corresponding changes of BS’s SOC are
shown in this figure. Therefore, BS follows the blue, green,
and red curves under the sudden disconnection of the EV
at intervals of 00:00-10:00, 10:00-18:00, and 18:00-24:00,
respectively.

Showing the proposed algorithm capabilities in considering
the possible uncertainties, Fig. 7 presents the load uncertainty
(CS4) in which load power value will change randomly
per step-times in a range up to ±40% compared to the
pre-defined value. To do this, EV is connected at t0 and the
value of next time-step load power is selected randomly in
the aforementioned range. The proposed algorithm is run at
each time-step, considering the worst case. Therefore, at each
time-step, the battery charging/ discharging scheduling is done
for hours-ahead. In this regard, SOCBS

t0+∆t of time-step t is set
as the SOCBS

t0 of time-step t+∆t.
Table III compares daily purchased power price of HEH

between the proposed and uncontrolled charging methods. In
uncontrolled charging method, EV get charged at maximum
rate whenever the EV is connected. In order to be a credible
comparison, the EV’s initial and target SOCs in uncontrolled
charging method are equal to the corresponding previous
scenarios. According to Table III, the cost of a given purchased
power under the proposed control is lower than uncontrolled
method.

Table IV presents the BFMA running time for different
CSs. As can be seen, the data would be increased for CSs
with higher number of nodes and edges. In this case, most

of the time is spent creating the weight matrix. Due to the
constraints shown in Fig. 4, the dimensions of the weight
matrix are reduced considerably because many edges could
be nullified, since the specified conditions have not been met.
On the other hand, once the graph is formed, it only takes a
fraction of a seconds to find the shortest path by specifying
any initial and target nodes. Although, it takes maximum 1.4
s to create the graph for an HEH with a BS and an EV, the
graph could be used for routing the shortest paths in future
scenarios while they may take time about 0.01 s. However,
the focus of this paper is on home applications, even if it
develops to a multi-scheduling scheme, it still does not need
to be faster [49]. A graph related to the presence of an EV is
also formed at the beginning of the test to enhance the data
processing speed in the practical tests. Then, the algorithm
calls only the graph at the moment of random connection of
EV. For applications with a couple of plugged-in EVs such
as charging stations, parking, and shopping centers, artificial
intelligence methods could use to train the system to achieve
a higher number of nullified edges.

B. Experimental Results

The proposed two-level HEMS is implemented on a
scaled-down testbed shown in Fig. 8. A DSP TMS320F28335
processor from Texas Instruments® has used to implement the
proposed algorithm. Two batteries act as BS and EV, and a DC
voltage source is replaced with PV. The power grid voltage is
reduced through an auto-transformer and then, passed through
a 1:1 isolation transformer. A current source converter with an
output resistive load is utilized to emulate the controllable DC
load. Thus, the amplitude of the load current in each time-step
could be changed during the experimental tests. The load
current profile is shown in the following changing in range
from almost zero to -3 A. The system specifications are given
in Table V. In the following, the performance of the proposed
algorithm under experimental CSs (ECS) is verified. In the
assessments, BS’s and EV’s currents under different ECSs are
shown, which are considered as the criteria for evaluation of
the effects of stochastic behavior of EV on BS current profile.

Therefore, an ECS without the presence of EV (ECS1),
with the PV and load current profiles are depicted together
for twenty time-steps. The ipv and iload, shown in Fig. 9,

TABLE III: Simulation results
Quantities ∆PHEH HEH purchased power price (£)

(kWh) Proposed
method

Uncontrolled
charging

CS2S2 -26.77 1.5631 1.6701
CS3S2 -22.7 1.122 1.5074
CS4S2 -27.94 1.5524 1.7657

TABLE IV: Algorithm specification

Scenario Number
of

nodes

Total
number
of edges

Nullifying
percentage

(%)

Number
of

remaining
edges

Time to
once

forming
of

graph
(s)

CS1 347 4980 30 3485 0.01
CS2S1 1112 158415 62 60198 0.26
CS2S2 992 156615 62.4 58887 0.22
CS3S1 2717 560490 63 207380 0.8
CS3S2 1667 308490 62.6 115380 0.52

CS4 5177 1114200 62.8 414480 1.4
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Fig. 8: Experimental test bed

are used for all ECSs. The PV generated current and the
load consumption current are depicted positive and negative,
respectively. The iBS and iEV are also obtained under following
ECSs:

1) ECS1: EV is not connected and SOCBS
0 = 45%, and

SOCBS
Target= 90%.

2) ECS2: EV is connected and disconnected at two random
time-steps emulating stochastic behavior of the EV. BS
parameters are same as ECS1.

