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 

Abstract—Unknown measurement delays usually degrade 

system performance, and even damage the system under output 

feedback control, which motivates us to develop an effective 

method to attenuate or offset the adverse effect from the 

measurement delays. In this paper, an augmented observer is 

proposed for discrete-time Lipschitz nonlinear systems subjected 

to unknown measurement delays, enabling a simultaneous 

estimation for system states and perturbed terms caused by the 

output delays. On the basis of the estimates, a sensor 

compensation technique is addressed to remove the influence 

from the measurement delays to the system performance. 

Furthermore, an integrated robust estimation and compensation 

technique is proposed to decouple constant piece-wise 

disturbances, attenuate other disturbances/noises, and offset the 

adverse effect caused by the measurement delays. The proposed 

methods are applied to a two-stage chemical reactor with delayed 

recycle, and an electro-mechanical servo system, which 

demonstrates the effectiveness of the present techniques.    

 
Index Terms—Discrete-time systems, measurement delays, 

nonlinear systems, observers, robustness, signal compensation. 

 

I. INTRODUCTION 

IPSCHITZ nonlinear systems have attracted continuous 

interest during the last decades, since many nonlinearities 

in engineering systems can be characterized, at least locally,  

as Lipschitz form. Fruitful results have been reported for a 

variety of research issues on Lipscthiz nonlinear systems such 

as stabilization and control [1-3], estimation and filtering [4, 

5], and fault diagnosis [6, 7]. Meanwhile, time delays always 

exist in practical processes due to the distributed nature of the 

system, material transport, and communication lag, which may 

cause the system performance degradation, and even 

instability [8-11]. Therefore, research on nonlinear systems  
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subjected to delays has received much more attention. In [12], 

state and output feedback stabilization was discussed for 

Lipschitz nonlinear systems with delays.  In [13], a distributed 

𝐻∞ filter was proposed for a class of Markovian jump 

nonlinear time-delay systems over lossy sensor networks. By 

using linear matrix inequality technique, a robust observer was 

presented in [14] for nonlinear discrete-time systems with 

time-delays. In [15], an adaptive observer was addressed for 

Lipschitz nonlinear systems with time-varying delays. In 

addition, a simultaneous state and disturbance estimator was 

proposed in [16] for time-delay continuous systems with 

application to fault diagnosis and fault tolerance. It is noted 

that all the results in [12-16] were focused on state delayed 

systems rather than output delayed systems.  

In many engineering systems, the output measurements are 

often subjected to non-negligible time delays. As a matter of 

fact, this type of time-delay occurs when the measured output 

data are transmitted via a low speed communication system. 

Moreover, it may be encountered when systems to be 

monitored, managed or controlled are located far from the 

computing unit [17].  Moreover, sensor technology may be the 

source of output data with significant delays [18]. It is evident 

that the out-of-date outputs may lead to wrong control 

commands, which may cause the performance degradation of 

the closed-loop control system, and even the damage of the 

machine. Therefore, it is of significance to reconstruct the 

present system states using the delayed measurement data. 

Recently, an interesting state observer was proposed in [19] 

for a discrete-time Lipschitz non-linear system with constant 

delayed output. In [20], a high-gain observer was designed for 

nonlinear continuous systems with varying delayed 

measurement. It is noticed that the results of [19, 20] are for 

state estimates only, and no efforts were paid for the recovery 

of the system performance caused by measurement delays. As 

a result, there is a strong motivation to develop an integrated 

state and delay perturbation estimator, and compensator for 

recovering the system performance.  

Disturbance and noises are inevitable in real-time 

environments. Very recently, disturbance observers have 

significantly contributed to the disturbance estimation, which 

can be further implemented to offset the effects from the 

disturbance [6, 16, 21, 22].  Along with delay perturbation 

estimation and compensation, the disturbance removal and 
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noises attenuation is another contribution of the paper, which 

makes the proposed approach possess robustness in practical 

noise environment.  In this paper, a novel augmented observer 

will be developed to simultaneously estimate system states 

and the perturbed term caused by output unknown delays. 

Furthermore, an integrated delay and input disturbance 

compensator will be addressed to remove the effect from the 

output delays and input disturbances, leading to a performance 

recovery of system outputs. To facilitate real-time application, 

discrete-time Lipschitz systems are concentrated on this study. 

Finally, the proposed methods will be applied to a two-stage 

chemical reactor with delayed recycle, and an electro-

mechanical servo system with real data, in order to 

demonstrate the effectiveness of the present techniques.      

