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Abstract 

This paper presents a general analytical model for free vibration of thin-walled composite 

beams with arbitrary laminate stacking sequences and studies the effects of shear deformation 

over the natural frequencies. This model is based on the first-order shear-deformable beam 

theory and accounts for all the structural coupling coming from the material anisotropy. The 

seven governing differential equations for coupled flexural-torsional-shearing vibration are 

derived from the Hamilton's principle. The resulting coupling is referred to as sixfold coupled 

vibration. Numerical results are obtained to investigate the effects of fiber angle, span-to-

height ratio, modulus ratio, and boundary conditions on the natural frequencies as well as 

corresponding mode shapes of thin-walled composite box beams. 

Keywords: Thin-walled composite beams; shear deformation; sixfold coupled vibrations.  

 

 

 

                                                 

∗  Professor, corresponding author. Tel.: +82-2-3408-3287; Fax: +82-2-3408-3331. 

  E-mail address: jhlee@sejong.ac.kr 

+  Graduate student 

 1 



On sixfold coupled vibrations of thin-walled composite box beams

Thuc Phuong Vo,∗ Jaehong Lee,† and Namshik Ahn‡

Department of Architectural Engineering, Sejong University
98 Kunja Dong, Kwangjin Ku, Seoul 143-747, Korea.

(Dated: November 4, 2008)

This paper presents a general analytical model for free vibration of thin-walled composite beams

with arbitrary laminate stacking sequences and studies the effects of shear deformation over the

natural frequencies. This model is based on the first-order shear-deformable beam theory and

accounts for all the structural coupling coming from the material anisotropy. The seven govern-

ing differential equations for coupled flexural-torsional-shearing vibration are derived from the

Hamilton’s principle. The resulting coupling is referred to as sixfold coupled vibration. Numer-

ical results are obtained to investigate the effects of fiber angle, span-to-height ratio, modulus

ratio, and boundary conditions on the natural frequencies as well as corresponding mode shapes

of thin-walled composite box beams.

Keywords: Thin-walled composite beams; shear deformation; sixfold coupled vibrations.

I. INTRODUCTION

Fiber-reinforced composite materials have been used over the past few decades in a variety of structures. Composites

have many desirable characteristics, such as high ratio of stiffness and strength to weight, corrosion resistance and

magnetic transparency. Thin-walled structural shapes made up of composite materials, which are usually produced

by pultrusion.

Thin-walled beams with closed cross-sections have been widely used in many engineering applications. The vibration

characteristics of those members are of fundamental importance in the design of thin-walled structures. The theory
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of thin-walled closed section members made of isotropic materials was first developed by Vlasov [1] and Gjelsvik [2].

Some explicit analytical expressions for the frequency equations and mode shapes of a thin-walled beam with closed

cross-section are also available in the literature [3-5]. For thin-walled composite beams, due to material anisotropy,

the flexural, torsional and corresponding shearing vibrations are fully coupled even for a doubly symmetric cross-

section. Many researchers studied the dynamic analysis of thin-walled closed-section composite beams with various

degrees of rigor. Bank and Kao [6,7] focused on the dynamic response and investigated the influence of geometric and

material design variables on the free vibration of thin-walled composite material Timoshenko beams. Chandra and

Chopra [8] developed theoretical models and closed-form solutions for composite box-beams considering only shear

deformation due to bending, however they employed a refined form to describe the warping function and presented

extensive comparisons with experimental results. Librescu et al. [9-12] developed models, which were employed in

a broad field of engineering problems such as statics and dynamics of composite thin-walled beam. In these models,

the bending component of shear flexibility was taken into account but the warping torsion component was neglected.

Rand [13] developed theoretical analysis for predicting the natural frequencies and mode shapes of rotating thin-

walled composite beams. Armanios and Badir [14] derived the equations of motion for free vibration analysis of

anisotropic thin-walled closed-section beams by using a variational asymptotic approach and Hamilton’s principle.

Based on the governing equations provided by Armanios and Badir [14], Dancila and Armanios [15] isolated the

influence of coupling on free vibration of closed-section beams exhibiting extension-twist, bending-twist coupling.

Mitra et al. [16] developed a new thin-walled composite beam element of arbitrary cross-section with open or closed

contour. The formulation incorporated the effect of elastic coupling, restrained warping, transverse shear deformation

associated with thin-walled composite structures. The works of Cortinez, Piovan, Machado and coworkers [17-19]

deserved special attention because they introduced a new theoretical model for the generalized linear analysis of

thin-walled composite beams. This model allowed studying many problems of static’s, free vibrations with or without

arbitrary initial stresses and linear stability of composite thin-walled beams. Machado et al. [19] also investigated the

dynamic stability of thin-walled composite beams under axial external force. The analysis was based on a small strain

and moderate rotation theory, which was formulated through the adoption of a second-order displacement field. In

their research [17-19], thin-walled composite beams for both open and closed cross-sections and the shear flexibility

(bending, non-uniform warping) were incorporated. However, it was strictly valid for symmetric balanced laminates

and especially orthotropic laminates. Shadmehri et al. [20] focused on the static and dynamic characteristics of

single-cell thin-walled composite beams. This model incorporated a number of nonclassical effects, such as material
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anisotropy, transverse shear, warping inhibition, nonuniform torsional model and rotary inertia. Recently, Vo and Lee

[21] presented triply coupled flexural-torsional vibration of thin-walled composite box beam.

In the present paper, the analytical model developed by the authors [22] is extended to the dynamic behavior of thin-

walled composite box beams. This model is based on the first-order shear-deformable beam theory, and accounts for

all the structural coupling coming from the material anisotropy. The seven governing differential equations for coupled

flexural-torsional-shearing vibration are derived from the Hamilton’s principle. The resulting coupling is referred to as

sixfold coupled vibration. Based on the analytical model, a displacement-based one-dimensional finite element model

is developed. Numerical results are obtained to investigate the effects of fiber angle, span-to-height ratio, modulus

ratio, and boundary conditions on the natural frequencies and corresponding mode shapes of thin-walled composite

box beams.

II. KINEMATICS

The theoretical developments presented in this paper require two sets of coordinate systems which are mutually

interrelated. The first coordinate system is the orthogonal Cartesian coordinate system (x; y; z), for which the x and

y axes lie in the plane of the cross section and the z axis parallel to the longitudinal axis of the beam. The second

coordinate system is the local plate coordinate (n; s; z) as shown in Fig.1, wherein the n axis is normal to the middle

surface of a plate element, the s axis is tangent to the middle surface and is directed along the contour line of the

cross section. The (n; s; z) and (x; y; z) coordinate systems are related through an angle of orientation µ as defined in

Fig.1. Point P is called the pole axis, through which the axis parallel to the z axis is called the pole axis.

