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Optimal coalition formation and maximum profit
allocation for distributed energy resources in smart grids

based on cooperative game theory

Abstract

Over the past decades, significant revolutions have occurred on electricity market

to reduce the electricity cost and increase profits. In particular, the novel structures

facilitate the electricity manufacturers to participate in the market and earn more

profit by cooperate with other producers. This paper presents a three-level game-

play-based intelligent structure to evaluate individual and collaborative strategies

of electricity manufacturers, considering network and physical constraints. At the

Level I, the particle swarm optimization (PSO) algorithm is implemented to deter-

mine the optimum power of distributed energy resources (DERs) in the power grid,

to maximize the profits. Further, the fuzzy logic algorithm is applied to model the

intermittent nature of the renewable sources and implement load demand in the

power grid. At the Level II, DERs are classified into two different fuzzy logic groups

to secure the fairness between every participant. Finally, at the Level III, the DERs in

each group are combined each other by cooperative game theory-based algorithms

to increase the coalition profits. Thereafter, Shapley, Nucleolus, and merge/split

methods are applied to allocate a fair profit allocation by coalition formation. Ul-

timately, the results verify the proposed model influence electric players to find

effective collaborative strategies under different conditions and environments.

Keywords: smart grid, electricity energy market, coalition formation and

competition, cooperative game theory, Merge and Split, Nucleolus, profit

allocation, Shapley value.
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Nomenclature

Acronyms

CES Community-level Energy System

CVaR Conditional Value at Risk

DER Distributed Energy Resource

DR Demand Response

ECs Energy Communities

ESS Energy Storage System

H-MGs Home Microgrids

LMP Local Marginal Price

MCP Market-clearing Price

MILP Mixed-integer Linear Programming

OCS Optimal Coalition Structure

PSO Particle Swarm Optimization

PV Photovoltaic

TE Transactive Energy

WT Wind turbine
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Indices

i Index for DER

Parameters

vw Predicted the speed of the wind

v
′

w Actual the speed of the wind

PL Demand for the active power of the load

Tc Total fuel cost of the thermal units

Fi i− th thermal unit fuel cost

ai,bi, ci,dei, fi Cost function coefficients

Pgi True output power of the thermal unit i

Ng Number of thermal units

µc Membership function the total fuel cost

µl Membership function of the total load

TCmin Lowest total cost of the fuel

TC Total cost of units

TL Total loses of the real power of the network

NL Number of transmission lines in the system

PLi Predicted active power demand

GLi Predicted reactive power demand

PGi Active power output injected into the bus i,

QGi Reactive power output injected into the bus i,

V Voltage of the bus
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σ Angle of the bus

Yij, θij Admittance matrix elements of the bus

Pmax
gi /Pmin

gi Maximum/Minimum active output power

Qmax
gi /Qmin

gi Maximum/Minimum output reactive power

Vmax
i /Vmin

i Upper/Lower limits of the voltage on the bus

Nbus Number of buses

Sli Reactive power of the line

Smax
li Maximum reactive power of the line i− th

V(i) Profit of each DERi

ρi Sales price to the generator consumer i

Pi Effective power of each generator

ωi Periodic charge rate

f(i) Generator cost function in DERi

λ Lagrange coefficient

PR total load (MW)

Pi Effective power of the generator i after the co-operation (MW/h)

m Number of coalitions

xi Benefit of player “i” in independent condition
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1. Introduction

1.1. Motivation and Contributions

At present context, numerous research are conducted on distributed energy re-

sources (DERs) by cooperate with other DERs in the network and also with DGs

in neighboring networks, to enhance the profits and form a coalition. Further, the

profit allocation from a coalition between DERs is an essential measure to observe

the improved performance of smart grids. In this study, a bi-level methodology is

proposed to maximize the profit in the competitive market and allocate profit from

a coalition formation between DERs. Moreover, the different distribution methods

such as, Shapley, Nucleolus, and Merge/ Split, are compared with each other in

profit allocation analysis. Further,the disconnection of DERs due to the pricing de-

cisions allows to collaborate with aggregated facilities, to achieve higher profits by

the excess production and avoid penalties by the production shortages. This concept

could apply to all energy suppliers and producers to form a coalition in economic

optimizations. The study further investigates that the grids could increase the profit

by cooperating with each other instead of individual operation. Hence, the coop-

erative coalition formation game among the grids is presented at the Level III in

the study. Furthermore, different mechanisms for allocating profits in the coali-

tion are observed, and the results confirm that the profit in cooperative operation

is higher than the profit in the individual performances in each grid.The consumer

feedbacks is also considered in the proposed work to improve the cooperative game

performance, when networking with different power suppliers and the consumers.

The feasibility of the proposed structure is confirmed by including numerous buy-

ers and manufacturers. This structure illustrates that the cooperation between the

producers could significantly increase the profits of the players, and the changes on

the coalition between the members would result notable changes in the profits. The

groups which based on the game theory are assessed that the distribution of profits

among the group members is strongly depending on the way of grouping. More-

over, the efficiency and sustainability of various cooperation schemes are analyzed

in this paper. The main contributions of the proposed work could be highlighted as

5



follows:

• Presents a structure which links between cooperative game theory and op-

timal output of production resources (a combination of optimization theory

and the game theory), while delivering the optimal power of production re-

sources and the profit for participating in cooperation with other resources.

• Capable of easily extend to different systems with various characteristic func-

tions. The results show that the large coalition is optimal when the size of

the coalition is not restricted.

• Observes the effect of classifying the players in the coalition. Players in the

group with a steady profit would form a coalition with each other, while play-

ers with higher productivity would prefer to form a coalition with larger play-

ers. The results have confirmed the efficiency and capability of the proposed

structure on the system.

• Influence electric power players to find attractive cooperation strategies while

ensuring sustainable profits under changing conditions and environments.

1.2. Literature review

The private electric power market has been changed from conventional single

owner to free market, where the sole owner is responsible from electricity market

to customer needs and the free market has many participants such as providers, fa-

cilitators and users with individual responsibilities. In fact, the main components of

this novel market structure are sources of production, distribution, wholesalers, and

retailers, where the number of players are continuously rising, and these players

are free to enter or exit the market according to the situation and the economic

opportunities.

In many countries, after the free market has been introduced ,the technologi-

cal progress is increased notably due to the competitive environment. Further, the

participation of the main parts of the structure in this market has generally led the

market to reduce costs and increase higher reliability, which ultimately provides

noticeable benefits to the players [1]. Moreover, the prime goal is to develop an op-

timal market structure with a strong competition between all players, in which the
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price decisioning and electrical power exchanging could based on market power.

