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Abstract 30 

Background: Physical function remains a crucial component of mild traumatic brain injury 31 

(mTBI) assessment and recovery. Traditional approaches to assess mTBI lack sensitivity to 32 

detect subtle deficits post-injury, which can impact a patient’s quality of life, daily function 33 

and can lead to chronic issues. Inertial measurement units (IMU) provide an opportunity for 34 

objective assessment of physical function and can be used in any environment. A single waist 35 

worn IMU has the potential to provide broad/macro quantity characteristics to estimate gait 36 

mobility, as well as more high-resolution micro spatial or temporal gait characteristics (herein, 37 

we refer to these as measures of quality). Our recent work showed that quantity measures of 38 

mobility were less sensitive than measures of turning quality when comparing the free-living 39 

physical function of chronic mTBI patients and healthy controls. However, no studies have 40 

examined whether measures of gait quality in free-living conditions can differentiate chronic 41 

mTBI patients and healthy controls. This study aimed to determine whether measures of free-42 

living gait quality can differentiate chronic mTBI patients from controls. 43 

Methods: Thirty-two patients with chronic self-reported balance symptoms after mTBI (age: 44 

40.88 ± 11.78 years, median days post-injury: 440.68 days) and 23 healthy controls (age: 48.56 45 

± 22.56 years) were assessed for ~7 days using a single IMU at the waist on a belt. Free-living 46 

gait quality metrics were evaluated for chronic mTBI patients and controls using multi-variate 47 

analysis. Receiver operating characteristics (ROC) and Area Under the Curve (AUC) analysis 48 

were used to determine outcome sensitivity to chronic mTBI. 49 

Results: Free-living gait quality metrics were not different between chronic mTBI patients and 50 

controls (all p>0.05) whilst controlling for age and sex. ROC and AUC analysis showed stride 51 

length (0.63) was the most sensitive measure for differentiating chronic mTBI patients from 52 

controls.  53 

Conclusions: Our results show that gait quality metrics determined through a free-living 54 

assessment were not significantly different between chronic mTBI patients and controls. These 55 

results suggest that measures of free-living gait quality were not impaired in our chronic mTBI 56 

patients, and/or, that the metrics chosen were not sensitive enough to detect subtle impairments 57 

in our sample. 58 

 59 

Keywords: mTBI, Concussion, Inertial Measurement Unit, Gait 60 
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1.Introduction 61 

Traumatic brain injuries (TBI) can be broadly defined as sudden trauma causing damage to the 62 

brain, with severity ranging from mild TBI (mTBI; commonly known as concussion) to severe 63 

TBI [1]. An array of impairments accompany TBI, such as deficits in physical (balance, gait 64 

and turning) [2,3], psychological (cognitive impairments and symptoms) [4], and sensory 65 

function (visual or vestibular deficits) [5]. Such deficits can be subtle and difficult to detect in 66 

mTBI and may persist for long periods after the initial injury (e.g., >3 months). Chronic 67 

symptoms post-mTBI can significantly impact quality of life and daily function, which can 68 

lead to prolonged issues/symptoms [6]. Physical impairments are especially prevalent in mTBI, 69 

with eight out of ten people with acute mTBI reporting balance impairments within a few days 70 

of the injury and three out of ten reporting longer-term (chronic) balance or gait impairments 71 

[5,7,8]. Therefore, physical testing (balance and gait) remains a crucial component of clinical 72 

assessment to quantify impairment across various mTBI timelines [9–12]. Understanding gait 73 

and balance deficits may provide targets for rehabilitation.   74 

Balance impairment is commonly assessed in the acute stage following mTBI [13,14], 75 

primarily using the Balance Error Scoring System (BESS). The BESS requires a clinician to 76 

manually record errors each time the patient fails to maintain a balance stance position. 77 

However, the sensitivity of the BESS is highly variable due to considerable subjectivity in error 78 

counting, which impacts the replicability and validity of results [15–18]. Additionally, subtle 79 

balance deficits may be visually undetectable by a clinician’s subjective assessment and 80 

therefore unmeasurable. Other physical impairments, such as gait deficits, are often not 81 

examined by clinicians following acute mTBI. Tandem gait/walking may be done as part of 82 

the Sports Concussion Assessment Tool (SCAT), however clinician observation has been 83 

found to miss subtle gait deficits that persist in chronic mTBI patients (i.e. due to low ceiling 84 

effect of the test) [19]. To detect subtle gait deficits following mTBI, assessment is typically 85 

conducted in research settings with objective laboratory equipment, such as force plates and 86 