3) ECS3: EV is connected and disconnected at two random
time-steps different from CS2 ones (ECS3S1), but it is
suddenly disconnected manually (ECS3S2). Similarly, BS
parameters in both CS3S1 and CS3S2 are same as ECS1.

4) ECS4: EV is connected all the time (ECS4S1). In this
situation, the load uncertainty is considered (ECS4S2).
Consequently, BS parameters in both CS3S1 and CS3S2
are same as ECS1.

Since, the tests are performed in a short period of time
and SOC changes are negligible during this period, SOC of
batteries are not measured at the time-step of EV connection
and applied randomly in the algorithm. As shown in Fig. 9, the
BS optimal current profile is included in several charge and
discharge modes to achieve the least purchased power price.
The BS current is displayed as positive and negative in charge
and discharge modes, respectively. It is clear that these modes
have different rates, proportional to δSOCBS

t and limited to
P

BS||EV
Charge , PBS||EV

Discharge.
With the random entry of EV in ECS2, changes are appeared

on SOC of BS. By comparing Fig. 9 and Fig. 10, it can
be identified that the modes and rates of sometime-steps
in ECS2 are different from the responding time-steps in
ECS1. Fig. 10 also represents the voltage and current on
the AC side in ECS2S2. The current amplitude fluctuates
with the demand of the HEH during test period. Also, the
180 degrees phase difference between voltage and current
means the HEH is selling the power excess to the power grid.
Similarly, ECS3S1 was tested with different initial and target
conditions than ECS2. Thereafter, ECS3S1 runs again, where

TABLE V: Experimental setup specifications
Condition Value Unit
DC bus voltage 36 V
RMS voltage of power grid 28 V
BS and EV voltage 12 V
BS and EV capacity 7 Ah
DC source voltage (max) and current (max) 30, 3 V, A
PBS

Charge, PBS
Discharge 17, 17 W

P EV
Charge, P EV

Discharge 17, 17 W
DC/ DC converters switching frequency 40 kHz
Inverter switching frequency 3 kHz
Power grid frequency 50 Hz

Fig. 9: Experimental result: PV, load, and BS currents in ECS1

the EV was manually disconnected before being unplugged
by the algorithm (ECS3S2). Fig. 11 shows the BS’s and EV’s
currents under these two scenarios. By comparing BS current
in Fig. 9 and Fig. 11a, the effect of the presence of EV on
the optimal charge and discharge profile of the BS is clear.
Consequently, the sudden disconnection of EV also affects
this optimal profile, as presents in Fig. 11b with a dashed
ellipse. Moreover, in CS3S2, after the sudden disconnection
of EV, the new optimal BS profile is applied to the system at
the beginning of the next time-step because the disconnection
occurred at a moment between two consecutive time-steps
while the algorithm waits for run until the next time-step.

Fig. 12 illustrates the performance of the system under
load uncertainty. In this test, each time-step takes 5 s for the
algorithm to have sufficient time to analyze under conditions of
load uncertainty. Random load changes are shown in Fig. 12b
by the dashed line ellipse. The algorithm starts working as
soon as the uncertainty is detected (I). During this period, the
BS and EV currents have the values obtained from the previous
analysis. Then, the optimal charging and discharging schedule
is modified for the current and the remaining time-steps
(II). Similarly, by detecting subsequent uncertainties, this
procedure has repeated for intervals [III, IV], [V, VI], and
[VII, VIII] leading to modifications on the optimal profile of
BS’s and EV’s currents.

Fig. 13 represents the BS’s SOC in different ECSs. This
result is obtained by SOCBS

0 − 1
CBS

AH

∫
iBSdt during a 100 s

time period with five-second time-steps. As mentioned above,
the five-second time-steps is selected to facilitate enough time
to the algorithm to perform analysis in case of load uncertainty.
As can be seen, the effect of stochastic behavior of EV
and load uncertainty on BS’ SOC is proportion to associated
currents.

V. CONCLUSION

This study has developed a smart charging solution for
EVs and provided a practical implementation for domestic
applications. In this respect, a two-level HEMS has been
proposed where the modified BFMA has been included at
the secondary level for optimal charging the EV and BS.
Furthermore, the proposed HEMS is suitable for real-time
decision making in the multi-energy systems where the
optimal profile of charge/ discharge in batteries (BSs and
EVs) could be evaluated by the user profitability. Eventually,
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Fig. 10: Experimental result: BS an EV currents in ECS2

(a) CS3S1

(b) CS3S2

Fig. 11: Experimental result: BS and EV currents in ECS3

the performance of the proposed HEMS has been practically
validated by a testbed accompanied with a DC-source, BS,
and EV connected to the power grid.
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