In this structure, all players could bid on the offer and must accept the market-

clearing price (MCP) as a market decision. In fact, free market laws are based on

existing technical problems such as, system failures, transmission security, and eco-

nomic decisions including limiting blocking market power to resist unreasonably

higher bidding. Therefore, power sellers and buyers are capable of re-evaluating

their pricing strategies and economic methods according to environmental condi-

tions. In addition, the modernization of the electrical energy price has transformed

the energy sales from a monopoly market to a competitive market. Therefore, the

technical and physical constraints in the network could significantly impact on eco-

nomic decisions. Moreover, in a non-competitive economic system, power vendors

could work together in a network to influence the market by changing the value of

the bid. This reduces the amount of MCP and thereby decreases the local marginal

price (LMP).

In this paper, pricing and collaboration strategies of power vendors in a free

market are studied by a heuristic approach called cooperative game theory, and

particle swarm optimization (PSO) in an agent-based framework. Despite the con-

ventional economic analysis based on robust and restricted assumptions, the agent-

based method provides a flexible framework for simulating and validating the de-

cision-making process of different participants in a free electrical market. Further,

each agent represents an independent participant with independent pricing strate-

gies, and could respond to market events with learning from current and previous

experience. A non-convex coalition game was proposed for energy communities

(ECs) in [2], where the Shapley values do not provide a stabilizing value-sharing

mechanism for a grand coalition. Further, K-means algorithm has been applied for

classifying the prosumers’ profiles to remove several redundant constraints. This re-

search has proved that although the Shapley value could be a fair method, it could

lead to a stable coalition if the intended game is convex.

Nucleolus method is preferred by many researchers due to the stabilizing capa-

bility [3]. In this regard, a coalition game theory-based energy management prob-

lem is presented for local energy communities. The literature has demonstrated
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that although the objective function is convex, a nucleolus-based solution provides

a stable and fair payoff distribution scheme to all players [3]. However, profit-

sharing methods such as Shapley value and Nucleolus are associated with several

computational complexities. Therefore,these methods are inappropriate for dis-

tributed frameworks due to the computation of the profitability of all cooperative

coalitions, which increases communication and processing time [4]. Hence, investi-

gation on cooperative game theory strategy is necessary to create a grand coalition

and achieve a maximum profit.

Accordingly, using a cooperative game to solve a profit-sharing scheme assures

that all competitors are financially rewarded and discourages members from stray-

ing from the expected collaboration [5]. This type of game allows the participants

the freedom of selecting their partners and reduces distribution losses while im-

proving the generation bidding prices. In literature [6], a cooperative Stackelberg

game has developed, where the centralized power system serves as the leader and

decides the price during the peak demand to convince prosumers not to seek energy.

In that model, an algorithm has proposed for the centralized power station and the

prosumers to satisfy the equilibrium. In study [7], a cooperative trading framework

was presented for a community-level energy system (CES) including of an energy

hub and photovoltaic (PV) prosumers with an automatic demand response (DR).

This approach is based on cooperative game theory and considers the stochastic

characteristics of PV prosumers with the conditional value at risk (CVaR). Further-

more, the optimization problem has converted into mixed-integer linear program-

ming (MILP) model by adding auxiliary variables. It is also demonstrated that the

cooperative game theory model could contribute to local utilization of PV energy,

increase the leader’s profit, and decrease the costs of prosumers compared to the

non-cooperative game theory models.

Another type of cooperative game is the merge and split method. In fact, the

merging process assists small microgrid coalitions to form larger coalitions. This

is obvious when the greater utility of some microgrids could be obtained without

sacrificing any microgrids. Therefore, the splitting process divides large coalitions

into small coalitions, if no microgrids lose utility because of the splitting process
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and some microgrids reach higher individual utility [8]. This technique has a lower

complexity compared to the non-cooperative model, especially for a higher number

of players in a coalition. Besides that, this cooperative game strategy is suitable

for both convex and non-convex problem, which exists in Shapely value [8]. Fur-

ther, a smart transactive energy (TE) framework is presented in [9], where home

microgrids (H-MGs) collaborate with each other in a multiple H-MG systems by

forming coalitions to gain competitiveness in the market. Profit allocation due to

the coalition between H-MGs is an important issue to ensure the optimal use of in-

stalled resources in the multiple H-MG systems. In addition, considering demand

fluctuations, energy production based on renewable resources in the multiple H-

MG could be accomplished by demand-side management strategies to achieve a

flatter demand curve. In this regard, demand shifting is tapped through shifting

certain amounts of energy demand from one time period to other time period with

lower expected demand, to match prices and to ensure that the existing generation

is economically sufficient. In [10], an agent-based model for market realization in

the real world has been investigated. In fact, an agent-based model considering a

vendor who needs to evaluates a set of contractual conditions is presented in [11].

A market-clearing plan was prepared in [12] for fair distribution of the demand

response benefits with different market participants, in which the participants were

modeled as smart agents. Literature [13], observed that adaptive Q-learning could

be successfully applied to agent-based electricity market modeling. In [14], a multi-

processor simulator was proposed for wholesale markets to simulate trading agents

in power spot markets. An alternative co-evolutionary method was proposed in

[15] with improved strategies of the agents. The implicit collusion occurs when

limited information is available from contributors. algorithms based on compar-

ative players were applied in [16], to define the equilibrium point in a complex

two-way bidding market in a discriminatory pricing market. Equilibrium models of

the feeding function in an oligopolistic power market were analyzed considering

both piecewise linear feeding functions in [17], and the results represent a robust

convergence towards the equilibrium point.

In the competitive market, both the production factor and the consumption fac-
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tor continuously adapt their strategies according to the objective functions. Further,

an agent-based model could be used to simulate a bilateral auction market. More-

over, optimal pricing strategies for regenerators and consumers in a competitive

market have used Monte Carlo sampling to assess rivals’ behavior in [18]. The

study, [19] has focused on minimizing the LMP of buyers by using various evolu-

tionary algorithms and adding a game-based decision based on game theory. Fur-

thermore, the alliance strategy was studied in [20] and proved that buyers could

reduce the costs by the number of members. In [21], different game scenarios are

simulated individually or in collaboration and the results indicate that there is a

good cooperation between the members.

The game theory offers several methods during the study of the interference

of the interests in different agents at the competitive market. In [22], a compre-

hensive analysis is proposed between different game theory models. Particularly,

the competitive game theory provides a tool for solving conflicts resulting from in-

terest interference of different players such as allocating transmission costs [23].

The solution mechanisms of this approach are based on fairness, efficiency, and

sustainability in the distribution of benefits between agents. In addition, extensive

efforts were carried out to formulate a coalition between members. The method

studied in the research is based on the division of agents within the coalitions to

maximize the total benefits. In [24], a dynamic programming (DP) with the ability

to consider n complexity has been introduced (n is the number of agents). Further,

the complexity and implementation time is increased with the growing number of

agents. More recently, in [25], the problem of optimal coalition structure (OCS) has

been formulated as a hybrid integer programming. Although the use of inappropri-

ate algorithms is not a guarantee of locating the optimal local point, they provide

fast and convenient solutions compared to other algorithms. The authors proposed

a genetic algorithm for the formation of an optimal coalition in [26], and the re-

sults suggest that these algorithms are outstripping the deterministic algorithms.