3D motion capture [7,20–23]. As such, there have been improvements in objective and 87 

instrumented assessment which can yield greater sensitivity than traditional qualitative 88 

methods of assessment [14]. 89 

Results from laboratory-based objective gait assessment have found pace-related 90 

deficits (stride length and gait speed) in chronic mTBI patients compared with healthy controls 91 

[24], suggesting gait may be a useful diagnostic marker of mTBI. While laboratory studies 92 

provide a foundation for evaluating the differences between healthy and impaired gait, 93 
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laboratory-centric assessment methods are prescriptive in nature, and may mask subtle mTBI-94 

related deficits that may otherwise occur within habitual (free-living) environments. 95 

Accordingly, monitoring gait beyond the laboratory may provide an opportunity to detect 96 

subtle and meaningful deficits following mTBI.  97 

Continuous gait monitoring in free-living environments is becoming more common, 98 

due to the widespread use of discrete inertial-based measurement units (IMU), which are the 99 

accepted standard for gathering continuous, high-resolution data [25,26]. IMUs can estimate 100 

general mobility outcomes (e.g. measures of quantity such as steps per day) or more refined 101 

balance, gait and turning outcomes characterising quality of movement within any environment 102 

(e.g. stride length or turning speeds) [2,14,27–30]. Our recent work examined free-living 103 

mobility quantity and turning quality measures in chronic mTBI patients and controls. We 104 

found turning quality metrics to be more sensitive than mobility quantity metrics to 105 

differentiate groups [3]. Specifically, those with chronic mTBI had larger, slower and more 106 

variable turns during daily life, but had a similar number of steps per day compared with 107 

controls [3]. While that study evaluated turning quality, it did not measure other gait quality 108 

metrics such as stride velocity, step length, or swing time. Additionally, while previous studies 109 

have examined mTBI gait in research settings, no study to date has comprehensively quantified 110 

free-living gait quality in chronic mTBI patients and healthy controls. Therefore, a gap remains 111 

as to whether measures of free-living gait quality are impaired in chronic mTBI patients.  112 

Greater understanding of how mobility is affected in free-living environments may uncover 113 

useful markers for subtle deficits in chronic mTBI patients.  114 

The aims of this study were therefore to; 1) explore if free-living gait is impaired in 115 

people with chronic mTBI compared with healthy controls, and 2) determine the most sensitive 116 

free-living gait quality metrics that differentiate chronic mTBI patients from controls. We 117 

hypothesise that free-living mobility would be impaired in chronic mTBI patients compared to 118 

controls, with selective gait quality characteristics sensitive to differentiate chronic mTBI. 119 

 120 

2. Methods  121 

Participants 122 

Thirty-two symptomatic chronic mTBI patients and 23 healthy controls participated. 123 

Participants were recruited as part of a larger study [31], through posters in athletic facilities, 124 

physical therapy clinics, hospitals, concussion clinics, community notice boards, and cafes in 125 

and around the Portland, OR metropolitan area. Patient demographics are shown in Table 1.  126 
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Ethical approval was granted by the Oregon Health and Science University (OHSU) and 127 

Veterans Affairs Portland Health Care System (VAPORHCS) joint institutional review board 128 

with participants providing written informed consent before commencing the study. 129 

Inclusion and Exclusion Criteria 130 

Participants were included in the chronic mTBI group if they had had a diagnosis of mTBI 131 

based upon Veteran Health Administration  (VHA) /Department of Defense (DoD) [32] criteria 132 

and who were greater than three months post mTBI with self-reported balance impairments. 133 

The control group consisted of those who had no history of brain injury in the last year. 134 

Additionally, mTBI patients were required to have minimal to no cognitive deficits as 135 

determined by the Short-Blessed Test (score ≤8) [33] and no peripheral vestibular or 136 

oculomotor pathology preceding their mTBI. Participants were excluded if they had any 137 

musculoskeletal injury which could impair their gait or balance or a recent history of moderate 138 

or severe substance abuse. 139 

 140 

Gait analysis 141 

Participants were asked to wear an IMU for 7 days, and participants with less than 3 days were 142 

excluded from analysis, in line with previous studies [3,34,35]. Participants wore a compact 143 

