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Response to reviewer comments on the paper 

A Three-level Framework for Strategic Participation of Aggregated Electric Vehicle-owning 

Households in Local Electricity and Thermal Energy Markets 

    As the team of authors, we would like to express our sincere gratitude to the respected editor and the 

honorable reviewers for giving us a third chance to revise our manuscript, while providing essential 

comments that will improve the quality of our work. We have done our best to address all concerns in the 

second round of revision and catch up with high standards in the prestigious journal of Applied Energy.  

Our detailed answers are as follows.  

Please note that the reviewer questions are in red while our answers are in black. Additions to the original 

paper appear in blue. 

 

Editor-in-chief # 

The reviewers/editors have commented on your above paper. They indicated that it is not acceptable for 

publication in its present form. However, if you feel that you can suitably address the reviewers' comments 

(included below or the attachments in your account), I invite you to revise and resubmit your manuscript. 

Reply: We sincerely thank the respected editor-in-chief for giving us a chance to revise our manuscript. 

We did our best to address the raised concerns in the third round of revision.  

 

Reviewer #2 

The authors carefully considered the comments of the review and thoroughly defended the positions taken 

in the manuscript. Contrary to these positions, the global energy landscape is continuously evolving. Power 

plants that are in operation today and operated by service providers, can be replaced by alternatives 

following technological advances in energy production and economic tools. These aspects can be reflected 

in the manuscript by addressing the following points: 

Reply: We would like to thank the honorable reviewer for the valuable comments. We honestly believe 

that these insightful remarks had a great impact on improving our paper. 

 

 

Detailed Response to Reviewers



Comment R2.1 

The authors indicate the schematic depiction of the energy service provider. Indeed the services currently 

provided by e.g. a company, are required in the system. But there is no limitation to the management of 

these services. The required services, and hence the role of the energy service provider, can be taken, for 

example, by members of an energy community. This can be indeed more difficult in large scale 

power/storage units such as CHP and hydroelectric stations due to the required capital, however is already 

happening in smaller scale distributed stations, including solar and wind power units. 

Reply: We sincerely agree with the honorable reviewer that todays’ power plants can be replaced by 

alternatives. As it was discussed in (10.1016/j.renene.2021.01.078), in the future energy systems, there will 

be energy communities that produce a percentage of their own energy. However, for following reason the 

energy service provider will be very important in the evolving power systems of the future: 

1- Most energy communities cannot produce all of their demand and they need to have contracts with 

reliable energy service providers that can provide them energy at the shortage and even buy the 

surplus energy production of the energy communities.  

2- Independent entities (companies, governments, ordinary citizen) can have the ownership of wind/ 

solar production farms in the future energy systems and as long as their price are competitive, they 

can sell their energy to these communities and be energy service provider. Therefore, the energy 

service provider always be present.  

3- Small scale households prefer to buy energy from local energy systems, and energy service 

providers can participate in wholesale energy market and sell that energy in retail for the energy 

communities. So energy service providers do not always need to have large power plants. In fact, 

large energy generation companies (wind/solar farms, power plants) sell their energy to large scale 

buyers in wholesale market. The energy service providers buy the energy from wholesale energy 

market and sell it for retail consumers. For example, a large-scale producer is not interested in 

selling 1 kwh energy to a small consumer and prefers to sell large quantities (in MWh scale). 

Similarly, small-scale households cannot participate in the wholesale energy market and the energy 

service provider can be the link between large producers and small communities.   

4- As the energy systems evolve, there will always be large scale producers. For example, the fossil 

fueled power plants will be replaced by large wind farms, and energy service providers will be 

needed to distribute this energy. Certainly, not all communities are able to afford energy production 

facilities considering the high capital cost, and they might be interested in buying from energy 

service providers that offer reasonable price. 



5- Even when these communities produce part of their energy, they are unlikely to be able to produce 

natural gas, as it would be very expensive to invest in natural gas pipelines and drilling 

infrastructure.  

We sincerely agree with the honorable reviewer that in the future, there will be energy communities that do 

not need energy service providers. However, for the above-mentioned reasons, the energy service providers 

will always be needed and they will co-exist with such energy communities. 

Does the proposed three-level system apply in this case? 

Reply: The short answer is yes. The AEVH can sell (produce) and purchase (consume) energy. So in fact, 

this study is similar to the energy community model proposed by the honorable reviewer. We have only 

applied a slightly different terminology based on the focus of the study.  

 

Comment R2.2 

There is no doubt that several published works utilize said bus systems. In addition, the bus systems are 

indeed a result of several years of research that cannot be compared to the effort of a single work. The 

proposed model and its algorithmic operation, however, relies on these systems. Would the model work if 

these systems are removed? 

Reply: We would like to thank the honorable reviewer for this comment. In fact, the model would work 

and provide theoretically better results if these systems are removed. However, the results won’t be reliable 

at all since removing these systems makes the model extremely simple and unrealistic. For instance, if we 

removed the power system model, the only power system equation would be (production=consumption), 

while as you can see in this study the power system has many equations and constraints. Ignoring the power 

system model has the following drawbacks: 

1- The voltage of the power lines can drop or increase dramatically. For instance, the residential 

consumers should have the voltage value of 200-240 Volts. However, if the power system model 

was ignored, this value won’t be considered and voltage can drop below 200 or be higher than 240, 

both these cases can harm the household appliances severely. 

2- The power transmission capacity of the transmission lines are limited. Ignoring the power line 

nominal rates can harm the electricity distribution systems drastically and inflict damage on the 

power grids and power lines. 

3- Energy transmission by the power system imposes power losses, these energy losses should be 

modelled to minimize the wasted energy.  



4- The transformers of the power grid can overheat and even explode if their capacity is not considered 

in the models.  

Similarly, when the natural gas network model is ignored, the pressure of the natural gas can drop for some 

consumers, while other consumers might have too much gas pressure. Moreover, the natural gas flow limits 

of the natural gas network should be considered as pipelines can only carry a limited amount of gas. In 

theory, it is possible to ignore natural gas network model and get better results. However, these outcomes 

won’t be reliable in the real-world conditions and the energy system models are ignored in such studies. 

For instance, a damage to the natural gas pipelines will be catastrophic disaster. Furthermore, the thermal 

network models are important to deliver thermal energy to consumers and consider the thermodynamic 

characteristics of the thermal energy distribution system. Overall, it is certainly possible to ignore network 

models in theoretical studies, but including the models makes the outcomes more reliable and realistic. 

For this reason, the main structure supported by relevant references and a fundamental but compact 

description of the bus systems is required to aid the reader of the manuscript. This structure and description 

was included in all five exemplary studies provided by the authors. 

Reply: We sincerely agree with the honorable reviewer that the main data of the utilized networks should 

be summarized for the readers. We tried to address this essential comment in the revision by including the 

related references and tables similar to aforementioned studies. 

In the revision, this comment was addressed in the first paragraph of section four by the following additions: 

“Moreover, the structural data of the systems are summarized in Appendix C” 

In the revision, this comment was also addressed in by including the data in Appendix C as follows: 

“In this study, the IESP consists of an IEEE-33 bus ADS, a 20-node NGN, and an 8-node DHS that is supplied by 3 

CHPs, 2 NGUs, 3 PVAs and 3 WTs. The data on these networks can be observed in [11, 33, 34]. Furthermore, the 

WEM is made up of a standard 6-node TN and its structural data is available in [11]. Overall, the summery of the 

main parameters are included in Table C.4 to Table C.7.” 

 

Table C.4: Data and information on DGs 

 DG

kP
 

DG

kP
 

up

kR
 

DN

kR
 

U

kT
 

D

kT
 

DG

kC
 

CHP1 --- --- 4.5 4.5 2 2 --- 

CHP2 --- --- 4.5 4.5 1 1 --- 

CHP3 --- --- 0.8 0.8 1 1 --- 

NGU1 7 0.75 1.8 1.8 1 1 87 

NGU2 7 0.75 0.5 0.5 1 1 92 



 

 

 

Table C.5: Data and information on EVFs 

fBC
 fECPM

 f  fEB
 f  Cr

 0a
 

400 ($/KWh) 0.3 (m/KWh) 0.95 30 (KWh) 10 (KW/h) 0.000524 

 

Table C.6: Data and information on district heating network 

pC
 

R  ,eCair
 

ho

,en
 

1(MWh/kg.◦C) 18 (◦C/MWh) 1.1578e-6 (MWh\(kg.c)) 6000 

 

Table C.7: Data and information on active distribution system 

DS

iV
 

DS

iV
 

DS

i,jI
 

IL

lP
 

EB
 

EB

t, ,qP 
 

1.1 (P.U) 0.9 (P.U) 1.2 (A) 3 (MW) 1 10 (MW) 

 

 

Comment R2.3 

Indeed a three-level model is a novel contribution in the literature. The previous contribution of the authors 

in bi-level systems utilized similar datasets, as detailed in references [21] and [32]. 

https://doi.org/10.1016/j.apenergy.2021.117432 

https://doi.org/10.1016/j.energy.2021.121398 

Addition of a level in the previous bi-level model, offers a small increment of progress in the relevant 

literature. For this reason, a robust demonstration of how the proposed model succeeds into solving the 

problem at hand is required. The utilized optimization methods are indeed elegant ways of simplifying a 

multi-level problem to single level. The authors provided their description in appendices, but the advantages 

in cost are not clearly shown.  

Reply: We would like to express our sincere gratitude to the honorable reviewer for acknowledging our 

contribution. In fact, we realized that there are many studies on the participation of energy systems in 

wholesale electricity market and many other studies have modelled the energy trade of the local consumers 

with the energy systems, which are bi-level models. However, to the best of our knowledge all three of 

these players had not been integrated in the same problem, which was the main motivation behind this study 

to address this issue by a three-level structure and propose a solving strategy for this model.  

https://doi.org/10.1016/j.apenergy.2021.117432
https://doi.org/10.1016/j.energy.2021.121398


Overall cost estimates of the case studies are tabulated, but the cost advantages due to price shifting should 

be displayed together with power and energy generation profiles, fig. 10-13. 

Reply: We would like to thank the honorable reviewer for this remarkable comment. In fact, drawing these 

figures can be very effective in the results section. We tried to address this valuable comment in the revision.  

In the revision, this comment was addressed by including following parts at page 26 

In order to provide a deeper insight about the cost values of Table 2, the hourly cost value is comparatively 

illustrated with total generation of each case study in Fig. 14, while Fig. 14 shows the hourly total generation 

and MCP in each case. As can be observed, CS1 results in the highest operational cost value since in this 

case the EVFs are charged without a smart strategy, and it leads to highest total Genco production since 

peak demand is imported from the WEM. Thanks to the smart charging strategy of CS2, the demand is 

shifted from peak hours (15-19) to valley hour (1-7), while this shift is even more apparent in CS3 as the 

thermal flexibilities open the electrical capacity of the CHP units. Overall, CS2 provides 9.19% lower cost 

compared to CS1, and CS3 provides 9.42% lower cost compared CS1. Based on the MCP outcomes of Fig. 

15, it is noted that smart charging strategy and thermal load flexibilities in CS2 and CS3 can lead to 2.10 

% lower WEM price in regard to CS1. 

  

 

 



 

 The strategic participation of AEVH in local electricity and thermal energy 

markets as a price-maker is presented. 

 

  The strategic behavior of the integrated energy service provider (IESP) in 

wholesale electricity market (WEM) as a price-maker is considered. 

 

 A three-level framework for the aggregated electric vehicle-owning 

households is proposed. 

 

 The second and third levels is modeled as a single-level problem through KKT 

condition. 

 

highlights



Acknowledgements

Funding: This research did not receive any specific grant from funding agencies

in the public, commercial, or not-for-profit sectors.

1

Revised Manuscript with Changes Marked Click here to access/download;Revised Manuscript with
Changes Marked;main_marked.pdf

Click here to view linked References
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/apen/download.aspx?id=3068527&guid=e5a57d9e-f55b-4905-9e89-0acc38c387d0&scheme=1
https://www.editorialmanager.com/apen/download.aspx?id=3068527&guid=e5a57d9e-f55b-4905-9e89-0acc38c387d0&scheme=1
https://www.editorialmanager.com/apen/viewRCResults.aspx?pdf=1&docID=150646&rev=3&fileID=3068527&msid=89451c71-e058-4fa2-a2f9-5c76817c2e5a


A Three-level Framework for Strategic Participation of
Aggregated Electric Vehicle-owning Households in Local

Electricity and Thermal Energy Markets

Saeed Zeynalia, Nima Nasiria, Sajad Najafi Ravadanegha, Mousa Marzbandb,c

aResilient Smart Grids Research Lab, Electrical Engineering Department, Azarbaijan Shahid Madani
University, Tabriz, Iran

bNorthumbria University, Electrical Power and Control Systems Research Group, Ellison Place NE1 8ST,
Newcastle upon Tyne, United Kingdom

cCenter of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah
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Abstract

The impact of electric vehicles (EV) charging strategy will not be limited to power

systems as integrated electricity, natural gas and thermal energy systems have be-

come increasingly interconnected. We introduce a three-level framework for the ag-

gregated electric vehicle-owning households (AEVH) to strategically participate in

local electricity and thermal energy markets as a price-maker, while considering the

strategic behavior of the integrated energy service provider (IESP) in thw wholesale

electricity market (WEM) also as a price-maker. The AEVH operator forms the first

level, while IESP and WEM operators are integrated at the second and third levels,

respectively. To solve the three-level problem, the second and third levels are mod-

ified as a single-level problem through the Karush-Kuhn-Tucker (KKT) conditions,

then the equilibrium point of the resulting single-level problem and the first level is

achieved through two-step iterative method. At the first level, the arrival/departure

time and daily travelled miles of EV fleets are modelled via stochastic scenarios,

while renewable energy production at the second level is dealt with by information

gap decision theory (IGDT). Ultimately, different case studies verify that AEVHs can

deploy their thermal flexibility together with the smart charging strategy of the EVs

Email address: s.najafi@azaruniv.ac.ir Corresponding author (Sajad Najafi
Ravadanegh)

Preprint submitted to Journal July 7, 2022
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to influence the local electricity, thermal energy and even WEM prices. Using the

proposed three-level optimization framework reaches the best point of equilibrium

between different market players. The outcomes prove the effectiveness of the pro-

posed model. Based on the results, the AEVH can deploy the proposed model to

diminish the WEM price by 2.1%, while the local electricity price was dropped by

18.85%. Furthermore, the thermal energy price was reduced by 5.82%, which il-

lustrates that EVs can influence the thermal energy market through the combined

heat and power units.

Keywords: Electric vehicles; Thermal energy market; Strategic scheduling;

Three-level optimization; Wholesale electricity market; Local electricity market

Nomenclature

Indices

s, t,k, r Indices of scenario, time, DGs, wind turbine

l, ϑ, e Indices of pipeline, node, demand in DHS

q, f Indices of DHS source and EV fleets

pv, c,R Indices of PVA, ILs and FOR in CHP units

n,w, lg, c Indices of NGN nods, NGN producer, active pipeline, non-active

pipeline

d,dg Indices of ADS and, NGN loads

g,b,b ′, i Indices of Genco, TN bus’s, ADS buses

Amn ,CHP Set of m equipment’s located at ADS and TN bus’s or NGN nodes n

and CHP

Tr Set of interconnected buses in the TN.