In addition, both coalition structures and the distribution of profits in competitive

environments are presented in [27] and [28], where an optimal point could be ob-

tained if the kernel stability criterion is satisfied [28]. Most of the recent studies
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[29, 30] have been modeled in a dynamic environment where uncertainties, for

example, the amount of coalitions are not constant [31].

Many research have been conducted on scheduling of the microgrid systems

which propose a dynamic transactive energy scheme. In these works, the distribu-

tion system operator at the upper level optimizes the profit and it is independence

of the system. Further, the carbon mechanism of transactive energy in the islanded

microgrid systems is investigated in[32].

Computational intelligence approaches play an essential role in the energy schedul-

ing of microgrid systems because of the effective management, faster performance,

and higher accuracy. The authors of [33] apply the particle swarm optimization al-

gorithm for coordinated distribution systems with multiple microgrids. In this work,

the probabilistic behavior of renewable generation is ignored although the research

investigates the impacts of demand response programs. Further, an adaptive parti-

cle swarm optimization algorithm is developed in [34] to coordinate vehicle-to-grid

in microgrid systems. However, the cooperation among microgrids for profit maxi-

mization is not studied in this work. The literature [35] presents a multi-objective

optimization framework by the non-dominated genetic algorithm-II to optimize the

power losses, efficiency, voltage deviation, and reliability issues in the microgrid

systems. However, the roles of demand response programs and non-renewable re-

sources are not investigated.

A chaos sparrow search algorithm is presented in [36] to minimize the opera-

tion costs of microgrids considering different demand response programs and en-

ergy storage systems. Nevertheless, the coalition formation among microgrids and

related uncertainties are not studied. The disadvantages of computational intelli-

gence approaches such as the particle swarm algorithm are easy to fall into local

optimum, and have a low convergence in the iterative process. Therefore, present-

ing an analytic approach is essential to ensure the optimal solution. A coalitional

game is proposed in [37] to enable microgrids to form coalitions considering trans-

mission fee, where the Shapley value is utilized to allocate the overall gain of coali-

tion among microgrids.

The authors of [38] suggested optimal energy management sharing systems that
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the cooperator microgrids can share the surplus power for cost minimization. Al-

though this model allows the microgrids to self-adapt to environmental changes,

the uncertainties of demands and renewable generation are not considered. In lit-

erature [39], the uncertainties in the microgrids system is managed by the scenario

generation and scenario-reduction approaches to determine the probability behav-

ior of renewable generation [39].

In Table 1, a comprehensive comparison is presented between state-of-the-art

approaches and the present study. In this table, the main components such as type

of coalition, type of optimization, energy resources and presence of energy storage

system (ESS) cooperative and non-cooperative game, and the number of DG re-

sources applied in the grand coalition are compared. Furthermore, the number of

DGs in forming a coalition is not restricted in the proposed approach. The suggested

study achieves following advantages:

1. The Number of DGs to form a coalition is not limited. ( the existing studies

have not considered more than five DGs and have failed to form a coalition,

while this paper simulated more than 5 DGs, and defined that the increasing

the players in the grad coalitions is not restricted).

2. The profits of the grand coalition would be increased with the growing num-

ber of DGs. Hence, the profits of each of the DGs that participated in the grand

coalition is also increased.

In a competitive market, the buyers are not price-takers since the electrical en-

ergy is not influenced the market using different pricing strategies and not cooperate

with other buyers. Therefore, it is necessary to explore the strategies for coopera-

tion and customizing of electricity buyers. However, since most investigations were

not conducted on the demand side,many researchers focused only on the produc-

tion and transmission of power. In addition, based on the previous authors, the OCS

problem in the electricity market has not been discussed. This article presents an

important theory, where the distribution of interest in cooperative game theory, and

the formation of an optimal coalition in the hybrid optimization theory are interre-

lated by considering the cooperative behavior of buyers.

This paper discusses the links between the distribution of benefits in cooperative
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game theory and the formation of an optimal coalition in hybrid optimization, along

with the formation of a theoretical basis background for the proposed methodology.

Additionally, while the previous articles focused on simplifying the market model

by low-level participants (no more than five DGs are considered, and they do not

form a coalition), the proposed model could deal with a large number of buyers.

2. The proposed structure

In the proposed electricity market, several DERs in a network could cooperate

with each other or with DERs in other networks by adjusting their production ca-

pacity and local demand for maximum profit. In Figure 1, a game theory-based on

three-level structure is presented to form an optimal coalition between DERs and

to allocate profits between them.

At the Level I (DGs classification), the load distribution is first performed on

the DGs in the network. Then the load distribution response is optimized by the

PSO optimization algorithm, and the amount of active and reactive power of each

source is determined. Uncertainty in wind resources is also analyzed at this stage.

Thereafter, the power of each resource is categorized based on their power output

by fuzzy logic classification, to form a coalition based on their power output relative

to their nominal production capacity.

At the Level II (optimum power determination of DGs unit), DGs can increase

their profits by competing with others. A coalition should be formed when each

player can achieve a higher level of productivity to gain more profits. At this level,

all resources (based on the ratio of production capacity to nominal capacity) are di-

vided into two groups. The first group includes the resources which the production

capacity is less than 50% of their production capacity. These resources combine with

each other in the first group. The second group includes the resources that have a

production capacity more than 50% of their production capacity. In this group, re-

sources with more productive capacity form a coalition with each other and finally

participate in the formation of a grand coalition. Moreover, this mechanism allows

to move from first group to second group by increasing the production capacity, to
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form the grand coalition and gain greater profits.

The Level III (forming a coalition and allocation profits) concerns the allocation

of profits and the formation of coalitions between DGs. At this level, the interac-

tion of players is examined based on cooperative game theory to form a group or a

coalition. The result of the coalition formation is studied based on the Shapley, Nu-

cleolus, and merge/split methods. The profit-sharing mechanism is essential to mo-

tivate each player in the coalition. In the proposed structure, different profit-sharing

rules such as Shapley value, and merger/split and Nucleolus will be compared to

evaluate the profit of each DG, by joining the coalition. The implementation of each

level and the goals pursued are described below.

