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Abstract 
Gum Arabic (GA), Sodium Dodecyl Sulfate (SDS) and their mixture were used for 
the dispersion of multi-walled carbon nanotubes (CNTs) in an alumina matrix. A 
good dispersion at low loadings (0.5-1 wt%) of CNTs in alumina was achieved by 
an ultrasonic bath treatment. Dispersions were evaluated by UV-vis spectroscopy 
and agglomerate size analysis. The mixture of GA and SDS produced good 
dispersion as compared to GA and SDS alone. Nanocomposite powders were 
sintered by Spark Plasma Sintering (SPS). Microstructural, electrical and 
mechanical characterizations of sintered discs were carried out to evaluate the 
effectiveness of the different dispersants. The mixture of GA and SDS produced 
homogeneous and agglomerate-free CNT-alumina nanocomposites with higher 
electrical conductivity and indentation fracture toughness as compared to 
nanocomposites prepared using GA and SDS alone. 
 
Keywords: A. Carbon nanotubes, A. Ceramic-matrix composites (CMCs), B. 
Electrical properties, B. Fracture toughness, E. Sintering. 
 
1. Introduction 
Carbon Nanotubes (CNTs) are one of the lightest [1], strongest [1,2] stiffest [1,3], 
electrically [4] and thermally [5] conductive engineering fibres. CNTs have already 
demonstrated their role as a multi-functional filler for various ceramic [6-12] and 
polymer [13-16] nanocomposites. However, CNT aggregation during processing of 
such nanocomposites is one of the major obstacles for their successful 
exploitation. This is due to the chemical inertness of CNTs caused by their unique 
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sp2 bonding in the graphene layers and their complex entanglement due to strong 
van der Waals forces, estimated at 500 eV/μm [17]. Such entangled bundles of 
CNTs cause significant reduction in the properties of ceramic nanocomposites [18]. 
Agglomerates of CNTs reduce the mechanical [13,19-21] and electrical properties 
[11,20] of various nanocomposites. To date, colloidal processing [22-24] has 
proven to be the most successful way of producing homogeneous suspensions of 
CNTs. Even in colloidal processing, there are many factors that influence CNTs de-
bundling and homogenisation, such as the degree of bundling nanotubes, the 
dispersant/nanotube concentration ratio, the solvent dilution of the suspensions, 
the sonication and/or centrifugation parameters [25,26]. High energy 
ultrasonication is often used to disperse CNTs in ceramic matrices [6,22,24,25,27]. 
The selection of the dispersant is the very important to achieve good materials. 
Various organic solvents, such as, alcohols [11,12,22], benzene [28], DMF [22] 
have previously been used for de-bundling CNTs and homogeneously dispersing 
them in ceramic matrices. The use of such solvents may not be industrially up-
scalable and environmental friendly. This demands the utilisation of less hazardous 
dispersants, like water-based solutions, for the dispersion of CNTs in ceramic 
matrices.  
 
Gum Arabic (GA) [29-31] and Sodium Dodecyl Sulfate (SDS) [32-35] are the most 
commonly used amphiphilic water-soluble dispersants, which de-bundles CNT 
from their bundles by electrostatic and steric repulsions respectively [36]. Most of 
the previous research [32-35] has been focused on using single dispersant (mostly 
SDS) for making homogenised CNT solutions. Bandyopadhyaya et al. [31] 
reported that GA solution has better CNT dispersibility as compared to negatively 
charged SDS, positively charged cetyltrimethylammoniumchloride (CTAC) and 
dodecyltrimethylammoniumbromide (DTAB), non-ionic pentaoxoethylenedodecyl 
ether (C12E5), a polysaccharide (dextrin) and a long chain synthetic polymer 
poly(ethylene oxide) (PEO). Moon et al. [37] reported a zeta potential (ζ) of -27 mV 
and -21 mV for GA-CNT and SDS-CNT dispersions respectively. The absolute 
value for ζ should be >25 mV for achieving stable and fully-dispersed CNT 
suspension [37]. Wang et al. [38] improved the dispersion quality of toluene/water 
emulsions by coating CNTs with GA via interfacial trapping. For silicon nitride – 
CNT suspensions, the disentangling capability of GA was reported to be higher 
than SDS [25]. The authors concluded their findings solely on the basis of their 
microstructural observations [25]. Recently, Silva et al. [39] prepared alumina – 
CNT and zirconia – CNT nanocomposites by using surfactant based dispersants 
and reported good interface between the matrices and CNTs.  
 