Afi Set of EV parking lots at node i of ADS

NGU Set of non-gas fired units

TAf,TDf Set of arrival/departure times

Parameters

SOCend
f,s Highest possible SOC at departure time

SOCdes
f Desired SOC at departure time

3
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SOCf, SOCf max/min SOC of EV fleets (%)

mst,l,mrt,l Water mass flow of supply/return DHS pipeline (kg/h)

mde
t,ϑ,e,m

sr
t,ϑ,q Water mass flow of demand/source at DHS nodes (kg/h)

nho
ϑ,e Number of households at DHS nodes

Cairϑ,e Average thermal capacity of AEVHs (MWh/◦C)

πs Probability of scenario s

EBf,ηf EV fleets’ battery capacity/efficiency (MWh)

SOCIn
f,s SOC at arrival time (%)

DTf,s Travelled miles by EV fleets (mile)

EMf Energy consumption per mile (MWh/mile)

Crf EV feets’ nominal charge rate (MW)

Cp Thermal capacity of water (MWh/kg.◦C)

R Thermal resistance of households (◦C/MWh)

T out
t Outdoor temperature (◦C)

T in
ϑ,e

,T in
ϑ,e Min/Max indoor temperature (◦C)

PDG
k ,PGD

k Min/Max DG output (MWh)

PR,φR Thermal/electrical FOR of CHPs (MW)

ηEB,PEBt,ϑ,q Efficiency & max power of EB

γp,γH Electrical/Thermal fuel ratio of CHP (%)

TUe
k ,TDe

k Min on, off time of DGs (h).

CSU
k ,CSD

k Start-up/shutdown cost of NGU ($/MWh)

RUP
k DGs’ ramp rate (MWh)

PWT
r,t ,PPV

pv,t Maximum wind/solar production (MW)

ZDS
ij ,RDS

ij Impedance/resistance of ADS feeders (ohm).

IDS
ij Maximum current of ADS feeders (A).

VDS
i ,VDS

i Min/Max ADS node voltage (Kv)

vw,vw Min/Max gas well production (kcf)

Prn,Prn Min/Max NGN nodal pressure (bar)

TDHS
l ,TDHS

l Max/Min DHS pipe temp (◦C)
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TDHS
ϑ ,TDHS

ϑ Max/Min DHS node temperature (◦C)

λl,Ll Thermal conductivity & length of DHS pipeline (m)

PLf,s,t Electrical AEVH demand (MW)

Kfn,m NGN pipeline coefficient

CPV ,CWT Cost of PV/WT production ($/MWh)

C
gas
w ,CIL

u Gas well cost ($/kcf)/interruptible loads ($/MWh)

P̄RES
t Expected RES production in IGDT (MW)

σ Risk aversion controller in IGDT.

OFIP
b Optimal value of IESP objective ($)

CGg ,Bb,b′ Genco cost ($/MWh)/ TN suseptance (1/ohm)

PGMax
g,t Maximum Genco production (MW)

Variables

OFAH AEVHs’ objective function

dgf,s,t Battery erosion of EV fleets ($)

λLM
t,i ,λ

TM
t,ϑ MCP of LEM & TEM ($/MWh)

PEH
t,i AEVHs’ Electrical energy purchase (MW)

Hho
t,ϑ,e Thermal energy delivered to AEVHs (MWh)

SOCf,s,t State of charge of EV fleets (%)

σf,s,t EV fleets’ cycle depth (%)

ψf,s,t Cycle depth degradation function

MDf,s,t Marginal battery degradation ($/MWh)

P+f,s,t,P
−
f,s,t EV fleets’ charge/discharge rate (MW)

T in
t,ϑ,e Indoor temperature of AEVHs (◦C)

PDG
k,t,H

DG
k,t DGs’ electrical/thermal output (MW)

αRt FOR coefficient of CHP (%)

SUk,t,SDk,t Start-up/Shutdown cost of NGU ($)

SUCHP
k,t , SDCHP

k,t Start-up/Shutdown fuel for CHP (kcf)

GCHP
k,t CHPs’ natural gas consumption (kcf)

IDS
ij,t,V

DS
i,t Current/voltage of ADS (A), (kV)

PLoss
ij,t Power loss in ADS (MW)
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vw,t Prn,t Gas well production (kcf)/ node pressure (bar)

finn,m,t, f
out
m,n,t Inlet/Outlet flow of NGN pipe (KCF)

fn,m,t Average pipe flow of NGN (KCF)

T
ps,out
t.l , Tpr,out

t,l End temp of supply/ return DHS pipe (◦C)

T
ps,in
t.l ,Tpr,in

t,l Beginning temp of supply/return DHS pipe (◦C)

Tms
t,ϑ,Tmr

t,ϑ Nodal temp of supply/return pipes in DHS (◦C)

Hloss
t,l Thermal energy loss in DHS (MWh)

Hsor
t,ϑ,q Thermal energy production in DHS (MWh)

λWEM
b,t MCP of WEM ($/MWh)

PIESP
t Power purchased from WEM by IESP (MW)

PIL
u,t Interruptible loads (MW)

PEB
t,ϑ,q EB power consumption

PRES
t ,α RES production (MW)/IGDT radios

PG
g,t,P

D
b,t Genco generation & TN demand (MWh)

δb,t TN bus voltage angle (°)

µ, v, ζ Inequality dual variables in the TN

λ Equality dual variables in the TN

Binary variables

u+
f,s,t,u

−
f,s,t EV fleets’ charge/discharge state

Ik,t Commitment state of DGs

yk,t,zk,t Start-up / Shutdown state of DGs

Abbreviations

AEVH Aggregated electric vehicle-owning households

IESP Integrated energy service provider

WEM Wholesale electricity market

LEM,TEM Local electricity market, Thermal energy market

ADS,DHS Active distribution system,District heating system

NGN,MCP Natural gas network, Market clearing price

RES,NGU Renewable energy source, Non-gas-fired unit
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Genco Generation company

PHA Photovoltaic array

IL,EB Interruptible load, Electrical boiler

1. Introduction

The unprecedented boom in the electric vehicle (EV) sales testifies their eco-

nomic viability and sustainability. For instance, the UK has pledged to enact legisla-

tion to prohibit the sales of fossil fuel-based vehicles by 2030 and only permit EVs by

2035. The co-occurrence of this trend with the proliferation of the high-efficiency

combined heat and power units (CHP) is going to introduce new challenges since

they entangle the thermal and electrical energy production [1], as well as influenc-

ing the natural gas demand [2]. Therefore, the CHPs create an interdependent en-

ergy market consisting of the active distribution system (ADS), natural gas network

(NGN) and district heating systems (DHS), which is operated under the command

of the integrated energy service provider (IESP) [3]. Considering the high penetra-

tion of EVs, their charging patterns will have a substantial impact on these markets.

The reason is that smart charging strategies of the electric vehicles can increase the

thermal and electrical flexibility of the CHP units, which will improve the thermal

demand satisfaction in DHS, and reduce the pipeline congestion in NGN. The EVs

can participate in energy markets individually as price-takers. However, it is known

that a price-maker framework can induce greater profit by influencing market price

[4]. Therefore, it is highly probable that EV-owning households would form a coali-

tion to utilize their charging/discharging flexibilities together with their thermal

demand flexibility to participate in local electricity and thermal energy markets as

the price-makers. In other words, the aggregated EV-owning households (AEVHs)

can influence the market-clearing price (MCP) in the thermal energy market (TEM)

and local electricity market (LEM) to enhance their collective benefit. The IESP,

as the local market operator, procures part of this energy from local distributed

generation (DG) units and gas wells. At the same time, it also participates in the

wholesale electricity market (WEM) as a price-maker that can submit offers/bids
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to purchase/sell electrical energy [5]. Accordingly, IESP is a price-maker in WEM,

while AEVH operator is a price-maker in LEM and TEM (operated by the IESP),

which makes the IESP an intermediary retailer between the WEM and AEVHs.

All these market formations have their individual objectives. For instance, the

wholesale electricity market operator (WEMO) clears the WEM to maximize the

public welfare, while the IESP’s prime objective is to minimize the operational costs

of ADS, DHS and NGN as well as the cost of participating in WEM. On the other

hand, the AEVHs’ objective is to minimize the cost of participating in LEM and

TEM, using their flexibilities in thermal demand and EV-scheduling. To solve such

a problem, a three-level framework should be devised that considers the AEVHs at

the first level, the IESP at the second level and WEMO at the third level. Such a tool

would be essential for market players to evaluate AEVHs as a thermal and electrical

price-maker that can also pose a significant impact on WEM price through IESP.

Most of the small-scale consumers do not have enough power to participate in

energy markets as a price-influencer. In this concern, some of the recent studies

have unraveled the importance of demand response aggregators. Particularly, the

EV-aggregators [6] have gained a great deal of attention on account of their flexibil-

ities and green features. The altering direction method of multipliers (ADMM) has

been proposed in [7] to investigate robust interaction between the EV-aggregator

and the distribution company (Disco). Asrari et al. [8] evaluated the possibility of

using the aggregated EVs to reduce distributed locational marginal price (DLMP),

which showed that it is possible with proper congestion management. The authors

in [9] inspected EVs as price-takers in LEM intending to diminish DLMP. In a more

sophisticated study [10], the DLMP of the LEM was reduced through a bi-level opti-

mization framework that considered EV-aggregators and Disco at upper and lower

levels, respectively. These studies illustrate the impact that EVs can impose on Dis-

cos at the local level, while Disco’s behavior at the wholesale market is also essential.

In this regard, [11] proposed a bi-level framework to investigates Disco’s strategic

behavior at day-head and reserve markets, while information gap decision theory

(IGDT) is adopted by [12] to investigate a similar problem. A risk-based Disco op-

timization has been investigated in [13], wherein the presence of microgirds was
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addressed at the lower level of the bi-level problem.

As can be observed, all of these studies have focused on a single type of energy,

i.e., electricity. Nevertheless, co-generation technologies, such as CHP units, have

created an interconnected energy market. Therefore, there has been increasing in-

terest in this area. The authors in [14] proposed a stochastic bi-level approach to

investigate strategic participation of a multi-energy system in WEM and real-time

integrated markets. The authors in [15] proposed a hierarchical energy scheduling

approach for the integrated energy systems, using Stackelberg game approach. The

study modelled the energy service provider as a leader, while the households were

defined as followers to minimize their cost. A decentralized optimization frame-

work was proposed by [16] to minimize the cost and emissions of an integrated

energy system via the multi-objective optimization framework. In [17], a model

predictive energy management strategy was proposed for EV-charging stations and

thermal energy supply of community buildings. The study used a moving-horizon

stochastic programming approach to deal with the RES production uncertainties.

The economic-environmental operation of a multi-energy system was addressed in

[18], wherein the study aimed to maximize the benefits of the multi-energy operator

and minimize the operational emissions at the same time. A non-dominated sort-

ing genetic algorithm was investigated in [19] for the optimal emission-constrained

operation of multi-energy systems. The main contribution of this study was to in-

clude thermo-hydraulic characteristic of the integrated electrical and thermal en-

ergy systems. The bi-level scheduling of multi-energy systems is scrutinized in [20],

considering pool market, forward contracts and rival players.

Despite all the authentic novelties, the following shortcomings (SH) can be iden-

tified in these studies:

SH 1: In some studies [10–14, 17, 18, 20], the impacts of integrating EVs have been

evaluated at local energy systems. However, EVs can also have a significant

influence at WEM level.

SH 2: The current literature have not investigated the EVs as thermal price-makers

that can be feasible through CHP units.
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SH 3: The studies [11–13] have focused on a single type of energy (electricity)

SH 4: The IESP has not been studied as a price-maker in WEM.

To address the existing gaps, this study puts forward a three-level framework

to model AEVHs as price-makers in LEM and TEM that is operated by IESP, which

in turn is also a price-maker in WEM. At the first level, the AEVHs’ objective is to

minimize the cost of participating in TEM and LEM, using their thermal flexibility

and smartly schedulable EVs. The IESP (second level) intends to minimize the op-

erational cost and the cost of participating in WEM by submitting the best offer/bid.

Eventually, at the third level, the WEMO clears the market to maximize public wel-

fare. A hybridized KKT conditions and two-step iterative method is used to solve the

three-level problem. Moreover, EVs’ arrival/departure times are modelled through

stochastic scenarios, while the IGDT framework is used to address the uncertainties

of renewable energy sources (RES) at the second level. Table 1 provides the main

traits of the previous publications and this study. Overall, the major contributions

of this study can be summarized as follows:

i A three-level hybrid SP-IGDT framework is proposed to model AEVHs as price-

makers in LEM and TEM, while considering IESP as a price-maker at WEM.

(Addresses SH1 and SH2)

ii The influence of strategic EV scheduling at local electricity, thermal markets

as well as WEM is scrutinized. (Addresses SH2 and SH3)

iii A novel method of integrating KKT conditions with the two-step iterative ap-

proach is proposed to solve the three-level optimization problem. (Addresses

SH3 and SH4)

2. problem description

In this study, the AEVHs partake in LEM and TEM as price-setter players, while

considering that IESP is also a price-setter in WEM. For this purpose, a three-level

optimization framework is established, where the AEVHs form the first level of the

problem, while IESP and WEM are second and third level problems, respectively.
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Table 1: Comparative evaluations between this study and previous publications

Ref Uncertainty
Markets Multi-level

solving method

Flexible technologies

WEM LEM TEM EV Thermal demand

[6] SP 3 5 5 WoLF 3 5

[7] RO 3 3 5 Two-step 3 5

[8] - 5 3 5 - 3 5

[9] SP 5 3 5 - 3 5

[10] RO 5 3 5 KKT 3 5

[11] SP 3 3 5 KKT 5 5

[12] IGDT 3 3 5 KKT 5 5

[13] SP 3 3 5 KKT 5 5

[14] SP 3 5 3 KKT 5 3

[15] SP 5 3 3 Stackelberg 5 5

[16] - 5 3 3 - 5 3

[17] SP 5 5 3 - 3 3

[18] - 5 5 5 - 3 3

[19] - 5 3 3 - 5 3

[20] SP 3 5 3 KKT 5 3

This

study
SP-IGDT 4 4 4

Hybrid KKT

& Two-step
4 4

In other words, IESP is a follower to AEVHs, and WEM is a follower to IESP. The

AEVHs operator sends its energy requirements to IESP operator. Subsequently, the

IESP self-schedules the DGs, NGN, ADS and DHS. Afterwards, partakes in WEM

and clears TEM and LEM to announce MCP of retail electrical and thermal en-

ergy. Simultaneously, the WEM operator receives the offers/bids from IESP, and

clears the WEM to announce the MCP of the WEM. The IESP is an intermediary

retailer that links AEVHS to WEM. The EV-related uncertain data, such as vehicles

arrival/departure time and daily travelled miles are handled by stochastic scenar-

ios, while uncertain climatic data such as solar and wind power is dealt with via
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risk-averse IGDT framework. The solving procedure, which is established in the

next sections, ensures the best equilibrium for these various levels. The overall

interactive relationship between these three levels, their corresponding objectives

and decision variables, can be observed in Fig. 1.