To derive the analytical model for a thin-walled composite beam, the following assumptions are made:

1. The contour of the thin wall does not deform in its own plane.

2. Transverse shear strains °◦xz; °◦yz and warping shear °◦! are incorporated. It is assumed that they are uniform

over the cross-sections.

3. The linear shear strain °̄sz of the middle surface is to have the same distribution in the contour direction as it

does in the St. Venant torsion in each element.

According to assumption 1, the midsurface displacement components ū; v̄ at a point A in the contour coordinate

system can be expressed in terms of a displacements U; V of the pole P in the x; y directions, respectively, and the
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rotation angle Φ about the pole axis,

ū(s; z) = U(z) sin µ(s) ¡ V (z) cos µ(s) ¡ Φ(z)q(s) (1a)

v̄(s; z) = U(z) cos µ(s) + V (z) sin µ(s) + Φ(z)r(s) (1b)

These equations apply to the whole contour. The out-of-plane shell displacement w̄ can now be found from the

assumption 2. For each element of middle surface, the midsurface shear strains in the contour can be expressed with

respect to the transverse shear and warping shear strains.

°̄nz(s; z) = °◦xz(z) sin µ(s) ¡ °◦yz(z) cos µ(s) + °◦!(z)q(s) (2a)

°̄sz(s; z) = °◦xz(z) cos µ(s) + °◦yz(z) sin µ(s) ¡ °◦!(z)r(s) ¡
h
°◦!(z) ¡ Φ′(z)

iF (s)
t(s)

(2b)

where t(s) is thickness of contour box section, F (s) is the St. Venant circuit shear flow.

Further, it is assumed that midsurface shear strain in s ¡ n direction is zero (°̄sn = 0). From the definition of the

shear strain, °̄sz can also be given for each element of middle surface as:

°̄sz(s; z) =
@v̄

@z
+

@w̄

@s
(3)

After substituting for v̄ from Eq.(1) into Eq.(3) and considering the following geometric relations

dx = ds cos µ (4a)

dy = ds sin µ (4b)

Displacement w̄ can be integrated with respect to s from the origin to an arbitrary point on the contour,

w̄(s; z) = W (z) + Ψy(z)x(s) + Ψx(z)y(s) + Ψ!(z)!(s) (5)

where Ψx; Ψy and Ψ! represent rotations of the cross section with respect to x; y and !, respectively, given by

Ψy = °◦xz(z) ¡ U ′ (6a)

Ψx = °◦yz(z) ¡ V ′ (6b)

Ψ! = °◦!(z) ¡ Φ′ (6c)

When the transverse shear effect is ignored, Eq.(6) degenerates to Ψy = ¡U ′, Ψx = ¡V ′ and Ψ! = ¡Φ′. As a result,

the number of unknown variables reduces to four leading to the Euler-Bernoulli beam model. The prime (′) is used
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to indicate differentiation with respect to z and ! is the so-called sectorial coordinate or warping function given by

!(s) =
Z s

s–

h
r(s) ¡ F (s)

t(s)

i
ds (7a)

I

i

F (s)
t(s)

ds = 2Ai i = 1; ::; n (7b)

where r(s) is height of a triangle with the base ds; Ai is the area circumscribed by the contour of the i circuit. The

explicit forms of !(s), F (s) for box section are given in Ref.[23].

The displacement components u; v; w representing the deformation of any generic point on the profile section are

given with respect to the midsurface displacements ū; v̄; w̄ by assuming the first order variation of inplane displacements

v, w through the thickness of the contour as

u(s; z; n) = ū(s; z) (8a)

v(s; z; n) = v̄(s; z) + n ¯̂
s(s; z) (8b)

w(s; z; n) = w̄(s; z) + n ¯̂
z(s; z) (8c)

where, ¯̂
s and ¯̂

z denote the rotations of a transverse normal about the z and s axis, respectively. These functions

can be determined by considering that the midsurface shear strains °nz is given by definition

°̄nz(s; z) =
@w̄

@n
+

@ū

@z
(9)

By comparing Eq.(2) and (9), the function ¯̂
z can be written as

¯̂
z = Ψy sin µ ¡ Ψx cos µ ¡ Ψ!q (10)

Similarly, using the assumption that the shear strain °sn should vanish at midsurface, the function ¯̂
s can be obtained

¯̂
s = ¡@ū

@s
(11)

The strains associated with the small-displacement theory of elasticity are given by

†s(s; z; n) = †̄s(s; z) + n•̄s(s; z) (12a)

†z(s; z; n) = †̄z(s; z) + n•̄z(s; z) (12b)

°sz(s; z; n) = °̄sz(s; z) + n•̄sz(s; z) (12c)

°nz(s; z; n) = °̄nz(s; z) + n•̄nz(s; z) (12d)
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where

†̄s =
@v̄

@s
; †̄z =

@w̄

@z
(13a)

•̄s =
@ ¯̂

s

@s
; •̄z =

@ ¯̂
z

@z
(13b)

•̄sz =
@ ¯̂

z

@s
+

@ ¯̂
s

@z
; •̄nz = 0 (13c)

All the other strains are identically zero. In Eq.(13), †̄s and •̄s are assumed to be zero, and †̄z, •̄z and •̄sz are

midsurface axial strain and biaxial curvature of the shell, respectively. The above shell strains can be converted to

beam strain components by substituting Eqs.(1), (5) and (8) into Eq.(13) as

†̄z = †◦z + x•y + y•x + !•! (14a)

•̄z = •y sin µ ¡ •x cos µ ¡ •!q (14b)

•̄sz = •sz (14c)

where †◦z; •x; •y; •! and •sz are axial strain, biaxial curvatures in the x and y direction, warping curvature with

respect to the shear center, and twisting curvature in the beam, respectively defined as

†◦z = W ′ (15a)

•x = Ψ′x (15b)

•y = Ψ′y (15c)

•! = Ψ′! (15d)

•sz = Φ′ ¡ Ψ! (15e)

The resulting strains can be obtained from Eqs.(12) and (14) as

†z = †◦z + (x + n sin µ)•y + (y ¡ n cos µ)•x + (! ¡ nq)•! (16a)