Defining input parameters

Economic Emission unit

Fuzzy logic unit

Coalition formation unit

Shapley unit

Nucleolus unit

Merge & Split unit

Unit of excesses calculation

P
ro

fi
t 

al
lo

ca
ti

o
n
 

u
n

it

Uncertainty unitPrimary level

(optimum power determination 
of DGs unit)

Intermediate level

(DGs classification)

Secondary level

(forming a coalition and 
allocating profits)

1-The type of the game

2-The definition of the problem limitations and the cost function

3-The number of actors

4-The number of PSO parameters like maximum and minimum
inertia coefficient, the number of repetition history

5- Parameter setting

6-Fuzzy membership functions determination for total fuel cost, total
active power loses, active power demand, reactive power demand
and the wind speed

7- Entering the number of particles PSO(Npop)

1-DGs classification according to their production
power based on Fuzzy logic membership functions:

a) membership functions with production power lower
than 50 percent per DG unit

b) membership functions with production power higher
than 50 percent per DG unit

Start

Defining input parameters including 1) the type of the game, 2) the definition of the problem limitations and the cost function, 

3) the number of actors, 4) the number of PSO parameters like maximum and minimum inertia coefficient, the number of

repetition history, 5) parameter setting, 6) fuzzy membership functions determination for total fuel cost, total active power 

loses, active power demand, reactive power demand and the wind speed, and 7) entering the number of particles PSO (Npop) 

Uncertainty unit

Economic dispatch unit

Fuzzy logic unit for classification of DGs according to their production power based on Fuzzy logic membership functions 
including a) membership functions with production power lower than 50 percent per DG unit and b) membership functions 

with production power higher than 50 percent per DG unit  

Coalition formation unit Shapley unit Nucleolus unit Unit of excesses calculationMerge & Split unit

Profit allocation unit

Level III

(forming a coalition and 

allocating profits)

Level II

(optimum power 

determination of DGs unit)

Level I

(DGs classification)

Figure 1: The structure implemented to form a coalition and allocate profits.

2.1. Assumptions

Following assumptions are defined to improve the computation time and the

convergence of the optimization:

1. In the proposed structure, the power planned by DERs does not depend on

the characteristics of the loads, which means it is possible to active or inactive

any number of time.
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2. The congestion line is not considered. Line overload does not present when

considering the power flow in the network and re-allocating the load in the

cooperation between the DGs.

3. Dynamic pricing has been used instead of static pricing.

2.2. Level I

2.2.1. PSO based economic dispatch unit combined with the Fuzzy Logic-based Uncer-

tainty Unit (FLC)

The prime purpose of the implementation of this unit is to find the active optimal

power of distributed generation units by the fuzzy logic combined with PSO method.

This minimizes the total fuel cost of the thermal units and the total active power

loss with the uncertainty of the wind units. Further, it also considers the network

technical constraints such as load distribution constraints, output power limitations

in thermal units and voltage restrictions on each bus. Moreover, the load demand

errors and predicted wind speed are considered as uncertainties in the proposed

PSO algorithm combined with the fuzzy logic set.

2.2.2. Uncertainty unit

The random nature of the renewable resources generation and the demand for

loads causes errors in the forecasted inputs of these resources. Moreover, the uncer-

tainty unit based on fuzzy logic is used to predict the wind power production and

load demand. Further, the formation of fuzzy membership functions is presented

for wind speed and load demand.

2.2.3. Fuzzy membership function for wind speed

The fuzzy membership function for the predicted wind speed error could be

calculated by

µWT =


1

1+ηWT (∆vw/v+
w)2 ∆vw ⩾ 0

1
1+ηWT (∆vw/v−

w)2 ∆vw < 0
(1)

∆vw =
v ′
w − vw

vw
× 100% (2)

8



where v+w and v−w are the average percentage error, when the actual wind speed

is greater or less than the expected wind speed, ηWT is a weighting factor. ∆vW

is the difference in speed between the predicted value and its value with regard to

uncertainty. Further, v ′
w and vw are the actual and predicted the speed of the wind,

respectively.

2.2.4. Fuzzy membership function for load active power demand

The membership function can be calculated from equation (2).

µn =


1

1+ηn(∆PL/P
+
L )2 ∆PL ⩾ 0

1
1+ηn(∆PL/P

−
L )2 ∆PL < 0

(3)

∆PL =
P ′
L − PL

PL
× 100% (4)

where PL is the demand for the active power of the load for all loads involves in

the errors between the predicted and actual load demand. Further, P+
L and P−

L are

the average error percentage of the average demand for active power load when

its actual value is greater or less than the expected value, while is the weight factor

coefficient.

2.2.5. Economic Dispatch Unit

The purpose of this unit is to determine the optimal active power of dispersed

generation units by the PSO method with the fuzzy logic. This is to minimize the

total fuel cost of the thermal units, and the total active power losses considering

the uncertainty of the wind units. The objective function is based on the reduction

of fuel cost and the active power losses of the network. In the following, the cost

function and technical constraints of the network under study are described.

2.2.6. Objective function

Fuel cost of thermal units: The cost function for the fuel in thermal units is

defined as follows:

Tc =

Ng∑
i=1

Fi(Pgi) (5)
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where Tc is the total fuel cost of the thermal units, Fi is the ith thermal unit fuel

cost which could be calculated from the following equation.

Fi = aiP
2
gi + biPgi + Ci + |ei sin(fi(Pmin

gi − Pgi))| (6)

In this relationship, ai , bi, ci, ei and fi are the cost function coefficients. Pgi is

the true output power of the thermal unit i, and Ng is the number of thermal units.

The membership function for the fuzzy set is related to the total fuel cost. Hence,

a high fuel cost generates a lower membership value. The membership function of

the total fuel cost (µc) is defined as follows.

µ
c
= exp(−W1∆C) (7)

∆C =
TC− TCmin

TCmin
(8)

In equation 7 and 8, TCmin is the lowest total cost of the fuel achieved from

the optimization of the target function, and W1 is the weighting factor.

Active network power losses: The cost function associated with reducing the

active power losses of a network could be calculated as follows:

TL =

Nl∑
i=1

Ploss,i (9)

where, TL is the total loses of the real power of the network, while Ploss,i is

the real power of line i and Nl is the number of transmission lines in the system.

Moreover the fuzzy membership function has been defined to limit the true power

losses.

µL = exp(−W3∆L) (10)

∆L =
TL− TLmin

TLmin
(11)

where, TLmin is the lowest actual power loss and W3 is the weighting factor.

2.2.7. The system constraints understudy

In this section, technical constraints such as, constraints related to loading dis-

tribution equations, constraints related to the output power of thermal units, buses’

voltage limits, and power transitions constraints is expressed.

Constraints related to load equations
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PGi
− PLi

=

n∑
j=1

|Vi||Vj||Yij| cos(θij − δi − δj) (12)

QGi
−QLi

=

n∑
j=1

|Vi||Vj||Yij| sin(θij − δi − δj)(13) (13)

where, PLi and QLi are predicted active and reactive power demand, PGi and QGi

are the active and reactive power output injected into the bus i, σ and V are the

voltage and the angle of the bus, Yij and θij are the admittance matrix elements of

the bus.

2.2.8. The limitations on the output power of thermal units

Pmin
gi

⩽ Pgi
⩽ Pmax

gi

i = 1, 2, · · · ,Ng

(14)

Qmin
gi

⩽ Qgi
⩽ Qmax

gi

i = 1, 2, · · · ,Ng

(15)

Pmax
gi and Pmin

gi are the maximum and minimum output active power for unit

i, Qmax
gi and Qmin

gi are the maximum and minimum output reactive power for unit

i.