Figure 1: The interactive relationship of various levels of the problem

3. Formulation & Algorithm

3.1. Aggregated electric-vehicle-owning households (First level)

In this study, the EVs are clustered into fleets with distinct behavioral patterns via

K-means clustering as presented in [21], and they are assumed to be present at the

residential parking lots (equipped with level II chargers) from arrival to departure

intervals. The objective function of the AEVHs (first level) is defined by Eq. (1),

wherein the first term is the battery degradation cost of the EV fleets, while the

second and the last terms represent the cost of participating in the local electricity

and thermal energy markets. The decision variables of this level include thermal
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energy demand and stochastic charge/discharge of EV fleets. The SOC for each

fleet is computed via Eqs. (2)-(3), while initial and final (at departure) SOC are

declared in Eqs. (4)-(5). Eqs. (6)-(8) are conventional storage equations, and cycle

depth is calculated by Eq. (9). Furthermore, the battery degradation cost is imposed

in Eqs. (10)-(12), which is linearized and proved in [22]. Eventually, the flexible

thermal demand of the households is established in Eq. (13), while Eq. (14) defines

the expected electrical demand of the AEVHs.

minOFAH =
∑
t


∑
s

∑
f

πs.dgf,s,t+∑
i∈AEH

i

λLMt,i P
EH
t,i +∑

ϑ

λTMt,ϑ H
ho
t,ϑ,e

 (1)

SOCf,s,t = SOCf,s,t−1 +
(
ηf.P+f,s,t/EBf

)
−
(
P−f,s,t/EBf.ηf

)
∀f, s, t 6= TAf

(2)

SOCf,s,t = SOC
In
f,s +

(
ηf.P+f,s,t/EBf

)
−
(
P−f,s,t/EBf.ηf

)
∀f, s, t = TAf

(3)

SOCInf,s = max

 SOCf, 1−

(DTf,s × EMf/EBf)


∀f, s

(4)

SOCf,s,t = min
(
SOCendf,s ,SOCdesf

)
∀f, s, t = TDf (5)

SOCf 6 SOCf,s,t 6 SOCf∀f, s, t (6)

P+f,s,t 6 Crf.ucf,s,t,P
−
f,s,t 6 Crf.u

−
f,s,t∀f, s, t (7)

u+
f,s,t + u

−
f,s,t = 1∀f, s, t (8)

σf,s,t = σf,s,t−1 − (P−f,s,t/EBf.ηf)∀f, s, t (9)

ψf,s,t (σf,s,t) = a0.(σf,s,t)
2.03∀f, s, t (10)

MDf,s,t = 2.03a0(BCf/EBf.ηf)σf,s,t
1.03∀f, s, t (11)

dgf,s,t = P
−
f,s,t.MDf,s,t∀f, s, t (12)

T int,ϑ,e = T
in
t−1,ϑ,ee

−1/((R/nho
ϑ,e).Cairϑ,e)

+(Hhot,ϑ,e.R/n
ho
ϑ,e + T

out
t ).(1 − e−1/((R/nho

ϑ,e).Cairϑ,e))

, T in
ϑ,e

6 T int,ϑ,e 6 T
in
ϑ,e∀t,∀ϑ,∀e

(13)
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PEHt,i =
∑
s

πs(P
+
f,s,t − PD

−
f,s,t + P

L
f,s,t)∀s, t, f ∈ Afi (14)

3.2. Integrated energy service provider (second level)

3.2.1. Units’ commitment

The commitment status of units is imposed by Eq. (15), while Eqs. (16)-(18)

restrict CHPs’ thermal/electrical generation within feasible operation region. The

NGUs’ start-up/shutdown cost is declared in Eq. (19), while Eq. (20) defines the

CHPs’ gas consumption at start-up/shutdown, and Eq. (21) is the CHPs’ overall

gas consumption. The ramp rate restrictions are enforced in Eqs. (22)-(23), and

minimum on/off time limits are defined in Eqs. (24)-(30). Eventually, solar/wind

generation bounds are imposed by Eq. (31) [23].

PDGk Ik,t 6 P
DG
k,t 6 PGDk Ik,t∀t,k ∈ {NGU} (15)

PDGk,t =
∑
R=1

αRt P
R,HDGk,t =

∑
R=1

αRtφ
R∀t,k ∈ CHP (16)∑

R=1

αRt = Ik,t, 0 6 αRt 6 1∀t,k ∈ CHP (17)

QCHPk,t = γpP
DG
k,t + γHH

DG
k,t ∀t,k ∈ CHP (18)

SUk,t > C
SU
k yk,t,SDk,t > C

SD
k zk,t∀t,k ∈ NGU (19)

SUCHPk,t > CCHPk yk,t,SDCHPk,t > CCHPk zk,t

∀t,k ∈ CHP
(20)

GCHPk,t = QCHPk,t + SUCHPk,t + SDCHPk,t ∀k ∈ {CHP} ,∀t (21)

PDGk,t − PDGk,t−1 6 (1 − yk,t)R
UP
k + yi,tP

DG
k ∀t,k (22)

PDGk,t−1 − P
DG
k,t 6 (1 − zk,t)R

UP
k + zi,tP

DG
k ∀t,k (23)

TUek = min
{
T , TU0

k

}
, TDek = min

{
T , TD0

k

}
∀k (24)

TUe
k∑
t=1

Ik,t = T
Ue
k ,

TDe
k∑
t=1

Ik,t = 0∀k (25)

t+TUe
k −1∑
t=r

Ik,r >T
U
k yk,t∀k,∀t =

 TUek + 1, · · · ,

T − TUk + 1

 (26)

T∑
t=r

(Ik,r−yk,t) > 0∀k,∀t =
[
T − TUk + 2, · · · , T

]
(27)

t+TD
k −1∑
t=r

(1 − Ik,r) >T
D
k zk,t∀k, ∀t =

 TDek + 1, · · · ,

T − TDk + 1

 (28)
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T∑
t=r

(1 − Ik,r−zk,t) > 0∀k, ∀t =

 T − TDk

+2, · · · , T

 (29)

yk,t − zk,t = Ik,t−1 − Ik,t,yk,t + zk,t 6 1∀t,k (30)

0 6 PWindr,t 6 PWTr,t , 0 6 PPVpv,t 6 P
PV
pv,t∀t,w, v (31)

3.2.2. Active distribution system

Here, the power flow equations are solved by the linearized framework pre-

sented in [13]. The feeders’ power flow is defined in Eq. (32), and Eq. (33) is

the power loss equation. The current value is computed by Eq. (34), and current/

voltage bounds are enforced in Eq. (35). Finally, the nodal power equilibrium is

established in Eq. (36) for the slack bus and in Eq. (37) for other buses. The MCP

of the LEM is obtained from the dual value of Eq. (37), and it is specified by λLMt,i .

Pflowij,t =
(
RDSij /(Z

DS
ij )

2
)

.(VDS_sqr
i,t − VDS_sqr

j,t )∀ij,∀t (32)

PLossij,t = RDSij I
DS_sqr
ij ∀ij,∀t (33)

IDSij,t = (VDSi,t − VDSj,t )/ZDSij ∀ij,∀t (34)

−IDSij 6 IDSij,t 6 I
DS
ij ,VDSi 6 VDSi,t 6 VDSi ∀ij, ∀t (35)

PIESPt +
∑
r∈Ar

i

PWindr,t +
∑
v∈Av

i

PPVv,t +
∑
k∈Ak

i

PDGk,t

+
∑
l∈Al

i

PILl,t =
∑
l∈Al

i

PDSRLl,t +
∑
d∈Ad

i

PDSNRLd,t

+0.5(
∑
j∈DS

PLossij,t +
∑
j∈DS

Pflowij,t )∀i = 1,∀t

(36)

∑
r∈Ar

i

PWindr,t +
∑
v∈Av

i

PPVv,t +
∑
k∈Ak

i

PDGk,t ∀i 6= 1,∀t

+
∑
l∈Al

i

PILl,t =
∑
l∈Al

i

PDSRLl,t + PEHt,i +
∑
ϑ∈Bϑ

i

PEBt,ϑ,q:λ
LM
t,i

+
∑
d∈Ad

i

PDSNRLd,t + 0.5(
∑
j∈DS

PLossij,t +
∑
j∈DS

Pflowij,t )

(37)

3.2.3. Natural gas network

The natural gas wells’ production and nodal pressure of the NGN are restricted

in Eq. (38). Eqs. (39)-(40) describe the Weymouth natural gas flow equation in

non-active and active (with compressor) pipelines. The method presented in [24]

is deployed to address the nonlinearities of Weymouth equations. Eventually, the

natural gas equilibrium is defined by Eq. (42).
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vw 6 vw,t 6 vw,Prn 6 Prn,t 6 Prn∀n,w, t (38)

f2n,m,t = K
f
n,m(Pr2

n,t − Pr
2
m,t)∀(n,m) /∈ z,∀t (39)

f2n,m,t > K
f
n,m(Pr2

n,t − Pr
2
m,t)∀t∀(n,m) ∈ z,∀t (40)

fn,m,t = (finn,m,t − f
out
m,n,t)/2 (41)∑

sp∈Asp
n

vsp,t −
∑
k∈Ak

n

GCHPk,t =
∑
m∈z

(finn,m,t − f
out
m,n,t)

∀n,∀t
(42)

3.2.4. District heating system

In this study, the hot water DHS model is deployed as presented in [25]. The

thermal equilibrium of the nodes is established through the pipelines entering that

node in Eqs. (43)-(44) for the supply/return pipe networks. The temperature at the

beginning of the pipelines is defined by Eq. (45) as equal to the nodal temperature

of the node that pipeline exists. The thermal demands are satisfied via Eq. (46),

and Eq. (47) expresses the temperature at the end of pipelines. The thermal energy

loss along the pipes is established in Eq. (48), while Eqs. (49)-(50) declare the

EB constraints. Eq. (51) denotes the thermal energy dispatched from CHPs and

electrical boilers (EB). Overall thermal energy equilibrium is satisfied by Eq. (52).

Eventually, the temperature bounds of DHS are declared in Eq. (53). The MCP of

TEM is obtained from the dual value of Eq. (46), and it is specified by λTMt,ϑ .∑
l∈s−ϑ

(Tps,out
t,l .mst,l) = Tmst,ϑ

∑
l∈s−ϑ

msl∀t, ϑ (43)∑
l∈s+ϑ

(Tpr,outt,l .mrt,l) = Tmrt,ϑ
∑
l∈s+ϑ

mrl∀t, ϑ (44) Tps,in
t,ϑ = Tmst,l , l ∈ S+ϑ

Tpr,int,ϑ = Tmrt,l , l ∈ S−ϑ
∀t, l (45)

Hhot,ϑ,e = Cpm
de
t,ϑ,e(T

ms
t,ϑ,e − T

mr
t,ϑ,e)∀t, ϑ, e:λTMt,ϑ (46)

Tps,out
t.l = (Tps,in

t,l − Toutt )e−(λlLl/Cpmsl) + Toutt

Tpr,outt,l = (Tpr,int,l − Toutt )e−(λlLl/Cpmsl) + Toutt

∀t, l (47)

Hlosst,l = Cpm
de
t,l (T

in
t,l − T

out
t,l )∀t, l (48)

Hsort,ϑ,q = ηEBP
EB
t,ϑ,qq ∈ {EB} (49)

0 6 PEBt,ϑ,q 6 PEBt,ϑ,q (50)
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Hsort,ϑ,q = Cpm
sr
t,ϑ,q(T

in
t,ϑ,q − Toutt,ϑ,q)∀t, ϑ,q∈{CHP,EB} (51)∑

ϑ

∑
q∈{CHP,EB}

Hsort,ϑ,q −
∑

l∈S+
ϑ ,S−

ϑ

Hlosst,l

−
∑
ϑ

∑
d

Hho
t,ϑ,e

= 0
(52)

TDHSl 6 Tps,out
t.l , Tps,in

t,l 6 TDHSl ,

TDHSϑ 6 Tmst.ϑ , Tmrt,ϑ 6 TDHSϑ ∀t, ∀l
(53)

3.2.5. IESP’s Objective

The IESP’s objective (second level) is established in Eq. (54), which consists

of six terms, namely the cost of participating in WEM, wind turbine (WT) produc-

tion, photovoltaic arrays (PHA) production, natural gas production, interruptible

load (IL) shedding and non-gas-fired unit (NGU) operation. The decision vari-

ables of the IESP consist of DG dispatch power, ADS variables (current, voltage,

active power flow), NGN variables (pressure and pipeline flow), DHS variables

(nodal/pipeline temperature), offers/bids in WEM, MCP of LEM and MCP of TEM.

Since IGDT framework is deployed to deal with uncertainties of renewable energy

sources (RES), the main objective of the second level is redefined accordingly in

Eq. (55), as the radius of uncertainty, while the accompanying constraints are ex-

pressed in Eqs. (56)-(59) [12].

OFIP =
∑
t



λWEMb,t PIESPt +
∑
r

CWTPWTr,t

+
∑
pv

CPVPPVpv,t +
∑
w

Cgasw vw,t

+
∑
u

CILu P
IL
u,t+

∑
k∈NGU

 CDGk PDGk,t +

SUk,t + SDk,t




(54)

max {α} ,α > 0 (55)

u(P̄RESt ,α) =
{
PRESt :

∣∣∣∣PRESt − P̄RESt

P̄RESt

∣∣∣∣ 6 α} (56)

OFIPb =
{
OFIP : minOFIP

}
(57)

OF 6 OFb(1 + σ), 0 6 σ 6 1 (58)

0 6 PRESt 6 (1 − α)P̄RESt ,PRESt = PWTr,t + PPVpv,t (59)
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3.3. Wholesale electricity market (Third level)

The WEMO’s objective (third level) is defined in Eq. (60). The terms of the equa-

tion include the production cost of Gencos and the profit/cost of selling/purchasing

to/from IESP. The decision variable of the WEM are optimal Genco dispatch, power

flow of the transmission lines, nodal voltage angle and MCP of WEM. Eq. (61) sat-

isfies the energy equilibrium constraint of TN, while the capacity and ramp rate

constraints are defined in Eqs. (62)-(66). The transaction with IESP is limited by

Eq. (67). Ultimately, the power flow rate of the feeders and voltage angle limits of

TN are restricted via Eqs. (68)-(69). The MCP of WEM is obtained from the dual

value of the Eq. (61), it specified by λWEMb,t .

min

{∑
t

∑
g

CGg P
G
g,t −

∑
t

∑
g

CIESPt PIESPt

}
(60)

∑
g∈Ag

n

PGg,t − P
IESP
t − PDb,t =

∑
b′∈Tr

Bb,b′(δb,t − δb′,t)

: λWEMb,t ∀b, t
(61)

0 6 PGg,t 6 P
GMax
g,t : µGg,t,µ

G
g,t∀g,∀t (62)

PGg,t − P
G
g,t−1 6 RUg : µ1

g,t∀g, t > 1 (63)

PGg,t − P
G
g,ini 6 RUg : µ2

g,t∀g, t = 1 (64)

PGg,t−1 − P
G
g,t 6 RDg : µ3

g,t∀g, t > 1 (65)

PGg,ini − P
G
g,t 6 RDg : µ4

g,t∀g, t = 1 (66)

PIESPt 6 PIESPt 6 PIESPt : µIESPt ,µIESPt ∀t (67)

−Cb,b′ 6 Bb,b′(δb,t − δb′,t) 6 Cb,b′

: vb,b′,t, vb,b′,t∀b,b ′, t
(68)

−π 6 δb,t 6 π : ξb,t, ξb,t∀b, t (69)

3.4. Proposed algorithm

In the proposed model, the IESP consists of an ADS, an NGN and a DHS. Fur-

thermore, it is obliged to satisfy the energy demands of the customers in different

markets. To this end, IESP incorporates WTs, gas wells, PVAs, NGUs, ILs, EBs and

CHP units. That said, it also participates in WEM to procure/sell electrical energy.

To solve this bi-level problem, IESP submits offers/bids in WEM; then the WEMO

clears the market to announce the MCP. Afterwards, the IESP reschedules itself and
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resubmits offers/bids accordingly. This process is continued until reaching the equi-

librium state for both IESP and WEM. In this study, KKT conditions are deployed

to modify the WEM problem as constraints in IESPs’ problem [13]. In other words,

the second and third levels are merged into a single problem through KKT condi-

tions, and the nonlinear production terms were addressed through the theory of

strong duality. More information on the KKT conditions of the problem and the

theory of strong duality is included in Appendix A and Appendix B. Henceforth,

the equilibrium state of AEVHs and this merged problem is achieved. In this re-

gard, the two-step method is used as it is elaborated in [25]. Accordingly, the IESP

clears these markets (according to ADS and DHS limitations) and declares the ther-

mal/electrical MCP. This process is the so-called first step. At the second step, the

AEVHs’ operator schedules the thermal demand of the households as well as smart

charging of the EVs and submits thermal/electrical demand in LEM and TEM. These

two steps are repeated until the criterion in Eq. (70) is satisfied. The overall algo-

rithm is established as follows:(
OFAH*(Step1) − OFAH*(Step2)

)
/OFAH*(Step1) 6 ε (70)
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Algorithm: Hybrid KKT & two-step method.

