Lumped Time-Delay Compensation Scheme for Coding Synchronization in the Nonlinear Spectral Quantization-Based All-Optical Analog-to-Digital Conversion

Volume 5, Number 6, December 2013

Zhe Kang
Jinhui Yuan
Qiang Wu
Tao Wang
Sha Li
Xinzhu Sang
Chongxiu Yu
Gerald Farrell

DOI: 10.1109/JPHOT.2013.2284252
1943-0655 © 2013 IEEE
Lumped Time-Delay Compensation Scheme for Coding Synchronization in the Nonlinear Spectral Quantization-Based All-Optical Analog-to-Digital Conversion

Zhe Kang,1 Jinhui Yuan,1,2 Qiang Wu,1,3 Tao Wang,1 Sha Li,1 Xin Zhu Sang,1 Chongxiu Yu,1 and Gerald Farrell3

1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China
2Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
3Photonics Research Center, Dublin Institute of Technology, Dublin, Ireland

Abstract: In this paper, we propose a novel lumped time-delay compensation scheme for the all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. By inserting a segment of negative dispersion fiber between the quantization and the coding module, the time delay of different quantized pulses can be accurately compensated with a simple structure compared to the multiple time-delay lines. The simulation results show that the coding pulses can be well synchronized using a span of fiber, with the flattened negative dispersion within the wavelength range of 1558–1620 nm. In addition, the problems of pulse broadening and time error are discussed, and it is shown that no damage happens to the coding correctness within the sampling rate of 30 GSa/s.

Index Terms: All-optical analog-to-digital, lumped time-delay compensation, negative dispersion fiber, soliton self-frequency shift.

1. Introduction

With the rapid development of ultra-fast signal processing in the high speed optical communication, advanced radar system and real-time signal monitoring, the requirements of high performance analog-to-digital converter (ADC) become very urgent [1], [2]. “Photonic ADCs” is an efficient technology to overcome the inherent jitter of the sampling aperture and ambiguity of the comparator in the electronic devices and has achieved lots of developments since the early 1970s [1]–[3]. Jalali et al. have developed the time-stretch ADC (TS-ADC) and realized high sampling rate beyond...
100 GSa/s, but the quantization and coding modules still depend on the electrical processing [4], [5]. In order to achieve the high sampling rate and solve the bandwidth limitations of electronics, all-optical ADC (AOADC) with optical processing in both quantization and coding modules is the final objective [6]–[18]. AOADC based on the nonlinear optics effects has ultrafast response speed, which can realize the sampling rate transparency. Among the proposed schemes [10]–[15], the optical quantization based on soliton self-frequency shift (SSFS) effect is a promising candidate due to its spectral quantization characteristic. The quantized signals can be easily extracted with passive de-multiplexer. This scheme was first proposed by Chris Xu, and several improved results have been achieved by Konishi et al. [15]–[21]. A 6-bit quantization resolution has been realized by now using the SSFS effect, which is the state of the art in nonlinear AOADC [20]. However, the time-delay occurs inherently during the process of frequency shift. The amount of time-delay is proportional to the power of sampled pulses. Such a property has been utilized for the tunable slow light [22]. However, the non-synchronization of the quantized parallel pulse strings induced by the time-delay can directly result in the coding error. In Konishi’s schemes [16], [17], the multiple time-delay lines (TDLs) related to the quantization resolution are used for the time-delay compensation, which increase the structure complexity of the AOADC greatly.

In this paper, we propose a novel lumped time-delay compensation scheme for the SSFS-based AOADC. By inserting a span of negative dispersion fiber (NDF) instead of the multiple TDLs after the quantization module, the time-delays of different quantized pulses are accurately compensated with a simple structure. Corresponding numerical analysis is demonstrated and discussed.

2. Principle of Operation

The schematic diagram of a nonlinear spectral quantization-based AOADC with 3-bit quantization resolution is shown in Fig. 1. The quantization and coding modules of such an AOADC are constructed by the highly nonlinear fiber (HNLF), arrayed waveguide grating (AWG), and other optical components. The discrete sampled pulses, which can be obtained with a high-repetition-rate optical pulse source by electro-optical modulation or four-wave mixing effect, are firstly delivered into a span of HNLF for quantization. After the transmission, different wavelength shift can be obtained due to the SSFS effect. In addition, different time-delays of quantized pulses occur simultaneously in time domain with the same law. The quantized pulses are separated with each other in an AWG and sent into the coding module. The coding is implemented by the optical interconnection (OI) module, which consists of several couplers, attenuators, TDLs, photodiodes, and comparators. The
multiple attenuators and TDLs are used to equalize the powers of the quantized pulses and compensate the different time-delays, respectively. The comparators after the PD array provide the final binary codes in a bit-parallel format. The law of the binary coding is according to the binary conversion table which is shown in the upper left part of Fig. 1.