2.2.9. Voltage constraints on each bus

Vmin
i ⩽ Vi ⩽ Vmax

i

i = 1, 2, · · · ,Nbus

(16)

which Vmax
i and Vmin

i are the upper and lower limits of the voltage on the bus

i, and Nbus is the number of the buses.

2.2.10. The Limitations of power transmission per line

Sli ⩽ Smax
li

i = 1, 2, · · · ,Nl

(17)
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2.3. Level II

Fuzzy logic unit: Since a DER unit supplies 90% of the required load power,

it should receive higher profits from resource partnerships than a DER unit, that

supplies only 10% of the required power. Hence, fuzzy logic is applied to estab-

lish fairness in the competition between the players in the market structure, using

the Sugeno method. This method is preferred over the Mamdani method because

of the better performance with the linear techniques and the guaranteed contin-

uous output level. In this method, all units were classified into 2 groups such as,

group 1 includes the units with production capacity is less than 50%, and group 2

includes the units with production capacity is higher than 50%. Under these condi-

tions, in addition to gaining more profits for members players could also generate

more power. Moreover, at this level, players in group 1 could increase their pro-

duction by participating in the game and integrating with group 2 players.

2.4. Level III

The formation of the DER coalition is formulated with respect to the distributed

power and the unit cost functions. Further, the profit allocated to each unit is de-

termined by the game theory methods.

2.4.1. Unit for coalition formation

In the retail market, distributed energy resources sell electricity directly at con-

tract prices. In particular, the power is transmitted from the generator to the load

by transmission lines owned by the distribution company. Therefore DERs must pay

a periodic charge to the distribution company for power transferring [25]. Hence,

the ith (DERi) profit per hour (V(i)) could be expressed as follows:

v(i) = ρiPi − fi(Pi ) −ωiPi (18)

f(i) = ai Pi
2 + biPi + ci (19)

where v(i) is the profit is each DERi (pound per hour), ρi is the sales price to the

generator consumer i (pounds per megawatt-hour),Pi the effective power of each

generator,ωi is the periodic charge rate, f(i) is the generator cost function in DERi,
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ai, bi, ci are the coefficients of the generator i. DERs could work together to feed

consumers and coalition formation. In this coalition, DERs determine their produc-

tion according to the law of the expense increase equation to reduce the production

costs, as expresses follows: [26].

fi (Pi) = aiP
2
i + biPi + ci (20)

dfi

dPi
= 2aiPi + bi = λ (21)

Pi =
λ− bi

2ai
(22)

P1 + P2 + · · ·+ Pn

= λ−b1
2a1

+ λ−b2
2a2

+ · · ·+ λ−bn

2an

= λ
2

∑n
i=1

1
ci

− 1
2

∑n
i=1

bi

ci
= PR

(23)

pi =
1

2ci

∑n
i=1

(
bi/ci

)
+ 2PR∑n

i=1

(
1/ci

) −
bi

2ci
(24)

Here, λ is the Lagrange coefficient, PR is the total load in megawatt and Pi is the

effective power of the generator i after the co-operation (MW/h). Therefore, in a

S alliance with a number of DERs equal to m, the profit of each DER in the coalition

could be calculated as follows.

v(s) =

m∑
i=1

(ρi Pi) −

m∑
i=1

fi (Pi) −

m∑
i=1

ω Pi (25)

2.4.2. Profit allocation unit

In game theory, when DERs collaborate to form coalitions, different DERs would

earn different profits in different coalitions. It is possible to any DER to earn their

maximum proportion of profit during the same coalition. Therefore, it is important

to introduce a balanced strategy for each of them. In the game theory, two issues

are considered: the coalition formation and the allocation of profits through col-

laboration and partnership. Since the coalition participants could gain more profit

than independent participants, they would perform the best to form the best coali-

tion. Each participant aim to gain the most out of the coalition, hence providing a

satisfactory plan for allocating profits for each one is important.
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It is worth mentioning that, the individual rational is that the player can make

a profit in a coalition, while the group rational is that all the values obtained in a

coalition are distributed among the players. An essential solution to the collabora-

tive game is directly related to the stability of the grand coalition. In this cooperative

game, a set of profit allocations that guarantee that players has no incentive to leave

the grand coalition.

2.4.3. Shapley Unit

The players could predict the amount of the profit they earn, when they initiate

to participate in the game. In fact, an earlier assessment for all players is important

in deciding whether to join the game. The value of Shapley is the expected margin

for the player in the coalition and it can be calculated by equation (19),according

to the concept of "fairness" in the distribution of overall profits in the big coalition

[40].

ϕi =
(m− 1)!(n−m)!

n!
{v(s) − v(s− {i})} (26)

In which, m is the number of coalitions, n is the total number of big coalition

members, s is the members who participated in the coalition and s − {i} is the

members who did not participate in the coalition. Furthermore, the profit earned

by the player “i” in network with s − {i} members is equal to v(s) − v(s − {i}) .

The phrase (m−1)!(n−m)!
n! indicates the possibility of the player “i”, who will join

the coalition "s− {i}".

2.4.4. Nucleolus Unit

The Nucleolus method is an effective profit allocation approach that minimizes

the maximum surplus S than x. The objective function of Nucleolus is formulated

as follows [40]:

min
X∈S

max
S⊂N

e(S, x) (27)

where it can be calculated from the following equation:

e(s, x) = V(s) −
∑
i∈S

xi (28)

where xi is the benefit of player “i” in independent condition.
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2.4.5. Merge/ Split Unit

The merge law means that two coalitions or more could merge if the combi-

nation leads to a greater profit than the losses in the total coalition. In the split

law, the coalitions can be divided into smaller components for a greater profit [41].

To implement this unit, a distributed algorithm has used to form a coalition with

an allocation mechanism. For DERi in coalition “s”, profits could be calculated as

follows:

xi =
u(s)× u ({i})∑

j∈s u ({j})
(29)

Definition: Consider two sets of separate coalitions A = {A1,A2, · · · ,Am} and

B = {B1,B2, · · · ,Bm} that are similar for set of DERs. For set “A”, the benefit of

player “i” (payoff) in a coalition is, which is determined by equation (32). Set A is

preferred to set B(A ▷ B), if and only if, types of functions can be used as follows:

Z =

 Merge if {∪ ′
i=1Si} ▷ {S1,S2, · · · ,Sm}

Split if {S1,S2, · · · ,Sm} ▷ {∪ ′
i=1Si}

 (30)

In this equation, it is stated that, if {∪ ′
i=1Si} is preferred to S = {S1,S2, · · · ,Sm},

which means that its value in the coalition is greater than when they are indepen-

dent and in this case, the merge is occurred. On the other hand, if S = {S1,S2, · · · ,Sm}

is preferred to {∪ ′
i=1Si} , which means the value in the coalition is greater than when

they are independent and in this case, the split is occurred.