°sz = °◦xz cos µ + °◦yz sin µ + °◦!(r ¡ F

2t
) + •sz(n +

F

2t
) (16b)

°nz = °◦xz sin µ ¡ °◦yz cos µ ¡ °◦!q (16c)

III. VARIATIONAL FORMULATION

Total potential energy of the system is calculated by

Π =
1
2

Z

v

(¾z†z + ¾sz°sz + ¾nz°nz)dv (17)
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After substituting Eq.(16) into Eq.(17)

Π =
1
2

Z

v

‰
¾z

h
†◦z + (x + n sin µ)•y + (y ¡ n cos µ)•x + (! ¡ nq)•!

i

+ ¾sz

h
°◦xz cos µ + °◦yz sin µ + °◦!(r ¡ F

2t
) + •sz(n +

F

2t
)
i

+ ¾nz

h
°◦xz sin µ ¡ °◦yz cos µ ¡ °◦!q

i¾
dv (18)

The variation of total potential energy, Eq.(18), can be stated as

–Π =
Z l

0

(Nz–†z + My–•y + Mx–•x + M!–•! + Vx–°◦xz + Vy–°◦yz + T–°◦! + Mt–•sz)ds (19)

where Nz; Mx; My; M!; Vx; Vy; T; Mt are axial force, bending moments in the x- and y-directions, warping moment

(bimoment), shear force in the x- and y-direction, and torsional moments with respect to the centroid respectively,

defined by integrating over the cross-sectional area A as

Nz =
Z

A

¾zdsdn (20a)

My =
Z

A

¾z(x + n sin µ)dsdn (20b)

Mx =
Z

A

¾z(y ¡ n cos µ)dsdn (20c)

M! =
Z

A

¾z(! ¡ nq)dsdn (20d)

Vx =
Z

A

(¾sz cos µ + ¾nz sin µ)dsdn (20e)

Vy =
Z

A

(¾sz sin µ ¡ ¾nz cos µ)dsdn (20f)

T =
Z

A

h
¾sz(r ¡ F

2t
) ¡ ¾nzq

i
dsdn (20g)

Mt =
Z

A

¾sz(n +
F

2t
)dsdn (20h)

The kinetic energy of the system is given by

T =
1
2

Z

v

‰(u̇2 + v̇2 + ẇ2)dv (21)

where ‰ is a density.
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The variation of the kinetic energy is expressed by substituting the assumed displacement field into Eq.(21) as

–T =
Z

v

‰

(
–Ẇ

"
Ẇ + Ψ̇x(y ¡ n cos µ) + Ψ̇y(x + n sin µ) + Ψ̇!(! ¡ nq)

#

+ –U̇

"
U̇ + Φ̇

h
n cos µ ¡ (y ¡ yp)

i#
+ –V̇

"
m0V̇ + Φ̇

h
n sin µ + (x ¡ xp)

i#

+ –Φ̇Φ̇

"
U̇

h
n cos µ ¡ (y ¡ yp)

i
+ V̇

h
n sin µ + (x ¡ xp)

i
+ Φ̇(q2 + r2 + 2rn + n2)

#

+ –Ψ̇xΨ̇x

"
Ẇ (y ¡ n cos µ) + Ψ̇x(y ¡ n cos µ)2 + Ψ̇y(x + n sin µ)(y ¡ n cos µ) + Ψ̇!(y ¡ n cos µ)(! ¡ nq)

#

+ –Ψ̇yΨ̇y

"
Ẇ (x + n sin µ) + Ψ̇x(x + n sin µ)(y ¡ n cos µ) + Ψ̇y(x + n sin µ)2 + Ψ̇!(x + n sin µ)(! ¡ nq)

#

+ –Ψ̇!Ψ̇!

"
Ẇ (! ¡ nq) + Ψ̇x(y ¡ n cos µ)(! ¡ nq) + Ψ̇y(x + n sin µ)(! ¡ nq) + Ψ̇!(! ¡ nq)2

#)
dv (22)

In Eq.(22), the following geometric relations are used (Fig.1)

x ¡ xp = q cos µ + r sin µ (23a)

y ¡ yp = q sin µ ¡ r cos µ (23b)

In order to derive the equations of motion, Hamilton’s principle is used

–

Z t2

t1

(T ¡ Π)dt = 0 (24)

Substituting Eqs.(19) and (22) into Eq.(24), the following weak statement is obtained

0 =
Z t2

t1

Z l

0

‰
–Ẇ

h
m0Ẇ ¡ mcΨ̇x + msΨ̇y + (m! ¡ mq)Ψ̇!

i
+ –U̇

h
m0U̇ + (mc + ypm0)Φ̇

i

+ –V̇
h
m0V̇ + (ms ¡ xpm0)Φ̇

i
+ –Φ̇

h
(mc + ypm0)U̇ + (ms ¡ xpm0)V̇ + (mp + m2 + 2mr)Φ̇

i

+ –Ψ̇x

h
¡ mcẆ + (my2 ¡ 2myc + mc2)Ψ̇x + (mxycs ¡ mcs)Ψ̇y + (my! ¡ my!qc + mqc)Ψ̇!

i

+ –Ψ̇y

h
msẆ + (mxycs ¡ mcs)Ψ̇x + (mx2 + 2mxs + ms2)Ψ̇y + (mx! + mx!qs ¡ mqs)Ψ̇!

i

+ –Ψ̇!

h
(m! ¡ mq)Ẇ + (my! ¡ my!qc + mqc)Ψ̇x + (mx! + mx!qs ¡ mqs)Ψ̇y + (m!2 ¡ 2mq! + mq2)Ψ̇!

i

¡ Nz–W ′ ¡ My–Ψ′y ¡ Mx–Ψ′x ¡ M!–Ψ′! ¡ Vx–(U ′ + Ψy) ¡ Vy–(V ′ + Ψx) ¡ T–(Φ′ ¡ Ψ!)