(L×W×H: 43.7×39.7×13.7 mm, 128 Hz) and lightweight (<25 grams) IMU (previously 144 

validated [36–38]) attached to a belt (128 Hz, Opal V1, APDM Inc., Portland, OR) that 145 

contained an accelerometer (± 16g, ± 200g) and gyroscope (± 2000 deg/s). Participants wore 146 

the IMU around their waist for a minimum of 5 hours per day for up to 7 days using the protocol 147 

described previously by Fino et al 2017 [31] and Stuart et al 2020 [3]. Data were stored on the 148 

IMU internal storage (8Gb) and then downloaded via proprietary software (MobilityLab, 149 

APDM Inc., Portland, OR) to a laptop. Free-living data were then processed using custom-150 

made and validated MATLAB® (MathWorks Inc, Massachusetts, USA) algorithms to estimate 151 

12 free-living gait quality metrics [34,35,39,40].  152 

Gait: Free-living measures of gait quality were calculated using a bespoke MATLAB® 153 

algorithm as follows. The waist worn IMU  was used to examine orientation and periods of 154 

static and dynamic activity [39,40]. Subsequently, the latter were examined for initial and final 155 

foot contact events within the gait cycle via the continuous wavelet transform [41], where a 156 

bout/period of walking was predefined by a time period of between 0.25 and 2.25 seconds and 157 

≥3 steps [42]. For the purposes of this study, a movement bout was classified as >10 seconds. 158 

Gait quality metrics included mean; stance time (seconds, s), step time(s), stride time (s), swing 159 
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time (s), stride length (centimetres, cm), stride velocity (cm/second, cms-1) and coefficient of 160 

variation (CV) of these measures. 161 

 162 

Self-Reported Symptoms   163 

Chronic mTBI patients completed the Neurobehavioral Symptom Inventory (NSI) which is 164 

widely used in the assessment of mTBI symptoms [24,43]. The NSI is composed of 22 items 165 

within the questionnaire and recorded on a five-point Likert scale, with higher scores indicating 166 

more severe symptoms. The maximum a participant can score is 88. The NSI and subscales 167 

[44] have acceptable reliability in characterising presence and tracking severity of symptoms 168 

in TBI [44,45]. The NSI remains the cornerstone of clinical symptom assessment and was 169 

determined as the appropriate method to capture self-reported impairments in the chronic mTBI 170 

patients. 171 

 172 

<Table 1> 173 

 174 

Statistical Analysis  175 

Data were analysed in SPSS (v23, IBM) and R studio (Boston, MA, USA). All data were 176 

normally distributed as assessed with Shapiro-Wilks tests and therefore parametric tests were 177 

used. Independent t-tests were performed comparing demographic information between mTBI 178 

and control groups. To compare free-living gait quality metrics between chronic mTBI patients 179 

and controls, we used separate multivariate analysis of covariance (MANCOVA). MANCOVA 180 

was used to control for sex and age [4,46].  181 

To estimate which gait quality metrics differentiated chronic mTBI patients from 182 

controls, we used receiver operating characteristic (ROC) and area under the curve (AUC) 183 

analysis. ROC analysis provides a trade-off between specificity and sensitivity between the 184 

various free-living gait quality metrics and binary classification of either mTBI patients and 185 

healthy control. Statistical significance was determined at p<0.05 (two-tailed) unless otherwise 186 

stated. Bonferroni corrected significance values were applied for multiple comparisons in free-187 

living gait quality measures (p<0.002). Effect sizes were interpreted as small (0.01), medium 188 

(0.06), and large (0.14) as previously described [47].   189 

 190 

3.Results 191 

Demographics and Clinical Assessments 192 



 7  

Demographic characteristics are presented in Table 1 for age (years), height (cm), mass (kg) 193 

and the number of days since injury and NSI for the mTBI group only. In our mTBI cohort, 194 