Initialization: Get the input parameters of the first,

second and third level problems.

1. Solve the second and third level problems based

on KKT condition and theory of strong duality using

Eqs. (15)-(69).

2. Receive λLMt,i
∗, λTMt,ϑ

∗

3. Step1: Solve the first level problem using Eqs. (1)-

(14) and calculate the optimal value of total cost.

4. Update values of PEHt,i
∗,Hhot,ϑ,e

∗.

5. Step2: Solve the second and third level problems

based on KKT condition and theory of strong duality

using Eqs. (15)-(69).

6. Update values of λLMt,i
∗, λTMt,ϑ

∗

7. Calculate the optimal value of OFAH using Eq. (1).

8. If the stop criterion Eq. (70) is satisfied, terminate

the algorithm, otherwise return to stage 3

.

4. Case studies and results

In this study, AEVHs are modelled through 6000 aggregated households with

3000 EVs that are clustered into 5 fleets by K-means clustering [26]. The data on

the thermal characteristics of the households is taken from [27], and EVs data is

provided in [28] and national household travel survey (NHTS) [29]. The overall

schematic of the systems, connections and locations is depicted in Fig. 2. Moreover,

the structural data of the systems are summarized in Appendix C. The empiri-

cal probability distribution functions of NHTS data for EVs arrival/departure times

are plotted in Fig. 3. The arrival/departure time data distribution of the clustered

EV fleets is illustrated in Fig. 4 and the probability distribution of their daily trav-

elled miles is depicted in Fig. 5. These empirical distributions are utilized to gener-

ate stochastic scenarios for EV fleets. Moreover, the mixed-integer linear problem
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Figure 2: Overall schematic of the systems connections and locations

(MILP) was solved via the GUROBI solver. Eventually, the following case studies

are designed to assess the proposed three-level framework.

• Case Study 1 (CS1): In this case, the thermal flexibility of the households is

ignored (temperature fixed at 25◦C), and EVs are charged uncoordinatedly

as soon as they arrive.

• Case Study 2 (CS2): In this case, the thermal flexibility of the households is

ignored (temperature fixed at 25◦C), and EVs are charged smartly.

• Case Study 3 (CS3): In this case, the households are assumed to be thermally

flexible (temperature interval of 18◦C-25◦C), and EVs are charged smartly.

• Case Study 4 (CS4): In this case, the IGDT approach is applied to RES in CS3.

It should be noted that in the smart charging method, the charge/discharge

of the electric vehicles is a decision variable defined in the optimization process.

Therefore, the electric vehicles charge/discharge schedule is obtained from solving

the proposed formulation. However, when the charging scheduling is not smart

(uncoordinated), the vehicles are charged without any control strategy.
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Figure 3: Arrival/departure time probability dis-

tribution of NHTS data

Figure 4: EV fleets’ arrival/departure time dis-

tribution
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Figure 5: Probability distribution of EV fleets’

daily travelled miles
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Figure 6: Convergence of the AEVHs’ cost in two-

step method.

The iterative convergence of the two-step method for different cases can be

seen in Fig. 6. As can be seen, the AEVHs’ cost is converged after three iterations

in all cases. The expected SOC of EV fleets in different cases is demonstrated in

Fig. 7. In CS1, the EV fleets are charged as soon as they arrive at the residential

site. Therefore, EVs’ SOC curve shows sharp slopes at hours 16-19. The reason is

that according to Fig. 4, EV fleets’ arrival time distribution is heavily concentrated

around these times. However, hours 16-19 also coincide with the peak demand of

IESP and WEM. In this regard, CS2 enables the AEVHs’ operator to shift demand

to cheaper off-peak periods, which can be observed from the SOC of fleets in CS2,

as EVs are mainly charged at hours 6-9, which is the departure time for most EVs.

In CS3, this shift in demand is even more perceptible, as the thermal flexibility of
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Figure 7: The SOC of EV fleets: a) CS1 b) CS2 c) CS3

AERHs improves the electrical capacity of the cheaper CHP units. The reason is that

the electrical and thermal outputs of CHP units are inextricably interdependent.

The hourly dispatch scheduling of the IESP in three cases is illustrated by Fig. 8.

Accordingly, in CS1, where there is no flexibility, the power imported from WEM is

0.45% less regarding CS2 and 2.79% less regarding CS3. The reason is that in CS2

and CS3 more energy is imported during cheaper off-peak hours from WEM. As can

be observed, CS2 and CS3 illustrate a sharp rise in the imported power from WEM

during hours 1-5, which is the most inexpensive time interval for WEM price. Fur-

thermore, the production of the expensive NGUs is declined by 25.40% and 32.25%

in CS2 and CS3 compared to CS1. That said, the production of efficient CHP units

is increased by 8.62% in CS3 compared to CS1. Nevertheless, 0.06 MWh of the

load is shed (with the cost of 500 $/MWh) in CS1 to satisfy security bounds. Fig. 8

shows that there is a large demand profile for EVs at hours 15-18 in CS1, which

is due to the uncontrolled charging strategy of the EVs in this case. Nonetheless,

in CS2, this demand is spread over time periods 3-5 since the charging schedule is

intelligent, and EVs are even discharged at time 21 to increase the profit.
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Figure 8: The power dispatch of units in ADS: a) CS1 b) CS2 c) CS3

These results also reflect on the MCP of the local electricity market. As it is

illustrated in Fig. 9, CS1 imposes the highest MCP cost. Overall, the MCP of the local

electricity market in CS2 is dropped by 2.42%, and in CS3 by 11.87% in comparison

to CS1. As can be seen, CS2 and CS3 have a slightly higher MCP at off-peak hours

since they have shifted demand to these intervals.

Fig. 10 and Fig. 11 demonstrate the power dispatching of Genco1-3. In CS1,

when EVs are charged uncoordinatedly, the IESP is forced to import energy at more

expensive peak hours. Therefore, in CS2, the output power of the Genco1 (cheapest

unit) has increased by 0.081%, and by 0.51% in CS3. Genco1 shows a slight rise

in production during hours 1-6 for CS2 and CS3 since the smart charging improves

the output of this cheap unit. On the other hand, Genco2 (the most expensive unit)

shows a decline of 7.77% in CS2 and 26.65% in CS3 during peak hours of 16-19.

The impact of this reduction can also be observed in the MCP of WEM in Fig. 12. For

example, in CS3 it is 2.10% less than that of the CS1. Furthermore, the thermal en-

ergy dispatch of IESP and the average temperature of the AEVHs are demonstrated

by Fig. 13. Overall, in CS3, the thermal energy dispatch has decreased by 11.73%.
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Figure 9: The MCP of the local electricity market (IEEE-33 bus)

However, the dispatch of EB in CS3 has increased dramatically, as increased thermal

flexibility enables the IESP to convert cheaper energy provided by RES to thermal

energy. In this regard, the EB energy shows a significant rise during hours 8-10,

where the electrical demand is low and RES production is not used. For the same

reason, the temperature has risen at hours 8-10 to take maximum advantage of

the available RES production. As can be seen from AEVHs’ temperature curve in

CS3, the temperature of the households is increased up to 24 C during off-peak

periods to store energy in households, which is released back during peak hours,

thereby enhancing thermal flexibility. The MCP of the TEM is illustrated in Fig. 12.

Compared to CS1, the MCP of the TEM is 5.82% less in CS3, which illustrates how

AEVHs can function as a thermal energy price-maker. Although the MCP of TEM

is 16.01% more in CS2, this increment is compensated by a greater reduction in

MCP of the LEM (in Fig. 9). The reason for this reduction is that the thermal and

electrical outputs of the CHP units connect these two markets.

These findings can also be construed from cost values in different cases, as they

are summarized in Table 2. As it was mentioned, in CS3 and CS2 higher quantity of

electricity is procured at cheaper hours of WEM since EVs and thermal flexibilities

shift the demand to cheaper periods. Moreover, the expensive NGUs show a great

reduction in CS3 and CS2 since cheaper units can substitute their production. The
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most important implication is how the three-level approach can benefit both AEVHs

and IESP operators. The reason is that when EVs are charged smartly, there is a

significant operational cost reduction for both operators. Despite the higher battery

degradation in CS3, it is compensated by a greater reduction in overall AEVHs’ cost.

In order to provide a deeper insight about the cost values of Table 2, the hourly

cost value is comparatively illustrated with total generation of each case study in

Fig. 14, while Fig. 15 shows the hourly total generation and MCP in each case. As

can be observed, CS1 results in the highest operational cost value since in this case

the EVFs are charged without a smart strategy, and it leads to highest total Genco

production since peak demand is imported from the WEM. Thanks to the smart

charging strategy of CS2, the demand is shifted from peak hours (15-19) to valley

hour (1-7), while this shift is even more apparent in CS3 as the thermal flexibilities

open the electrical capacity of the CHP units. Overall, CS2 provides 9.19% lower

cost compared to CS1, and CS3 provides 9.42% lower cost compared CS1. Based

on the MCP outcomes of Fig. 15, it is noted that smart charging strategy and thermal
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Figure 13: The thermal energy dispatch of the units in ADS and AEVHs’ temperature: a) CS1 b) CS2 c)

CS3

load flexibilities in CS2 and CS3 can lead to 2.10 % lower WEM price in regard to

CS1.
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Figure 14: The MCP of the local electricity market (IEEE-33 bus)

The sensitivity analysis on the risk-aversion parameter of IGDT in CS4 is sum-

marized in Table 3. According to the results, a robust risk-averse strategy comes

with a higher cost for IESP since operator self-schedules for the lower end of the

27
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Figure 15: The MCP of the local electricity market (IEEE-33 bus)

predicted renewable energy spectrum. Therefore, the RES account for a lower share

of the power, which is compensated by WEM and expensive NGU. In particular, the

risk-averse IESP strategy benefits AEVHs operator. The reason is that risk-averse

strategy increases the MCP of LEM at peak hours and EVs gain greater benefit by

discharging at these periods.

Table 2: Operational costs through different cases

CS1 CS2 CS3

NGUs ($) 3883.277 2886.737 2676.345

Gas producers ($) 6454.259 6448.75 6506.975

RES ($) 205.2701 205.2701 205.2701

Interruptible load ($) 31.27779 0 0

Purchased from WEM ($) 9266.553 8475.055 8582.386

Total IESP cost ($) 19840.64 18015.81 17970.98

AEVHs’ cost ($) 5015.187 3796.107 1897.31

EV degradation cost ($) 0 642.64 864.24

The voltage level in all ADS buses at hour 21 is illustrated in Fig. 16. As can

be seen, the uncoordinated charging scheduling in CS1 leads to the worst voltage

profile, which is also the reason for high power losses. In this regard, smart EV

scheduling in CS2 has 3.63% higher overall voltage. Moreover, including thermal

flexibility in CS3 improves voltage level by 0.39% compared to CS2 and by 4.04%

compared to CS1. The improvement in the voltage profile is particularly substan-
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Table 3: Sensitivity analysis on risk aversion parameter of IGDT framework in CS4.

σ = 0 σ = 0.002 σ = 0.03 σ = 0.05∑
t

PIESPt 209.39 220.36 228.15 235.65∑
t

∑
k∈NGU

PDGk,t 28.03 28.38 31.84 35.81∑
t

PRESt 136.84 125.90 114.97 103.69∑
q∈{CHP,EB}

Hsort,ϑ,q 723.24 722.74 720.18 717.97∑
j∈DS

PLossij,t 11.86 12.23 12.55 12.74∑
t

∑
k∈CHP

PDGk,t 193.49 193.49 194.06 194.39

OFIP ($) 17970.98 18002.75 18486.17 18948.15

OFAH($) 1897.31 1761.19 1499.67 1125.97∑
s

∑
f

1/πsdgf,s,t ($) 564.24 623.03 689.09 730.68

tial at the end nodes of the ADS. The reason is that these nodes are far from the

substation and higher voltage drop is required to transmit the electrical energy to

these nodes. However, the smart charging strategy improves the voltage profile by

shifting the demand to off-peak time periods.
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Figure 16: The voltage magnitude in ADS (IEEE-33 bus)

5. Conclusion

This study proposed a novel three-level optimization framework for AEVHs to

participate in local electricity and thermal energy markets as a price-maker. In the

proposed model, IESP (second level) was modelled as an intermediary entity be-

tween AEVHs (fist level) and WEM (third level). The impact of thermal flexibilities
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of households and smart charging capability of EV fleets on different markets was

evaluated through different cases. The EV parameters such as their daily travelled

miles and arrival/departure times were established through stochastic scenarios,

while output energy of RES in the middle level was handled by the IGDT approach.

The study illustrates that EVs can have a great influence on integrated energy net-

works, and their charging strategy can even influence the thermal energy market

through CHP units. Overall conclusions were drawn as follows:

1. The three-level optimization framework shows that EVs can not only be price-

influencers at local electricity and thermal energy markets, they can also ma-

nipulate price at the wholesale market level, as AEVHs can diminish the MCP

of WEM, LEM and TEM by 18.85%, 2.1% and 5.82%, respectively.

2. AEVHs can utilize their thermal flexibilities to influence local electricity and

thermal energy markets through CHP units.

3. Smart charging of EV fleets and thermal flexibility of the AEVH reduce the

overall costs for both IESP and AEVH while improving overall voltage profile.

4. Using a three-level optimization framework, ensures the profits of AEVHs,

IESP and WEM operators by reaching the market equilibrium for all players.

5. When the IGDT framework was integrated in IESP’s problem, the risk-aversion

increased the costs for IESP. However, the cost of AEVH was reduced. The rea-

son is that the MCP of LEM was higher in this case, and it was more profitable

for EVs to discharge at peak hours.

Ultimately, as a prospect for future studies, integrating traffic network models, and

routing of electric vehicles offers a significant potential for novel research grounds.

Appendix A. Karush–Kuhn–Tucker (KKT) conditions

There are numerous methods to solve bi-level optimization problems. However,

when the lower level is presented as a convex problem, KKT conditions are effective

and practical in converting the bi-level problem into a single optimization problem
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with mathematical equilibrium constraints. In this study, the wholesale electric-

ity market is the third level problem and IESP forms the second level. These two

optimization problems of the bi-level framework are merged using the following

quadruple KKT conditions [30].

Appendix A.1. Stationary conditions

In order to develop the stationary constraints, the lagrangian function is es-

tablished by Eq. (a.1), where x represents the vector of decision variables at the

third level of the problem. In this context, f(x), h(x) and g(x) define the objective

function, equality constraints and inequality constraints, respectively. The station-

ary constraints in Eqs. (a.1)-( refEq.a4) state that the derivatives of the lagrangian

function over each variable must be equal to zero.