¡ Mt–(Φ′ ¡ Ψ!)
¾

dzdt (25)

In Eq.(25), the inertia coefficients are defined by

m0 = I0

Z

s

ds (26a)
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mc = I1

Z

s

cos µds (26b)

mr = I1

Z

s

rds (26c)

mp = I0

Z

s

(q2 + r2)ds (26d)

mq = I1

Z

s

qds (26e)

ms = I1

Z

s

sin µds (26f)

m! = I0

Z

s

!ds (26g)

m2 = I2

Z

s

ds (26h)

mc2 = I2

Z

s

cos2 µds (26i)

ms2 = I2

Z

s

sin2 µds (26j)

mq2 = I2

Z

s

q2ds (26k)

mx2 = I0

Z

s

x2ds (26l)

my2 = I0

Z

s

y2ds (26m)

m!2 = I0

Z

s

!2ds (26n)

mcs = I2

Z

s

sin µ cos µds (26o)

mqc = I2

Z

s

q cos µds (26p)

mqs = I2

Z

s

q sin µds (26q)

mxs = I1

Z

s

x sin µds (26r)

myc = I1

Z

s

y cos µds (26s)

mq! = I1

Z

s

q!ds (26t)

mx! = I0

Z

s

x!ds (26u)

my! = I0

Z

s

y!ds (26v)

m!c = I1

Z

s

! cos µds (26w)

m!s = I1

Z

s

! sin µds (26x)

mxycs = I1

Z

s

(¡x cos µ + y sin µ)ds (26y)

mx!qs = I1

Z

s

(¡qx + ! sin µ)ds (26z)

my!qc = I1

Z

s

(qy + ! cos µ)ds (26aa)
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where

(I0; I1; I2) =
Z

n

‰(1; n; n2)dn (27)

The explicit forms of the inertia coefficients for box section are given in the Appendix.

IV. CONSTITUTIVE EQUATIONS

The constitutive equations of a kth orthotropic lamina in the laminate co-ordinate system of box section are given

by

8
><
>:

¾z

¾sz

9
>=
>;

k

=

2
64

Q̄∗
11 Q̄∗

16

Q̄∗
16 Q̄∗

66

3
75

k 8
><
>:

†z

°sz

9
>=
>;

(28)

where Q̄∗
ij are transformed reduced stiffnesses. The transformed reduced stiffnesses can be calculated from the

transformed stiffnesses based on the plane stress (¾s = 0) and plane strain (†s = 0) assumption. More detailed

explanation can be found in Ref.[24].

The constitutive relation for out-of-plane stress and strain is given by

¾nz = Q̄55°nz (29)

The constitutive equations for bar forces and bar strains are obtained by using Eqs.(16), (20) and (28)

8
>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

Nz

My

Mx

M!

Mt

Vx

Vy

T

9
>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

=

2
6666666666666666666666664

E11 E12 E13 E14 E15 E16 E17 E18

E22 E23 E24 E25 E26 E27 E28

E33 E34 E35 E36 E37 E38

E44 E45 E46 E47 E48

E55 E56 E57 E58

E66 E67 E68

E77 E78

sym: E88

3
7777777777777777777777775

8
>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

†◦z

•y

•x

•!

•sz

°◦xz

°◦yz

°◦!

9
>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

(30)

where Eij are stiffnesses of the thin-walled composite beams. The explicit forms of laminate stiffness Eij for the

thin-walled composite box beams are given in Ref.[22].
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V. EQUATIONS OF MOTION

The equations of motion of the present study can be obtained by integrating the derivatives of the varied quantities

by parts and collecting the coefficients of –W; –U; –V; –Φ; –Ψy; –Ψx and –Ψ!

N ′
z = m0Ẅ ¡ mcΨ̈x + msΨ̈y + (m! ¡ mq)Ψ̈! (31a)

V ′
x = m0Ü + (mc + ypm0)Φ̈ (31b)

V ′
y = m0V̈ + (ms ¡ xpm0)Φ̈ (31c)

M ′
t + T ′ = (mc ¡ my + ypm0)Ü + (ms ¡ xpm0)V̈ + (mp + m2 + 2mr)Φ̈ (31d)

M ′
y ¡ Vx = msẄ + (mxycs ¡ mcs)Ψ̈x + (mx2 + 2mxs + ms2)Ψ̈y + (mx! + mx!qs ¡ mqs)Ψ̈! (31e)

M ′
x ¡ Vy = ¡mcẄ + (my2 ¡ 2myc + mc2)Ψ̈x + (mxycs ¡ mcs)Ψ̈y + (my! ¡ my!qc + mqc)Ψ̈! (31f)

M ′
! + Mt ¡ T = (m! ¡ mq)Ẅ + (my! ¡ my!qc + mqc)Ψ̈x + (mx! + mx!qs ¡ mqs)Ψ̈y

+ (m!2 ¡ 2mq! + mq2)Ψ̈! (31g)

The natural boundary conditions are of the form

–W : W = W 0 or Nz = Nz0 (32a)

–U : U = U0 or Vx = V x0 (32b)

–V : V = V 0 or Vy = V y0 (32c)

–Φ : Φ = Φ0 or T + Mt = T 0 + M t0 (32d)

–Ψy : Ψy = Ψy0 or My = My0 (32e)

–Ψx : Ψx = Ψx0 or Mx = Mx0 (32f)

–Ψ! : Ψ! = Ψ!0 or M! = M!0 (32g)

The 7th denotes the warping restraint boundary condition. When the warping of the cross section is restrained,

Ψ! = 0 and when the warping is not restrained, M! = 0.

Eq.(31) is most general form for axial-flexural-torsional-shearing vibration of the thin-walled composite beams. For

general anisotropic materials, the dependent variables W , U , V , Φ, Ψx, Ψy and Ψ! are fully-coupled implying that

the beam undergoes a coupled behavior involving extension, bending, twisting, transverse shearing, and warping.

The resulting coupling is referred to as sixfold coupled vibrations. If all the coupling effects are neglected and cross

section is symmetrical with respect to both x- and the y-axes, Eq.(31) can be simplified to the uncoupled differential
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equations as

(EA)comW ′′ = ‰AẄ (33a)

(GAy)com(U ′′ + Ψ′y) = ‰AÜ (33b)

(GAx)com(V ′′ + Ψ′x) = ‰AV̈ (33c)
h
(GJ1)com + (GJ3)com

i
Φ′′ ¡ (GJ2)comΨ′! = ‰IpΦ̈ (33d)

(EIy)comΨ′′y ¡ (GAy)com(U ′ + Ψy) = ‰IyΨ̈y (33e)

(EIx)comΨ′′x ¡ (GAx)com(V ′ + Ψx) = ‰IxΨ̈x (33f)

(EI!)comΨ′′! + (GJ2)comΦ′ ¡
h
(GJ1)com ¡ (GJ3)com

i
Ψ! = ‰I!Ψ̈! (33g)