NSI total score was moderately high (5th to 9th percentile) compared to previously published 195 

normative mTBI scores, demonstrating that our chronic mTBI group was still symptomatic at 196 

least more than 3 months after injury [44].  197 

 198 

Adherence to IMU device 199 

Participants were asked to wear the IMU-based device for 7 days, but compliance was variable 200 

across both groups with several mTBI (n=16) and control (n=13) participants wearing the 201 

sensor for less than 7 days. Specifically, the mean number of days that the IMU was worn was 202 

6.8 (± 2.4) days in the mTBI group and 6.04 (± 2.0) days in the control group.  203 

 204 

Group differences in free-living gait quality measures  205 

When controlling for age and sex, there were no significant differences in measures of free-206 

living gait quality between chronic mTBI patients (p >0.05) and controls. Descriptive data for 207 

free-living gait quality metrics are provided in Table 2.  208 
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 209 

TABLE 1 Participant demographics 210 

211 

  
Controls 

(n= 23) 

mTBI 

(n =32) p 

Age (years) 48.56 (22.56) 40.88 (11.78) 0.11 

Sex (Male or Female) b M(6) F(17) M(6) F(26) 0.52 

Height (cm) 165.46 (8.03) 168.51 (9.19) 0.22 

Mass (kg) 68.03 (15.32) 76.17 (18.80) 0.25 

NSI Total Score - 35.88 (13.9) - 

NSI Vestibular - 5.44 (2.22) - 

NSI Somatosensory - 10 (4.92) - 

NSI Cognitive Score - 8.34 (3.89) - 

NSI Affective Score - 10.34 (5.64) - 

Days Since Injurya - 440.68 (700.63) - 

a Median and interquartile range. b chi-squared, Mean and standard deviation reported unless 

otherwise stated. mTBI, mild traumatic brain injury; NSI – neurobehavioral symptom inventory  
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TABLE 2 Free-living gait quality metrics; group differences whilst controlling for age and sex, Area under the Curve (AUC) 212 

Free-living gait metric mTBI (n=32) Mean (S.D.) Controls (n=23) Mean (S.D.) F p ηp
2 AUC 

Mean stance time (seconds, s) 0.83 (0.05) 0.85 (0.09) 0.19 0.66 0.00 0.44 

Mean step time (s) 0.70 (0.05) 0.73 (0.09) 0.21 0.65 0.00 0.44 

Mean stride time (s) 1.41 (0.10) 1.45 (0.18) 0.21 0.65 0.00 0.44 

Mean swing time (s) 0.58 (0.05) 0.60 (0.09) 0.22 0.64 0.00 0.44 

Mean stride length (centimetres, cm) 74.01 (4.10) 72.68 (3.60) 2.84 0.10 0.05 0.63 

Mean stride velocity (cms-1) 105.59 (8.88) 101.34 (11.47) 1.37 0.25 0.03 0.60 

Stance time variability CV (s) 0.20 (0.01) 0.21 (0.02) 0.03 0.87 0.00 0.49 

Step time variability CV (s) 0.20 (0.01) 0.20 (0.02) 0.10 0.75 0.00 0.48 

Stride time variability CV (s) 0.22 (0.01) 0.22 (0.01) 0.35 0.56 0.01 0.51 

Swing time variability CV (s) 0.20 (0.01) 0.21 (0.02) 0.13 0.72 0.00 0.47 

Step length variability CV (s) 18.62 (1.18) 18.32 (0.96) 2.30 0.14 0.04 0.61 

Step velocity variability CV (cms-1) 36.90 (3.11) 35.48 (4.08) 1.18 0.28 0.02 0.60 

Bolded p values; p < 0.05 (Bonferroni corrected p value 0.002). Group analysis of covariance results controlling for age and sex. 

mTBI, mild traumatic brain injury; S.D., standard deviation; CV, coefficient of variation, ηp
2  partial eta squared of effect size,  F 

Wilks’ λ, 

AUC > 0.50 in 

italics and bold. 