2.5. Surplus Profit Calculation Unit

Surplus benefit for each coalition is equal to the difference of profits generated

by the large coalition and total profits allocated to the units in that coalition. For

play “v” withn player, if “S” is the coalition and (x1, x2, · · · , xn) is a vector of benefit

for this coalition, surplus S to x for play “v” with n player, the coalition “S” and the

profit vector could be calculated from the following equation:

e(s, x) = V(s) −
∑
i∈S

xi (31)

And ∑
i∈S

xi = v(123) (32)
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“S” is the coalition.

If the benefit vector proposed for x is positive than the surplus of coalition “S”,

x does not satisfy any proposal and does not produce a surplus profit. Otherwise,

S has a surplus profit with respect to x.

3. Grid Under Study

In this study, the modified IEEE 30-Bus version of system has simulated in which

one power generator unit located at bus 1 and five non-renewable units are consid-

ered in buses 2, 5, 8, 11, and 13, respectively [42]. Further, two wind turbine (WT)

units are installed at buses 24 and 27. Moreover, the loads of the studied system,

from D1 to D21 are depicted in Figure 2, while the load values and cost function

coefficient values are listed in Table .17 and Table .18 of the appendix.

4. Simulation Results

In this section, the simulation results for the coalition are analyzed under fol-

lowing case studies:

Case study 2: It is a grand coalition. In this case study, the arrangement of all

DERs (in a group with 7 DERs) within a coalition and the amount of their produc-

tion capacities have been considered. This is due to each DER is benefited from the

amount of production in the final coalition (grand coalition), and each DERs aim

to produce more capacities to earn higher profits. As oppose to case study 1 where

the DERs could be classified, the case study 2 only contain one group with DERs to

form a grand coalition.

Definitions:

Group 1: The prime purpose of creating Group 1 in case study 1 is to form a

coalition. Since DERs are mainly focusing to increase the profits when each player

can achieve a higher level of productivity by joining a grand coalition. In this ar-

ticle, all resources (based on the ratio of the production capacity to the nominal

capacity) are divided into two groups. The first group belongs to resources whose
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production capacity is less than 50% of their production capacity. These resources

combine with each other in the first group.

Group 2: The second group belongs to resources that have a production capac-

ity of more than 50% of their production capacity. In this group, resources with

more productive capacity form a coalition with each other and participate in the

formation of a grand coalition.

The simulation is run by MATLAB on a personal computer with Dual-Core, CPU

E5700 @ 3.00 GHz, 2 GB RAM.

4.1. Case study 1

As shown in Figure 3, in case study 1, seven DERs in the system are divided

into two groups, and each group forms a coalition independently, while calculating

allocated profit of the coalition. Power generated by each DER is determined using

load flow and results are listed in Table .19 in the appendix.

Each DER is classified into three and four groups to form a coalition by the fuzzy

logic method (Level II). The specifications of the group 1 is presented in Tables (2)

and (3). Table 2 is the result of power flow by PSO algorithm and the Table 3 is

the input data for simulation.

Table 2: Power generated by DERs in group 1.

DER DER 1 DER 2 DER 3

P (MW) 30.3725 45 39.0883

Table 3: Cost function coefficient values of DER in group 1.

a b c ρ

DER 1 0.0075 10 110 15.28

DER 2 0.0022 10 316 13.46

DER 3 0.005 10 115 15.85

Profit earned by each coalition after coalition formation is shown in Table 4. Ac-

cording to Table 4, that the profit earned by the coalition of two players is greater
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than the profit earned by individual players. Consequently, profit earned by coali-

tion members 1, 2 and 3 (i.e.{1, 2, 3}), is 3.47% , 0.9% and 3.31% higher than that

in coalition {1}+ {2}+ {3}, {1}+ {2}, and {2}+ {1, 3}, respectively. In this table, each

coalition has satisfied relation u(N) − u(N − i) ⩾ u(S) − u(S − i),∀i,S ⊂ N ,

which means that no players tend to exit from the big coalition.

Table 4: Profit earned by each coalition.

Coalition Profit earned

{1} 6.27

{2} 8.14

{3} 8.38

{1,2} 15.06

{1,3} 14.61

{2,3} 17.28

{1,2,3} 23.57

Table 5 represents the coalition type, gross earning, power generation cost of

units, periodic charge, and the net profit of each different coalitions. The results of

profits allocation for each DERs using various game theory methods are presented

in Table 6.

Table 5: Earning, generation cost, periodic charge, and net profit of each different coalitions.

Coalition
Earning

(=C/h)

Generation cost

(=C/h)

Periodic charge

(=Ch)

Net profit (=C/h)

×1.00E+04

{1} 0.4641 0.0004 0.0152 6.27

{2} 0.6057 0.0008 0.0225 8.14

{3} 0.6195 0.0005 0.0195 8.38

{1,2} 1.1163 0.0012 0.0377 15.06

{1,3} 1.0807 0.0009 0.0347 14.61

{2,3} 1.2792 0.0013 0.042 17.28

{1,2,3} 1.7446 0.0017 0.0572 23.57
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Table 6: Profit allocation for each DERs using different game theory methods.

Generation Unit DER 1 DER 2 DER 3

Shapely

Profit (=C/h)×1.00E+04 6.3773 8.6472 8.5405

Nucleolus

Profit (=C/h)×1.00E+04 6.2789 8.8275 8.4586

Merge / Split

Profit (=C/h)×1.00E+04 6.4822 8.4181 8.6648

In DER 1, the profit increased by the merge/split method compared to Shapely

and Nucleolus methods is 1.7% and 3.12%, respectively, while in DER 2, the profit

increased by Nucleolus method compared to Shapley and merge/split methods is

2.1% and 4.63%, respectively. Moreover, in DER 3, with the merge/split method,

the profit has escalated by 4.4% and 2.38%, compared to Shapely and Nucleolus

methods, accordingly. The surplus profit of each coalition coalition “S” is obtained

separately by calculating the profit after different DERs coalition islisted in Table 7.

In addition, the allocated profit of each DERs with different game theory methods

is calculated, as follows:

Table 7: Surplus profit in group 1.

Coalition Surplus profit

{1} -1.0752

{2} -5.0486

{3} 0.3721

{1,2} -1.5962

{1,3} -3.0803

{2,3} 0.8931

{1,2,3} 0

The specifications of the group 2 is presented in Tables (8) and (9). Table 8
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Table 8: Power generated by DERs in group 2

DER DER 1 DER 2 DER 3 DER 4

P (MW) 20.0416 10.6022 18.5 23.9

Table 9: Cost function coefficient values of DER in group 2.

a b c ρ

DER 1 0.0009 10 420 13.27

DER 2 0.0024 10 156 14.24

DER 3 0 0 0 13.75

DER 4 0 0 0 14.36

shows the power generated by DER in the second group, and Table 9 depicts cost

function coefficient values of DER in group 2. Profit earned by each coalition after

coalition formation is shown in Table 10. According to Table 5, the profit earned by

the coalition of two players is greater than the profit earned by individual players.

