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Abstract

Many algorithms for graph layout have been devised over the last 30 years spanning both the graph

drawing and information visualisation communities. This article �rst reviews the advances made

in the �eld of graph drawing that have then often been applied by the information visualisation

community. There then follows a discussion of a range of techniques developed speci�cally for graph

visualisations. Graph drawing algorithms are categorised into the followings approaches: force-

directed layouts, the use of dimension reduction in graph layout and computational improvements

including multi-level techniques. Methods developed speci�cally for graph visualisation often make

use of node-attributes and are categorised based on whether the attributes are used to introduce

constraints to the layout, provide a clustered view or used to de�ne an explicit representation in

2D space. The similarities and distinctions between these techniques are examined and the aim

is to provide a detailed assessment of currently available graph layout techniques, speci�cally how

they can be used by visualisation practitioners and to motivate further research in the area.
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1 Introduction

A graph can be de�ned as a set of nodes and a set of edges such that an edge describes the existence

of a relationship between two nodes. Drawing a graph can help make better sense of the structure

of those relationships than simply looking at the data in tabular form. Simply drawing the graph

is not enough as how the graph is drawn has a signi�cant impact on how the graph is understood.

Due to the gestalt principle of proximity, developers of layout algorithms should be aware that

nodes placed close to one another will be interpreted by the user as a true relationship whether

or not this relationship exists1. This means the layout and the arrangement of the nodes strongly

in
uences how the user perceives the relationships in the graph. Therefore, �nding a layout which

can emphasise relationships, and which does so without misleading the user, is crucial even if

further interaction, �ltering and analysis may be necessary to discover why those relationships

exist.

Even though it is nearly �fty years since Tutte 2,3 proposed his barycenter method (see Section

2.1), how best to lay out a graph remains a current problem, one that is still attracting attention.

In fact, Blythe et al. 4 asserted that there is no best way to draw a graph and that layout simply

depends on which features of the graph we wish to highlight. These may be certain aspects of

the structure of the graph itself, particular measures of centrality or prominence, or important

attributes of the nodes or edges.

Graph drawing has evolved in two di�erent directions: the heavily algorithmic side drawing from

mathematical graph theory and the more interactive and application focused side from information

visualisation, often termed network or graph visualisation5.

Graph drawing has accumulated a large body of research and its own symposium `Graph

Drawing' 6 running annually for the past 20 years with articles continuously appearing in Journal

of Graph Algorithms and Applications (JGAA). Published in 1999, and building on their 1994

annotated bibliography, Di Battista et al.'s book on graph drawing 7 is regarded as the key reference

for an introduction to the algorithmic approach to graph drawing.

This review furthers their research by focusing on the use of graphs in information visualisation

through the inclusion of computational improvements to previous methods and, by exploring what

2



makes the key di�erence between graph drawing and network visualisation, the use of attributes

for layout 8. The work is restricted to two-dimensional graph layout because techniques that are

suitable for two-dimensions are not always generalizable to three dimensions; for example, edge

crossing is less of a problem in 3D than 2D9 but many 2D layouts consider reducing edge crossings

to be of central importance. Other problems include node occlusion, having di�culties in �nding

the best `view' in space and that users still �nd it hard to adapt to actions and interactions in 3D

space9,10 .

Di Battista et al. 7 credit Knuth 11 with the �rst application for automatic graph layout.

Knuth's algorithm visualised 
owcharts with the aim of improving computer program documen-

tation and since then network visualisation has been applied to many application areas. These

include technological areas such as the structure of the internet and the hyper-link structure of the

web as well as social networks, bibliographic networks and biological networks.

Visualisation of networks should not just be for the sake of it; it should aid the analysis and

understanding of the graph. In areas of network analysis, and particularly social network analysis,

interpretation and understanding of a graph's structure can come from the calculation of metrics

associated with each node of the graph and the graph as a whole12, but the idea of drawing a

graph is to represent the structure of a graph visually. Reasons to do this are given by Bezerianos

et al. 13 who suggest that visualisation can help with \detecting, understanding and identifying

unexpected patterns" in social networks and, in fact, this could be applied to all graphs. Henry

and Fekete8 go even further by suggesting that \computing a layout of a graph is necessary to �nd

insights". This is why visualisation can be useful: it can allow users to see relationships, such as

patterns and outliers14, that would not be apparent through a metrics-based analysis alone. For

example, a metrics based analysis can tell the user which are the most connected nodes or detect

communities but a visualisation allows the user to see whether the most connected nodes in
uence

di�erent areas of the graph or if there are outliers to a clustering (see Figure 1). Graph layout

algorithms serve to represent a graph subject to some rules or guidelines that should enable this

more e�ective analysis through visualisation.

In information visualisation particularly, drawing the graph can enable both hypothesis gen-
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Figure 1. The three labelled nodes (A, B, C) appear separated in the layout from other nodes
detected as being in their community.

eration and con�rmation from the data. Much of the research into what can be learnt from

studying the properties of a graph either concentrates on network analysis statistics or study of

the topological, static display of the network13. Layout that can also stem from interaction with

the network, integration of node-attributes (additional data we know about the node) and node

metrics (computed statistics that measure properties of the node) encourages further exploration

and understanding of the network. The more information we have about the graph the greater

the emphasis on good layout algorithms to convey the information in the graph in a way which is

informative, accessible and comprehensible to instigate interaction and engagement with the graph

by the user.

In this survey Section 2 covers the major graph drawing techniques that have been devised and

used over the past 30 years; these are divided into three categories: force-directed, those based on

dimension-reduction, and computational improvements such as multi-level techniques. In Section

3 techniques developed for using node-attributes more speci�c to graph visualisation are presented

and discussed. Conclusions and scope for further research is discussed in Section 4.
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2 Family of Force-Directed and Related Graph Drawing Al-

gorithms

Most algorithmic graph drawing is based on the force-directed paradigm of modelling a graph as a

physical system where nodes are attracted and repelled according to some force. The various forms

of force-directed graph drawing are among the most frequently used and modi�ed meaning they

can be be applied to graphs with many thousands of nodes. While force-directed and dimension

reduction based algorithms are dimension independent they are most commonly used to produce

layouts in two-dimensions. The presentation and evaluation of these layouts in this paper are given

in a two-dimensional context.

The original algorithm for force-directed graph drawing and its multiple variations are explained

in Section 2.1. The use of dimension reduction for graph layout shares a lot of similarities with

force-directed methods and these similarities and some extensions are discussed in Section 2.2.

More recently, it has become necessary to visualise much larger graphs, thus many suggestions,

including multi-level methods, have been proposed as computational improvements to the layouts

in Sections 2.1 and 2.2 along with some spectral methods, and these are mentioned in Section

2.3. There are a number of criteria that are used to evaluate the e�ectiveness of a graph layout.

These include computational complexity or running time for the algorithm to execute, the size of

graph they are realistically able to produce a layout for, their ability to comply with certain layout

principles or aesthetics, the user's visual assessment and other potentially desirable visual features

such as clustering. Section 2.4 discusses how the algorithms compare in terms of these criteria and

Table 2 gives a summary of this discussion.

2.1 Force-directed layouts

Force-directed algorithms were amongst the �rst to be developed for automatic graph layout and

are some of the most commonly used methods today. Based on a physical model of attraction

and repulsion the aim is to lay out the graph optimally. This optimality agreed with criteria put

forward as graph drawing aesthetics, as discussed in Section 2.1.1. A forerunner to force-directed
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methods was Tutte's2,3 barycenter method. The barycenter between two objects is the point at

which the gravitational forces exerted by those two object cancel. The method was developed for

drawing tri-connected and planar graphs where at least three nodes had a �xed initial position on

the external face of a polygon, the un�xed nodes are placed at the barycenter of their neighbours

with optimisation through Newton-Raphson iteration. Quinn and Breuer 15 also proposed a force

method for placing components on a printed circuit board. It was Eades'16 spring-embedded force-

directed layout that became accepted and inspired many other layout algorithms. Force-directed

techniques remain so popular because, in their simplest form, they are not di�cult to understand

and are easily implemented in code7.

2.1.1 Graph drawing aesthetics.

Classical force-directed placement approaches apply a set of rules that are said to produce aesthetic

graphs. In this context, aesthetics are associated with improving the readability (causing Dunne

and Shneiderman17 to rename them readability metrics) of the drawing18 on the premise that

if the layout makes the relationships in the graph more readable then it is more comprehensible

to the user. Good aesthetic properties should ensure that a graph is displayed more e�ectively

and allow the user to easily perceive the topological structure of a graph19. This is di�erent from

analysing the structure computationally. For example, a user may determine that the connectivity

of the nodes follow a power-law distribution or form a small-world network but visualisation can

give greater insight into their structure 20 such as seeing which clusters in a small-world network

are linked or placed close to one another in the layout. Table 1 shows the aesthetic criteria most

commonly used in force-directed graph layout with explanations as to why they are considered to

produce a good graph layout. However, these criteria are considered intuitive21 rather than being

derived from experimental data.

Incorporating all of these aesthetics into one optimal layout is infeasible due to their competi-

tive nature as achieving one often requires breaking another7. Additionally, there is a distinction

between what is shown to be computationally aesthetic and what is subjectively `aesthetically

pleasing' to each user16; in order to distinguish between these two meanings, from now on the aes-
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Aesthetic Reason

Minimise Edge Crossings Improves readability and aids the user in following paths. Edge crossings can
also conceal important information and make a graph appear less approachable
to the user 22 .

Symmetry Symmetry aids in the understanding of the structure of a graph.

Uniform Edge Lengths For a regular structure that prevents the graph becoming distorted.

Uniform Node Distribution For a regular structure, visual appeal and to prevent the graph feeling clut-
tered 21 .

Separate Non-Adjacent Nodes Proximity implies a relationship and so adjacent nodes should appear more
related than non-adjacent nodes.

Node-Edge Overlap Avoids visual elements appearing too clustered together and ambiguity as to
where the edge ends21 .

Table 1. A list of aesthetic considerations often used in graph layout and the motivation behind
their use.

thetic graph drawing criteria will be termed principles of graph drawing and aesthetically pleasing

will refer to the user's feeling about the view of the graph. Following this, it is not always the

graphs that adhere to these principles which are the most comprehensible; in fact they can lead

to graphs which are ambiguous or unintuitive to the user. The two graphs in Figure 2 provide

an example where symmetry is more important than the avoidance of edge crossings. Conversely,

Purchase23 conducted a user study on the e�ect of these principles on the understanding (with

graph-theoretic type tasks) of the graph and found that minimising edge crossing was the most

important criterion while symmetry was less so. This shows one of the problems with trying to

use these principles for layout: no one is really sure which criteria are the most useful or in which

situations they are most applicable17.