From above equations, (EA)com represents axial rigidity, (GAx)com, (GAy)com, (GA!)com represent shear rigidities

with respect to x- and y-axis, (EIx)com and (EIy)com represent flexural rigidities with respect to x- and y-axis,

(EI!)com represents warping rigidity, and (GJ1)com, (GJ2)com, (GJ3)com, (GJ)com represent torsional rigidities of

the thin-walled composite beams, respectively, written as

(EA)com = E11 (34a)

(EIy)com = E22 (34b)

(EIx)com = E33 (34c)

(EI!)com = E44 (34d)

(GAy)com = E66 (34e)

(GAx)com = E77 (34f)

(GA!)com = E88 (34g)

(GJ1)com = E55 + E88 (34h)

(GJ2)com = E55 ¡ E88 (34i)

(GJ3)com = 2E58 (34j)

(GJ)com = 2E55 + 2E58 (34k)

In Eq.(33), Ip denotes the polar moment of inertia. It is well known that the three distinct vibration modes, flexural

vibration in the x- and y-direction and torsional vibration, are identified in this case and the corresponding vibration

frequencies are given by the approximate solution or orthotropy solution for a clamped beam boundary conditions [5]
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!xn =

sh ‰A

(EIy)com

L4

(n + 0:5)4…4
+

‰A

(GAy)com

L2

n2…2

i−1

(35a)

!yn
=

sh ‰A

(EIx)com

L4

(n + 0:5)4…4
+

‰A

(GAx)com

L2

n2…2

i−1

(35b)

!µn
=

sh ‰Ip

(EI!)com

L4

(n + 0:5)4…4
+

‰Ip

(GA!)com

L2

n2…2

i−1

+
(GJ)com

‰Ip

n2…2

L2
(35c)

where !xn ; !yn ; !µn are flexural frequencies in the x- and y-direction, and torsional vibration frequency, respectively.

VI. FINITE ELEMENT FORMULATION

The present theory for thin-walled composite beams described in the previous section was implemented via a

one-dimensional displacement-based finite element method. The generalized displacements are expressed over each

element as a linear combination of the one-dimensional Lagrange interpolation function c̀
j associated with node j

and the nodal values

W =
nX

j=1

wj
c̀

j (36a)

U =
nX

j=1

uj
c̀

j (36b)

V =
nX

j=1

vj
c̀

j (36c)

Φ =
nX

j=1

`j
c̀

j (36d)

Ψy =
nX

j=1

ˆyj
c̀

j (36e)

Ψx =
nX

j=1

ˆxj
c̀

j (36f)

Ψ! =
nX

j=1

ˆ!j
c̀

j (36g)

Substituting these expressions into the weak statement in Eq.(22), the finite element model of a typical element

can be expressed as

([K] ¡ ‚[M ])f∆g = f0g (37)
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where [K] is the element stiffness matrix

[K] =

2
666666666666666666664

K11 K12 K13 K14 K15 K16 K17

K22 K23 K24 K25 K26 K27

K33 K34 K35 K36 K37

K44 K45 K46 K47

K55 K56 K57

K66 K67

sym: K77

3
777777777777777777775

(38)

and [M ] is the element mass matrix

[M ] =

2
666666666666666666664

M11 M12 M13 M14 M15 M16 M17

M22 M23 M24 M25 M26 M27

M33 M34 M35 M36 M37

M44 M45 M46 M47

M55 M56 M57

M66 M67

sym: M77

3
777777777777777777775

(39)

More detailed explanation explicit forms of [K] can be found in Ref.[25]. The explicit forms of [M ] are given by

M11
ij = M22

ij = M33
ij =

Z l

0

m0ˆiˆjdz (40a)

M15
ij =

Z l

0

msˆiˆjdz (40b)

M16
ij = ¡

Z l

0

mcˆiˆjdz (40c)

M17
ij =

Z l

0

(m! ¡ mq)ˆiˆjdz (40d)

M24
ij =

Z l

0

(mc + m0yp)ˆiˆjdz (40e)

M34
ij =

Z l

0

(ms ¡ m0xp)ˆiˆjdz (40f)

M44
ij =

Z l

0

(mp + m2 + 2mr)ˆiˆjdz (40g)

M55
ij =

Z l

0

(mx2 + 2mxs + ms2)ˆiˆjdz (40h)

M56
ij =

Z l

0

(mxycs ¡ mcs)ˆiˆjdz (40i)
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M57
ij =

Z l

0

(mx! + mx!qs ¡ mqs)ˆiˆjdz (40j)

M66
ij =

Z l

0

(my2 ¡ 2myc + mc2)ˆiˆjdz (40k)

M67
ij =

Z l

0

(my! ¡ my!qc + mqc)ˆiˆjdz (40l)

M77
ij =

Z l

0

(m!2 ¡ 2mq! + mq2)ˆiˆjdz (40m)

All other components are zero. In Eq.(37), f∆g is the eigenvector of nodal displacements corresponding to an

eigenvalue

f∆g = fW U V Φ Ψy Ψx Ψ!gT (41)

VII. NUMERICAL EXAMPLES

For verification purpose, a cantilever composite box beam with material properties and geometric characteristics

shown in Table I is considered. Plane stress assumption (¾s = 0) is made in the analysis. The natural frequencies

obtained from the present analysis are given in Table II, along with the analytical and experimental results of Chandra

and Chopra [8] and the finite element results of Librescu and Qin [10]. The first natural frequencies associated with

twist-vertical bending coupling, the vertical bending are denoted by 1TV and 1VB, respectively. Results obtained

from previous research [21] based on the classical beam theory are also displayed. It is observed that the present

results are in good agreement with the solutions in Refs.[8,10] for all cases of lay-ups.

The next example is the same as before except the laminate stacking sequence. An asymmetric composite box

beam configuration ([0=90]A) has a ply orientation of [03=903] and [903=03] in the top and bottom flanges and similar

in the left and right webs. The results are compared with those presented by Mitra et al. [16] in Table III. For the

validation of the results in [16], the 3-D finite element results were obtained using ANSYS general purpose program,

where eight noded brick element was used to model the structure. The table shows an excellent agreement between

the predictions of the present model and the results of the other models mentioned.