The dynamic of the sampled pulses in the HNLF can be analyzed by solving the simplified Generalized Nonlinear Schrodinger Equation (GNLSE) described by

$$\frac{\partial A}{\partial z} + \frac{\alpha}{2} A + \frac{i}{2} \frac{\partial^2 A}{\partial T^2} = \lambda \left(|A|^2 A - T_R A \frac{\partial |A|^2}{\partial T} \right)$$ \hspace{1cm} (1)

where α, β_2, γ, and T_R are the attenuation parameter, second-order dispersion parameter, nonlinear coefficient, and Raman coefficient of the fiber, respectively. A is the complex amplitude of the optical field defined by

$$A(z, T) = \sqrt{\frac{E_0 e^{-\alpha z}}{2\tau}} \text{sech} \left(\frac{T - \Delta T}{\tau} \right) \exp \left[-i \Delta \Omega (T - \Delta T) - i C \frac{(T - \Delta T)^2}{2\tau^2} + i \phi \right]$$ \hspace{1cm} (2)

where E_0 is the input pulse energy; $\Delta \Omega$ is the frequency shift of the pulse spectrum; τ, C, ΔT, and ϕ are the width, chirp, time-delay, and phase of the pulse, respectively. The third-order dispersion β_3 and self-steepening terms are omitted in Eq. (1), considering that the magnitude of β_3 is much smaller than β_2 and the carrier frequency is large enough. With the moment method (MOM), the frequency and temporal dynamic of the pulse can be obtained by [23], [24]

$$\Delta \Omega(L) = - \frac{8}{15} T_R \gamma P_0 T_0 \int_0^L \frac{1}{\tau^3(z)} \, dz$$ \hspace{1cm} (3)

$$\Delta T(L) = \beta_2 \int_0^L \Delta \Omega(z) \, dz = - \frac{8}{15} \beta_2 T_R \gamma P_0 T_0 \int_0^L \left\{ \int_0^z \frac{1}{\tau^3(z')} \, dz' \right\} \, dz$$ \hspace{1cm} (4)

where L is the fiber length; P_0 and T_0 are the input peak power and width of the optical pulse, respectively. For the case of pure soliton, $\tau(z)$ is constant [23]. Eq. (3) shows that $\Delta \Omega$ is proportional to P_0, which can be beneficial to the spectral quantization operation. According to Eq. (4), it can be obtained

$$\Delta T \approx \Delta \Omega \cdot \beta_2 \cdot L \approx \Delta \lambda \cdot D \cdot L = D \cdot L \cdot (\lambda_c - \lambda_0)$$ \hspace{1cm} (5)

where $\Delta \lambda$ is the wavelength shift of the optical spectrum, $D = -2 \pi c \beta_2 / \lambda^2$ is the dispersion of fiber, λ_c is the central wavelength of optical pulse after quantization, and λ_0 is the input center wavelength. According to the proportional relation between ΔT and λ_0, the mechanism of the proposed lumped time-delay compensation is presented in Fig. 2.

The solid line is the time-delay curve with a slope of K_1, while the dash line is the time-delay compensation curve with a slope of K_2. $K_1 = -K_2 = (\Delta T_{\text{max}} - \Delta T_{\text{min}}) / (\lambda_{\text{max}} - \lambda_{\text{min}})$. The dash line can be realized by using a span of fiber with the specific dispersion D'. According to the principle of dispersion compensation, it is easy to obtain $D' = -K_1 / L'$. Here, L' is the length of the time-delay compensation fiber. This means that the time-delay can be compensated by a span of fiber with the flattened negative dispersion around $-K_1 / L'$. For an AOADC with a certain resolution, the K_1 can be appropriately selected.