The designers of the graph drawing software tool Nicheworks25 noted that trying to follow these

graph drawing principles does not always create a better graph layout. Their software was designed

to re
ect edge weights, avoid the high computational cost of dealing with edge crossings and show

clustering. However, most force-directed algorithms are popular because of their adherence to

these principles and are generally evaluated on that basis.

There are two approaches to force-directed layouts: those based on Eades' spring-embedder

and those which are solutions to optimisation problems. Eades' spring-embedded approach uses a

spring-electrical system to �nd an equilibrium in the system so that the total force on each node
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Figure 2. Two layouts of one graph. Both layouts are symmetric, but users �nd the layout on
the left easier to understand than the one on the right despite the fact that it breaks the principle
of having no edge crossings. (Reproduced from Kamada and Kawai24 ).

is zero. The other approach, still inspired by Eades, treats the layout problem as an optimisation

problem which minimises an energy function (also known as the cost or objective function) designed

with respect to the properties of the graph to be displayed.

2.1.2 Spring-electrical based approaches.

Eades' spring-embedder16 is the basis for almost all force-directed techniques. Nodes are modelled

as steel rings and edges as springs; the system is put into some random initial con�guration and

released, leaving the system to reach a stable state where the force on each node is zero. The force

on each node is the sum of attractive,f a = c1 log d
c2

, and repulsive, f r = c3
d2 , forces on each node,

where d is the length of the spring and c1, c2, c3 are constants. From experimentation, Eades

made the decision to use springs of logarithmic strength claiming that linear strength springs were

too strong. Connected nodes are attracted to one another whilst all other nodes, modelled as

electrical charges, repel. The resulting layout should have edges of uniform length and symmetry.

An example of spring-embedded layout is shown in Figure 3.

Despite its wide use, Eades16 stressed his method's suitability only for graphs with fewer than

50 nodes with underlying structures such as grids, trees and sparse graphs rather than those with
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Figure 3. The spring embedder algorithm drawn using Cytoscape. The graph is a protein-protein
interaction network with 283 nodes and 1749 edges and will be used as the standard graph for all
running examples in this section unless speci�ed otherwise.

a dense structure. Therefore, it often produces poor layouts for large graphs and these problems

are replicated in algorithms that build on Eades' approach.

The �rst adaptation, which was for speed and simplicity, of the spring-embedder algorithm was

by Fruchterman and Reingold26 . This was subject to the properties of connected nodes appearing

close to one another (but not too close), aiming for a layout which conformed to the principles of

even node distribution, few edge crossings, uniform edge length, symmetry and �tting the drawing

to the frame. As with Eades, connected nodes attract while all nodes repel through a three step

process. The attractive, f a = d2

k , then repulsive, f r = � k 2

d , forces are calculated, followed by the

`temperature' governing the distance each node can move during an iteration.d is the distance

between the two nodes andk = C
p area

number of nodes is the optimal distance between the two nodes

where area is the space available andC an experimentally determined constant.

The algorithm is not guaranteed to converge, so Fruchterman and Reingold suggest that 50

iterations of the algorithm is su�cient for an optimum layout. Their goal was for the algorithm to

work well without requiring the user to tune various parameters to produce a satisfactory layout.

They considered it to be fast, laying out most graphs in less than one second but restricted to
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graphs with at most 100 nodes. An example of a graph laid out using Fruchterman and Reingold's

algorithm is shown in Figure 4(a).

Fruchterman and Reingold sped up their layout through a modi�cation known as the Grid

Variant Algorithm (GVA). The graph frame is divided into a grid and for each node the repulsive

forces are calculated only between nodes which are in the same or neighbouring grid squares; this

was later altered to just being inside a speci�ed radius. Repulsive forces are now

f r =
k2

d
u(2k � 1) where u(x) =

8
><

>:

1 x > 0

0 otherwise

This speeds up the algorithm without a�ecting the quality of the graph and in some cases

may improve the quality of the layout according to the graph drawing principles by preventing the

nodes from becoming too widely spread, although Fruchterman and Reingold only expected this

modi�cation to be useful for larger graphs.

The algorithm is still used for graph layout with Genc and Dogrusoz27 basing their model for

laying out biological pathways in PATIKA 28 on it, and Garcia et al. 29 extending it to use as a

basis for their layout for displaying Gene Ontology class structure of nodes in a protein-interaction

network.

The �nal example of a spring-electrical-based system is the graph-embedder (GEM) algorithm.

Frick et al. 30 wanted to produce a layout that conforms to the graph drawing principles for larger

and more complex graphs but with `interactive speed'. The exact principles are not explicitly

de�ned but are just said to be similar to the concepts for other spring layouts and the system is

evaluated on edge crossings, edge lengths and node distribution.

GEM uses forces similar to those of Fruchterman and Reingold plus gravitational forces which

pull nodes towards the barycenter of their neighbours. Fruchterman and Reingold believed that a

better cooling schedule could have signi�cantly improved their algorithm and so Frick et al. imple-

mented an adaptive schedule with local and global temperatures. The lower the local temperature

of a node the closer it should be to its �nal position in the layout and the shorter the distance it can
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(a) Fruchterman-Reingold (Gephi). (b) GEM (Ondex).

Figure 4. The protein-protein interaction network laid out using Fruchterman and Reingold's
algorithm and the Graph Embedder (GEM)

move in each iteration. A node's local temperature is dependent on its temperature in the previous

iteration and whether the node is oscillating between positions or part of a rotating sub-graph.

The global temperature is the mean of all local temperatures and the iterations stop when global

temperature reaches a speci�ed value or a �xed number of iterations have passed. The temperature

is therefore adaptive to the state of the graph and, because of this, di�ers from cooling schedules

such as those in simulated annealing31. The quality of the layout should be similar to those of

Fruchterman and Reingold and Kamada and Kawai (Section 2.1.3). This includes minimising edge

crossings despite not being explicitly designed to do so. An example of the layout produced by

GEM is shown in Figure 4(b).

2.1.3 Energy-based approaches.

Energy-based approaches consider layout to be the minima of an optimisation problem in which an

energy function encodes the desired properties of the graph. Solutions which result in local rather

than global minima are not the optimal solution, and in this case, will not produce the optimal

layout. Like the spring GEM algorithm, some energy-based layouts can temporarily move to higher

energy con�gurations to reach the global minimum. The two main methods using this approach
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Figure 5. The protein interaction graph laid out using the Kamada-Kawai algorithm in Ondex. 32

are from Kamada and Kawai24 and Davidson and Harel's31 simulated annealing algorithm.

Kamada and Kawai24 use a spring approach with the key concept that Euclidean distance in

the layout should approximate the graph-theoretic distance, i.e., the shortest path length between

two nodes. The principle of symmetry is most important in this layout (see Figure 2) and the

cost function represents the `degree of imbalance' (lack of symmetry) in the layout and is based

on Hooke's Law (where the force exerted by a spring is linear and proportional to its displacement

from its natural length). Optimisation requires solving partial di�erential equations based on the

sum of squares of the di�erence between the Euclidean and graph-theoretic distances of pairs of

nodes. In each iteration only one node is moved and minimisation is carried out through Newton-

Raphson iteration and the resulting layouts are symmetric with few edge crossings. An example of

a layout produced with Kamada and Kawai's algorithm is shown in Figure 5. There are similarities

between this approach and those of multidimensional scaling and these are further discussed in

Section 2.2.

Davidson and Harel's31 simulated annealing also uses an energy-based approach. Annealing

is the process of cooling a liquid slowly so that it forms a minimal energy crystalline structure.

Their approach is for drawing graphs that comply with the graph drawing principles of evenly

distributed nodes, uniform edge lengths and minimised edge crossings. They created an explicit
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cost function comprising parts which govern node distribution, borderlines (distance from the edge

of the available layout area), edge lengths, edge crossings and near node-edge crossings, which can

be weighted to prioritise speci�c aesthetics. The algorithm begins from an initial con�guration

and global temperature. In each iteration only one node is moved. The distance a node can

move decreases with each iteration, and the temperature is recalculated at each step. The process

continues until a termination condition, such as iterating through �xed a number of stages, is

satis�ed. Fine tuning of the graph can then follow.

Davidson and Harel admit the algorithm does not perform well for graphs with over 60 nodes

but performance is similar to Fruchterman and Reingold, Kamada and Kawai, and GEM. They

also concede that the algorithm was coded for functionality rather than performance; consequently

the algorithm is often not used practically because it is too slow to be deemed useful19. Exceptions

to this are from Li and Kurata 33 who implemented it in their CADLIVE system for laying out

biochemical networks, the jGraph34 layouts of Cytoscape35 and its use in OpenOrd36.

Three other notable energy-based techniques are from Tunkelang19 , Noack's LinLog layouts37,38

and ForceAtlas39 from Gephi40. Tunkelang's initial approach is distinctive in that it requires com-

putation of a minimum spanning tree (a tree which connects all nodes of the graph) to decide

the order in which nodes are placed. Optimisation of node position is based on what he calls the

aesthetic cost function encoding the principles of uniform edge lengths, even distribution of nodes

and minimal number of edge crossings. It follows the approach of Fruchterman and Reingold in

using a grid to speed up computation of repulsive forces. It also outperformed simulated anneal-

ing and Fruchterman and Reingold in terms of minimising edge crossings for all graphs, while for

edge lengths and node distribution Tunkelang's approach performs better on sparse graphs with

Fruchterman and Reingold's better for denser graphs.

Noack37,38 takes an alternative to the principles-based approach as his main aim is to highlight

clustering in a graph. Other force-directed algorithms usually miss this by striving for uniform edge

lengths but longer edges are required to separate clusters. The weak connection between using

graph-theoretic distance and identifying low coupling between parts of the graph also hinders

clustering38.
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Noack proposes two models, both with linear attractive forces between adjacent nodes and

logarithmic repulsive forces. In the node repulsion model repulsive forces are calculated between all

nodes in the graph again using their Euclidean distances while in the edge repulsion model repulsive

forces act on edges by weighting the calculation according to the degree (number of edges connected

to the node) of each node. The edge model removes the node model's bias towards attraction by

ensuring that nodes which are strongly attracting are also strongly repelling, similarly for those

nodes with weak attraction. Therefore, nodes with high degree are less likely to be clumped in the

centre of the graph and in comparison with Fruchterman and Reingold's layout it is much more

clearly able to show any underlying clustered structure in the graph.

(a) ForceAtlas (Gephi). (b) ForceAtlas with Noak's Edge LinLog Adjustment
(Gephi).