In order to investigate the coupling and effects of shear deformation on the natural frequencies and mode shapes,

thin-walled composite box beam with geometry and stacking sequences shown in Fig.2 is considered. The following

engineering constants are used

E1=E2 = 25; G12=E2 = 0:6; G12 = G13 = G23; ”12 = 0:25 (42)
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For convenience, the following nondimensional natural frequency is used

!̄ =
!l2

b1

r
‰

E2
(43)

A clamped composite beam with the left and right webs are considered as angle-ply laminates [µ/¡µ] and [¡µ/µ] and

similar in the top and bottom flanges (Fig.2a). For this lay-up, all the coupling stiffnesses are zero, but E25; E35; E28,

E38 do not vanish due to unsymmetric stacking sequence of the flanges and webs. Fig.3 shows the effects of shear

deformation on the first three natural frequencies with ratio (l=b1 = 20). The finite element solution with no shear is

calculated by previous paper [21]. It is interesting to note that the shear effects are negligbly small even for the lower

span-to-height ratio, especially in the interval µ 2 [30◦; 90◦]. As expected, for classical beam model [21], the lowest two

natural frequencies !1; !2 decrease monotonically with the increase of fiber angle. However, for present model, after

!1; !2 reach local maximum values around µ = 8◦ and 11◦, respectively, they decrease. These local maximum occur

because at low fiber angle large shear effects reduce flexural stiffnesses. As fiber angle increases, these effects become

immaterial because of low anisotropic. This trend can be explained that flexural stiffnesses decrease significantly with

increasing fiber angle, and thus, the relative shear effects become smaller for the higher fiber angles. The first three

natural frequencies by the finite element analysis and the orthotropy solution, which neglects the coupling effects

from Eqs.(35a)-(35c) for each mode are given in Table IV. For unidirectional fiber direction, these natural frequencies

by the finite element analysis exactly correspond to the first flexural mode in x-direction, the first flexural mode in

y-direction and the torsional mode by the orthotropy solution, respectively. As the fiber angle increases, however,

this order is changing. It can be explained partly by the mode shapes corresponding to !1; !2 and !3 with fiber angle

µ = 15◦ in Figs.4-6. In each mode the amplitude along the beam length is nomalized with respect to the maximum

amplitude for that mode. All three modes exhibit fourfold coupled vibrations. While mode 1, 3 show the first and

the second flexural in x-direction, torsional and corresponding shearing vibration, mode 2 displays the first flexural in

y-direction, torsional and corresponding shearing vibration. Due to the small coupling stiffnesses E25; E35; E28, E38,

these modes become predominantly the first flexural mode in x-direction, the first flexural mode in y-direction and

the second flexural mode in x-direction, respectively, with a little contribution from torsion. Therefore, the results

by the finite element analysis and orthotropy solution show slight discrepancy in Table IV. It is indicated that the

simple orthotropy solution is sufficiently accurate in this case.

To investigate the coupling and shear effects further, the same configuration with the previous example except the

lay-up is considered. Stacking sequence of the bottom flange and the right web are [µ2], while the top flange and the

left web are [0=45], (Fig.2b). All the coupling stiffnesses, especially, E12; E17; E18; E23; E27; E36; E37 and E57 become
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no more negligibly small. Figs.7 and 8 display the effects of shear deformation on the first three natural frequencies

with two different ratios (l=b1 = 20) and (l=b1 = 50). These figures reveal that the solutions excluding shear effects

remarkably underestimate the natural frequencies for all the range of fiber angle even for higher span-to-height ratio

(l=b1 = 50). This implies that discarding shear deformation leads to an overprediction of the natural frequencies. It

is also indicated that the coupling effects become significant because the transverse shear little affects the behavior

of this beam (l=b1 = 50). The typical mode shapes corresponding to the lowest three natural frequencies with fiber

angle µ = 30◦ are illustrated in Figs.9-11. It is from these figures that highlight the influence of shear effects on the

free vibration of beam. Relative measures of flexural displacements, torsional and shearing rotation show that all

three modes are strong coupling with sixfold coupled vibration (flexural mode in the x-, y-direction, torsional mode

and corresponding shearing vibration). These responses are never observed in the classical beam model [21] because

the shear effects are not present. This fact explains as the fiber angle changes, the orthotropy solution and the finite

element analysis solution show significant discrepancy in Table V. That is, the orthotropy solution is no longer valid

for unsymmetrically laminated beams, and sixfold coupled flexural-torsional-shearing vibration should be considered

simultaneously even for a doubly symmetric cross-section.

The next example shows the effects of modulus ratio (E1=E2) on the natural frequencies !x1 ; !y1 ; !µ1 for a simply

supported and cantilever composite beam with ratio (l=b1 = 10). The stacking sequence of the webs are [0=90]s and

flanges are unidirectional, (Fig.2c). Since all the coupling stiffnesses vanish, the three distinct vibration mode, flexural

vibration in the x- and y-direction and torsional vibration are identified. It can be seen in Fig.12 that with increasing

orthotropy ratio (E1=E2), omission of shear effects causes an overestimation of !x1 and !y1 for simply supported

boundary condition. Conversely, torsional natural frequency is almost invariant. It can be explained from Eq.(35c)

that the torsional natural frequency is dominated by the torsional rigidity rather than warping rigidity. Moreover,

effects of warping is negligibly small for box section. Effect of the warping restraint on the natural frequencies

!x1 ; !y1 ; !µ1 of a cantilever composite beam with respect to modulus ratio variation is displayed in Fig.13. As ratio

(E1=E2) increases, this figure reveals that the warping restraint has a stiffening effect. Consequently, the significant

discrepancy between warping restraint (WR) and free warping (FW) models occurs only on the the torsional mode,

while flexural modes the influence of warping becomes immaterial. It can be explained that torsion is completely

decoupled from the flexure and transverse shear in this case.
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VIII. CONCLUDING REMARKS

An analytical model based on shear-deformable beam theory is derived to study the free vibration of thin-walled

composite box beam. This model is capable of predicting accurate the natural frequencies as well as vibration mode

shapes for various configuration including boundary conditions, laminate orientation and span-to-height ratio. To

formulate the problem, a one-dimensional displacement-based finite element method is employed. All of the possible

vibration modes including the flexural mode in the x- and y-direction, torsional mode, corresponding shearing mode,

and fully coupled flexural-torsional-shearing mode are included in the analysis. The resulting coupling is referred to

as sixfold coupled vibrations. The present model is found to be appropriate and efficient in analyzing free vibration

problem of thin-walled composite beam.
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APPENDIX