Table 10 represents the coalition type, generation cost of units, periodic charge, and

the net profit of each different coalitions.

Profit allocated in each DERs by different game theory methods is compared in

Table 11. In DER 1, profit earned by merge/split method compared to Nucleolus

and Shapley methods has increased by 50.68% and 53%, respectively, while in DER

2, the profit earned by Nucleolus method has risen than Shapley and merge/split

methods by 2.7% and 1.1%, respectively. Moreover, in DER 3, profit earned by the

Shapley method has increased by 1.3% and 1.9% compared to merge/split and

Nucleolus methods, respectively, while in DER 4, the profit increment of 1.01% and

31.98% is shown by Nucleolus method than in Shapley and merge/split methods,

respectively.

In addition, surplus profit of DERs coalition in group 2 are presented in Table

12.

In group 1, both the profits after a coalition of each unit in all three profit allo-

cation methods and general profit or large coalition has been increased, which was
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Table 10: Cost function coefficient values of DER in group 2.

Coalition
Earning

(=C/h)

Generation cost

(=C/h)

Periodic charge

(=Ch)

Net profit (=C/h)

×1.00E+04

{1} 0.319 0.0007 0.012 4.28

{2} 0.151 0.0003 0.0053 2.03

{3} 0.2544 0.0001 0.0092 3.43

{4} 0.3432 0.0001 0.012 4.63

{1,2} 0.4842 0.0009 0.0173 6.51

{1,3} 0.0585 0.0004 0.0213 7.87

{1,4} 0.6885 0.0004 0.024 9.28

{2,3} 0.4065 0.0002 0.0146 5.39

{2,4} 0.4955 0.0002 0.0173 6.67

{3,4} 0.5959 0.0001 0.0212 8.03

{1,2,3} 0.7371 0.0006 0.0266 9.84

{1,2,4} 0.8407 0.0006 0.0293 11.34

{1,3,4} 0.9338 0.0004 0.0332 1258

{2,3,4} 0.7472 0.0002 0.0265 10.04

{1,2,3,4} 1.0829 0.0006 0.0385 14.59

the main purpose of this paper. In group 2, the profit allocated to each unit by Shap-

ley and Nucleolus methods are different and not fairly divided. Therefore, among

four generation units, the profits of DER 1 and DER 2 are higher than before the

coalition, while the profit of DER 3 and DER 4 are lower than before the coalition.

Nevertheless, the key goal of this paper is to maximize the profit of the grand coali-

tion with the cooperative game. On the other hand, allocated profit by merge/split

method is appropriate and the profit of all units has increased compared to before

coalition.

In addition, the surplus profit in the big coalition is zero, therefore equations

31 and 32 are satisfied. Further, in other conditions, their profit increases or de-

creases satisfactorily. Finally, allocated profit to each DERs is significant. Although,
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Table 11: Profit allocation for each DERs using different game theory methods.

Generation Unit DER 1 DER 2 DER 3 DER 4

Shapely

Profit (=C/h)×1.00E+04 2.3468 1.8138 3.5824 6.8491

Nucleolus

Profit (=C/h)×1.00E+04 2.1444 2.2895 3.2499 6.9079

Merge / Split

Profit (=C/h)×1.00E+04 4.3478 2.0637 3.4789 4.7013

Table 12: Surplus profit in group 2.

Coalition Surplus profit Coalition Surplus profit

{1} 1.936 {2,4} -1.1611

{2} 0.2191 {3,4} 2.5012

{3} 0.4709 {1,2,3} -1.7338

{4} 1.8063 {1,2,4} -0.5953

{1,2} -2.5020 {1,3,4} -0.2734

{1,3} 1.1186 {2,3,4} -2.2034

{1,4} -1.0671 {1,2,3,4} 0

{2,3} 0.9825 - -

there is less profit in some coalitions, but the allocated profits to each DERs and big

coalition’s profits is greater than before coalition.

A comparison between profit before coalition and the average earned profit us-

ing game theory methods are expressed in tables 13 and 14. In group 1, the profit of

DERs 1, 2, and 3 increased by 17.56%, 6.03%, and 2.1%, than before the coalition,

respectively. In group 2, the profits of DER 1 is increased by 31.16% compared to

before coalition, while the profit of DERs 2, 3, and 4 are increased by 1.26%, 1.8%,

and 32.89%, respectively.

In Table 15, the profit allocation of each coalition in group 2 according to Shap-

ley, Nucleolus, and merge/split methods is compared with individual profit of each
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Table 13: A comparison between profit before coalition and the average earned profit in group 1.

DER 1 DER 2 DER 3

Profit before coalition 6.27 8.14 8.38

Average earned profit

after coalition
6.3795 8.6309 8.5547

Increase/decrease

profit (%)
+17.56 +6.03 +2.1

Table 14: A comparison between profit before coalition and the average earned profit in group 2.

DER 1 DER 2 DER 3 DER 4

Profit before coalition 4.28 2.03 3.43 4.63

Average earned profit

after coalition
2.9463 2.055 3.4369 6.1527

Increase /decrease

profit (%)
-31.16 +1.26 +1.8 +32.89

unit. As can be seen, the profit of DER 1 using the merge/split algorithm is 2.51%

higher than when the network operates independently, while the earned profit for

each network has increased significantly in all units in level III, to coalition for-

mation and allocate profits. However, there is a significant different between the

proposed algorithms. For instance, the earned profit after coalition in DER 1 with

merge/split algorithm has increased by 46.02% and 50.67% compared to Shapley

and Nucleolus algorithms, respectively. And in DERs 2, 3 and 4, the profit reduction

rate in Shapley algorithm for DER 1 and DER 2 is 28.68% and 26.26% compared to

merge/split algorithm, respectively. Further, the profit reduction rate in Nucleolus

algorithm for DER 1 and DER 3 is 49%, 75% and 58.6% compared to merge/split

algorithm, respectively.

According to the results, it is proven that the merge/split algorithm in group 2 is

more appropriate and fairer for allocating profits between DERs and the allocated

profit to this algorithm is higher than the profit before coalition.
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Table 15: Profit allocation in each coalition in group 2.

Algorithm DER #1 DER #2 DER #3 DER #4

Shapley 2.3468 1.8138 3.5821 6.8491

Nucleolus 2.1444 2.2895 3.2499 6.9079

Merge/Split 4.3478 2.0329 3.4268 4.6309

Non-coalition 4.2828 2.0329 3.4268 4.6309

4.2. Case study 2

According to this case, all DERs are considered as one group, and the profit of

each unit in this coalition is determined. The general scheme of this case study is

depicted in Figure 4.