Figure 6. The protein interaction network laid out using the ForceAtlas layout. The layout on
the left is the ForceAtlas style only while on the right the layout uses Noack's LinLog algorithm to
aid the clustering of nodes. Both algorithms produce layouts with a similar shape with the LinLog
adjustment resulting in a layout that requires a greater area.

The �nal energy layout has strong associations with Noack's. ForceAtlas39 was developed for

use in Gephi40 as their users were dissatis�ed with given layout algorithms. Rather than a layout,

Jacomy et al. call their method a `spatialization' which is de�ned as the act of projecting data onto

space. The method aims to optimise the speed versus precision approximation. The forces in the

algorithm are between Noack's edge repulsion model (logarithmic attractive force, linear repulsive
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force) and Fruchterman and Reingold's layout (quadratic attractive, linear repulsive force) with

both linear attractive and repulsive forces. Attractive forces are again distances between nodes

and repulsive forces are based on distances and node degree plus one. This ensures all nodes have

at least some repulsive force, unlike Noack's model, and so poorly connected nodes are brought

closer to well connected ones reducing visual clutter. The algorithm maximises speed until it is

clear that some nodes are unstable at which point it slows and emphasises precision. Jacomy et al.

also particularly wanted the layout to be interactive for the user and so there are many options

that can be con�gured even while the layout is running which may alter the layout but also give

users a better understanding of how the algorithm can be manipulated by the user to produce a

layout that is most suitable for them.

In general, ForceAtlas produces better quality (in terms of a normalised edge length metric

proposed by Noack41 based on size and graph density) with fewer iterations for most graphs than

Fruchterman and Reingold and Yifan Hu (see Section 2.3) and the results were even more con-

vincing when the technique was combined with Noack's edge repulsion model; a comparison of the

ForceAtlas layout with and without the LinLog adjustment can be seen in Figure 6. Performance

improvements have also been made by utilising the Barnes-Hut algorithm42 (explained further in

Section 2.3) and multi-threading.

2.2 Dimension reduction for layout

Dimension reduction is the process of taking data expressed in high-dimensional space and pro-

jecting it onto a lower-dimensional space. The challenge is to try to retain the information that is

in the high-dimensional space and capture it in the lower-dimensional representation. Most dimen-

sion reduction techniques currently used for graph layout use the graph-theoretic distance between

a pair of nodes as the information that is to be preserved. This section provides an overview of

dimension reduction techniques in graph drawing, in particular multidimensional scaling (MDS),

linear dimension reduction and self-organising graphs.

MDS involves minimising the di�erence between the Euclidean and graph-theoretic distances.

There are two approaches of MDS to solve this problem: distance scaling and classical scaling.
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Distance scaling is more common and the idea is to directly compute an approximation of the

di�erence (the dissimilarity) between the graph-theoretic and the Euclidean distance for each pair

of nodes in the layout. The sum of squares of the di�erence is called the `stress' of the layout and the

aim is to minimise this stress through an optimisation procedure. If the stress is considered to be

too high then this can be taken as an indication that the layout is not an accurate representation of

the original dissimilarities 43. This stress function is regarded as being almost identical to Kamada

and Kawai's energy function for force-directed layouts. The di�erence between the two is that

Kamada and Kawai use Newton-Raphson iteration to �nd the minima whilst distance scaling

minimises the stress through the statistical technique of stress majorization44.

Distance scaling was �rst used for graph drawing by Kruskal and Seery45 for social network

layout and and since then it has also been used by Freeman43 to show relationships between workers

in a department store while Buja et al.46 have implemented it as part of the XGvis system.

With distance scaling the optimisation procedure may result in a local minima solution. How-

ever, classical (or Torgerson-Gower) scaling follows a method of �tting inner products to the dissim-

ilarities and �nding an exact solution through the spectral decomposition. Formally, the spectral

decomposition is the representation of the matrix of graph-theoretic dissimilarities between node-

pairs as the matrix of its eigenvectors and a diagonal matrix of corresponding eigenvalues. By

choosing the largestd eigenvalues (whered corresponds to the number of dimensions you want to

reduce to) the lower dimensional representation of Euclidean distances between node-pairs can be

found.

Brandes and Pich47,48 proposed that classical scaling should provide a good alternative to

distance scaling but its quadratic running time is prohibitive to implementation. They proposed a

sampling approximation technique known as Pivot MDS. In Pivot MDS some nodes are assigned to

be pivots (the �rst pivot is chosen randomly and subsequent ones are chosen by being the node with

the greatest graph-theoretic distance from all selected pivots so far). Non-pivots are positioned

based on their distances to the pivot nodes whereas the pivot nodes can use the distances both to

other pivot nodes and non-pivot nodes to determine their position. This is able to approximate

the results of classical scaling but in linear time. Brandes and Pich also recognised that selecting
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the number of pivots was a key problem and so implemented a second method, Progressive MDS,

where the number of pivots required could be de�ned along the way.

Brandes and Pich48 recognise the importance of distance scaling noting that it is more successful

at showing local details than classical scaling which is more suited to capturing global structure.

They recommend using a version of classical scaling for initial layout followed by re�nement through

weighted distance scaling (in fact they recommend this re�nement for any layout method). They

also warn about the merits of approximating Euclidean to graph-theoretic distances pointing out

that if the structure of the graph is not well captured by these distances then whatever layout

method is used the resulting layout will not be good. Example layouts produced through both

distance and classical scaling are shown in Figure 7.

(a) Distance Scaling MDS (Visone). (b) Metric MDS (Visone).

Figure 7. The distance and classical scaling layouts for the protein interaction network.

Although the technique uses principal component analysis (PCA) for dimension reduction,

Harel and Koren's49 high dimensional embedding (HDE) has strong similarities with Pivot MDS.

The aim of this layout was to follow the convention of placing adjacent nodes close together and

non-adjacent nodes further apart. The graph is �rst embedded in a high-dimensional space by

choosing 50 nodes as pivots and associating each pivot with a dimension; nodes are then expressed

in high-dimensional space as graph-theoretic distances from pivots. Then the graph is linearly
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projected onto two dimensions using PCA (although projection onto any lower dimensional space

is possible). PCA maps the data onto the �rst two principal components which account for the most

variance in the data. HDE is one of the quickest layout techniques available and is implemented

in both Topolayout 50 and Visone51, although it does seem to come at the cost of quality, in

terms of edge lengths, co-located nodes and edge crossings52. Brandes and Pich48 note that both

algorithms have similar running times although the quality of Pivot MDS is higher than HDE.

Koren 53 improves upon the HDE method by replacing PCA with subspace optimisation where the

aim is to �nd a subspace of low dimensionality which can display the graph with, what they call,

a \nice" (short edge lengths and uniform node distribution) layout.

Spectral graph drawing also reduces dimensions by using the eigenvectors associated with the

two largest eigenvalues of the graph-theoretic distance matrix found via the spectral decomposi-

tion 54. The method is also sped up by only using a sample of the nodes to compute the graph

theoretic distances much like HDE and Pivot MDS55.

Self-organising maps (SOM) can be used to draw a self-organising graph. Here an unsupervised

neural network is formed to project high-dimensional data onto a lower-dimensional space. For each

node its neighbourhood is de�ned to be all connected nodes. There exists a set of two-dimensional,

uniformly distributed training vectors and so each node is also described as a position in 2D space.

The system tries to learn the distribution of the training vectors by selecting a training vector

followed by its closest node. This node and all its neighbours positions are updated by moving the

nodes closer to the position of the training vector. This method tends to be easy to implement and

e�cient due to no computationally expensive iterations. Bonabeau's56,57 method can be used as a

standalone graph layout or as a pre-processing step to provide initial layout. Due to the di�culty

in training smaller graphs the method actually works better for larger graphs. Meyer's58 inverted

self-organising map (ISOM) �ts graph-theoretic to Euclidean distances to layout the graph using

a SOM method utilising their strong clustering and structure detection capabilities.
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(a) (b) (c) (d)

Figure 8. 4 stages of a multi-level algorithm produced using Hu61 in Gephi.40. Each image from
left to right shows the layout propagated back up through each less coarse version of the graph,
i.e., (a) is the most coarse version of the graph while (d) is the �nal layout.

2.3 Computational improvements

While force-directed techniques are generally not suitable for graphs with node numbers in the

hundreds or thousands, when evaluated qualitatively or against the aesthetic principles on graphs

with up to 40 nodes, they do give good results19,30 . Above that size, multi-level (or multi-scale)

algorithms are one option that can be used to make force-directed techniques more e�cient37.

The idea behind multi-level techniques is to �nd a sequence of coarser representations of a graph,

optimise the drawing in the coarsest representation, and propagate that layout back through to

the original graph. The coarser representations are created by collapsing connected nodes whose

edges becomes the union of the edges of all the nodes it comprises.

The inspiration for using a multi-level technique for graph drawing came from Hendrickson and

Leland59 , although the original idea came from particle physics60. Their idea was to use a multi-

level technique to solve the graph partitioning problem of how to divide the nodes of the graph

into sets such that there are as few edges crossing between the sets as possible. Hendrickson and

Leland solved this problem using the coarsest representation of the graph to de�ne the partitions.

An example of the stages of a multi-level graph layout algorithm can be seen in Figure 8.

Once the graph has been reduced to its coarsest level the method to actually lay out the

coarse graph varies. This can be using a force-directed algorithm60,62{64 , a dimension reduction

approach65 or a spectral approach66,67 . Computational improvements are not limited to multi-level
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methods and other techniques are also successful.

Multi-level methods vary not only by the layout algorithm used but also by the coarsening

scheme implemented. Cohen65 developed the �rst multi-level technique and it has similarities

to GRIP 60. The algorithm follows the recurring theme that graph distances should be re
ected

in Euclidean distances by using an incremental layout approach with MDS. Instead of modelling

the Euclidean distances on graph-theoretic distances between nodes Cohen opts to use the linear-

network distance. The linear-network distance reduces the distance between nodes if there are

multiple paths between them further emphasising the structure of the graph; in particular, this

strategy makes clusters in the graph more prominent in the drawing.

Walshaw64 , GRIP (Graph Drawing by Intelligent Placement) 60,68 and Hu 61 all share the idea

of using maximum independent vertex sets (MIVS) for their coarsening procedures where an IVS

is formed if there are no two nodes connected by an edge in the subset, and it is said to be maximal

if the addition of any edge to the subset would break this property. One of Hu's61 contributions is

a hybrid approach that allows the algorithm to follow a simple edge collapsing coarsening scheme

typically but if more than 50% of the nodes remain after the edge collapsing then the algorithm

reverts to the MIVS coarsening scheme. FMS's (fast multi-scale method)63 coarsening method is

based on an approximation to the k-centres problem forming clusters which are then shrunk to

single nodes while its predecessor69 creates the hierarchy based on cluster number, degree number

and homotopic number. In FM3 (fast-multipole, multilevel method) Hachul and J•unger 62 use a

novel method based on solar systems where each node is classi�ed as a sun, planet or moon and

each solar system is collapsed to one node.