In this paper, we used GA, SDS and their mixture for dispersing CNTs in alumina 
matrix. The dispersion quality of various suspensions were characterised by UV-vis 
spectroscopy [40] and agglomerate size analyser [41]. After sintering, the 
dispersion of CNTs was analysed using high resolution electron microscopy. 
Indentation fracture toughness and electrical conductivities were measured to 
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compare the effect of different surfactants on the properties of ceramic-CNT 
nanocomposites.    
 
2. Experimental 
2.1. Starting materials 
The CNTs used in this study are commercially available as “multi-walled carbon 
nanotubes (CNTs), NC-7000” from Nanocyl S.A., Belgium. They were synthesised 
by the catalytic CVD method and have an entangled cotton-like form. The CNTs 
have an average outer diameter of 9.5 nm (10 graphitic shells), lengths of up to 1.5 
microns, purity of ~90% and density of 1.66 g/cm3. An acid treatment was 
performed using a mixture of concentrated nitric (HNO3, 90%) and sulfuric (H2SO4, 
90%) acids. Distilled water (~20 vol%) was used to dilute the acids. In order to 
produce pure CNTs, the as-received CNTs (400 mg) were mixed with 200 ml dilute 
acidic solution. Both acids were equally mixed in the solution. The acid-CNT 
mixture was homogenized by stirring with a glass rod on heating plate (~85 oC) for 
30 mins and then dispersed using ultrasonic bath treatment for 2 hrs. The resulting 
CNT dispersion was thoroughly washed with distilled water until the filtrate was 
colourless and neutral (pH ~7) after filtration. A Whatman filter paper of 1 μm was 
used. The purified CNTs were then dried for 48 hrs at 100 oC in an oven. CNTs 
were purified to >97% by acid treatment. Such purified CNTs improve mechanical 
properties of alumina-CNT nanocomposites [42]. The alumina matrix used in this 
study is commercially available “AKP 53 aluminum oxide” micropowder from 
Sumitomo, Japan. As supplied, the main features of this product are: alpha phase; 
D50: 310 nm; purity: 99.99%; BET surface area 11.7 m2/g; melting point 2050 oC; 
and density 3.97 g/cm3. GA (51200, Fluka), SDS (L6206) and polyethylene glycol 
(PEG, 202436) were supplied by Sigma-Aldrich, UK. 
 
2.2. Nanocomposite powder preparation and characterisations 
CNTs were hand-mixed for 2 mins in SDS solution (0.25 g/l). The solution was 
dispersed in an ultrasonic bath for 6 hrs. To increase attraction between SDS 
coated CNTs (negatively charged) and alumina particles, alumina particles were 
mixed in PEG solution (0.5 g/l) for 30 mins to make them positively charged. Both 
liquids were mixed and then rotation ball milled for 8 hrs. The mixture was then 
dried at 80 oC for 12 hrs on a heating plate in air, followed by in a vacuum oven at 
100 oC for 24 hrs. The dried agglomerated mixture was ground and sieved with a 
250 mesh and then placed again in the vacuum oven at 100 oC for another 24 hrs 
to thoroughly extract the solvent. The same method was followed to prepare 
powder batches using distilled water only, GA solution (0.25 g/l) and GA/SDS 
solution (GA: 0.18 g/l and SDS: 0.07 g/l). Alumina – 0.5wt% CNT and alumina – 1 
wt% CNT nanocomposite powders were prepared. 
 
For agglomerate size analysis, CNTs were hand-mixed for 15 secs in the different 
solutions (100 mg/l) and the high power ultrasonicated for different durations. The 
solutions were then transferred to standard polycarbonate cuvettes (10x10x45mm) 
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and placed in a Malvern, Zetasizer nano-particle size analyzer (Nano ZS). Details 
of the technique are reported elsewhere [41]. The software was programmed to 
record the average of at least 30 readings for the quantification of the 
agglomerates size distribution. For UV-vis spectroscopy, CNTs were hand-mixed 
for 15 secs in different solution (12.5 mg/l) and high power ultrasonicated for 2 hrs. 
The solutions were then transferred to standard polycarbonate cuvettes (having 
zero UV-vis absorbance) and placed in a Perkin Elmer, Lambda 950 
spectrophotometer. UV-vis spectroscopy was carried out for the wavelength range 
400 to 800 nm. All of the above procedures were used for different dispersant 
solutions.   
 