3. Simulation and Discussion

According to the analysis above, the lumped time-delay compensation scheme is proposed, as shown in Fig. 3. A span of flattened NDF is inserted between the HNLF and the AWG to realize the
lumped time-delay compensation, and thus, the multiple TDLs in Fig. 1 can be neglected. The simulation results can be obtained by solving the GNLSE with the split-step-Fourier method. The string of hyperbolic secant optical pulses with the FWHM of 0.53 ps, repetition of 40 GHz, and central wavelength of 1558 nm is launched by a mode-locked laser diode (MLLD). Via adjusting the peak powers of the pulses, the sampled pulses can be simulated. Seven optical pulses with the peak powers of 5.1 W, 7 W, 8.5 W, 10 W, 11.5 W, 13 W, and 15 W are generated, corresponding to seven quantization levels marked as $Q_1, Q_2, Q_3, \ldots, Q_7$, respectively. The temporal diagram is shown in Fig. 4(a).

The time interval of the pulses is 25 ps corresponding to the total sampling rate of 40 GSa/s. After transmitting in 1 km HNLF ($\gamma = 16 \text{ W}^{-1}/\text{km}, D = +3 \text{ ps/nm/km}, \alpha = 0.9 \text{ dB/km}$) for quantization,
the sampled pulses are respectively assigned to the specific wavelengths simultaneously with
temporal delays. The delayed pulses are shown in Fig. 4(b). It can be obviously seen that the order
of the pulses is disrupted, e.g., \(Q_6\) and \(Q_7\) with larger time-delays are exceeded by \(Q_1\). This
nonsynchronous issue can lead to the coding error in the final decision. Fig. 5(a) shows the spectral
profiles of the quantized pulses. Seven-level wavelength shifts are generated corresponding to
seven input powers. The quantization resolution \(N\) can be described as [16], [17]

\[
N = \log_2 \left(\frac{\lambda_{\text{shift}} + \Delta \lambda_{\text{FWHM}}}{\Delta \lambda_{\text{FWHM}}} \right)
\]

where \(\lambda_{\text{shift}}\) and \(\Delta \lambda_{\text{FWHM}}\) are the amount of center wavelength shift and the spectral width of the
optical pulse after the SSFS, respectively. The \(\lambda_{\text{shift}}\) is 55 nm while the average \(\Delta \lambda_{\text{FWHM}}\) is 7.25 nm,
which results in \(N = 3.1\) bit. It can be seen that the spectrum becomes overlapped with each other,
which leads to the cross-talk between adjacent channels. Fortunately, the overlap points are all not
higher than the FWHM level of the spectrum so that the cross-talk issue can be mitigated with the
power equalization by the attenuator array and comparator decision. Fig. 5(b) shows the transfer
function of the 3-bit AOADC. The transfer function is increasing monotonically without missing
codes. The least significant bit (LSB) power \(P_{\text{LSB}}\) and the full-scale of power range \(P_{\text{total}}\) are 1.65 W
and 13.2 W, respectively. Differential nonlinear (DNL) and integral nonlinear (INL) errors calculated
from the transfer function are shown in Fig. 5(c). A peak DNL error of 0.24 LSB and a maximum INL
error of 0.203 LSB are obtained, which ensures the resolution of the proposed 3-bit AOADC. The
temporal profiles after the PD detection and the coding results with time-delay are shown in
Fig. 6(a). Since the input optical pulses are “\(Q_3, Q_5, Q_7, Q_1, Q_6, Q_4, \) and \(Q_2\),” the correct codes
should be “110 101 111 100 011 001 010.” However, as shown in Fig. 6(a), the coding results
become “110 000 100 101 000 010 111.” The corresponding optical pulses become “\(Q_3, Q_0, Q_1, Q_5, \)
\(Q_0, Q_2, \) and \(Q_7\),” which are inconsistent with the input ones. Thus, the time-delay compensation
is quite necessary for ensuring the coding correctness.
In order to realize the proposed lumped time-delay compensation, a 10 m NDF with flattened dispersion in the wavelength range of 1558 to 1620 nm is inserted after the quantization module. Since the slope of the time-delay curve is $K_1 = 2.2$ ps/nm in this scheme, the dispersion value of -220 ps/nm/km is selected. The NDF can be fabricated with the multi-cladding design of dispersion compensation fiber, which is a mature technique at present. Correct binary codes are obtained with the proposed time-delay compensation, as shown in Fig. 6(b). However, because of the group-velocity dispersion effect of the NDF, the pulses after compensation are simultaneously broadened. This broadening effect can induce the limitation of the total sampling rate. If the FWHM of the broadened pulse is larger than the reciprocal of sampling rate, the broadened pulses will markedly interfere the decision of its adjacent pulses. This means that the wrong coding decision of “1” will replace the correct one of “0” in the final decision. It is evident that the slight interference has occurred in some decision window, as shown in Fig. 6(b). If the sampling rate is increased to a certain level, the wrong coding decision can be obtained. Considering the cases with different slopes K_1, the diagram of FWHM vs. central wavelength of the compensated pulses is shown in
Fig. 7. (a) Curves of the FWHM vs. central wavelength of the compensated pulses (b) supportable sampling rate vs. slope K_1.