Many of the multi-level algorithms are variations of the force-directed layouts and since force-

directed layouts are modelled as physical simulations they can be described asn-body problems.

So, along with using a multi-level scheme to improve computation, a Barnes-Hut42 simulation can

be used with a quad-tree to improve the order of complexity of the calculation fromO(n2) to

O(n logn). A square is placed over the initial layout of the graph and is divided into four. If there

is more than one node inside a sub-square then it is divided into four. This procedure continues

recursively until each square contains at most one node. Nodes are then clustered based on their
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position in the quad-tree and those clusters considered to be far from the node of interest form a

super-node whose forces can be considered as one reducing the complexity of the force calculation.

In terms of the force-directed methods used in multi-level algorithms, Walshaw's method is

quick and is able to lay out a graph of 500,000 nodes in only a few minutes using a modi�ed version

of Fruchterman and Reingold's algorithm. GRIP initially uses Kamada and Kawai's algorithm

followed by Fruchterman and Reingold's for re�nement but the di�erence with GRIP is that the

layout can be done in any dimension and Gajer et al. then suggest projecting down to two-

dimensions at the end to create a smoother layout. FMS (Figure 9(a)) also uses Kamada and

Kawai's layout technique aiming to conform to the graph layout principles at both the local and

global levels. Hu61 (Figure 9(b)) claims to produce layout with a similar speed to Walshaw but

with better results for certain graphs. He utilises the Barnes-Hut approximation but can limit

the number of recursive divisions, and adds an adaptive cooling scheme to a general force-directed

model where step length remains constant until there are �ve consecutive energy reductions, in

which case the step size is increased, or if there is an energy increase then step length is decreased.

FM 3 is the �nal multi-level force model which also uses the quad-tree to approximate repulsive

forces by rapidly evaluating potential �elds on each node. Further computational improvements

of FM3 have involved implementing a version of it on the GPU for speed resulting in layouts that

were at least 20 times and up to 60 times faster70.

Spectral graph drawing approaches can also use eigenvectors of the Laplacian matrix to produce

a projection of the layout via the spectral decomposition. For a general undirected graph the

Laplacian matrix is symmetric with node degrees along the diagonal, zero where there is no edge

between two nodes or the negative weight of the edge between the two nodes if there is. If the

graph is not weighted all edges can be taken to have equal weight.

The algebraic multigrid computation of eigenvectors (ACE)66,71 algorithm is able to draw

graphs with millions of nodes in under one minute. It does this by stating Hall's72 placement

algorithm as the eigen-projection problem as in equation (1) whereL is the Laplacian matrix,

x is a vector of coordinates of the position of each node and 1n = (11 : : : 1)T 2 Rn . ACE then

requires the coarsening phase, known as the algebraic multigrid technique, to simplify and solve the
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(a) Fast Multiscale (FMS)
(NodeXL).

(b) Yifan Hu Multilevel (Gephi).

,
(c) OpenOrd (Gephi).

Figure 9. Three layouts of the protein interaction network produced using algorithms that aim
to provide computational improvements over traditional force-directed methods.

problem. Here the coarsening phase is based on stating the problem initially in a high-dimension

and then to keep restating the problem in lower dimensions. Once expressed in the lower dimension

the problem can be solved in that dimension and the solution can be projected back up through

the increasingly less coarsened graphs to the original problem.

min
x

xT Lx

given xT x = 1

in the subspacexT � 1n = 0 (1)

Frishman and Tal 67 also suggested using a spectral approach for layout using a sequence of

coarsened graphs which were then partitioned and a layout found for each partition followed by a

layout for the whole graph. This showed a greater clustering ability than GRIP and sped up their

technique further by also implementing it on the GPU.

OpenOrd36 is a graph layout based on the VxOrd73 algorithm and implemented in the graph

drawing software Gephi. It is speci�cally designed to uncover global structure, improve the visual
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appeal and shorten the running time of force-directed graphs. It is based on the phases of simulated

annealing and incorporates node clustering by ignoring or cutting long edges in the layout (due to

the force calculation, domination of the repulsive force gives more clustering). The multi-level part

uses Walshaw's algorithm but instead of using random initial positions for coarsening, average-

link clustering is used which makes use of both edge weights and graph distance to �nd clusters

to collapse. The algorithm can be implemented in both serial and parallel. They have tested

the layout on real-world datasets with over 500,000 nodes and found that the serial and parallel

implementations produce similar results that were more visually appealing than VxOrd. As can be

seen from Figure 9(c) the OpenOrd algorithm produces a layout markedly di�erent to the others

clearly showing an overview and clustered structure of the graph.

Chen and Buja74 also use a combined approach in a method which can be applied to dimension

reduction as well as to graph drawing problems. They do this by taking a force-directed function

and modelling the attractive and repulsive forces with box-cox transformations which results in

a generalisation of many previously published energy functions in graph drawing such as Noack's

LinLog. In this case the parameter (such as clustering) which we wish to optimise in the algorithm

can be tuned.

Topolayout 50 is a completely di�erent approach to �nding coarser representations of the graph

whereby the algorithm detects topological features in the graph (such as trees, clusters and com-

plete graphs) and collapses them into a single node. This is done repeatedly until the coarsest

graph is reached and then each feature is assigned their own layout algorithm and laid out ac-

cordingly. These include circular layouts, the GEM algorithm and also detecting and using the

high-dimensional embedding (HDE) layout algorithm discussed in Section 2.2 on dimension reduc-

tion. In their evaluation they found it performed better, in general, than FM 3, ACE, and HDE in

terms of speed and a visual assessment of the quality of the layout produced.

2.4 Evaluation of algorithmic layouts for graph visualisation

Force-directed, dimension reduction and multi-level algorithms are often evaluated to see which

gives the `best' layout. Typically, it is the adherence to some of the principles of graph drawing,
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Figure 10. A larger protein interaction network (approximately 1800 nodes) laid out using the
GEM algorithm. The algorithm produces a layout for the graph which would be termed a giant
hairball.

along with the time taken to draw the graph, which are used to determine which layout is best;

although sometimes only a visual inspection of the graph is used to assess visual quality as in

Hachul and J•unger 75 and Archambault et al. 50 .

The criticism of force-directed methods is wide and varied but that does not seem to have

prevented them from becoming popular. The two main criticisms are that they have a high

running time and therefore become unsuitable for large graphs and the second is their tendency

to get trapped in local minima (even with some improvements added)60. These problems are

magni�ed in larger graphs resulting in layouts with many edges crossing, node occlusion and labels

on nodes which are unreadable. Ultimately this leads to nodes being placed in arbitrary positions76

or layouts which have led to the term \giant-hairball" being applied, an example of which can be

seen in Figure 10. They are also often unpredictable and may produce very di�erent graph layouts

for graphs which only di�er slightly in structure 10, a problem known as \preserving the mental

map" 77.

Not all algorithms perform equally though and so a number of comparisons between layouts

measuring running time and other criteria have been conducted. Tunkelang19 was the �rst to
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perform a quantitative evaluation of his layout comparing it to Fruchterman and Reingold's and

simulated annealing. He evaluated on the principles of uniformity of edge lengths, uniformity of

node distribution and number edge crossings on a range of graphs. Small graphs had about 16

nodes and large graphs between 50 and 60. Sparse graphs have nodes with degree at most three

and dense graphs with degree greater than four. In both small and large sparse graphs Tunkelang's

method out-performed Fruchterman and Reingold's and simulated annealing on all three measures.

On the dense graphs Fruchterman and Reingold's produced a graph with more uniform edge lengths

and node distribution than Tunkelang's. Simulated annealing gives the worst performance out of

the three.

Frick et al. 30 evaluated their GEM algorithm against Fruchterman and Reingold's and Kamada

and Kawai's on 30 graphs on the criteria of running time and the quality metrics of edge crossings,

mean edge length, edge length deviation and node distribution. GEM was always the fastest

algorithm being at least four times faster that Fruchterman and Reingold's. Kamada and Kawai's

layout slowed considerably once graph size was above 30 nodes. In terms of the principles the

three algorithms produced similar results though GEM fared slightly better than Fruchterman and

Reingold's while Kamada and Kawai's did better than GEM on the aesthetic criteria with the

smaller, sparse graphs.

Brandenburg et al.78 compared Fruchterman and Reingold, Kamada and Kawai, GEM, sim-

ulated annealing and Tunkelang's approaches on general, undirected graphs with straight lines.

They found that most graphs drawn conformed to the aesthetic principles of graph drawing, in

particular, uniform node distribution and edge length, whilst also stating them to be empirically

visually appealing. The layouts were also stable producing much the same graph each time the

chosen algorithm was run. However, the graphs were small with no graph having more than 150

nodes plus edges in total. Fruchterman and Reingold, Kamada and Kawai, GEM and simulated

annealing all produced relatively similar graphs especially showing symmetry, while Tunkelang's

generally produced a di�erent drawing with no symmetry. They suggest using Tunkelang's method

as an option if the other methods are unable to produce an adequate layout. Kamada and Kawai's

and GEM were found to be the quickest followed by Fruchterman and Reingold's if the graphs
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were kept small. Simulated annealing is a 
exible method because of how it can be weighted to

prioritise speci�c aesthetic principles but a lot of time and patience is needed to con�gure these

parameters and then run the algorithm. Ultimately, they recommend that Kamada and Kawai's

or GEM should be used �rst followed by Tunkelang's and then simulated annealing.

Hachul and J•unger52,75 evaluated the same six layout algorithms twice; they were Fruchterman

and Reingold's grid variant algorithm (GVA), FM 3, GRIP, FMS, HDE and ACE. Firstly, they

evaluated only on the basis of run time and their own visual inspection. 28 graphs were chosen

to perform the evaluation on and classi�ed as arti�cial or real-world, and kind or challenging. In

general, GVA was always the slowest algorithm and takes over �ve hours to compute for the largest

graph. FM3 is generally faster and GRIP up to nine times faster again. FMS produces layouts in a

similar time to FM 3 but is restricted to graphs of less than 10,000 nodes. Except on the two most

challenging graphs ACE computes layouts in less than 10 seconds and HDE will compute most in

under one second and all in under �ve. In inspected visual quality terms they consider GVA to

always produce a poor layout with all other methods able to produce visually pleasing results for

the kind graphs. Despite being the quickest ACE and HDE su�er from node occlusion. GVA, FM3

and HDE were the only algorithms able to produce layouts for all graphs and they consider that

FM 3 always produces a pleasing layout.