LEN = f(x) + λTh(x) + µTg(x) (a.1)
∂LEN

∂PG
g,t

= CGg − λWEMb,t + µGg,t − µ
G
g,t + µ

1
g,t|t>1 − µ

1
g,t+1|t>1

+µ2
g,t|t=1 − µ

3
g,t|t>1 + µ

3
g,t+1|t>1 + µ

4
g,t|t=1 = 0,∀g ∈ Agn,∀b,∀t

(a.2)

∂LEN

∂PIESPt

= −CIESPt + λWEMb,t + µIESPt − µIESPt = 0,∀b, ∀t (a.3)

∂LEN

∂δb,t
=
∑

b′∈θb

Bb,b′(λWEMb,t − λWEMb′,t ) +
∑

b′∈θb

Bb,b′(vb,b′,t − vb′,b,t)

+
∑

b′∈θb

Bb,b′(vb′,b,t − vb,b′,t) + ξb,t − ξb,t + ξ
1
b=1,t = 0,∀b,∀t

(a.4)

Appendix A.2. Dual, primal, and complementary conditions

The dual, primal and complementary constraints of the WEM are defined by

Eqs. (a.5)-(a.15).

0 6 PGg,t⊥µGg,t > 0,∀g,∀t (a.5)

0 6 (PGg,t − P
G
g,t)⊥µGg,t > 0,∀g, ∀t (a.6)

0 6 (PIESPt − PIESPt )⊥µIESPt > 0 (a.7)

0 6 (P̄int − PIESPt )⊥µIESPt > 0,∀t (a.8)

0 6 (Cb,b′ + Bb,b′(δb,t − δb′,t))⊥vb,b′,t > 0,∀b,∀b ′,∀t (a.9)

0 6 (Cb,b′ − Bb,b′(δb,t − δb′,t))⊥vb,b′,t > 0,∀b,∀b ′,∀t (a.10)

0 6 (π− δb,t)⊥ξb,t > 0,∀b,∀t (a.12)

0 6 (π+ δb,t)⊥ξb,t > 0,∀b,∀t (a.12)
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The dual variable concerning the equality terms must be free in sign, which is sat-

isfied by Eq. (a.13)

λWEMb,t ∀b, tξlb=ref,t∀b, t (a.13)

As can be observed, Eqs. (a.5)-(a.12) are nonlinear, which can be handled by big-M

method and binary auxiliary variables [31], as follows:

0 6 gx⊥µ > 0→ gx > 0,µ > 0 (a.14)

gx 6M1u,µ 6M2(1 − u) (a.15)

Appendix B. The theory of strong duality

The theory of strong duality states that in the optimal solution point of the con-

vex optimization problem, the primal and dual optimization functions have equal

values [32]. In this study, this basic concept is deployed to develop a linear state-

ment for the nonlinear term λWEMb,t PIESPt in Eq. (1). In this approach, the dual and

primal objectives of the WEM are equated by Eq. (b.1).

Max
∑
t



−
∑
g,b
PGg,tµ

G
g,t + P

IESP
t µIESPt − PIESPt µIESPt

+
∑
b

PDb,tλ
WEM
b,t −

∑
b,b′∈Tr

vb,b′,tCb,b′,t

−
∑

b,b′∈Tr
vb,b′,tCb,b′,t−

∑
b

π(ξb,t + ξb,t)

−
∑
g

RUgµ
1
g,t|t>1 −

∑
g

(RUg + P
G
g,ini)µ

2
g,t|t=1

−
∑
g

RDgµ
3
g,t|t>1 −

∑
g

(RDg − P
G
g,ini)µ

4
g,t|t=1


=Min

∑
g

∑
t

CGg P
G
g,t −

∑
t

CIESPt PIESPt

(b.1)

Based on Eqs. (a.7)-(a.8), following conclusions can be reached.

0 6 (PIESPt − PIESPt )⊥µIESPt > 0→ PIESPt µIESPt = PIESPt µIESPt (b.2)

0 6 (PIESPt − PIESPt )⊥µIESPt > 0→ PIESPt µIESPt = PIESPt µIESPt (b.3)

At this stage, Eq. (a.3) is multiplied by PIESPt to obtain a linear equivalent for

λWEMb,t PIESPt as follows:

−PIESPt CIESPt + PIESPt λWEMb,t + PIESPt µWEMt − PIESPt µIESPt = 0 (b.4)

PIESPt CIESPt = PIESPt λWEMb,t + PIESPt µWEMt − PIESPt µIESPt = 0 (b.5)

32

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Now the term λWEMb,t PIESPt can be replaced by X1 as folows:∑
t

CIESPt PIESPt =
∑
g

∑
t

CGg P
G
g,t−

∑
t



−
∑
g,b
PGg,tµ

G
g,t + P

IESP
t µIESPt − PIESPt µIESPt

+
∑
b

PDb,tλ
WEM
b,t −

∑
b,b′∈Tr

vb,b′,tCb,b′,t−∑
b,b′∈Tr

vb,b′,tCb,b′,t−
∑
b

π(ξb,t + ξb,t)−∑
g

RUgµ
1
g,t|t>1 −

∑
g

(RUg + P
G
g,ini)µ

2
g,t|t=1

−
∑
g

RDgµ
3
g,t|t>1 −

∑
g

(RDg − P
G
g,ini)µ

4
g,t|t=1



(b.6)

X1 =
∑
t

CIESPt PIESPt =
∑
g

∑
t

CGg P
G
g,t−

∑
t



−
∑

b,b′∈Tr
vb,b′,tCb,b′,t −

∑
b,b′∈Tr

vb,b′,tCb,b′,t

−
∑
b

π(ξb,t + ξb,t) −
∑
g

RUgµ
1
g,t|t>1−∑

g

(RUg + P
G
g,ini)µ

2
g,t|t=1 −

∑
g

RDgµ
3
g,t|t>1

−
∑
g

(RDg − P
G
g,ini)µ

4
g,t|t=1 −

∑
g,b
PGg,tµ

G
g,t

+
∑
b

PDb,tλ
WEM
b,t



(b.7)

Appendix C. Structural data of the utilized systems

In this study, the IESP consists of an IEEE-33 bus ADS, a 20-node NGN, and an

8-node DHS that is supplied by 3 CHPs, 2 NGUs, 3 PVAs and 3 WTs. The data on

these networks can be observed in [11, 33, 34]. Furthermore, the WEM is made

up of a standard 6-node TN and its structural data is available in[11]. Overall, the

summery of the main parameters are included in Table C.4 to Table C.7.
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Abstract

The impact of electric vehicles (EV) charging strategy will not be limited to power

systems as integrated electricity, natural gas and thermal energy systems have be-

come increasingly interconnected. We introduce a three-level framework for the ag-

gregated electric vehicle-owning households (AEVH) to strategically participate in

local electricity and thermal energy markets as a price-maker, while considering the

strategic behavior of the integrated energy service provider (IESP) in thw wholesale

electricity market (WEM) also as a price-maker. The AEVH operator forms the first

level, while IESP and WEM operators are integrated at the second and third levels,

respectively. To solve the three-level problem, the second and third levels are mod-

ified as a single-level problem through the Karush-Kuhn-Tucker (KKT) conditions,

then the equilibrium point of the resulting single-level problem and the first level is

achieved through two-step iterative method. At the first level, the arrival/departure

time and daily travelled miles of EV fleets are modelled via stochastic scenarios,

while renewable energy production at the second level is dealt with by information

gap decision theory (IGDT). Ultimately, different case studies verify that AEVHs can

deploy their thermal flexibility together with the smart charging strategy of the EVs
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to influence the local electricity, thermal energy and even WEM prices. Using the

proposed three-level optimization framework reaches the best point of equilibrium

between different market players. The outcomes prove the effectiveness of the pro-

posed model. Based on the results, the AEVH can deploy the proposed model to

diminish the WEM price by 2.1%, while the local electricity price was dropped by

18.85%. Furthermore, the thermal energy price was reduced by 5.82%, which il-

lustrates that EVs can influence the thermal energy market through the combined

heat and power units.

Keywords: Electric vehicles; Thermal energy market; Strategic scheduling;

Three-level optimization; Wholesale electricity market; Local electricity market

Nomenclature

Indices

s, t,k, r Indices of scenario, time, DGs, wind turbine

l, ϑ, e Indices of pipeline, node, demand in DHS

q, f Indices of DHS source and EV fleets

pv, c,R Indices of PVA, ILs and FOR in CHP units

n,w, lg, c Indices of NGN nods, NGN producer, active pipeline, non-active

pipeline

d,dg Indices of ADS and, NGN loads

g,b,b ′, i Indices of Genco, TN bus’s, ADS buses

Amn ,CHP Set of m equipment’s located at ADS and TN bus’s or NGN nodes n

and CHP

Tr Set of interconnected buses in the TN.

Afi Set of EV parking lots at node i of ADS

NGU Set of non-gas fired units

TAf,TDf Set of arrival/departure times

Parameters

SOCend
f,s Highest possible SOC at departure time

SOCdes
f Desired SOC at departure time
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SOCf, SOCf max/min SOC of EV fleets (%)

mst,l,mrt,l Water mass flow of supply/return DHS pipeline (kg/h)

mde
t,ϑ,e,m

sr
t,ϑ,q Water mass flow of demand/source at DHS nodes (kg/h)

nho
ϑ,e Number of households at DHS nodes

Cairϑ,e Average thermal capacity of AEVHs (MWh/◦C)

πs Probability of scenario s

EBf,ηf EV fleets’ battery capacity/efficiency (MWh)

SOCIn
f,s SOC at arrival time (%)

DTf,s Travelled miles by EV fleets (mile)

EMf Energy consumption per mile (MWh/mile)

Crf EV feets’ nominal charge rate (MW)

Cp Thermal capacity of water (MWh/kg.◦C)

R Thermal resistance of households (◦C/MWh)

T out
t Outdoor temperature (◦C)

T in
ϑ,e

,T in
ϑ,e Min/Max indoor temperature (◦C)

PDG
k ,PGD

k Min/Max DG output (MWh)

PR,φR Thermal/electrical FOR of CHPs (MW)

ηEB,PEBt,ϑ,q Efficiency & max power of EB

γp,γH Electrical/Thermal fuel ratio of CHP (%)

TUe
k ,TDe

k Min on, off time of DGs (h).

CSU
k ,CSD

k Start-up/shutdown cost of NGU ($/MWh)

RUP
k DGs’ ramp rate (MWh)

PWT
r,t ,PPV

pv,t Maximum wind/solar production (MW)

ZDS
ij ,RDS

ij Impedance/resistance of ADS feeders (ohm).

IDS
ij Maximum current of ADS feeders (A).

VDS
i ,VDS

i Min/Max ADS node voltage (Kv)

vw,vw Min/Max gas well production (kcf)

Prn,Prn Min/Max NGN nodal pressure (bar)

TDHS
l ,TDHS

l Max/Min DHS pipe temp (◦C)
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TDHS
ϑ ,TDHS

ϑ Max/Min DHS node temperature (◦C)

λl,Ll Thermal conductivity & length of DHS pipeline (m)

PLf,s,t Electrical AEVH demand (MW)

Kfn,m NGN pipeline coefficient

CPV ,CWT Cost of PV/WT production ($/MWh)

C
gas
w ,CIL

u Gas well cost ($/kcf)/interruptible loads ($/MWh)

P̄RES
t Expected RES production in IGDT (MW)

σ Risk aversion controller in IGDT.

OFIP
b Optimal value of IESP objective ($)

CGg ,Bb,b′ Genco cost ($/MWh)/ TN suseptance (1/ohm)

PGMax
g,t Maximum Genco production (MW)

Variables

OFAH AEVHs’ objective function

dgf,s,t Battery erosion of EV fleets ($)

λLM
t,i ,λ

TM
t,ϑ MCP of LEM & TEM ($/MWh)

PEH
t,i AEVHs’ Electrical energy purchase (MW)

Hho
t,ϑ,e Thermal energy delivered to AEVHs (MWh)

SOCf,s,t State of charge of EV fleets (%)

σf,s,t EV fleets’ cycle depth (%)

ψf,s,t Cycle depth degradation function

MDf,s,t Marginal battery degradation ($/MWh)

P+f,s,t,P
−
f,s,t EV fleets’ charge/discharge rate (MW)

T in
t,ϑ,e Indoor temperature of AEVHs (◦C)

PDG
k,t,H

DG
k,t DGs’ electrical/thermal output (MW)

αRt FOR coefficient of CHP (%)

SUk,t,SDk,t Start-up/Shutdown cost of NGU ($)

SUCHP
k,t , SDCHP

k,t Start-up/Shutdown fuel for CHP (kcf)

GCHP
k,t CHPs’ natural gas consumption (kcf)

IDS
ij,t,V

DS
i,t Current/voltage of ADS (A), (kV)

PLoss
ij,t Power loss in ADS (MW)
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vw,t Prn,t Gas well production (kcf)/ node pressure (bar)

finn,m,t, f
out
m,n,t Inlet/Outlet flow of NGN pipe (KCF)

fn,m,t Average pipe flow of NGN (KCF)

T
ps,out
t.l , Tpr,out

t,l End temp of supply/ return DHS pipe (◦C)

T
ps,in
t.l ,Tpr,in

t,l Beginning temp of supply/return DHS pipe (◦C)

Tms
t,ϑ,Tmr

t,ϑ Nodal temp of supply/return pipes in DHS (◦C)

Hloss
t,l Thermal energy loss in DHS (MWh)

Hsor
t,ϑ,q Thermal energy production in DHS (MWh)

λWEM
b,t MCP of WEM ($/MWh)

PIESP
t Power purchased from WEM by IESP (MW)

PIL
u,t Interruptible loads (MW)

PEB
t,ϑ,q EB power consumption

PRES
t ,α RES production (MW)/IGDT radios

PG
g,t,P

D
b,t Genco generation & TN demand (MWh)

δb,t TN bus voltage angle (°)

µ, v, ζ Inequality dual variables in the TN

λ Equality dual variables in the TN

Binary variables

u+
f,s,t,u

−
f,s,t EV fleets’ charge/discharge state

Ik,t Commitment state of DGs

yk,t,zk,t Start-up / Shutdown state of DGs

Abbreviations

AEVH Aggregated electric vehicle-owning households

IESP Integrated energy service provider

WEM Wholesale electricity market

LEM,TEM Local electricity market, Thermal energy market

ADS,DHS Active distribution system,District heating system

NGN,MCP Natural gas network, Market clearing price

RES,NGU Renewable energy source, Non-gas-fired unit
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Genco Generation company

PHA Photovoltaic array

IL,EB Interruptible load, Electrical boiler

1. Introduction

The unprecedented boom in the electric vehicle (EV) sales testifies their eco-

nomic viability and sustainability. For instance, the UK has pledged to enact legisla-

tion to prohibit the sales of fossil fuel-based vehicles by 2030 and only permit EVs by

2035. The co-occurrence of this trend with the proliferation of the high-efficiency

combined heat and power units (CHP) is going to introduce new challenges since

they entangle the thermal and electrical energy production [1], as well as influenc-

ing the natural gas demand [2]. Therefore, the CHPs create an interdependent en-

ergy market consisting of the active distribution system (ADS), natural gas network

(NGN) and district heating systems (DHS), which is operated under the command

of the integrated energy service provider (IESP) [3]. Considering the high penetra-

tion of EVs, their charging patterns will have a substantial impact on these markets.

The reason is that smart charging strategies of the electric vehicles can increase the

thermal and electrical flexibility of the CHP units, which will improve the thermal

demand satisfaction in DHS, and reduce the pipeline congestion in NGN. The EVs

can participate in energy markets individually as price-takers. However, it is known

that a price-maker framework can induce greater profit by influencing market price

[4]. Therefore, it is highly probable that EV-owning households would form a coali-

tion to utilize their charging/discharging flexibilities together with their thermal

demand flexibility to participate in local electricity and thermal energy markets as

the price-makers. In other words, the aggregated EV-owning households (AEVHs)

can influence the market-clearing price (MCP) in the thermal energy market (TEM)

and local electricity market (LEM) to enhance their collective benefit. The IESP,

as the local market operator, procures part of this energy from local distributed

generation (DG) units and gas wells. At the same time, it also participates in the

wholesale electricity market (WEM) as a price-maker that can submit offers/bids
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to purchase/sell electrical energy [5]. Accordingly, IESP is a price-maker in WEM,

while AEVH operator is a price-maker in LEM and TEM (operated by the IESP),

which makes the IESP an intermediary retailer between the WEM and AEVHs.