 213 

 214 
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Sensitivity and specificity of free-living gait metrics 215 

Figure 1 shows the receiver operating characteristics (ROC) analysis for the top four gait 216 

quality metrics (AUC >0.51). Free-living gait quality (mean AUC: 0.51) was considered poor 217 

at differentiating chronic mTBI patients from controls (AUC > 0.50, Table 2).  218 

 219 
Figure 1: Receiver operator character (ROC) analysis for the top gait quality metrics 220 

(AUC>0.51)  221 

 222 

 223 
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5. Discussion 225 

This study progresses our previous work [3], which examined free-living activity quantity and 226 

turning quality measured by a single IMU in those with chronic mTBI compared to healthy 227 

controls. Free-living mobility assessment in mTBI is still an emerging research area, but results 228 

from other neurological conditions (e.g. Parkinson's disease) suggest that impaired gait occurs 229 

in parallel with neurological dysfunction [48]. However, results in this study indicated that 230 

free-living gait quality was not significantly different between our samples of chronic mTBI 231 

patients and healthy controls (when controlling for age and gender). The absence of significant 232 

differences in this study are likely multifactorial and could involve both inherent limitations of 233 

self-reporting of balance issues, and the chronicity of this mTBI cohort. However, assessment 234 

of free-living mobility in chronic mTBI may still allow for improved diagnostics and 235 

monitoring of recovery within real-world environments, which is unachievable using analog 236 

(non-digital) approaches or laboratory-based assessments only, but further research with 237 

longitudinal assessments following the initial injury would be required 238 

 239 

Free-living gait quality measures are not impaired in chronic mTBI patients 240 

Our results show that free-living gait quality metrics were not different between chronic mTBI 241 

and control groups, which is surprising given this cohort had self-reported balance deficits. 242 

Overall research into chronic mTBI has yet to  gain consensus on what specific measures can 243 

differentiate healthy people from those with mTBI [24]. Indeed some laboratory-based  studies 244 

have found pace-related deficits (stride length and gait speed) while other studies have found 245 

no differences outside of the acute timeframe (>10 days) [2]. Laboratory gait assessment does 246 

allow for more controlled assessment of complex tasks (e.g. dual-task, obstacle avoidance, 247 

etc.), which may be required to elicit or provoke gait deficits in chronic mTBI [2,49]. For 248 

example, dual-task laboratory assessment in people with chronic mTBI can reveal gait deficits 249 

in rhythm (stride time) [24]. However, complex laboratory tasks fail to fully replicate free-250 

living environments  where motor, cognitive and sensory function are continuously challenged 251 

[50]. Given these challenges in free-living environments, we were surprised that our measures 252 

of gait quality did not suggest impaired mobility in this chronic mTBI cohort. 253 

The lack of significant differences and low effect sizes in gait quality measures between 254 

chronic mTBI patients and healthy controls may be related to the considerable chronicity 255 

(median 1.2 years post-injury) of this mTBI cohort. This duration may have resulted in the 256 

cohort developing chronic compensatory strategies over time to replicate ‘normal’ gait patterns 257 
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during walking in their daily life. To fully understand this, future research should test 258 

participants in both the laboratory under complex conditions (e.g., dual-task, obstacle walking, 259 

turns course etc.) and in free-living environments longitudinally from the time of initial injury 260 

to better understand how gait changes acutely after mTBI and into more chronic stages. 261 

Similarly incorporating assessment of turning, which is a more complex task that is difficult to 262 

compensate for, may also reveal subtle mobility deficits [24,28,51].Overall, there is no 263 

definitive way of objectively understanding the reasons for lack of differences in free-living 264 

gait quality between our cohorts of chronic mTBI patients and healthy controls. There are many 265 

unknown factors and contexts that affect free-living assessments. For example, here the 266 

environments participants were regularly walking in, the surfaces they walked on, or the types 267 

of terrain encountered were all unknown and such heterogeneity could impact results [52]. 268 

Equally, it is not possible to quantify the usual free-living mobility habits of the participants or 269 

to determine if this chronic mTBI cohort displayed any compensatory behaviour strategies 270 

(e.g., refraining from talking or performing other tasks whilst walking) that could further 271 

impact results. The introduction of egocentric video recordings of free-living mobility may 272 

enable greater insight and a robust reference to better understand the context of environments 273 