In Hachul and J•unger's 52 second evaluation they used the same layouts and testbed of graphs

but replaced the visual assessment with quantitative measures of uniform edge length, number of

edge crossings and non-overlapping of nodes and edges. For the kind graphs GVA, FM3, FMS,

HDE and ACE all produced layouts with uniform edge length; however, ACE and HDE produce

much more variation for the challenging graphs. In terms of edge crossings all graphs perform

better than GVA and particularly ACE and then FM 3 do the best. FMS and HDE produce graphs

with a range of edge crossings while those two plus FMS also give layouts with many overlapping

nodes and edges. Again they report that FM3 to be the most generally pleasing layout in terms of

complying with the graph drawing principles. Ultimately they recommend that when attempting

to lay out a graph HDE should be used �rst followed by ACE, but if neither of the produce

acceptable results then FM3 should be used.
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As mentioned at the end of Section 2.1.3, Jacomy et al.39 compared the ForceAtlas layout to the

ForceAtlas layout with a LinLog implementation, Fruchterman and Reingold's layout and to the

layout produced by the non-multi-level implementation of Hu 61 . ForceAtlas in general produced

better quality graphs (in terms of a normalised edge length metric41) in fewer iterations. When

combined with the LinLog implementation, ForceAtlas, for long-term quality (letting the algorithm

run for 750 iterations), was shown to produce the highest quality in terms of Noack's metric. This

is perhaps not a surprise considering the LinLog layout was developed for this optimising metric.

There are few comparisons of the dimension reduction techniques against other algorithms but

a comparison from Brandes and Pich48 between HDE, FM3, GRIP and classical MDS notes that

each of the layouts can be improved by applying up to 60 iterations of distance scaling to the

layout as a post-processing re�nement to any original algorithm.

User studies of the e�ect of layout are less common, one exception to this is the comparison of

three force-directed layouts from Purchase23 . She found that for three layouts tested (Fruchterman

and Reingold, Kamada and Kawai, and Tunkelang) there was little variation in users' understand-

ing of the graph between layouts despite the fact the each layout emphasised a di�erent aesthetic

principle. This could indicate that the use of these criteria in layout is not as important as �rst

thought; however, the graphs tested had only 17 nodes and 29 edges and so the graphs may not

have been large enough distinguish between the principles, that the principles were competing with

each other or that the graphs were too small to produce much variability in the layout or di�culties

to overcome.

What is interesting though is the type of tasks she asked her users to complete. These were

�nding shortest paths, identifying nodes to remove in order to disconnect the graph and identifying

edges to remove in order to disconnect the graph. A particular consideration is whether these tasks

are representative of those carried out by users in visual network analysis.

The readability and graph drawing principles qualities emphasised by most force-directed meth-

ods seem to support this style of task, and are feasible on the small graphs that force-directed lay-

outs work optimally for, but it is unclear as to if these type of accurate, precise measurements are a

typical analysis tasks for graphs with hundreds or thousands of nodes. Therefore, if force-directed

27



layouts are optimal for a particular task and these tasks are only completed on a certain size of

graph then extending force-directed techniques to larger graphs would only produce a layout that

is perceived to be optimal for those task. So if those kinds of tasks become infeasible due to the

volume of nodes and edges then the better layouts should support the user for a di�erent set of

tasks.

Noack's38 LinLog layout is optimised for clustering to give a clear representation of the structure

in the network and van Ham and Rogowitz79 found users tried to optimise clustering ahead of any

other aesthetic metric also indicating users are more concerned with overall structure. Another aim

for layout should then be to support users in tasks concerned with overview, structure, exploration,

patterns and outliers80. Algorithmic layouts which tend towards this motivation for layout are

Noack's LinLog and OpenOrd.
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Away from direct comparisons, a general problem noticed by Gansner and North81 is that

most force-directed algorithms were drawn with `point' nodes in mind (nodes which are drawn as

a dot rather than a disc) whereas many graphs in information visualisation require nodes to be

shown with varying size, colour, shape and be labeled or they need to be interactive. Archambault

et al. 50 call this being \area-aware". This is particularly prevalent in network visualisations where

being able to interact with and explore the graph is more common than just with graph drawing.

An alternative to just scaling the diagram up is using a post-processing solution of constructing a

Voronoi diagram over the graph. A Voronoi diagram is constructed by partitioning a plane into

convex polygons such that there is one node in each polygon known as a cell. Nodes are then moved

to the centroid of their cell which is the point most removed from all other nodes; thus, they no

longer overlap but neither do they lose the relative distance between each other. Additionally, the

straight line edges are then replaced with smooth curves to prevent node-edge overlaps, which has

been found to improve readability82,83 .

Running time aside, it is still the graph drawing principles that most graph layouts are judged

on. However, studies on user requirements and the impact of these principles are lacking, especially

on graphs of any signi�cant size. This means that the layout algorithms used may not be satisfying

anyone's requirements at all.

Because of this dissatisfaction with standard layout outputs new techniques have been devel-

oped. These techniques often make use of node-attribute data. Node-attributes are additional

pieces of data that may be known about each node which can be used to enrich the understanding

of the graph. The evaluation of these techniques is more focused on what can be learnt or what in-

sights can be made through using this layout than on conforming to speci�c principles. Techniques

that take advantage of node-attributes are discussed in the next section.

3 Using Node-Attributes for Layout

Graphs that are de�ned along with attributes from their nodes are termed multivariate graphs.

Graphs that have this kind of structure are actually quite common35,43,84,85 . The most popular
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way of visualising this underlying data is using retinal variables such as the colour (and colour

gradients), shape, and size of drawing of the nodes; additionally, glyphs can also be used.

Here we take an attribute to mean:

(a) a piece of data about a node (or edge) that already exists;

(b) a derived item of data about a node such as a computed centrality metric or a cluster generated

from an algorithm;

(c) a user-de�ned restriction that they want the graph to portray.

As stated above, users strongly interpret the proximity of a node in relation to others as the

existence of a relationship or similarity between two nodes. Similarity of attributes would also

imply a similarity between two nodes. Therefore, introducing attributes is one way of relating the

layout of the graph to the properties of its nodes. Being able to make inferences about correlations

between the structure of a graph and node-attributes is one way of increasing the potential insight

to be gained from visualising it86.

Using attributes to in
uence the layout of the graph is not such a recent idea. As far back as

the 1930s Jacob Moreno realised that \variations in the locations of points could be used to stress

important structural patterns in the data" 87, for example, simply separating boys and girls when

graphing friendships between classmates or placing American football players in their positions on

the �eld in a pass network gives valuable insight into the structure of relationships in the graph88.

Lundberg and Steele89 and Northway 90 used sociometric status for determining node position.

Lundberg and Steele used those with high status as the nuclei of the network and placed others in

a ring around them for presenting their research on social patterns in a village. Northway used a

layout of concentric circles, known as atarget sociogram, putting nodes with higher values close to

the centre for displaying relationships between pupils in a classroom. A similar method has also

been used by Brandes and Wagner51 and Brandes et al.91 to show the preventative measures for

HIV introduced by local organisations in Germany where various node centrality measures were

used to show status.
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Recently, it has become even more common to use node-attribute data for layout of graphs.

There are three main ways attributes can be used in graph layout: one is to use them to impose a

set of restrictions on the placement of nodes, a second is to use membership of a group or cluster

to position the nodes and the third is to directly map an attribute (or attributes) to a coordinate

in the layout space (e.g.,x and y in a Cartesian system).

3.1 Constraint-based layouts.

As with multi-level techniques, constraint-based methods often make use of force-directed algo-

rithms 7. As shown in Sections 2.1 to 2.4 force-directed algorithms and their derivatives use aes-

thetic principles as motivation, in their implementation and for their evaluation. Constraint-based

techniques impose some user-de�ned placement criteria on all or a selection of the nodes in addi-

tion to using a layout algorithm. These can be constraints such as �xing node position, separating

certain groups of nodes or adding layout constraints to a �xed sub-graph. These constraints often

come from node-attributes in the data.

Probably the most well-known use of constraints in graph drawing is the Sugiyama et al.92

approach for hierarchical structures. The hierarchy can already exist in a directed graph or could

be induced from a set of node-attributes. It results in a layered style where vertical positions

are assigned �rst followed by horizontal ones to reduce edge crossings. A version of this has also

been applied by Brandes et al.93 using the vertical attribute to depict a person's status in a social

network and by Brandes and Wagner51 by clustering and using each cluster as a layer.

A similarly inspired method by Koren and Harel 94 is an application of one-dimensional layout

optimisation by axis separation. A one-dimensional layout is computed where the layout of nodes

on each axis can come from a node-attribute, some aesthetic consideration or application of an

existing layout algorithm to one dimension (Koren and Harel give an example of using Kamada

and Kawai's) which provides a one-dimensional coordinate. The second dimension can then be left

to show hierarchy or clustering in the data, another node-attribute or they propose an web-based

example where the same nodes emit two di�erent graphs (one showing hyper-link structure and

the other page similarity) and produce a one-dimensional layout for each then combine the axes
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into a two-dimensional plot.

Mapping nodes to one axis is also the rationale behind Krzywinski et al.'s Hive plots95. Multiple

axes are positioned radially and nodes are divided between axes according to some attribute or

their connectivity structure and then distributed along each axis according another attribute. An

edge is drawn as a curved line between axes and nodes may appear more than once in a layout

in order to clarify structure. They call the layout a \rational visualisation of networks" and a

panel of Hive plots can be created to view multiple attributes at the same time. The main aim

of Hive plots are to uncover structure in the graph that could not be previously seen with other

network diagrams and to be able to do so for graphs of any size. In Figure 11 a Hive plot shows

the dependencies between classes in the Flare visualisation tool-kit. Nodes are clustered by class

type and the two distinct axes show nodes which are either only source or only target nodes. The

duplicated axes show nodes which are both source and target nodes.

Figure 11. A hive plot showing dependencies between classes of the Flare visualisation tool-kit
implemented in d3.js. (Image based on http://bost.ocks.org/mike/hive/).

Most constraint based layouts take the form of solving an optimisation problem subject to some
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constraints. He and Marriott 96 recognised that adding constraints to the layout could aid inter-

activity through preserving the user's mental map of the layout when nodes are moved. Realising

that adherence to graph drawing principles was restricting users' understanding of the underlying

semantics of the graph they proposed three implementations (plus one for trees). The �rst was a

constrained version of Kamada and Kawai's algorithm and the second a polynomial approximation

to this constrained version. The third combines the two methods by initially applying the poly-

nomial approximation method to the graph which gives performance bene�ts (up to four times

faster) followed by the full method which optimises the layout to better adhere to some of the

graph drawing principles.