The explicit expressions of inertia coefficients for composite box section in Fig.14 are given by

m0 = I1
0 b1 + I2

0 b2 + I3
0 b1 + I4

0 b2 (44a)

mc = I2
1 b2 ¡ I4

1 b2 (44b)

mr = I1
1 (¡x1b1 + xpb1) + I2

1 (¡y2b2 + ypb2) + I3
1 (x3b1 ¡ xpb1) + I4

1 (y4b2 ¡ ypb2) (44c)

mp = I1
0

h1
3

b3
1 +

1
2
(¡2y4 + 2yp)b2

1 + (¡y4 + yp)2b1 + (¡x1 + xp)2b1

i

+ I2
0

h1
3

b3
2 +

1
2
(2x1 ¡ 2xp)b2

2 + (x1 ¡ xp)2b2 + (¡y2 + yp)2b2

i

+ I3
0

h1
3

b3
1 +

1
2
(2y2 ¡ 2yp)b2

1 + (y2 ¡ yp)2b1 + (x3 ¡ xp)2b1

i

+ I4
0

h1
3

b3
2 +

1
2
(¡2x3 + 2xp)b2

2 + (¡x3 + xp)2b2 + (y4 ¡ yp)2b2

i
(44d)

mq = I1
1 (

1
2

b2
1 ¡ y4b1 + ypb1) + I2

1 (x1b2 +
1
2

b2
2 ¡ xpb2)

+ I3
1 (y2b1 +

1
2

b2
1 ¡ ypb1) + I4

1 (
1
2

b2
2 ¡ x3b2 + xpb2) (44e)

ms = ¡I1
1 b1 + I3

1 b1 (44f)
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m! = I1
0 (

1
2

A1b2
1 + Cb1) + I2

0 (
1
2

A2b2
2 + A1b1b2 + Cb2) + I3

0 (
1
2

A3b2
1 + A1b2

1 + A2b2b1 + Cb1)

+ I4
0 (

1
2

A4b2
2 + A1b1b2 + A2b2

2 + A3b1b2 + Cb2) (44g)

m2 = I1
2 b1 + I2

2 b2 + I3
2 b1 + I4

2 b2 (44h)

m2c = I2
2 b2 + I4

2 b2 (44i)

m2q = I1
2

h1
3
(b1 ¡ y4 + yp)3 ¡ 1

3
(¡y4 + yp)3

i
+ I2

2

h1
3
(x1 + b2 ¡ xp)3 ¡ 1

3
(x1 ¡ xp)3

i

+ I3
2

h1
3
(y2 + b1 ¡ yp)3 ¡ 1

3
(y2 ¡ yp)3

i
+ I4

2

h1
3
(b2 ¡ x3 + xp)3 ¡ 1

3
(¡x3 + xp)3

i
(44j)

m2s = I1
2 b1 + I3

2 b1 (44k)

mx2 = I1
0 x2

1b1 + I2
0

h1
3
(x1 + b2)3 ¡ 1

3
x3

1

i
+ I3

0 x2
3b1 + I4

0

h
¡ 1

3
(x3 ¡ b2)3 +

1
3

x3
3

i
(44l)

my2 = I1
0

h
¡ 1

3
(y4 ¡ b1)3 +

1
3

y3
4

i
+ I2

0 y2
2b2 + I3

0

h1
3
(y2 + b1)3 ¡ 1

3
y3

2

i
+ I4

0 y2
4b2 (44m)

m!2 = I1
0

h1
3
(A1b1 + C)3=A1 ¡ 1

3
C3=A1

i
+ I2

0

h1
3
(A1b1 + A2b2 + C)3=A2 ¡ 1

3
(A1b1 + C)3=A2

i

+ I3
0

h1
3
(C + A1b1 + A2b2 + A3b1)3=A3 ¡ 1

3
(A1b1 + A2b2 + C)3=A3

i

+ I4
0

h1
3
(A4b2 + A1b1 + A2b2 + A3b1 + C)3=A4 ¡ 1

3
(C + A1b1 + A2b2 + A3b1)3=A4

i
(44n)

mcs = 0 (44o)

mqc = I2
2 (x1b2 +

1
2

b2
2 ¡ xpb2) + I4

2 (¡1
2

b2
2 + x3b2 ¡ xpb2) (44p)

mqs = I1
2 (¡1

2
b2

1 + y4b1 ¡ ypb1) + I3
2 (y2b1 +

1
2

b2
1 ¡ ypb1) (44q)

mxs = ¡I1
1 x1b1 + I3

1 x3b1 (44r)

myc = I2
1 y2b2 ¡ I4

1 y4b2 (44s)

mq! = I1
1

h1
3

A1b3
1 +

1
2
((¡y4 + yp)A1 + C)b2

1 + (¡y4 + yp)Cb1

i

+ I2
1

h1
3

A2b3
2 +

1
2
((x1 ¡ xp)A2 + A1b1 + C)b2

2 + (x1 ¡ xp)(A1b1 + C)b2

i

+ I3
1

h1
3

A3b3
1 +

1
2
((y2 ¡ yp)A3 + A1b1 + A2b2 + C)b2

1 + (y2 ¡ yp)(A1b1 + A2b2 + C)b1

i

+ I4
1

h1
3

A4b3
2 +

1
2
((¡x3 + xp)A4 + C + A1b1 + A2b2 + A3b1)b2

2

i

+ I4
1

h
(¡x3 + xp)(C + A1b1 + A2b2 + A3b1)b2

i
(44t)

mx! = I1
0 (

1
2

x1A1b2
1 + x1Cb1) + I2

0

h1
3

A2b3
2 +

1
2
(x1A2 + A1b1 + C)b2

2 + x1(A1b1 + C)b2

i

+ I3
0

h1
2

x3A3b2
1 + x3(A1b1 + A2b2 + C)b1

i

+ I4
0

h
¡ 1

3
A4b3

2 +
1
2
(x3A4 ¡ C ¡ A1b1 ¡ A2b2 ¡ A3b1)b2

2 + x3(C + A1b1 + A2b2 + A3b1)b2

i
(44u)

my! = I1
0

h
¡ 1

3
A1b3

1 +
1
2
(y4A1 ¡ C)b2

1 + y4Cb1

i
+ I2

0

h1
2

y2A2b2
2 + y2(A1b1 + C)b2

i



20

+ I3
0

h1
3

A3b3
1 +

1
2
(y2A3 + A1b1 + A2b2 + C)b2

1 + y2(A1b1 + A2b2 + C)b1

i

+ I4
0

h1
2

y4A4b2
2 + y4(C + A1b1 + A2b2 + A3b1)b2

i
(44v)