All these market formations have their individual objectives. For instance, the

wholesale electricity market operator (WEMO) clears the WEM to maximize the

public welfare, while the IESP’s prime objective is to minimize the operational costs

of ADS, DHS and NGN as well as the cost of participating in WEM. On the other

hand, the AEVHs’ objective is to minimize the cost of participating in LEM and

TEM, using their flexibilities in thermal demand and EV-scheduling. To solve such

a problem, a three-level framework should be devised that considers the AEVHs at

the first level, the IESP at the second level and WEMO at the third level. Such a tool

would be essential for market players to evaluate AEVHs as a thermal and electrical

price-maker that can also pose a significant impact on WEM price through IESP.

Most of the small-scale consumers do not have enough power to participate in

energy markets as a price-influencer. In this concern, some of the recent studies

have unraveled the importance of demand response aggregators. Particularly, the

EV-aggregators [6] have gained a great deal of attention on account of their flexibil-

ities and green features. The altering direction method of multipliers (ADMM) has

been proposed in [7] to investigate robust interaction between the EV-aggregator

and the distribution company (Disco). Asrari et al. [8] evaluated the possibility of

using the aggregated EVs to reduce distributed locational marginal price (DLMP),

which showed that it is possible with proper congestion management. The authors

in [9] inspected EVs as price-takers in LEM intending to diminish DLMP. In a more

sophisticated study [10], the DLMP of the LEM was reduced through a bi-level opti-

mization framework that considered EV-aggregators and Disco at upper and lower

levels, respectively. These studies illustrate the impact that EVs can impose on Dis-

cos at the local level, while Disco’s behavior at the wholesale market is also essential.

In this regard, [11] proposed a bi-level framework to investigates Disco’s strategic

behavior at day-head and reserve markets, while information gap decision theory

(IGDT) is adopted by [12] to investigate a similar problem. A risk-based Disco op-

timization has been investigated in [13], wherein the presence of microgirds was
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addressed at the lower level of the bi-level problem.

As can be observed, all of these studies have focused on a single type of energy,

i.e., electricity. Nevertheless, co-generation technologies, such as CHP units, have

created an interconnected energy market. Therefore, there has been increasing in-

terest in this area. The authors in [14] proposed a stochastic bi-level approach to

investigate strategic participation of a multi-energy system in WEM and real-time

integrated markets. The authors in [15] proposed a hierarchical energy scheduling

approach for the integrated energy systems, using Stackelberg game approach. The

study modelled the energy service provider as a leader, while the households were

defined as followers to minimize their cost. A decentralized optimization frame-

work was proposed by [16] to minimize the cost and emissions of an integrated

energy system via the multi-objective optimization framework. In [17], a model

predictive energy management strategy was proposed for EV-charging stations and

thermal energy supply of community buildings. The study used a moving-horizon

stochastic programming approach to deal with the RES production uncertainties.

The economic-environmental operation of a multi-energy system was addressed in

[18], wherein the study aimed to maximize the benefits of the multi-energy operator

and minimize the operational emissions at the same time. A non-dominated sort-

ing genetic algorithm was investigated in [19] for the optimal emission-constrained

operation of multi-energy systems. The main contribution of this study was to in-

clude thermo-hydraulic characteristic of the integrated electrical and thermal en-

ergy systems. The bi-level scheduling of multi-energy systems is scrutinized in [20],

considering pool market, forward contracts and rival players.

Despite all the authentic novelties, the following shortcomings (SH) can be iden-

tified in these studies:

SH 1: In some studies [10–14, 17, 18, 20], the impacts of integrating EVs have been

evaluated at local energy systems. However, EVs can also have a significant

influence at WEM level.

SH 2: The current literature have not investigated the EVs as thermal price-makers

that can be feasible through CHP units.
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SH 3: The studies [11–13] have focused on a single type of energy (electricity)

SH 4: The IESP has not been studied as a price-maker in WEM.

To address the existing gaps, this study puts forward a three-level framework

to model AEVHs as price-makers in LEM and TEM that is operated by IESP, which

in turn is also a price-maker in WEM. At the first level, the AEVHs’ objective is to

minimize the cost of participating in TEM and LEM, using their thermal flexibility

and smartly schedulable EVs. The IESP (second level) intends to minimize the op-

erational cost and the cost of participating in WEM by submitting the best offer/bid.

Eventually, at the third level, the WEMO clears the market to maximize public wel-

fare. A hybridized KKT conditions and two-step iterative method is used to solve the

three-level problem. Moreover, EVs’ arrival/departure times are modelled through

stochastic scenarios, while the IGDT framework is used to address the uncertainties

of renewable energy sources (RES) at the second level. Table 1 provides the main

traits of the previous publications and this study. Overall, the major contributions

of this study can be summarized as follows:

i A three-level hybrid SP-IGDT framework is proposed to model AEVHs as price-

makers in LEM and TEM, while considering IESP as a price-maker at WEM.

(Addresses SH1 and SH2)

ii The influence of strategic EV scheduling at local electricity, thermal markets

as well as WEM is scrutinized. (Addresses SH2 and SH3)

iii A novel method of integrating KKT conditions with the two-step iterative ap-

proach is proposed to solve the three-level optimization problem. (Addresses

SH3 and SH4)

2. problem description

In this study, the AEVHs partake in LEM and TEM as price-setter players, while

considering that IESP is also a price-setter in WEM. For this purpose, a three-level

optimization framework is established, where the AEVHs form the first level of the

problem, while IESP and WEM are second and third level problems, respectively.
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Table 1: Comparative evaluations between this study and previous publications

Ref Uncertainty
Markets Multi-level

solving method

Flexible technologies

WEM LEM TEM EV Thermal demand

[6] SP 3 5 5 WoLF 3 5

[7] RO 3 3 5 Two-step 3 5

[8] - 5 3 5 - 3 5

[9] SP 5 3 5 - 3 5

[10] RO 5 3 5 KKT 3 5

[11] SP 3 3 5 KKT 5 5

[12] IGDT 3 3 5 KKT 5 5

[13] SP 3 3 5 KKT 5 5

[14] SP 3 5 3 KKT 5 3

[15] SP 5 3 3 Stackelberg 5 5

[16] - 5 3 3 - 5 3

[17] SP 5 5 3 - 3 3

[18] - 5 5 5 - 3 3

[19] - 5 3 3 - 5 3

[20] SP 3 5 3 KKT 5 3

This

study
SP-IGDT 4 4 4

Hybrid KKT

& Two-step
4 4

In other words, IESP is a follower to AEVHs, and WEM is a follower to IESP. The

AEVHs operator sends its energy requirements to IESP operator. Subsequently, the

IESP self-schedules the DGs, NGN, ADS and DHS. Afterwards, partakes in WEM

and clears TEM and LEM to announce MCP of retail electrical and thermal en-

ergy. Simultaneously, the WEM operator receives the offers/bids from IESP, and

clears the WEM to announce the MCP of the WEM. The IESP is an intermediary

retailer that links AEVHS to WEM. The EV-related uncertain data, such as vehicles

arrival/departure time and daily travelled miles are handled by stochastic scenar-

ios, while uncertain climatic data such as solar and wind power is dealt with via
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risk-averse IGDT framework. The solving procedure, which is established in the

next sections, ensures the best equilibrium for these various levels. The overall

interactive relationship between these three levels, their corresponding objectives

and decision variables, can be observed in Fig. 1.

Figure 1: The interactive relationship of various levels of the problem

3. Formulation & Algorithm

3.1. Aggregated electric-vehicle-owning households (First level)

In this study, the EVs are clustered into fleets with distinct behavioral patterns via

K-means clustering as presented in [21], and they are assumed to be present at the

residential parking lots (equipped with level II chargers) from arrival to departure

intervals. The objective function of the AEVHs (first level) is defined by Eq. (1),

wherein the first term is the battery degradation cost of the EV fleets, while the

second and the last terms represent the cost of participating in the local electricity

and thermal energy markets. The decision variables of this level include thermal
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energy demand and stochastic charge/discharge of EV fleets. The SOC for each

fleet is computed via Eqs. (2)-(3), while initial and final (at departure) SOC are

declared in Eqs. (4)-(5). Eqs. (6)-(8) are conventional storage equations, and cycle

depth is calculated by Eq. (9). Furthermore, the battery degradation cost is imposed

in Eqs. (10)-(12), which is linearized and proved in [22]. Eventually, the flexible

thermal demand of the households is established in Eq. (13), while Eq. (14) defines

the expected electrical demand of the AEVHs.

minOFAH =
∑
t


∑
s

∑
f

πs.dgf,s,t+∑
i∈AEH

i

λLMt,i P
EH
t,i +∑

ϑ

λTMt,ϑ H
ho
t,ϑ,e

 (1)

SOCf,s,t = SOCf,s,t−1 +
(
ηf.P+f,s,t/EBf

)
−
(
P−f,s,t/EBf.ηf

)
∀f, s, t 6= TAf

(2)

SOCf,s,t = SOC
In
f,s +

(
ηf.P+f,s,t/EBf

)
−
(
P−f,s,t/EBf.ηf

)
∀f, s, t = TAf

(3)

SOCInf,s = max

 SOCf, 1−

(DTf,s × EMf/EBf)


∀f, s

(4)

SOCf,s,t = min
(
SOCendf,s ,SOCdesf

)
∀f, s, t = TDf (5)

SOCf 6 SOCf,s,t 6 SOCf∀f, s, t (6)

P+f,s,t 6 Crf.ucf,s,t,P
−
f,s,t 6 Crf.u

−
f,s,t∀f, s, t (7)

u+
f,s,t + u

−
f,s,t = 1∀f, s, t (8)

σf,s,t = σf,s,t−1 − (P−f,s,t/EBf.ηf)∀f, s, t (9)

ψf,s,t (σf,s,t) = a0.(σf,s,t)
2.03∀f, s, t (10)

MDf,s,t = 2.03a0(BCf/EBf.ηf)σf,s,t
1.03∀f, s, t (11)

dgf,s,t = P
−
f,s,t.MDf,s,t∀f, s, t (12)

T int,ϑ,e = T
in
t−1,ϑ,ee

−1/((R/nho
ϑ,e).Cairϑ,e)

+(Hhot,ϑ,e.R/n
ho
ϑ,e + T

out
t ).(1 − e−1/((R/nho

ϑ,e).Cairϑ,e))

, T in
ϑ,e

6 T int,ϑ,e 6 T
in
ϑ,e∀t,∀ϑ,∀e

(13)
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PEHt,i =
∑
s

πs(P
+
f,s,t − PD

−
f,s,t + P

L
f,s,t)∀s, t, f ∈ Afi (14)

3.2. Integrated energy service provider (second level)

3.2.1. Units’ commitment

The commitment status of units is imposed by Eq. (15), while Eqs. (16)-(18)

restrict CHPs’ thermal/electrical generation within feasible operation region. The

NGUs’ start-up/shutdown cost is declared in Eq. (19), while Eq. (20) defines the

CHPs’ gas consumption at start-up/shutdown, and Eq. (21) is the CHPs’ overall

gas consumption. The ramp rate restrictions are enforced in Eqs. (22)-(23), and

minimum on/off time limits are defined in Eqs. (24)-(30). Eventually, solar/wind

generation bounds are imposed by Eq. (31) [23].

PDGk Ik,t 6 P
DG
k,t 6 PGDk Ik,t∀t,k ∈ {NGU} (15)

PDGk,t =
∑
R=1

αRt P
R,HDGk,t =

∑
R=1

αRtφ
R∀t,k ∈ CHP (16)∑

R=1

αRt = Ik,t, 0 6 αRt 6 1∀t,k ∈ CHP (17)

QCHPk,t = γpP
DG
k,t + γHH

DG
k,t ∀t,k ∈ CHP (18)

SUk,t > C
SU
k yk,t,SDk,t > C

SD
k zk,t∀t,k ∈ NGU (19)

SUCHPk,t > CCHPk yk,t,SDCHPk,t > CCHPk zk,t

∀t,k ∈ CHP
(20)

GCHPk,t = QCHPk,t + SUCHPk,t + SDCHPk,t ∀k ∈ {CHP} ,∀t (21)

PDGk,t − PDGk,t−1 6 (1 − yk,t)R
UP
k + yi,tP

DG
k ∀t,k (22)

PDGk,t−1 − P
DG
k,t 6 (1 − zk,t)R

UP
k + zi,tP

DG
k ∀t,k (23)

TUek = min
{
T , TU0

k

}
, TDek = min

{
T , TD0

k

}
∀k (24)

TUe
k∑
t=1

Ik,t = T
Ue
k ,

TDe
k∑
t=1

Ik,t = 0∀k (25)

t+TUe
k −1∑
t=r

Ik,r >T
U
k yk,t∀k,∀t =

 TUek + 1, · · · ,

T − TUk + 1

 (26)

T∑
t=r

(Ik,r−yk,t) > 0∀k,∀t =
[
T − TUk + 2, · · · , T

]
(27)

t+TD
k −1∑
t=r

(1 − Ik,r) >T
D
k zk,t∀k, ∀t =

 TDek + 1, · · · ,

T − TDk + 1

 (28)
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T∑
t=r

(1 − Ik,r−zk,t) > 0∀k, ∀t =

 T − TDk

+2, · · · , T

 (29)

yk,t − zk,t = Ik,t−1 − Ik,t,yk,t + zk,t 6 1∀t,k (30)

0 6 PWindr,t 6 PWTr,t , 0 6 PPVpv,t 6 P
PV
pv,t∀t,w, v (31)

3.2.2. Active distribution system

Here, the power flow equations are solved by the linearized framework pre-

sented in [13]. The feeders’ power flow is defined in Eq. (32), and Eq. (33) is

the power loss equation. The current value is computed by Eq. (34), and current/

voltage bounds are enforced in Eq. (35). Finally, the nodal power equilibrium is

established in Eq. (36) for the slack bus and in Eq. (37) for other buses. The MCP

of the LEM is obtained from the dual value of Eq. (37), and it is specified by λLMt,i .