Much of the work on constraint-based layout methods has been done by Dwyer and various

co-collaborators, though initially they only focused on direction as an attribute in DiG-CoLa (con-

strained layout of digraphs)97,98 basing it on Sugiyama's method but adding a further optimisation

procedure for consideration of the aesthetic principles. They extended this by adding orthogonal

ordering constraints which imply relative node position in relation to all other nodes (a kind of

spatial arrangement attribute), again preserving the user's mental map99.

A more generic method from Dwyer et al.100 is IP-Sep CoLa (Incremental Procedure for Sep-

aration Constraint Layout of graphs). This method forces a separation between nodes by adding

constraints such as organisation into horizontal or vertical layers, containment in a �xed area (as

shown in Figure 12), �xing node positions, and non-overlapping nodes by considering certain at-

tributes. This method was suggested as being useful for displaying protein interaction networks by

Barsky et al. 101 and Jianu et al.102 , but both found its adaptability is negated by its complexity;

however, Dwyer et al.103 make use of the method interactively by implementing it in the detailed

view for overview+detail graph exploration. It is further extended by its use for continuous layout

in the diagramming tool `Dunnart' by preserving topology in response to user interaction104,105 .

The biology community is a particular driving-force behind the use of node-attribute data for

constrained graph layout27,101,102 . This is often because there are already conventions that depend

on node-attributes (from when layouts were drawn manually) that were failing to be satis�ed by

automatic layout algorithms. Examples are Cerebral from Barsky et al.101 for the inclusion of
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Figure 12. A layout of a metabolic pathway with containment constraints (Originally published
by BioMed Central in Schreiber et al.106 ).

sub-cellular localisation and so positioned the regions in layers with a modi�ed version of simu-

lated annealing. Jianu et al.102 and Genc and Dogrusoz27 required signalling pathway drawing

conventions in their interaction network (see Figure 13) and Jourdan and Melan�con107 for the use

of conventions from metabolic and regulatory pathways. As Barsky et al.101 put it the nodes need

to be positioned in a \biologically meaningful" manner.

MagnetViz 108 also blends force-directed techniques with attributes for layout. Initially the

graph is laid out as an adapted version of Tunkelang's19 force-directed layout from which point

the layout become interactive. A user can then assign a virtual magnet to represent a particular

attribute and decides where to place this on the graph. Nodes then rearrange their locations de-

pending on the presence of that attribute. Those nodes which have that attribute are attracted

towards the magnet and it is up to the user to decide how strongly attracting each magnet can

be; they can also de�ne a boundary inside which all nodes with that attribute should be. Multiple

magnets can be used in the layout and and they support the use of logical operators for combina-

tions of attributes. After each addition of a magnet the graph re-organises its layout to re
ect the

new forces in the graph. Problems with the approach mainly lie on the user's side and that they
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Figure 13. A screenshot of a protein interaction network overlaid on a signalling pathway where
the pathway provides a sca�old for the network to be positioned around102.

cannot be relied upon to create layouts that are necessarily the most useful for the the tasks they

want to accomplish, may put magnets in inappropriate positions or not select the best combina-

tions of attributes to use. Spritzer and Freitas accept that the tool can have a steep learning curve

but have also proposed a number of improvements they will make to the tool including limiting

the strength of the magnets, proportion boundary size with the number of nodes inside it, adding

�lters to hide nodes and to incorporate di�erent layouts for nodes attracted to di�erent magnets.

However, if the method is correctly applied then it can produce layouts that are \aesthetically

pleasing and semantically relevant" that enable the user to complete many of the graph analysis

tasks de�ned by Lee et al.80 .

A pure attribute only based generic constraint-based layout technique is Shneiderman and Aris's

NVSS (Network Visualisation by Semantic Substrates)76,109 . Nodes are placed in non-overlapping

regions according to the value of some attribute; nodes inside these regions can then be further

positioned with respect to other attributes. Each region is described as a semantic substrate and by

proportioning substrate size to the number of nodes it contains allows a quick and easy comparison

of category sizes whilst the use of the regions makes it easier to identify links between categories

and to follow connections. It has proved useful in the analysis of legal precedent data and an
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Figure 14. Network Visualisation by Semantic Substrates. The data set visualised is one used for
analysing legal precedents where each node represents a citation in either the supreme or circuit
courts. Reproduced with the permission of Shneiderman and Aris109 .

example network is shown in Figure 14.

Genetic algorithms provide another way of encoding constraints into graph layout. Like some

force-directed methods they don't solve the optimisation problem directly but follow the genetic

operations of mating and mutation. The idea is that good genes will thrive and bad genes will

die out. In graph layout this is akin to reaching the optimal layout according to the speci�ed

constraints110. Kosak et al.111 speci�ed that perceptual organisation (the principles of grouping

from Gestalt Laws) was more important than layout aesthetics and proceeded to lay out the graph

using a genetic algorithm according to conformation to these features (such as clusters or zones,

sequences, alignment and symmetry), syntactic validity (overlapping nodes or intersection of nodes

and edges) and also some graph drawing principles. The genetic algorithm was more successful

than following these rules alone and its strengths lie in being able to handle multiple interacting

visual organisational features and aesthetics, while at the same time claiming to produce layouts

of excellent quality. Two drawbacks of the method are that the genetic algorithm may never �nd a

valid layout and that the algorithm may take a long time to converge. Branke et al. 112 combined
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each iteration of a genetic algorithm with the spring embedder until it no longer improved the

quality of the graph. They tested it on graphs that are usually di�cult for the spring-embedder to

lay out successfully alone and found that it was able to produce graphs that reduced the number

of edge crossings compared to the force-directed layout.

Since some constraint based layouts include one or more of the graph drawing principles as a

constraint some of these layouts can be analysed in a similar respect to those in Section 2. Sugiyama

et al's layout, for example, considers the principles of edge crossings and keeping adjacent vertices

close and can lay out graphs with more than 500 vertices. Brandes and Wagner built on Sugiyama

et al's layout to consider the constraint of clustering. Hive plots do not follow the graph drawing

principles and once all the data for the axes is computed it takes less than one second to lay out

a graph with many thousands of nodes. In an application-based context Hive plots have been

compared to the ForceAtlas layout demonstrating how they are able to more clearly show certain

structural features of the graph. The addition of constraints to the Kamada-Kawai method by He

and Marriott 96 does not signi�cantly a�ect running time and they were even able to combine it

with a polynomial approximation.

DiG-CoLa 97 was tested against a Sugiyama-style layout and while it produced more edge

crossings for smaller graphs DiG-CoLa had fewer edge crossings for the larger graphs. Dig-CoLa's

edge lengths were also more uniform and it took seven minutes to lay out approximately 2000 nodes.

Meanwhile, IP-Sep CoLa also included support for clustering, preventing node-label overlap and

various positioning constraints. In 100 seconds IP-Sep CoLa can layout 10,000 nodes. Barsky et

al's Cerebral can lay out a few thousand nodes if the number of attributes is kept to around 12

or fewer. They considered edge crossings, node-edge crossings, edge-lengths and also biological

proximity in the optimisation of their layout. MagnetViz reported that their method was able to

produce an aesthetically pleasing graph while NVSS focused on clustering, groups and �ltering.

The genetic algorithms did not consider speci�c principles but just that the user could incorporate

whichever principle they may wish into the optimisation.
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3.2 Clustering-based attribute layout.

Showing clustering in the layout of the graph is one of the most e�cient ways of communicating

structure in a graph to users. Users even completely neglect the aesthetic of edge crossing in

favour of clustering the graph79. Section 2.1.3 reviewed Noack's37,38 proposal for a force-directed

approach for showing clustering (although the clusters were determined by the algorithm rather

than being a de�ned attribute). The OpenOrd 36 layout mentioned in Section 2.3 also groups nodes

into clusters according to topology. Methods do exist, however, to either explicitly show clusters

already encoded as attributes or to show clusters that have been inferred from attribute similarity.

Extending the semantic substrate idea from Section 3.1 is the Group-in-a-Box layout113 (as

shown in Figure 15) which groups each cluster into the rectangle of a treemap and each cluster is

then laid out individually inside each rectangle. Other treemap approaches have also been used.

Fekete et al.114 took the idea of decomposing every graph into a tree structure plus some remaining

edges and then using this tree structure to display the graph as a treemap upon which the links

between nodes can be overlaid as did Muelder and Ma115 . However, while Fekete et al. put all

nodes that did not �t into the computed hierarchy into a separate section, Muelder and Ma used

hierarchical clustering to compute the tree structure and so all nodes were part of the treemap.

Muelder and Ma showed their approach scales to over 300,000 vertices and that it can be used

both independently and as an initiation strategy for force-directed layouts.

Following their treemap layout method Muelder and Ma 116 went on to propose the use of

a space-�lling curve for layout. The nodes are positioned along the curve according to some

computed node ordering to maximise the usage of space. For weighted graphs single linkage

clustering is used while for unweighted graphs a community structure algorithm is used to decide

the node orderings. Muelder and Ma demonstrate that the technique can be used for graphs with

over one million nodes. They compare two of their space-�lling layouts to a treemap layout115

and various algorithmic layouts (LinLog, GVA, FM 3, GRIP, ACE and HDE) on a graph with

6,000 nodes. While ACE and HDE were clearly the quickest (about 3.5 times faster compared to

the space-�lling layouts) their layouts showed no structure at all. GVA, LinLog, GRIP and FM 3

were all slower (1.5s for GRIP to three minutes for LinLog) and produced hairball type layouts.
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Figure 15. The group-in-a-box layout from NodeXL of the clustered protein interaction network.

The treemap and two space-�lling layouts all computed in a similar time of under one second.

Their layouts were clearly able to show a clustered structure having used a clustering algorithm as

part of the layout to decide the node ordering in the space-�lling case and for the treemap in the

other case. This leaves a dependency on being able to detect a clustering in the graph, but if one

exists the method is very useful for visualising the overall structure of the network. Itoh et al.117

also used a similar space-�lling approach for multi-category graphs (i.e., many attributes) that

computes a clustering hierarchy from similarities between node-attributes.The graph of clusters is

then laid out using a simple force-directed method and nodes within each cluster are delineated

by a rectangle and laid out using a space-�lling algorithm.