Fig. 8. The influences of the dispersion fluctuation, (a) FWHM of the compensated pulses vs. dispersion and (b) Time error vs. dispersion.

Fig. 7(a). K_1 is the slope of the time-delay curve, which is closely related to the amount of time-delay. With the increase of the central wavelength, the FWHM of the compensated pulse increases monotonically. Obviously, the pulse broadening effect can be suppressed by decreasing K_1. However, K_1 cannot be decreased without limitation because it is associated with the maximum wavelength shift. Enough wavelength shift must be obtained to ensure the quantization resolution according to Eq. (6). Since the central wavelengths are linearly related to the input sampled powers, the larger sampled power corresponds to the larger pulse broadening after the time-delay compensation. Therefore, the supportable sampling rate can be estimated by the broadened FWHM of the maximum sampled power. The estimated results are also shown in Fig. 7(b). For example, K_1 is 2.2 ps/nm and the maximum central wavelength is 1613 nm in our scheme. This means that the maximum FWHM of the compensated pulses is 22.6 ps, and the sampling rate should be no more than 44 GSa/s. If K_1 is reduced to 1 ps/nm with no impairments of the quantization resolution, a supportable sampling rate of 88 GSa/s can be obtained.

In practical fabrication, the dispersion of the flattened NDF cannot be a constant of -220 ps/nm/km. Considering the dispersion fluctuation within ± 10 ps/nm/km, the effect on the FWHM of the compensated pulses is shown in Fig. 8(a). With the decrease in dispersion, the FWHM of the seven compensated pulses all increase linearly. However, the variations are relative slight, which are all less than 1.6 ps. For example, the FWHM of Q_7 becomes 23.4 ps at the dispersion value of -230 ps/nm/km. According to the 22.6 ps at the dispersion value of -220 ps/nm/km, only 0.8 ps difference is obtained. Fig. 8(b) shows the diagram of time error vs. dispersion fluctuation. The time
error is defined as the difference between the time position of compensated pulses and the one of input pulses. If the time error is very large, the interference of pulses can still occur. It is evident that Q_f has a relative large time error and its maximum is 5 ps. Considering both the pulse broadening and dispersion fluctuation issues, the maximum supportable sampling rate (MSSR) can be calculated by

$$\text{MSSR} = \frac{1}{2 \cdot \left(\text{Time-error} + \text{FWHM}_{\text{broadened}}/2\right)}$$ (7)

where Time-error and $\text{FWHM}_{\text{broadened}}$ are the amount of time error and the FWHM of the broadened pulses, respectively. Because the FWHM of Q_f is less than 23.4 ps in this scheme, the pulse with broadening and time error will not severely interfere the decision of its adjacent pulses with the MSSR of 30 GSa/s. The same judgment can be made to the other coding pulses.

4. Conclusion

In summary, we proposed a novel lumped time-delay compensation scheme for simplifying the structure and ensuring the coding correctness of the SSFS-based AOADC. The 3-bit quantization resolution is illustrated in our analysis. The corresponding eight TDLs should be used for the time-delay compensation in the previous schemes. Using just a span of 10 m NDF instead, the construction of the AOADC can be simplified greatly with accurate time-delay compensation simultaneously. Actually, a potential 5-bit resolution can be realized with an additional spectral compression module since the total wavelength range is 55 nm [21]. The spectral compression can be realized by utilizing the dispersion-increasing fiber or the cascade structure of HNLF and SMF. Because 32 TDLs are needed for a 5-bit AOADC, the simplification effect can be more remarkable. Numerical results show that the delayed pulses can be accurately synchronized with the proposed lumped time-delay compensation scheme. A supportable sampling rate of 30 GSa/s is obtained when considering both the pulse broadening issue and dispersion fluctuation within \pm10 ps/nm/km. This means that the proposed scheme is very applicable to the bit rates of less than 2.5 Gb/s (12 samples per bit). In order to support higher sampling rate, our further work will be contracted on the matching pulse compression techniques in time domain.

References