2.3. Spark Plasma Sintering (SPS) 
Dried nanocomposite powder was poured into a graphite die and cold pressed at 
0.6 MPa for 5 secs before sintering. Nanocomposite disks (thickness 3 mm and 
diameter 20 mm) were prepared by Spark Plasma Sintering (SPS) in a HPD 25/1 
furnace (FCT Systeme, Germany). The sintering rate was 100 oC/min and 
maximum temperature was 1400 oC. A pressure of 50 MPa was applied in the 
range 1100-1200 oC and released at the end of the sintering time, which was 5 
mins for all of the samples. The furnace has a pyrometer focused on a hole close 
to the sample in the upper punch to measure the processing temperature.  Details 
of the SPS technique are reported elsewhere [43]. The same sintering procedure 
was used for all samples.    
 
2.3. Nanocomposite characterisations 
The spark plasma sintered (SPSed) samples were ground using SiC paper and 
diamond polished down to 1 micron. Density measurements were conducted using 
water buoyancy (Archimedes) method. SPSed samples were fractured in order to 
observe the grain size, and agglomeration and dispersion of CNTs. Fractured 
surfaces were gold coated and observed in a FE-SEM (FEI, Inspect F, 20 kV). 
Grain sizes were measured with the aid of the software (Image tool, v3, developed 
by UTSHCSA, USA). A minimum of 500 readings was taken to measure the grain 
sizes of each material. The electrical conductivity of the sintered materials was 
measured using the two-probe method [44] at room temperature. Silver electroded 
specimens (3 × 3 × 3 mm) were characterized (Equation 1) with a high sensitivity 
digital micro-ohmmetre (Keithley 580).  

l

R A
 

    Equation 1   

Where,   = electrical conductivity, l  = sample thickness (3 mm), R  = electrical 

resistance and A  = cross-sectional area (9 mm2). The Vickers indentation method 
was used to measure hardness and indentation fracture. A diamond indenter was 
applied to the surface of the specimens. A load of 2.5 kg was used for a duration 
time of 5 secs. Vickers hardness was evaluated in accordance with ASTM C1327-
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03. For indentation fracture toughness Evans and Charles’ semi-empirical formula 
[45] was used (Equation 2). 

3/2

0.16



 
  

 

c
IFT H a

a
    Equation 2 

Where, IFT  = indentation fracture toughness, a = indentation half diagonal length 

and c = mean radial crack length. 

 
3. Results and Discussion 
3.1. Agglomerate size analysis and UV-vis spectroscopy 
CNTs were separately ultrasonicated for various durations and their agglomerate 
sizes were then measured immediately (Figure 1). This agglomeration is 
particularly significant in CVD-grown nanotubes because substantial entanglement 
of the tubes occurs during nanotube synthesis [44]. For all of the ultrasonication 
durations, GA+SDS solution disperses CNTs more efficiently as compared to SDS 
solution and GA solutions alone (Figure 1).  
 

The value of absorbance at a specific wavelength is proportional to the amount of 
de-bundled CNTs [40]. Figure 2 shows the UV-vis spectra of different CNTs 
solutions. A major absorbance peak was observed in the range 525-565 nm. 
Grossaid et al. [40] reported that the exact and absolute value of the absorbance at 
a certain wavelength corresponds to the superposition of different electronic 
transitions of different kinds of CNTs. It is not possible to attribute one peak of the 
spectrum to a specific kind of CNT in the range of wavelengths considered [40]. 
However, it is clear that GA+SDS solution disperses CNTs more efficiently as 
compared to SDS solution and GA solution alone (Figure 2). It should be noted that 
results (Figure 1 and 2) presented here are for comparison only and do not involve 
the optimum conditions for dispersing the CNTs. 
 
3.2. FE-SEM analysis 
Fully densified materials (~100% theoretical density) were sintered using an SPS 
furnace without damaging the CNTs [46]. Representative images of the fractured 
surfaces of the SPSed alumina and nanocomposites were selected for studying the 
distribution of the CNTs (Figure 3). Residual porosity and large grains (2.72 ± 0.87 
µm) were observed for alumina (Figure 3a). CNTs improved densification and 
retarded grain growth in alumina nanocomposites (Figure 3b-d), which was the 
subject of our previous study [47]. Bright micron-sized aggregates of CNTs are 
visible in the sample prepared using SDS solution as the dispersant (Figure 3b). 
The presence of these aggregates contributes to grain coarsening during sintering 
and produces non-uniformity in the resulting microstructure [48]. The sample 
prepared using GA solution as the dispersant has a homogeneous distribution of 
individual CNTs (Figure 3c). A finer grain size was observed when SDS+GA 
solution was used for dispersing and mixing CNTs with alumina. Such a fine grain 
size indicates better homogenization and de-bundling of CNTs in alumina. Those 



Version accepted for publication by “Ceramics International” on 9-June-2013 

© Crown copyright 2012. Published with the permission of the Defence Science and Technology Laboratory on behalf of the Controller of HMSO. 