Both GOlorize 29 and GraphScape118 extend force-directed methods to use attributes to show

clustering. GOlorize adds a virtual node to the graph representing each cluster. Virtual edges

are then added from the virtual cluster node to members of that cluster. This then drags apart

the clusters using Fruchterman and Reingolds's force-directed algorithm, this is very similar to
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the general method proposed by Huang and Eades119 . With GraphScape, nodes are clustered

based on attribute similarity �rst and then a modi�ed version of the spring-embedder algorithm is

applied to re
ect this similarity. Additionally, running time is improved if the FADE 120 algorithm

is implemented alongside layout and certain attributes are emphasised through a mountainous

landscape metaphor where height represents some attribute value.

Pretorius 121,122 proposes two attribute layouts based on a hierarchical clustering procedure.

The �rst is applied to a large ( > 50000 nodes) state transition graph where the user initially

selects a number of attributes they are interested in an order of importance. The nodes are

divided into clusters based on their values for the most important attribute, these clusters are

then sub-divided according to their value of the second attribute. This recursive sub-partitioning

continues for each attribute and the hierarchy is pictured as the background to the graph. Nodes

are placed horizontally along the bottom of the hierarchy according to their attributes. For numeric

attributes bar charts show the presence of these attributes below the graph and correspond to the

levels in the clustering hierarchy. The transitions between states are then shown as arcs which

indicate direction enabling the user to combine the attributes and the graph to identify recurring

patterns in the data.

In the second multivariate graph visualisation Pretorius122 again uses the context of a state

transition graph. In this case all nodes are placed in a vertical line on both the left (as a source)

and right (as a target) sides of the graph in order to indicate direction. As the technique can also

visualise edge attributes labels describing the types of edges are placed between the two sets of

nodes. Each edge of that type must pass through its corresponding label's box. The order the

nodes appear in depends on their attributes and much like the previous method there is a recursive

clustering approach of partitioning based on the �rst attribute and then on the second, etc. The

method scales to more than 10,000 nodes and users were able to analyse the state transition graphs

more e�ectively. This suggested to the authors that the technique may be able to be applied to

multivariate social networks and even be generalisable to all multivariate graphs.
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3.3 Mapping attributes directly to two-dimensional space.

Perhaps the most obvious use of node-attributes in graph layout is using an attribute which already

represents a position. This may be position such as geo-coordinates that allow the graph to be

superimposed over an image such as a map123,124 , or placed as they would line up on a soccer125 or

an American football pitch 88. However, just because a node has a spatial attribute doesn't mean

that it is necessarily the most informative projection of the data, for example, the most interesting

patterns might not be geographic ones126.

The direct mapping of two attributes to Cartesian coordinates in 2D space is also possible. By

way of example, consider the aggregated graph layout, PivotGraph127. PivotGraph is based on the

idea of pivot tables from spreadsheets and uses an OLAP (Online Analytical Processing) database

model in order to produce a grid-based graph showing two categorical attributes with node sizes

representing the number of nodes with that attribute. This technique allows the exploration of

the relationships between attributes in the graph through collapsing and expanding the attribute

nodes; however, it also can obscure the topology of the graph by making graphs appear connected

or cyclic when they are not.

Two similar methods for SNA (Social Network Analysis) are given by Bezerianos et al.13 and

Viau et al. 128 . Bezerianos et al's GraphDice builds on a similar technique for scatterplots called

ScatterDice129 and aims to be more of an exploratory tool than other SNA visualisation tools,

which tend to be con�rmatory. Like Viau et al. 128 , it provides two views of the data. One is an

overview scatterplot matrix (seen on the left in Figure 16) which shows a small multiple of each

possible combination of attributes while the other larger graph view to the right shows a full image

of the graph based on the two currently selected attributes. GraphDice uses attributes that are

application speci�c (e.g, in a co-authorship network, papers written, citation count, �eld) as well

as node centrality metrics. Viau et al.128 also allow parts of the graph to be laid out manually or

using a force-directed layout.

GraphDice received positive feedback from a user working in the history domain while Viau

et al.'s implementation also received praise from the biologists they were working with claiming it

could prove to be a valuable part of their work 
ow.
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Figure 16. GraphDice13. A screenshot of the GraphDice tool showing a graph using the InfoVis
2004 contest dataset where nodes are positioned based on rank and the last date of the conference.

There is no limit to the number of attributes a node can have. Therefore, it should be possible

to use all of these attributes for layout and a number of techniques using dimension reduction have

been proposed. The �rst of those was a multidimensional visualisation of state transition graphs by

Pretorius and van Wijk 130 where the graph is comprised of the state transitions and the attributes

are the variables of each state. A user then selects a subset of variables to be included in the

visualisation and �ve possible projections into two dimensions are o�ered: uniform distribution,

manual distribution, hypergrids, rotated hypergrids and a PCA projection. However, ultimately

for this application they found simply visualising the state variables as parallel histograms enabled

them to ful�l the tasks they wished to carry out with the graph most successfully. The PCA

projection allowed them to see the di�erent phases of the system easily but they were unable to

�nd correlations between the graph and variables.

Since Pretorius and van Wijk's attempt there have been more successful e�orts at using di-

mension reduction for visualisation of graphs using node-attributes. GeoSOM131 (geodesic self-

organising map) was a hybrid approach to laying out graphs using both node-attributes and prop-
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Figure 17. The GeoSOM layout for an international metal trading network (source: http://rp-
www.cs.usyd.edu.au/~chwu/CerealMetal.htm).

erties of the graph based on a world metaphor. The SOM is trained to place vertices with similar

attributes close to one another and the algorithm was improved in order to non-linearly take into

account the graph distances between vertices (the same approach as Kamada and Kawai's24 force-

directed method) resulting in a layout that both re
ects the graph's structure and its attributes.

Evaluating their layout they found that the non-linear incorporation of graph distance rather than

linear132 decreased the number of edge crossings in the layout. From a user study they also found

that users were able to combine the structure and the attributes to extract useful information from

the graph better than they were able to using a force-directed layout and a glyph approach for

the presentation of the attributes. An example of the GeoSOM layout for an international metal

trading network is shown in Figure 17.

Two recent methods which also use the idea of dimension reduction are EdgeMaps by Dork

et al. 133 and Gibson and Faith's134 application of targeted projection pursuit (TPP) to graph

layout. The aim of EdgeMaps was to unite the visualisation of node-link diagrams that show the

explicit relationships between nodes in the graph and multidimensional scaling techniques used to

visualise implicit relationships, i.e., attribute data. The layout is produced from an MDS projection

of attributes onto a the Cartesian space and position is double encoded by hue and saturation. In

particular, three application areas are explored: in
uence relationships of philosophers, musicians
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(a) The MDS projection of Philosophers using im-
plicit relationships such as their interests.

(b) The display of the incoming and out-going in
u-
ence edges once Marx has been selected.

Figure 18. The EdgeMaps133 graph visualisation of philosopher's in
uence relationships (images
created from http://mariandoerk.de/edgemaps/demo/).

and artists on others in their �eld. Implicit relationships are those such as interests, musical genres

or artistic movements. Only one node's links are shown at a time for readability but this means that

the user can explore only one set of in
uences at a time and cannot, for example, explore in
uence

similarity between two nodes easily. In addition there is no indication as to which attributes have

resulted in two philosophers being placed close one another. An example of the projection is shown

in Figure 18(a) and the in
uence edges in 18(b).

Targeted projection pursuit for graphs134 also considers multiple node-attributes and relates

each one to a dimension. Initially, nodes are laid out using a PCA projection based on the node-

attributes. From this the users can begin to explore the graph. A user can grab any set of nodes

and try to reposition them to re
ect some intuitive idea or hypothesis they have about the data.

The nodes will only move to this position if there exists some projection from the original data

space to two-dimensions that results in a view equal to the target view, i.e., the one desired by

the user. Otherwise the projection that is the nearest match to the target view is found. The

technique is particularly useful if the user has some clustering in mind for the data; they can try
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Figure 19. The targeted projection pursuit layout for graphs from Gibson and Faith 134 .

to separate each of the clusters whilst observing the pattern of edges between those clusters and

if the attribute data follows the same pattern as those clusters or another one altogether. This

separation can also be automated to �nd the maximum separation between clusters. The user

then can additionally assess which attributes are most signi�cant in the chosen layout aiding the

feedback loop between the graph's topological structure and the attributes of the nodes. Figure 19

shows an image of how the graph can be clustered according to its attributes. While the technique

shows promise for future applications so far its usefulness has only been demonstrated on a small

synthetic data set replicating a small-world graph.

3.4 Discussion of the use of node-attributes in layout.

Clearly there is some potential in using node-attributes for layout. As more data is collected

understanding how it combines to form a whole is an important task. For example, Bezerianos

et al. 13 state that nodes in social networks can have as many as 30 attributes; knowing how these

attributes a�ect or even govern the interactions in a social network can have a signi�cant impact on

how it is analysed or the insight gained from it. Other advocates of this idea have also identi�ed
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its potential to create a deeper understanding of the graph as a whole including the potential

correlations between graph topology and the underlying attributes86.

There do not have to be as many as 30 node attributes to be able to use them for layout.

Graphs which have only a few attributes are prime candidates for graph visualisation through one

of the constraint or clustering based methods. Hive plots, for example, require only one attribute

for their layout and the user can then de�ne how they want to partition that attribute to form

the axes of the layout. They are useful for focusing on one attribute and its relationship to the

graph's structure. Being able to understand and analyse their output requires a steep learning

curve; however, they are able to visualise large graphs with many thousands of nodes and provide

a structural perspective that other layouts do not. In biology, utilising a few attributes for layout

can prove extremely fruitful and exactly what users want. One such case was Barsky et al.'s101

layout which provided a clear way to separate proteins in a cell and a visual indication of which

part of the cell they exist in. However, even this technique quickly runs into problems where there

are parts of the cell are contained inside other parts, e.g., mitochondria inside the cytoplasm.

MagnetViz gives users a lot of control over the layout and by combining it with a force-based

layout some of the topological structure of the graph remains in the layout. The interaction and

observing how the graph rearranges itself as magnets are added or taken away may also improve

the users understanding of the relationship between the attributes and the graphs structure. NVSS

allows multiple types of nodes all with di�erent attributes to appear in the same layout meaning

there are even less restrictions on the data that can be included in the graph though the technique

is di�cult to scale to larger graphs without interactive �ltering.