m!c = I2
1 (

1
2

A2b2
2 + A1b1b2 + Cb2) + I4

1 (¡1
2

A4b2
2 ¡ A1b1b2 ¡ A2b2

2 ¡ A3b1b2 ¡ Cb2) (44w)

m!s = I1
1 (¡1

2
A1b2

1 ¡ Cb1) + I3
1 (

1
2

A3b2
1 + A1b2

1 + A2b2b1 + Cb1) (44x)

mxycs = I1
1 (¡y4b1 +

1
2

b2
1) + I2

1 (¡x1b2 ¡ 1
2

b2
2) + I3

1 (y2b1 +
1
2

b2
1) + I4

1 (x3b2 ¡ 1
2

b2
2) (44y)

mx!qs = I1
1

h1
2
(¡x1 ¡ A1)b2

1 + (y4 ¡ yp)x1b1 ¡ Cb1

i

+ I2
1

h
¡ 1

3
b3

2 +
1
2
(¡2x1 + xp)b2

2 + (¡x1 + xp)x1b2

i

+ I3
1

h1
2
(A3 ¡ x3)b2

1 + (¡y2 + yp)x3b1 + Cb1 + A1b2
1 + A2b2b1

i

+ I4
1

h1
3

b3
2 +

1
2
(¡2x3 + xp)b2

2 + (x3 ¡ xp)x3b2

i
(44z)

my!qc = I1
1

h
¡ 1

3
b3

1 +
1
2
(2y4 ¡ yp)b2

1 + (¡y4 + yp)y4b1

i

+ I2
1

h1
2
(y2 + A2)b2

2 + (x1 ¡ xp)y2b2 + A1b1b2 + Cb2

i

+ I3
1

h1
3

b3
1 +

1
2
(2y2 ¡ yp)b2

1 + (y2 ¡ yp)y2b1

i

+ I4
1

h1
2
(y4 ¡ A4)b2

2 + (¡x3 + xp)y4b2 ¡ A3b1b2 ¡ Cb2 ¡ A1b1b2 ¡ A2b2
2

i
(44aa)

where the warping constants A1; A2; A3; A4 and C can be found in Ref.[23]
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FIG. 1 Deflnition of coordinates and generalized displacements in thin-walled closed sections.
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FIG. 2 Stacking sequences of thin-walled composite box beam.
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FIG. 14 Geometry of thin-walled composite box section.
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TABLE I Material properties and geometric characteristics of a cantilever composite box beam for veriflcation.

Parameters Value

Material properties

E1, psi (GPa) 20:59 £ 106(141:9)

E2, psi (GPa) 1:42 £ 106(9:78)

G12 = G13, psi (GPa) 0:89 £ 106(6:13)

G23, psi (GPa) 0:696 £ 106(4:80)

”12 0.42

‰; lbs2=in4(kg=m3) 0:1352 £ 10−3(1445)

Geometry properties

Length, in.(mm) 33.25 (844.5)

Outer width, in.(mm) 0.953 (24.21)

Outer depth, in.(mm) 0.537 (13.46)

Wall thickness, in.(mm) 0.03 (0.762)

Ply thickness, in.(mm) 0.005 (0.127)

Number of layers 6
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TABLE II Comparison of theoretical and experimental natural frequencies (Hz) of a cantilever composite box beam with CAS

and CUS lay-ups.

Lay-up Flanges Webs Mode Ref.[8] Ref.[10] Ref.[21] Present

Top Bottom Left Right

CAS2 [30]6 [¡30]6 [30= ¡ 30]3 [30= ¡ 30]3 1TV 20.96 21.80 22.07 21.80

CAS3 [45]6 [¡45]6 [45= ¡ 45]3 [45= ¡ 45]3 1TV 16.67 15.04 15.13 14.86

CUS1 [15]6 [15]6 [15]6 [15]6 1VB 28.66 30.06 38.65 32.02

CUS2 [0=30]3 [0=30]3 [0=30]3 [0=30]3 1VB 30.66 34.58 35.53 34.47

CUS3 [0=45]3 [0=45]3 [0=45]3 [0=45]3 1VB 30.00 32.64 32.52 32.41
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TABLE III Natural frequencies (Hz) of a cantilever composite box beam with [0=90]A lay-up.

Mode Ref.[16] Ref.[21] Present

No shear With shear ANSYS

1 31.06 31.02 30.99 31.30 31.04

2 49.34 49.17 49.19 49.86 49.54

3 194.57 192.55 187.22 196.16 194.06

4 308.75 301.63 298.13 312.48 304.79

7 862.40 817.54 794.24 874.97 826.46

11 1757.35 1642.38 1680.80 1779.29 1659.92

12 2107.33 2107.28 2111.70 2145.28 2145.09

14 2619.31 2381.89 2349.40 2657.98 2437.71

15 2771.02 2409.78 2418.00 2834.36 2440.04

16 3321.34 3220.05 3198.00 3419.13 3262.88
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TABLE IV Nondimensional natural frequencies respect to the flber angle change in the °anges and webs with ratio l=b1 = 20.

Fiber Orthotropy solution FEM

angle wx1 wy1 wµ1 wx2 w1 w2 w3

0 26.759 32.442 41.594 63.252 26.759 32.442 41.594

15 25.959 33.911 71.530 65.630 25.941 33.903 65.581

30 16.215 21.716 57.085 43.242 16.202 21.709 43.209

45 9.354 12.593 33.801 25.358 9.350 12.591 25.348

60 7.041 9.486 25.574 19.163 7.041 9.486 19.161

75 6.439 8.669 23.367 17.531 6.439 8.669 17.530

90 6.327 8.516 22.944 17.226 6.327 8.516 17.226
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TABLE V Nondimensional natural frequencies respect to the flber angle change in the left web and bottom °ange with ratio

l=b1 = 20.

Fiber Orthotropy solution FEM

angle wx1 wy1 wµ1 wx2 w1 w2 w3

0 24.151 30.711 48.031 59.286 24.027 30.390 47.507

15 23.584 30.882 63.220 59.742 20.595 28.316 51.170

30 18.760 25.229 64.379 49.079 15.730 23.330 41.511

45 14.798 21.075 54.203 39.166 13.163 21.049 35.045

60 13.511 19.798 50.769 35.820 12.157 20.346 32.405

75 13.192 19.448 48.327 34.952 11.814 20.082 31.474

90 13.132 19.372 47.393 34.780 11.737 20.007 31.255