[53]. If used in conjunction with objective free-living IMU assessment, video data could yield 274 

even greater contextual understanding of free-living gait performance and any compensatory 275 

behaviour mTBI patients display within an environment.  276 

 277 

Strengths and limitations 278 

Digital technologies such as IMU’s have many advantages over traditional methods of 279 

assessment including objectivity and continuous data collection. The primary strength of this 280 

study was the use of a single IMU to objectively measure free-living gait quality in chronic 281 

mTBI patients and controls; the use of a single device and assessment within usual daily life 282 

means that subjects had low research burden [54]. We also quantified useful gait quality 283 

metrics from clinical-based conceptual models from neurological-based research. Although 284 

use of a single IMU alone on the lower back facilitated more rapid data collection and reduced 285 

burden, it fails to quantify other useful gait characteristics which may provide more insight to 286 

dynamic postural control and environmental information i.e., step width and step width 287 

variability arising from uneven terrain [55].Thus, future research should investigate additional 288 

gait characteristics (based on conceptual gait models) with e.g., multiple IMU’s (on the feet) 289 

or a video-based wearable for a more informed free-living assessment. While the authors are 290 

not currently aware of any IMU-based technology to quantify step width during free-living, a 291 
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computer vision approach has been suggested from a wearable camera [53]. Additionally, the 292 

outcome measures presented are primarily research-orientated, requiring a great deal of time-293 

consuming post-processing and checking, which is based on prior experience of inertial data 294 

[56,57]. Therefore, there are needs to refine and deploy software that clinicians and patients 295 

can easily navigate, which would allow more widespread uptake and use by health 296 

professionals [57].   297 

No power calculation was used in this study as it was based as an exploratory study 298 

with opportunistic sampling. This may have limited the strength of any conclusions drawn and 299 

should be taken with caution. Future research should aim to utilise power calculations to ensure 300 

sufficient sample size and ability to detect small differences in results. Participants were 301 

assessed for ~7 days using a single IMU attached to a waist belt. However variation in the exact 302 

length of time participants wore wearables (minimum three days) could introduce differences 303 

and therefore not reflect true habitual free-living mobility as used in other studies [48,58]. 304 

Using multiple IMUs may provide more detailed spatial and temporal data for turning, balance 305 

and gait as used in previous studies [24], but this carries different limitations; such as longer 306 

data download, processing complexity and increased wearer burden, limiting the practical or 307 

clinical application. This trade-off should be considered in future studies as a potential 308 

improvement to the assessment protocol. [59,60].  309 

There were some additional limitations to this study. First, a more detailed demographic 310 

profile could be reported in future studies to derive further inferences about the free-living 311 

mobility results or underlying physiological mechanisms for persistent symptom and mobility 312 

deficits [24]. For example, the symptom questionnaires were limited to NSI that were only 313 

completed by the mTBI cohort, which limited any useful comparisons and inference on the 314 

relationship between groups [3]. Second, balance problems in the chronic mTBI group were 315 

self-reported with no baseline or robust analysis done to quantify the magnitude of impairment 316 

[3], with the many factors such as the previous history of mTBI and evidence of abnormal 317 

neuroimaging omitted [4,61]. Third, the differences in this mTBI cohort's chronicity are likely 318 

to limit the direct comparison with other studies. Our study's cohort was chronic with a median 319 

post-injury time greater than 1-year, which compared to other studies examining people post-320 

mTBI is a longer time since injury [24,62].   321 

 322 

6.Conclusions  323 
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Our results demonstrate that free-living IMU-based gait quality metrics were not significantly 324 

different between patients with chronic mTBI and healthy aged-matched controls. Despite a 325 

lack of significant findings herein, we feel that there is value in undertaking free-living mobility 326 

assessments. This study has highlighted that a single IMU can obtain a wealth of continuous 327 

free-living gait quality measures in people with symptomatic chronic mTBI and healthy 328 

controls. While this exploratory study indicated no between group differences, we feel that this 329 

work provides a foundation for future work in this area, where a-priori power and sample size 330 

are controlled. When considering the results of this study with our previous findings [3], we 331 

advocate that assessments of free-living mobility should include both measures of gait and 332 

turning quality. Future research should also focus on (i) additional gait characteristics from 333 

conceptual gait models and (ii) longitudinal analysis of chronic mTBI patients during different 334 

stages of recovery (acute to chronic) to holistically monitor mobility impairments and recovery. 335 

Improving objectivity in mTBI assessment will result in greater understanding of injury 336 

progression, recovery, and rehabilitation across a variety of clinical settings.  337 
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