 
 

  Page 6 of 12 

 

prepared with SDS+GA solution have a grain size of 360 ± 50 nm (Figure 3d) 
compared to the equivalent composite prepared with GA solution alone (grain size: 
456 ± 74 nm). 
 
3.2. Electrical and mechanical properties 
The electrical conductivities (Figure 4) and indentation fracture toughness (Figure 
5) were measured to evaluate the effectiveness of the different dispersant solutions 
on homogenisation. Error bars are not marked in the electrical conductivity 
measurements, as they are very small (Figure 4). Alumina is inherently an 
electrical insulator (conductivity: ~10-13 S/m). To achieve a low percolation 
threshold and high electrical conductivity for alumina-CNT nanocomposite, a good 
dispersion of CNTs is a prerequisite. Nanocomposites prepared using distilled 
water showed lower electrical conductivities as compared to SDS, GA and 
SDS+GA solutions. The highest electrical conductivity (S/m) was observed for 
alumina-CNT nanocomposites prepared using SDS+GA solution.  
 
Indentation fracture toughness evaluates the ability of a material to resist crack 
propagation under contact loading. Different toughening mechanism are reported 
for ceramic-CNT nanocomposites: crack deflection at the CNT-ceramic matrix 
interface [12,49,50]; crack bridging by CNTs [49,50]; CNT pullout [49,50] and CNT 
shear band collapse [50]. To optimise the effectiveness of these mechanisms, it is 
necessary to homogenously distribute the CNTs in the ceramic nancomposite. As 
compared to nanocomposites prepared by SDS solution and GA solution, 
increased fracture toughness (32% and 22%, respectively) was observed for the 
nanocomposite prepared by SDS+GA solution. It should also be noted that the 
nanocomposites prepared using GA solutions, possess higher electrical 
conductivities and indentation fracture toughness as compared to SDS solution. 
Hence it is concluded that GA is a better dispersing agent for CNTs in an aqueous 
solution, which was also reported by Bandyopadhyaya et al. [31]. For SDS alone, 
negatively charged sulphate groups coat CNTs which provide electrostatic 
repulsion, and thus prevent aggregation [51,52]. For GA, the long polymer chains 
of GA physically get adsorbed between CNTs that disperses them by steric 
repulsion [31,53]. Hence it is proposed that for the SDS+GA solution, both 
mechanisms are responsible for de-bundling of CNTs and homogeneously mixing 
them with alumina powder. The increased electrical conductivity (Figure 4) and 
fracture toughness (Figure 5) are the result of such improved dispersion of CNTs in 
alumina. 
 
4. Conclusion 
For the successful exploitation of ceramic-CNT nanocomposites, the homogenous 
dispersion and distribution of the CNTs in the ceramic matrices remains crucial. A 
new, environmentally friendly and industrial scalable, method has been developed 
to produce ceramic-CNT nanocomposites.  From agglomerate size analysis and 
UV-vis spectroscopy, it is clear that GA+SDS produces fine and homogenous CNT 
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dispersions. Sintered nanocomposites prepared from these GA+SDS solutions, 
showed no evidence of aggregation and a good distribution of the CNTs were 
observed. Those nanocomposites showed higher electrical conductivity and 
indentation fracture toughness as compared to those prepared using GA and SDS 
dispersions alone. In GA+SDS solution, it is proposed that both mechanisms 
(electrostatic and steric repulsions) for de-agglomeration of CNTs are operative. 
Such repulsions are responsible for improved dispersion and homogenous mixing 
of CNTs in alumina. The dispersing effect of various solutions for making good 
ceramic-CNT nanocomposites was found to be in the order of 
SDS+GA>GA>SDS>water.  
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Figure 1. Agglomerate size analysis with respect to ultrasonication time in different 
solutions (CNT concentration: 100 mg/l). 

 
 
 
 

 
 

Figure 2. UV-vis spectra of different aqueous solutions (CNT concentration: 12.5 
mg/l). 
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Figure 3. Field-Emission Scanning Electron Microscopy (FE-SEM) of fractured 
surfaces of sintered materials. SPSed at 1400 oC/ 50 MPa for 3 mins: a) alumina; 
b) alumina + 1wt% CNTs, dispersed in SDS solution; c) alumina + 1wt% CNTs, 
dispersed in GA solution; and d) alumina + 1wt% CNTs, dispersed in SDS+GA 

solution. 
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Figure 4. Electrical conductivites of alumina-CNT nancomposites, prepared using 
different dispersant solutions. Electrical conducivity of alumina is ~10-13 S/m. 

 
 

 
 

Figure 5. Indentation fracture toughness of sintered materials. 