When manually drawing graphs users tend to neglect aesthetic criteria in favour of displaying

the clustering the graph79 thus layouts that automatically cluster the nodes according to some

prede�ned criteria have a good chance of being useful to the user and are an important structural

feature for understanding the graph. Layouts that show clustering range from the Group-in-a-Box

layout which delineates each cluster into a box which can then be laid out to using Muelder and

Ma's treemap and space-�lling approaches which scale to hundreds of thousands of nodes and give

that all important strong overview of the structure of the graph.
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Sometimes using just a few attributes isn't enough, to begin with a user might be visualising the

graph to gain a better understanding of the data in it and may not know which are the attributes

to focus on, which was an issue found by Shneiderman and Aris109 in NVSS. In that case moving

between scatterplot matrices, such as in GraphDice, provides one way of having multiple attributes

for layout at a user's �ngertips. However, they can still only investigate a relationship between

two attributes at a time and too many attributes would make the scatterplot matrix unreadable

negating its utility.

GeoSOM, EdgeMaps and TPP are three methods which try to overcome this limit on the

number of attributes by utilising dimension reduction techniques to project the graph onto a 2D

space. They all consider multiple attributes and, therefore, multiple dimensions at once, but all

three also leave room for improvement. GeoSOM is the only method that takes into account

topological structure when computing the layout as well as the attributes, but using the world

metaphor means it is di�cult to comprehend edges which leave the graph on one side of the world

and reappear on the other. Also from Figure 17 it can be seen that if the size of graph were to

increase much more it would become quite di�cult to read.

EdgeMaps restricts the display of links at any one time and while this improves readability it

also results in a loss of context if a user would wish to compare two or more nodes or look for a

similarity between attribute structure and topological structure. Even simply allowing multiple

selections of nodes to be in focus would, in part, solve this problem and at least allow the user

to explore edge patterns between nodes. Although attributes are used in the MDS projection the

user then has no idea how the attributes have in
uenced the positions of the nodes in the �nal

projection and so some of the insights that could have been gained from this layout are lost.

TPP on the other hand does show all of the links in the graph and allows the user to interact

directly with the graph to �nd a layout, form hypotheses based on how in
uential certain attributes

are in the current projection and provides an automatic way to determine relationships between

node-attributes and cluster membership. This method now needs to be validated on real-world

data with many more nodes and edges in order to assess its e�ectiveness as a network visualisation

technique.
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Graph layout that combines node-attributes and dimension reduction provides one solution for

producing an overview layout with meaningful positions for nodes that can communicate a structure

of the graph related to speci�c properties of the nodes. This sort of overview is particularly suited

to tasks of exploring the data, �nding clusters, identifying pattern and outliers 80. Using node-

attributes for layout should improve this insight that can be gained from the graph by allowing

the user to make visual inference from the links between nodes, their positions in space and the

combination of the two. In almost all these cases though there needs to be more evidence of

application to speci�c use cases, extensions to larger datasets, evaluation against other methods

and speci�c criteria as to when these methods are best applied.

4 Discussion

Over the past 30 years many solutions to the problem `what is the best way to draw a graph?'

have been put forward. Initially, most of these algorithms were force-directed approaches and these

have remained consistently popular over this time and as such have found themselves integrated

into many graph visualisation tools, thereby reinforcing their popularity. These algorithms gained

acceptance by drawing a graph which is said to conform to several of graph drawing aesthetic

principles. The drawing of graphs with these algorithms often su�ers from high running times and

the production of a non-optimal graph layout. Beyond that there is also a problem with validation

of the use of these principles for layout in terms of aiding users' understanding and enabling them

to extract meaning from the graph. Studies assessing the impact these principles have on layout

tend to be limited to a small set of nodes (less than 20) and a limited set of tasks that are not

necessarily applicable to a much larger graph. Even Huang and Eades135 in their eye tracking

study said that they did not know if their results would scale with size and complexity of the

graph.

Force-directed methods seem to be optimised for a particular type of task, like those indicated

by Purchase23 and Lee et al.80 such as counting node degrees and identifying adjacent nodes and

further connections. However, both Dunne and Shneiderman17 and Salvini et al. 136 comment on
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the lack of knowledge about the relationship between drawing principles, layout and task.

One e�ort to overcome this lack of understanding is Purchase's23 study on how the principles,

such as symmetry and edge crossings, and layout are related to the ability to complete three tasks.

These tasks were �nding a shortest path between two nodes, identifying nodes to remove which

would disconnect part of a graph and similarly for edges. She found that for the three force-directed

graph layouts studied little variation was found in the time taken to complete the tasks or in the

errors made when answering with respect to each di�erent layout method. This indicates that

where graph size is small, there is no reason to choose one layout over another, at least in the case

of performing those three tasks.

When looking at this study the �rst thing to consider is how appropriate the tasks were for

analysing layout. Were the tasks chosen representative of tasks where it is essential to have a

good layout to complete or are there other tasks on which layout has more impact? The second is

whether the principles used to create these layouts are actually successful in aiding users to carry

out this type of task. Thirdly, are the results the same for much larger graphs or is there a more

perceptible di�erence on task completion and the di�erences between the layouts more apparent?

Graph size in general is a very important consideration when analysing the success of the e�ect

of layout. Newer layout algorithms developed have tried to improve upon the results given by

force-directed layouts; these included multi-level techniques which make force-directed approaches

more e�cient for graphs of larger size and the use of dimension reduction techniques making use of

graph-theoretic distance for computing node position, resulting in layouts similar to force-directed

ones. These techniques still tend to keep the guiding graph drawing principles as a goal and because

of this are likely only to produce good layouts for sparsely connected graphs or those which form

a mesh or grid-like structure50. Except in these cases, they are unlikely to produce layouts that

are a su�cient improvement on the force-directed ones.

What comes from this is the question of how do the principles apply in terms of graph sizes?

Force-directed methods are still a very good option for graph layout when the graph is small

and it is true that for small graphs these principles are successful in computing a comprehensible

layout. But it is not understood whether they are as applicable to producing a good layout for
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larger graphs. For example, Henry and Fekete8 make the point that �nding a good overview is

challenge for large graphs and crucial to the following exploration process. This overview should

then be connected to a layout which gives a good representation of the high-level structure of a

graph placing more emphasis on identifying and analysing spatial groupings, clustering, patterns

and outliers but a good overview does not necessarily translate to one that conforms well to the

principles of graph drawing.

More successful recent force-directed based techniques have actually been the ones that have

ignored certain principles to show o� other structural properties of the graph such as the LinLog,

ForceAtlas and OpenOrd layouts. All three are still based on the idea of a physical system but

the principle they have tried to optimise is one of clustering rather than than being concerned

with edge lengths or uniform node distributions, for example. Clustering is only one potential

new principle and there may be others that the layout can be optimised to show. For example,

decreasing the number of edge crossings is usually an aim for layout but in parallel coordinate

plots they are used to highlight an inverse relationship between two dimensions, thus rather than

attempting to minimising edge crossing perhaps they could also be used to emphasise a particular

structural feature or relationship. Additionally, with the adaptation of force-directed techniques

for clustering it shows that using a physical system model can still be a very strong option for

layout if applied in the right way.

Given that there has been such a large body of research on the simulation of physical systems

for graph layout and the optimisation of force-directed algorithms this work should be utilised.

Thus, by identifying and then changing the emphasis on which properties of the graph the layout

should re
ect, force-directed methods could be redesigned to highlight some of these other features

of the graph. This should be done in conjunction with an investigation into alternative graph

drawing principles and whether they can be principles that can be applied generally, to graphs

with certain topological structure or for speci�c graph sizes. An extension of this would be if to

investigate if there is a relationship between the principles used and the type of task the user wants

carry out with the visualisation or that can be best solved using a particular layout style.

Even some of the studies on smaller graphs have recognised the importance of presenting a
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good structural overview. Van Ham and Rogowitz's79 observed users preferring to cluster nodes

in their layouts of a graph, most participants in an experiment by Dwyer et al. 137 selected graphs

which show a clique while semantic grouping and considerations of semantics in general have

been considered important for improving user understanding of graph visualisations in information

visualisation contexts138,139 .

The lack of semantic considerations has also been highlighted by users, with many communicat-

ing their dissatisfaction at the inability of force-directed techniques to produce a comprehensible

layout either because it resembles a `giant-hairball' or because it lacks any context. This is particu-

larly true of users in the biology community who have already expressed their desire, and made some

attempts, to have a graph layout that is meaningful and improves their understanding33,101,106,140 .

This includes layout methods making use of attributes. Typically, there is a lot of informa-

tion available on the nodes, more than just how they are connected to other nodes. Developing

computational methods using this philosophy of laying out graphs according to their attributes

has potential, with the correct algorithm, to assess the correlations, contradictions and trade-o�s

between the attributes and focus them into a comprehensible, informative layout.

Layouts which require the incorporation of node-attributes are becoming more frequent and are

able to give users a context they cannot get from purely algorithmic methods no matter how good

the layout might be. Layouts with attributes also range from the very simple showing only one

additional attributes (such as a cluster or the separation of axes based on numerical values that can

be achieved using Hive plots) to dimension reduction methods where there is no theoretical limit

on the number of dimensions that can be incorporated into the layout. They provide a connection

between the graph and all the other data that is potentially available allowing the user to not only

answer questions such as whether A and B are connected but also if there is something about their

attributes that is able tell them why they are connected.

However, node-attribute based layouts do not escape criticism and leave plenty or room for

improvement. A major drawback of some of these methods so far is their lack of demonstrated

scalability to larger datasets. Those layouts such as EdgeMaps and TPP can visualise high numbers

of attributes but they also need to show that they can e�ectively use those attributes to visualise
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high numbers of nodes and edges. In addition to aiding the exploration of the relationship between

the topological structure and the attributes they should also facilitate the completion of tasks

related to the graph's structure.

There are three other potential methods for improving node-attribute layouts further. The �rst

is to follow the promising leads of GeoSOM and MagnetViz so that both the graph's topological

structure and attributes in
uence the layout; a pure node-attribute layout may miss some inter-

esting topological features. This can even be by adding graph theoretic distances between nodes

as additional dimensions for the dimension reduction techniques. Dimension reduction is a well

studied area and so a further enhancement may be to utilise some of the state of the art dimension

reduction techniques for visualisation and use them for layout. Finally, it has also been suggested

that interaction or at least user involvement in the layout process, as found with MagnetViz and

TPP, is a promising approach to creating new layouts141.

This review has presented some of the most commonly used and implemented techniques for

graph layout in information visualisation. This was followed by a discussion of the current state of

graph layout particularly emphasising those techniques making use of node-attributes for layout.

It has discussed some of the merits and de�ciencies in both of these approaches to graph layout and

has suggested some directions for further research particularly in regard to understanding what

users want from a layout, which tasks are to be completed with the layout and how the size of the

graph to be laid out a�ects the layout and the actions of the user. In addition, it has proposed

that whilst a good start has been made on incorporating attributes for layout, in order to enrich

the graph's layout further research should do more to both validate and extend these techniques.
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