Pflowij,t =
(
RDSij /(Z

DS
ij )

2
)

.(VDS_sqr
i,t − VDS_sqr

j,t )∀ij,∀t (32)

PLossij,t = RDSij I
DS_sqr
ij ∀ij,∀t (33)

IDSij,t = (VDSi,t − VDSj,t )/ZDSij ∀ij,∀t (34)

−IDSij 6 IDSij,t 6 I
DS
ij ,VDSi 6 VDSi,t 6 VDSi ∀ij, ∀t (35)

PIESPt +
∑
r∈Ar

i

PWindr,t +
∑
v∈Av

i

PPVv,t +
∑
k∈Ak

i

PDGk,t

+
∑
l∈Al

i

PILl,t =
∑
l∈Al

i

PDSRLl,t +
∑
d∈Ad

i

PDSNRLd,t

+0.5(
∑
j∈DS

PLossij,t +
∑
j∈DS

Pflowij,t )∀i = 1,∀t

(36)

∑
r∈Ar

i

PWindr,t +
∑
v∈Av

i

PPVv,t +
∑
k∈Ak

i

PDGk,t ∀i 6= 1,∀t

+
∑
l∈Al

i

PILl,t =
∑
l∈Al

i

PDSRLl,t + PEHt,i +
∑
ϑ∈Bϑ

i

PEBt,ϑ,q:λ
LM
t,i

+
∑
d∈Ad

i

PDSNRLd,t + 0.5(
∑
j∈DS

PLossij,t +
∑
j∈DS

Pflowij,t )

(37)

3.2.3. Natural gas network

The natural gas wells’ production and nodal pressure of the NGN are restricted

in Eq. (38). Eqs. (39)-(40) describe the Weymouth natural gas flow equation in

non-active and active (with compressor) pipelines. The method presented in [24]

is deployed to address the nonlinearities of Weymouth equations. Eventually, the

natural gas equilibrium is defined by Eq. (42).
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vw 6 vw,t 6 vw,Prn 6 Prn,t 6 Prn∀n,w, t (38)

f2n,m,t = K
f
n,m(Pr2

n,t − Pr
2
m,t)∀(n,m) /∈ z,∀t (39)

f2n,m,t > K
f
n,m(Pr2

n,t − Pr
2
m,t)∀t∀(n,m) ∈ z,∀t (40)

fn,m,t = (finn,m,t − f
out
m,n,t)/2 (41)∑

sp∈Asp
n

vsp,t −
∑
k∈Ak

n

GCHPk,t =
∑
m∈z

(finn,m,t − f
out
m,n,t)

∀n,∀t
(42)

3.2.4. District heating system

In this study, the hot water DHS model is deployed as presented in [25]. The

thermal equilibrium of the nodes is established through the pipelines entering that

node in Eqs. (43)-(44) for the supply/return pipe networks. The temperature at the

beginning of the pipelines is defined by Eq. (45) as equal to the nodal temperature

of the node that pipeline exists. The thermal demands are satisfied via Eq. (46),

and Eq. (47) expresses the temperature at the end of pipelines. The thermal energy

loss along the pipes is established in Eq. (48), while Eqs. (49)-(50) declare the

EB constraints. Eq. (51) denotes the thermal energy dispatched from CHPs and

electrical boilers (EB). Overall thermal energy equilibrium is satisfied by Eq. (52).

Eventually, the temperature bounds of DHS are declared in Eq. (53). The MCP of

TEM is obtained from the dual value of Eq. (46), and it is specified by λTMt,ϑ .∑
l∈s−ϑ

(Tps,out
t,l .mst,l) = Tmst,ϑ

∑
l∈s−ϑ

msl∀t, ϑ (43)∑
l∈s+ϑ

(Tpr,outt,l .mrt,l) = Tmrt,ϑ
∑
l∈s+ϑ

mrl∀t, ϑ (44) Tps,in
t,ϑ = Tmst,l , l ∈ S+ϑ

Tpr,int,ϑ = Tmrt,l , l ∈ S−ϑ
∀t, l (45)

Hhot,ϑ,e = Cpm
de
t,ϑ,e(T

ms
t,ϑ,e − T

mr
t,ϑ,e)∀t, ϑ, e:λTMt,ϑ (46)

Tps,out
t.l = (Tps,in

t,l − Toutt )e−(λlLl/Cpmsl) + Toutt

Tpr,outt,l = (Tpr,int,l − Toutt )e−(λlLl/Cpmsl) + Toutt

∀t, l (47)

Hlosst,l = Cpm
de
t,l (T

in
t,l − T

out
t,l )∀t, l (48)

Hsort,ϑ,q = ηEBP
EB
t,ϑ,qq ∈ {EB} (49)

0 6 PEBt,ϑ,q 6 PEBt,ϑ,q (50)
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Hsort,ϑ,q = Cpm
sr
t,ϑ,q(T

in
t,ϑ,q − Toutt,ϑ,q)∀t, ϑ,q∈{CHP,EB} (51)∑

ϑ

∑
q∈{CHP,EB}

Hsort,ϑ,q −
∑

l∈S+
ϑ ,S−

ϑ

Hlosst,l

−
∑
ϑ

∑
d

Hho
t,ϑ,e

= 0
(52)

TDHSl 6 Tps,out
t.l , Tps,in

t,l 6 TDHSl ,

TDHSϑ 6 Tmst.ϑ , Tmrt,ϑ 6 TDHSϑ ∀t, ∀l
(53)

3.2.5. IESP’s Objective

The IESP’s objective (second level) is established in Eq. (54), which consists

of six terms, namely the cost of participating in WEM, wind turbine (WT) produc-

tion, photovoltaic arrays (PHA) production, natural gas production, interruptible

load (IL) shedding and non-gas-fired unit (NGU) operation. The decision vari-

ables of the IESP consist of DG dispatch power, ADS variables (current, voltage,

active power flow), NGN variables (pressure and pipeline flow), DHS variables

(nodal/pipeline temperature), offers/bids in WEM, MCP of LEM and MCP of TEM.

Since IGDT framework is deployed to deal with uncertainties of renewable energy

sources (RES), the main objective of the second level is redefined accordingly in

Eq. (55), as the radius of uncertainty, while the accompanying constraints are ex-

pressed in Eqs. (56)-(59) [12].

OFIP =
∑
t



λWEMb,t PIESPt +
∑
r

CWTPWTr,t

+
∑
pv

CPVPPVpv,t +
∑
w

Cgasw vw,t

+
∑
u

CILu P
IL
u,t+

∑
k∈NGU

 CDGk PDGk,t +

SUk,t + SDk,t




(54)

max {α} ,α > 0 (55)

u(P̄RESt ,α) =
{
PRESt :

∣∣∣∣PRESt − P̄RESt

P̄RESt

∣∣∣∣ 6 α} (56)

OFIPb =
{
OFIP : minOFIP

}
(57)

OF 6 OFb(1 + σ), 0 6 σ 6 1 (58)

0 6 PRESt 6 (1 − α)P̄RESt ,PRESt = PWTr,t + PPVpv,t (59)
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3.3. Wholesale electricity market (Third level)

The WEMO’s objective (third level) is defined in Eq. (60). The terms of the equa-

tion include the production cost of Gencos and the profit/cost of selling/purchasing

to/from IESP. The decision variable of the WEM are optimal Genco dispatch, power

flow of the transmission lines, nodal voltage angle and MCP of WEM. Eq. (61) sat-

isfies the energy equilibrium constraint of TN, while the capacity and ramp rate

constraints are defined in Eqs. (62)-(66). The transaction with IESP is limited by

Eq. (67). Ultimately, the power flow rate of the feeders and voltage angle limits of

TN are restricted via Eqs. (68)-(69). The MCP of WEM is obtained from the dual

value of the Eq. (61), it specified by λWEMb,t .

min

{∑
t

∑
g

CGg P
G
g,t −

∑
t

∑
g

CIESPt PIESPt

}
(60)

∑
g∈Ag

n

PGg,t − P
IESP
t − PDb,t =

∑
b′∈Tr

Bb,b′(δb,t − δb′,t)

: λWEMb,t ∀b, t
(61)

0 6 PGg,t 6 P
GMax
g,t : µGg,t,µ

G
g,t∀g,∀t (62)

PGg,t − P
G
g,t−1 6 RUg : µ1

g,t∀g, t > 1 (63)

PGg,t − P
G
g,ini 6 RUg : µ2

g,t∀g, t = 1 (64)

PGg,t−1 − P
G
g,t 6 RDg : µ3

g,t∀g, t > 1 (65)

PGg,ini − P
G
g,t 6 RDg : µ4

g,t∀g, t = 1 (66)

PIESPt 6 PIESPt 6 PIESPt : µIESPt ,µIESPt ∀t (67)

−Cb,b′ 6 Bb,b′(δb,t − δb′,t) 6 Cb,b′

: vb,b′,t, vb,b′,t∀b,b ′, t
(68)

−π 6 δb,t 6 π : ξb,t, ξb,t∀b, t (69)

3.4. Proposed algorithm

In the proposed model, the IESP consists of an ADS, an NGN and a DHS. Fur-

thermore, it is obliged to satisfy the energy demands of the customers in different

markets. To this end, IESP incorporates WTs, gas wells, PVAs, NGUs, ILs, EBs and

CHP units. That said, it also participates in WEM to procure/sell electrical energy.

To solve this bi-level problem, IESP submits offers/bids in WEM; then the WEMO

clears the market to announce the MCP. Afterwards, the IESP reschedules itself and
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resubmits offers/bids accordingly. This process is continued until reaching the equi-

librium state for both IESP and WEM. In this study, KKT conditions are deployed

to modify the WEM problem as constraints in IESPs’ problem [13]. In other words,

the second and third levels are merged into a single problem through KKT condi-

tions, and the nonlinear production terms were addressed through the theory of

strong duality. More information on the KKT conditions of the problem and the

theory of strong duality is included in Appendix A and Appendix B. Henceforth,

the equilibrium state of AEVHs and this merged problem is achieved. In this re-

gard, the two-step method is used as it is elaborated in [25]. Accordingly, the IESP

clears these markets (according to ADS and DHS limitations) and declares the ther-

mal/electrical MCP. This process is the so-called first step. At the second step, the

AEVHs’ operator schedules the thermal demand of the households as well as smart

charging of the EVs and submits thermal/electrical demand in LEM and TEM. These

two steps are repeated until the criterion in Eq. (70) is satisfied. The overall algo-

rithm is established as follows:(
OFAH*(Step1) − OFAH*(Step2)

)
/OFAH*(Step1) 6 ε (70)
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Algorithm: Hybrid KKT & two-step method.

Initialization: Get the input parameters of the first,

second and third level problems.

1. Solve the second and third level problems based

on KKT condition and theory of strong duality using

Eqs. (15)-(69).

2. Receive λLMt,i
∗, λTMt,ϑ

∗

3. Step1: Solve the first level problem using Eqs. (1)-

(14) and calculate the optimal value of total cost.

4. Update values of PEHt,i
∗,Hhot,ϑ,e

∗.

5. Step2: Solve the second and third level problems

based on KKT condition and theory of strong duality

using Eqs. (15)-(69).

6. Update values of λLMt,i
∗, λTMt,ϑ

∗

7. Calculate the optimal value of OFAH using Eq. (1).

8. If the stop criterion Eq. (70) is satisfied, terminate

the algorithm, otherwise return to stage 3

.

4. Case studies and results

In this study, AEVHs are modelled through 6000 aggregated households with

3000 EVs that are clustered into 5 fleets by K-means clustering [26]. The data on

the thermal characteristics of the households is taken from [27], and EVs data is

provided in [28] and national household travel survey (NHTS) [29]. The overall

schematic of the systems, connections and locations is depicted in Fig. 2. Moreover,

the structural data of the systems are summarized in Appendix C. The empiri-

cal probability distribution functions of NHTS data for EVs arrival/departure times

are plotted in Fig. 3. The arrival/departure time data distribution of the clustered

EV fleets is illustrated in Fig. 4 and the probability distribution of their daily trav-

elled miles is depicted in Fig. 5. These empirical distributions are utilized to gener-

ate stochastic scenarios for EV fleets. Moreover, the mixed-integer linear problem
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Figure 2: Overall schematic of the systems connections and locations

(MILP) was solved via the GUROBI solver. Eventually, the following case studies

are designed to assess the proposed three-level framework.

• Case Study 1 (CS1): In this case, the thermal flexibility of the households is

ignored (temperature fixed at 25◦C), and EVs are charged uncoordinatedly

as soon as they arrive.

• Case Study 2 (CS2): In this case, the thermal flexibility of the households is

ignored (temperature fixed at 25◦C), and EVs are charged smartly.

• Case Study 3 (CS3): In this case, the households are assumed to be thermally

flexible (temperature interval of 18◦C-25◦C), and EVs are charged smartly.

• Case Study 4 (CS4): In this case, the IGDT approach is applied to RES in CS3.

It should be noted that in the smart charging method, the charge/discharge

of the electric vehicles is a decision variable defined in the optimization process.

Therefore, the electric vehicles charge/discharge schedule is obtained from solving

the proposed formulation. However, when the charging scheduling is not smart

(uncoordinated), the vehicles are charged without any control strategy.
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Figure 3: Arrival/departure time probability dis-

tribution of NHTS data

Figure 4: EV fleets’ arrival/departure time dis-

tribution
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Figure 5: Probability distribution of EV fleets’

daily travelled miles
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Figure 6: Convergence of the AEVHs’ cost in two-

step method.

The iterative convergence of the two-step method for different cases can be

seen in Fig. 6. As can be seen, the AEVHs’ cost is converged after three iterations

in all cases. The expected SOC of EV fleets in different cases is demonstrated in

Fig. 7. In CS1, the EV fleets are charged as soon as they arrive at the residential

site. Therefore, EVs’ SOC curve shows sharp slopes at hours 16-19. The reason is

that according to Fig. 4, EV fleets’ arrival time distribution is heavily concentrated

around these times. However, hours 16-19 also coincide with the peak demand of

IESP and WEM. In this regard, CS2 enables the AEVHs’ operator to shift demand

to cheaper off-peak periods, which can be observed from the SOC of fleets in CS2,

as EVs are mainly charged at hours 6-9, which is the departure time for most EVs.

In CS3, this shift in demand is even more perceptible, as the thermal flexibility of

22
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Figure 7: The SOC of EV fleets: a) CS1 b) CS2 c) CS3

AERHs improves the electrical capacity of the cheaper CHP units. The reason is that

the electrical and thermal outputs of CHP units are inextricably interdependent.

The hourly dispatch scheduling of the IESP in three cases is illustrated by Fig. 8.

Accordingly, in CS1, where there is no flexibility, the power imported from WEM is

0.45% less regarding CS2 and 2.79% less regarding CS3. The reason is that in CS2

and CS3 more energy is imported during cheaper off-peak hours from WEM. As can

be observed, CS2 and CS3 illustrate a sharp rise in the imported power from WEM

during hours 1-5, which is the most inexpensive time interval for WEM price. Fur-

thermore, the production of the expensive NGUs is declined by 25.40% and 32.25%

in CS2 and CS3 compared to CS1. That said, the production of efficient CHP units

is increased by 8.62% in CS3 compared to CS1. Nevertheless, 0.06 MWh of the

load is shed (with the cost of 500 $/MWh) in CS1 to satisfy security bounds. Fig. 8

shows that there is a large demand profile for EVs at hours 15-18 in CS1, which

is due to the uncontrolled charging strategy of the EVs in this case. Nonetheless,

in CS2, this demand is spread over time periods 3-5 since the charging schedule is

intelligent, and EVs are even discharged at time 21 to increase the profit.
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Figure 8: The power dispatch of units in ADS: a) CS1 b) CS2 c) CS3

These results also reflect on the MCP of the local electricity market. As it is

illustrated in Fig. 9, CS1 imposes the highest MCP cost. Overall, the MCP of the local

electricity market in CS2 is dropped by 2.42%, and in CS3 by 11.87% in comparison

to CS1. As can be seen, CS2 and CS3 have a slightly higher MCP at off-peak hours

since they have shifted demand to these intervals.

Fig. 10 and Fig. 11 demonstrate the power dispatching of Genco1-3. In CS1,

when EVs are charged uncoordinatedly, the IESP is forced to import energy at more

expensive peak hours. Therefore, in CS2, the output power of the Genco1 (cheapest

unit) has increased by 0.081%, and by 0.51% in CS3. Genco1 shows a slight rise

in production during hours 1-6 for CS2 and CS3 since the smart charging improves

the output of this cheap unit. On the other hand, Genco2 (the most expensive unit)

shows a decline of 7.77% in CS2 and 26.65% in CS3 during peak hours of 16-19.