According to this case, it is observed that by increasing DERs and coalition for-

mation, allocated profit to each DERs is not fair than before coalition, It I is evident

in some DERs, where the profit has been increased. On the flip side, it has dropped

drastically in some DERs. However, in the first case study, fairer and more reason-

able profit could be achieved by classifying units at the middle level.

According to Table 16, the Shapley method has used in case study 1. The allo-

cated profits of units in buses 2, 5, and 8 belong to group 1 are increased by 1.68%,

5.83%, and 1.84% than before coalition, respectively. However, in cast study 2, the

allocated profits were decreased by 67.06%, 61.11%, and 36.13%, accordingly. Fur-

ther, In case study 1, the allocated profits of units in buses 11 and 13 in groups 2

have decreased by 54.2% and 10.77%, and the buses 24 and 27 in the same group

have decreased by 4.33% and 32.38%, compared to before coalition. However, in

case study 2, the allocated profits of bus 11 has decreased by 2.39% , and increased

by 66.12%, 58.98%, and 35.23% for buses 13, 24 and 27 respectively. Further, In

case study 1, allocated profits of units in buses 11, 13, 24, and 27 belonging to

group 2 decreased by 54.2% and 10.77%, increased by 4.33% and 32.38% com-

pared to before coalition, respectively. However, in case study 2, it decreased by

2.39% and increased by 66.12%, 58.98%, and 35.23%, respectively. Further the

obtained values in case study 2 represent the unbalanced profits in DERs. In the
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Nucleolus method in case study 1, allocated profits of units located in buses 2, 5,

and 8 belong to group 1, has increased by 0.145%, 7.76%, and 0.919% than before

coalition, respectively, while in case study 2, they decreased by 14.48%, 77.75%,

and 36.13%, respectively.

In addition, in the case study 1, the allocated profits of units have decreased by

49.93% and 5.16% in buses 11 and 24, and have increased by 11.21% and 49.17%

in buses 13 and 27, compared to before coalition, respectively. In case study 2, it

decreased by 2.39% in bus 11 and increased by 56.45%, 45.35%, and 11.23%, in

buses 13,24, and 27, accordingly. Further, the obtained values in case study 2 rep-

resent the unbalanced profits in DERs.

In the merge/split method in case study 1, allocated profits of all units located in

buses 2, 5, and 8 belong to group 1, have increased by 3.27% than before coalition,

while, in case study 2, they have decreased by 3.27%. Moreover, in case study 1,

allocated profits of all units in buses 11, 13, 24, and 27 in group 2 were escalated by

1.5% compared to before coalition, and in case study 2, it has dropped by 2.39%.

Table 16: Comparison between DERs profit before and after coalition using case study 1 and 2.

DER #1 DER #2 DER #3 DER #4 DER #5 DER #6 DER #7

Bus number 2 5 8 11 13 24 27

Shapley

Before coalition 62698.19 81423.65 83808.97 42827.77 20328.59 34268.47 46309.31

After

coalition

case study 1 63773.41 86472.21 85405.15 23467.58 18137.95 35820.5 68491.14

case study 2 20652.51 31663.37 53521.93 41826.22 60004.26 83554.79 71503.22

Nucleolus

Before coalition 62698.19 81423.65 83808.97 42827.77 29328.59 34268.47 46309.31

After

coalition

case study 1 62789.26 88275.24 84586.27 21443.74 22894.64 32499.47 69079.32

case study 2 73315.91 67103.14 18642.63 41672.13 47114.42 62712.39 52165.67

Merge/Split

Before coalition 62698.19 81423.65 83808.97 42827.77 20328.59 34268.47 46309.31

After

coalition

case study 1 64821.76 84181.45 86647.55 43478.24 20637.34 34788.94 47012.65

case study 2 61190.28 79465.39 81793.33 41797.75 19839.68 33444.31 45195.56
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5. Conclusion

This paper investigates a novel three level structure for forming optimal coali-

tion and increases the allocated profits of the participants in the market. In the

proposed method, physical and technical constraints of the modified IEEE 30-Bus

system have considered and the optimal power flow is applied. Further, the PSO

optimization method has utilized to determine the optimal generation capacity of

all DERs and power supplies, while the fuzzy logic has applied to evaluate the load

demand uncertainties, renewable resources, and reservation resources. In addi-

tion, the fair profit allocation among players with increased DERs generation is

performed by fuzzy logic. Accordingly, the coalition formation and the profit des-

ignation are assessed by the cooperative game theory algorithms. The feasibility of

the proposed structure has verified by engaging many buyers and power produc-

ers. The suggested model further investigated that the cooperation between power

producers has increased the profit of players, and restructuring of the coalition be-

tween members had a significant impact on the profits. The groups formed by fuzzy

logic, represents that the distribution of profits between members in a group is

highly depending on the way of grouping. Most importantly, this study presents a

structure which links between cooperative game theory and DERs. Thus, the op-

timization theory and the game theory simultaneously optimize the generation of

resources, and earn the maximum profit in collaborating with other resources. Con-

sequently, the main advantage of the proposed methodology is that, it could extend

the specific function and effortlessly merge with the current structure. The simula-

tion results and math analysis verify that the big coalition is the optimal coalition

when there is no size limitation. Grouping of players in coalition presents that the

players in a group with similar interest have more tendency to form a coalition

between themselves, while the players with higher power tend to form a coalition

with bigger players. Further, the efficiency of the proposed structure has been tested

and demonstrated with the modified IEEE-30 bus system. The proposed method fa-

cilitates the electricity participants to find attractive collaborative strategies with

sustainable benefits under variable conditions and environments. Ultimately, this
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study closely examined the private electricity market for market operators and pol-

icy makers.
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Table .17: Load values in different buses.

Bus

number

Load

number

Load

(MW)

Bus

number

Load

number

Load

(MW)

Bus

number

Load

number

Load

(MW)

2 D1 21.7 10 D7 5.8 18 D13 3.2

3 D2 2.4 12 D8 11.2 19 D14 9.9

4 D3 7.6 14 D9 6.2 20 D15 2.2

5 D4 54.2 15 D10 8.2 21 D16 17.5

7 D5 22.8 16 D11 3.5 23 D17 3.2

8 D6 20 17 D12 9 24 D18 8.7

26 D19 3.5 29 D20 2.4 30 D21 10.6

Table .18: Parameters values in different buses (according to network under study).

Bus

number
2 5 8 11 13 24(1) 27(2)

ai 0.0075 0.0009 0.0022 0.005 0.0024 0 0

bi 10 10 10 10 10 0 0

ci 110 420 316 115 156 0 0

ρi 15.28 13.27 13.46 15.85 14.24 13.75 14.36
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Table .19: Generated power of each DER after power flow.

Bus

number
2 5 8 11 13 24 27

P

(MW)
30.3725 24.0416 45 39.0883 10.6022 18.5 23.9
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Figure 2: Modified IEEE 30-Bus system under study.
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Figure 3: DERs Classification in case study 1.
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Figure 4: DERs group in case study 2.
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