The impact of this reduction can also be observed in the MCP of WEM in Fig. 12. For

example, in CS3 it is 2.10% less than that of the CS1. Furthermore, the thermal en-

ergy dispatch of IESP and the average temperature of the AEVHs are demonstrated

by Fig. 13. Overall, in CS3, the thermal energy dispatch has decreased by 11.73%.
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Figure 9: The MCP of the local electricity market (IEEE-33 bus)

However, the dispatch of EB in CS3 has increased dramatically, as increased thermal

flexibility enables the IESP to convert cheaper energy provided by RES to thermal

energy. In this regard, the EB energy shows a significant rise during hours 8-10,

where the electrical demand is low and RES production is not used. For the same

reason, the temperature has risen at hours 8-10 to take maximum advantage of

the available RES production. As can be seen from AEVHs’ temperature curve in

CS3, the temperature of the households is increased up to 24 C during off-peak

periods to store energy in households, which is released back during peak hours,

thereby enhancing thermal flexibility. The MCP of the TEM is illustrated in Fig. 12.

Compared to CS1, the MCP of the TEM is 5.82% less in CS3, which illustrates how

AEVHs can function as a thermal energy price-maker. Although the MCP of TEM

is 16.01% more in CS2, this increment is compensated by a greater reduction in

MCP of the LEM (in Fig. 9). The reason for this reduction is that the thermal and

electrical outputs of the CHP units connect these two markets.

These findings can also be construed from cost values in different cases, as they

are summarized in Table 2. As it was mentioned, in CS3 and CS2 higher quantity of

electricity is procured at cheaper hours of WEM since EVs and thermal flexibilities

shift the demand to cheaper periods. Moreover, the expensive NGUs show a great

reduction in CS3 and CS2 since cheaper units can substitute their production. The
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Figure 12: The MCP of WEM and TEM.

most important implication is how the three-level approach can benefit both AEVHs

and IESP operators. The reason is that when EVs are charged smartly, there is a

significant operational cost reduction for both operators. Despite the higher battery

degradation in CS3, it is compensated by a greater reduction in overall AEVHs’ cost.

In order to provide a deeper insight about the cost values of Table 2, the hourly

cost value is comparatively illustrated with total generation of each case study in

Fig. 14, while Fig. 15 shows the hourly total generation and MCP in each case. As

can be observed, CS1 results in the highest operational cost value since in this case

the EVFs are charged without a smart strategy, and it leads to highest total Genco

production since peak demand is imported from the WEM. Thanks to the smart

charging strategy of CS2, the demand is shifted from peak hours (15-19) to valley

hour (1-7), while this shift is even more apparent in CS3 as the thermal flexibilities

open the electrical capacity of the CHP units. Overall, CS2 provides 9.19% lower

cost compared to CS1, and CS3 provides 9.42% lower cost compared CS1. Based

on the MCP outcomes of Fig. 15, it is noted that smart charging strategy and thermal
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Figure 13: The thermal energy dispatch of the units in ADS and AEVHs’ temperature: a) CS1 b) CS2 c)

CS3

load flexibilities in CS2 and CS3 can lead to 2.10 % lower WEM price in regard to

CS1.
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Figure 14: The MCP of the local electricity market (IEEE-33 bus)

The sensitivity analysis on the risk-aversion parameter of IGDT in CS4 is sum-

marized in Table 3. According to the results, a robust risk-averse strategy comes

with a higher cost for IESP since operator self-schedules for the lower end of the

27

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



0

5

10

15

20

25

30

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
C

P
 (

$
/M

W
h

)

G
en

er
at

io
n
 (

M
W

)

Time (h)

CS1-Genco CS2-Genco CS3-Genco CS1-WEM CS2-WEM CS3-WEM

Figure 15: The MCP of the local electricity market (IEEE-33 bus)

predicted renewable energy spectrum. Therefore, the RES account for a lower share

of the power, which is compensated by WEM and expensive NGU. In particular, the

risk-averse IESP strategy benefits AEVHs operator. The reason is that risk-averse

strategy increases the MCP of LEM at peak hours and EVs gain greater benefit by

discharging at these periods.

Table 2: Operational costs through different cases

CS1 CS2 CS3

NGUs ($) 3883.277 2886.737 2676.345

Gas producers ($) 6454.259 6448.75 6506.975

RES ($) 205.2701 205.2701 205.2701

Interruptible load ($) 31.27779 0 0

Purchased from WEM ($) 9266.553 8475.055 8582.386

Total IESP cost ($) 19840.64 18015.81 17970.98

AEVHs’ cost ($) 5015.187 3796.107 1897.31

EV degradation cost ($) 0 642.64 864.24

The voltage level in all ADS buses at hour 21 is illustrated in Fig. 16. As can

be seen, the uncoordinated charging scheduling in CS1 leads to the worst voltage

profile, which is also the reason for high power losses. In this regard, smart EV

scheduling in CS2 has 3.63% higher overall voltage. Moreover, including thermal

flexibility in CS3 improves voltage level by 0.39% compared to CS2 and by 4.04%

compared to CS1. The improvement in the voltage profile is particularly substan-

28

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 3: Sensitivity analysis on risk aversion parameter of IGDT framework in CS4.

σ = 0 σ = 0.002 σ = 0.03 σ = 0.05∑
t

PIESPt 209.39 220.36 228.15 235.65∑
t

∑
k∈NGU

PDGk,t 28.03 28.38 31.84 35.81∑
t

PRESt 136.84 125.90 114.97 103.69∑
q∈{CHP,EB}

Hsort,ϑ,q 723.24 722.74 720.18 717.97∑
j∈DS

PLossij,t 11.86 12.23 12.55 12.74∑
t

∑
k∈CHP

PDGk,t 193.49 193.49 194.06 194.39

OFIP ($) 17970.98 18002.75 18486.17 18948.15

OFAH($) 1897.31 1761.19 1499.67 1125.97∑
s

∑
f

1/πsdgf,s,t ($) 564.24 623.03 689.09 730.68

tial at the end nodes of the ADS. The reason is that these nodes are far from the

substation and higher voltage drop is required to transmit the electrical energy to

these nodes. However, the smart charging strategy improves the voltage profile by

shifting the demand to off-peak time periods.
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Figure 16: The voltage magnitude in ADS (IEEE-33 bus)

5. Conclusion

This study proposed a novel three-level optimization framework for AEVHs to

participate in local electricity and thermal energy markets as a price-maker. In the

proposed model, IESP (second level) was modelled as an intermediary entity be-

tween AEVHs (fist level) and WEM (third level). The impact of thermal flexibilities
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of households and smart charging capability of EV fleets on different markets was

evaluated through different cases. The EV parameters such as their daily travelled

miles and arrival/departure times were established through stochastic scenarios,

while output energy of RES in the middle level was handled by the IGDT approach.

The study illustrates that EVs can have a great influence on integrated energy net-

works, and their charging strategy can even influence the thermal energy market

through CHP units. Overall conclusions were drawn as follows:

1. The three-level optimization framework shows that EVs can not only be price-

influencers at local electricity and thermal energy markets, they can also ma-

nipulate price at the wholesale market level, as AEVHs can diminish the MCP

of WEM, LEM and TEM by 18.85%, 2.1% and 5.82%, respectively.

2. AEVHs can utilize their thermal flexibilities to influence local electricity and

thermal energy markets through CHP units.

3. Smart charging of EV fleets and thermal flexibility of the AEVH reduce the

overall costs for both IESP and AEVH while improving overall voltage profile.

4. Using a three-level optimization framework, ensures the profits of AEVHs,

IESP and WEM operators by reaching the market equilibrium for all players.

5. When the IGDT framework was integrated in IESP’s problem, the risk-aversion

increased the costs for IESP. However, the cost of AEVH was reduced. The rea-

son is that the MCP of LEM was higher in this case, and it was more profitable

for EVs to discharge at peak hours.

Ultimately, as a prospect for future studies, integrating traffic network models, and

routing of electric vehicles offers a significant potential for novel research grounds.

Appendix A. Karush–Kuhn–Tucker (KKT) conditions

There are numerous methods to solve bi-level optimization problems. However,

when the lower level is presented as a convex problem, KKT conditions are effective

and practical in converting the bi-level problem into a single optimization problem
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with mathematical equilibrium constraints. In this study, the wholesale electric-

ity market is the third level problem and IESP forms the second level. These two

optimization problems of the bi-level framework are merged using the following

quadruple KKT conditions [30].

Appendix A.1. Stationary conditions

In order to develop the stationary constraints, the lagrangian function is es-

tablished by Eq. (a.1), where x represents the vector of decision variables at the

third level of the problem. In this context, f(x), h(x) and g(x) define the objective

function, equality constraints and inequality constraints, respectively. The station-

ary constraints in Eqs. (a.1)-( refEq.a4) state that the derivatives of the lagrangian

function over each variable must be equal to zero.

LEN = f(x) + λTh(x) + µTg(x) (a.1)
∂LEN

∂PG
g,t

= CGg − λWEMb,t + µGg,t − µ
G
g,t + µ

1
g,t|t>1 − µ

1
g,t+1|t>1

+µ2
g,t|t=1 − µ

3
g,t|t>1 + µ

3
g,t+1|t>1 + µ

4
g,t|t=1 = 0,∀g ∈ Agn,∀b,∀t

(a.2)

∂LEN

∂PIESPt

= −CIESPt + λWEMb,t + µIESPt − µIESPt = 0,∀b, ∀t (a.3)

∂LEN

∂δb,t
=
∑

b′∈θb

Bb,b′(λWEMb,t − λWEMb′,t ) +
∑

b′∈θb

Bb,b′(vb,b′,t − vb′,b,t)

+
∑

b′∈θb

Bb,b′(vb′,b,t − vb,b′,t) + ξb,t − ξb,t + ξ
1
b=1,t = 0,∀b,∀t

(a.4)

Appendix A.2. Dual, primal, and complementary conditions

The dual, primal and complementary constraints of the WEM are defined by

Eqs. (a.5)-(a.15).

0 6 PGg,t⊥µGg,t > 0,∀g,∀t (a.5)

0 6 (PGg,t − P
G
g,t)⊥µGg,t > 0,∀g, ∀t (a.6)

0 6 (PIESPt − PIESPt )⊥µIESPt > 0 (a.7)

0 6 (P̄int − PIESPt )⊥µIESPt > 0,∀t (a.8)

0 6 (Cb,b′ + Bb,b′(δb,t − δb′,t))⊥vb,b′,t > 0,∀b,∀b ′,∀t (a.9)

0 6 (Cb,b′ − Bb,b′(δb,t − δb′,t))⊥vb,b′,t > 0,∀b,∀b ′,∀t (a.10)

0 6 (π− δb,t)⊥ξb,t > 0,∀b,∀t (a.12)

0 6 (π+ δb,t)⊥ξb,t > 0,∀b,∀t (a.12)

31

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



The dual variable concerning the equality terms must be free in sign, which is sat-

isfied by Eq. (a.13)

λWEMb,t ∀b, tξlb=ref,t∀b, t (a.13)

As can be observed, Eqs. (a.5)-(a.12) are nonlinear, which can be handled by big-M

method and binary auxiliary variables [31], as follows:

0 6 gx⊥µ > 0→ gx > 0,µ > 0 (a.14)

gx 6M1u,µ 6M2(1 − u) (a.15)

Appendix B. The theory of strong duality

The theory of strong duality states that in the optimal solution point of the con-

vex optimization problem, the primal and dual optimization functions have equal

values [32]. In this study, this basic concept is deployed to develop a linear state-

ment for the nonlinear term λWEMb,t PIESPt in Eq. (1). In this approach, the dual and

primal objectives of the WEM are equated by Eq. (b.1).

Max
∑
t



−
∑
g,b
PGg,tµ

G
g,t + P

IESP
t µIESPt − PIESPt µIESPt

+
∑
b

PDb,tλ
WEM
b,t −

∑
b,b′∈Tr

vb,b′,tCb,b′,t

−
∑

b,b′∈Tr
vb,b′,tCb,b′,t−

∑
b

π(ξb,t + ξb,t)

−
∑
g

RUgµ
1
g,t|t>1 −

∑
g

(RUg + P
G
g,ini)µ

2
g,t|t=1

−
∑
g

RDgµ
3
g,t|t>1 −

∑
g

(RDg − P
G
g,ini)µ

4
g,t|t=1


=Min

∑
g

∑
t

CGg P
G
g,t −

∑
t

CIESPt PIESPt

(b.1)

Based on Eqs. (a.7)-(a.8), following conclusions can be reached.

0 6 (PIESPt − PIESPt )⊥µIESPt > 0→ PIESPt µIESPt = PIESPt µIESPt (b.2)

0 6 (PIESPt − PIESPt )⊥µIESPt > 0→ PIESPt µIESPt = PIESPt µIESPt (b.3)

At this stage, Eq. (a.3) is multiplied by PIESPt to obtain a linear equivalent for

λWEMb,t PIESPt as follows:

−PIESPt CIESPt + PIESPt λWEMb,t + PIESPt µWEMt − PIESPt µIESPt = 0 (b.4)

PIESPt CIESPt = PIESPt λWEMb,t + PIESPt µWEMt − PIESPt µIESPt = 0 (b.5)
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Now the term λWEMb,t PIESPt can be replaced by X1 as folows:∑
t

CIESPt PIESPt =
∑
g

∑
t

CGg P
G
g,t−

∑
t



−
∑
g,b
PGg,tµ

G
g,t + P

IESP
t µIESPt − PIESPt µIESPt

+
∑
b

PDb,tλ
WEM
b,t −

∑
b,b′∈Tr

vb,b′,tCb,b′,t−∑
b,b′∈Tr

vb,b′,tCb,b′,t−
∑
b

π(ξb,t + ξb,t)−∑
g

RUgµ
1
g,t|t>1 −

∑
g

(RUg + P
G
g,ini)µ

2
g,t|t=1

−
∑
g

RDgµ
3
g,t|t>1 −

∑
g

(RDg − P
G
g,ini)µ

4
g,t|t=1



(b.6)

X1 =
∑
t

CIESPt PIESPt =
∑
g

∑
t

CGg P
G
g,t−

∑
t



−
∑

b,b′∈Tr
vb,b′,tCb,b′,t −

∑
b,b′∈Tr

vb,b′,tCb,b′,t

−
∑
b

π(ξb,t + ξb,t) −
∑
g

RUgµ
1
g,t|t>1−∑

g

(RUg + P
G
g,ini)µ

2
g,t|t=1 −

∑
g

RDgµ
3
g,t|t>1

−
∑
g

(RDg − P
G
g,ini)µ

4
g,t|t=1 −

∑
g,b
PGg,tµ

G
g,t

+
∑
b

PDb,tλ
WEM
b,t



(b.7)

Appendix C. Structural data of the utilized systems

In this study, the IESP consists of an IEEE-33 bus ADS, a 20-node NGN, and an

8-node DHS that is supplied by 3 CHPs, 2 NGUs, 3 PVAs and 3 WTs. The data on

these networks can be observed in [11, 33, 34]. Furthermore, the WEM is made

up of a standard 6-node TN and its structural data is available in[11]. Overall, the

summery of the main parameters are included in Table C.4 to Table C.7.
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(c) 

Figure 7: The SOC of EV fleets: a) CS1 b) CS2 c) CS3 
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(a) (b) 

 
(c) 

Figure 8: The power dispatch of units in ADS: a) CS1 b) CS2 c) CS3 
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(c) 

Figure 8: The power dispatch of units in ADS: a) CS1 b) CS2 c) CS3 
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Figure 10: Power generation of Genco1 Figure 11: Power generation of Genco2-3 

 
Figure 12: The MCP of WEM and TEM 
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(c) 

Figure 8: The power dispatch of units in ADS: a) CS1 b) CS2 c) CS3 
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(a) (b) 

 
(c) 

Figure 13: The thermal energy dispatch of the units in ADS and AEVHs’ temperature: a) CS1 b) CS2 c) 

CS3 
 

 
Figure 14: The MCP of the local electricity market (IEEE-33 bus) 
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Figure 15: The MCP of the local electricity market (IEEE-33 bus) 

 

 

 
Figure 16: The voltage magnitude in ADS (IEEE-33 bus) 
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