In this paper, the symbols used are standard. 𝑅 represents 

the set of all real numbers;  𝑀𝑇 stands for the transpose of 

𝑀;   𝑀− denotes the inverse of 𝑀;  𝑀+ denotes the generalized 

inverse of 𝑀; 𝑏𝑙𝑜𝑐𝑘 − 𝑑𝑖𝑎𝑔(𝑀1, 𝑀2) implies [
𝑀1 0
0 𝑀2 

] ; 

𝑋 > 0 (or 𝑋 < 0) indicates the symmetric matrix 𝑋 is positive 

(or negative) definite; 𝜆𝑚𝑖𝑛(𝑋) represents the minimal 

eigenvalue of 𝑋;  |𝑚| denotes the modulus or absolute value of 

the scalar 𝑚;  ∥. ∥ represents the standard norm symbol;  𝑙2  is 

the Lebesgue space consisting of all discrete-time vector-

valued function that are square-summable over 𝑍+, where 𝑍+ 

denotes the set of all positive integers.  ‖𝑧‖2 denotes the 𝑙2  

norm of a discrete-time signal 𝑧, which is defined as ‖𝑧‖2 =

√∑ 𝑧𝑇(𝑘)𝑧(𝑘)∞
𝑘=0 . 

II. ESTIMATION AND COMPENSATION FOR OUTPUT DELAYS 

A. Observer for State and Sensor Delay-perturbation  

Consider a discrete-time nonlinear dynamic system 

subjected to output delays in the form of 

{
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + Φ(𝑥(𝑘), 𝑢(𝑘))

𝑦(𝑘) = 𝐶𝑥(𝑘 − Δ)
        (1) 

where 𝑥(𝑘) ∈ 𝑅𝑛 is the state vector, 𝑢(𝑘) ∈ 𝑅𝑚 represents the 

control input vector, Φ(𝑥(𝑘), 𝑢(𝑘)) is a nonlinear function 

vector, 𝑦(𝑘) ∈ 𝑅𝑝 is the measured output vector, 𝑥(𝑘 − Δ) =
[𝑥1(𝑘 − Δ1), 𝑥2(𝑘 − Δ2)⋯ 𝑥𝑛(𝑘 − Δ𝑛)]

𝑇 , Δ1, Δ2, ⋯ , Δ𝑛 are 

the unknown delays which can be either constant or time-

variable delays. As constant time delays can be regarded as the 

special case of time-variable delays, the unknown delays here 

are mainly referred to unknown time-variable delays.  

Assumption 1. The function Φ(𝑥(𝑘), 𝑢(𝑘)) is assumed to be 

Lipschitz, that is, for any 𝑥1(𝑘), 𝑥2(𝑘) ∈ 𝑅
𝑛 ,  and 𝑢(𝑘) ∈ 𝑅𝑚, 

there is a constant 𝛾 > 0 such that 

‖Φ(𝑥1(𝑘), 𝑢(𝑘)) − Φ(𝑥2(𝑘), 𝑢(𝑘))‖ 

≤ 𝛾‖𝑥1(𝑘) − 𝑥2(𝑘)‖.                                            (2) 

Suppose Φ(𝑥(𝑘), 𝑢(𝑘)) = 0 when 𝑥(𝑘) = 0 for any 

𝑢(𝑘) ∈ 𝑅𝑚. Therefore, Assumption 1 implies for any 𝑢(𝑘) ∈
𝑅𝑚 , there is a constant 𝛾 > 0 such that 

‖Φ(𝑥(𝑘), 𝑢(𝑘))‖ ≤ 𝛾‖𝑥(𝑘)‖.                                   (3) 

Remark 1. The nonlinear term Φ(𝑥(𝑘), 𝑢(𝑘)) is globally 

Lipschitz from Assumption 1. However, in practical cases, 

most of the nonlinear systems are locally Lipschitz in a region 

including the origin with respect to 𝑥(𝑘) and uniformly in 

𝑢(𝑘). It is worthy to point out that all the results derived for a 

globally Lipschitz system can be applied to a locally Lipschitz 

system directly.  

Lemma 1[23]. Given a symmetric matrix 𝑆 = [
𝑆11 𝑆12
𝑆12
𝑇 𝑆22

].  

𝑆 < 0 if and only if 𝑆22 < 0 and 𝑆11 − 𝑆12𝑆22
−1𝑆12

𝑇 < 0. 
The above lemma is known as the Schur complement 

lemma, which is useful for the design of the observer and 

compensator gains in this paper. 

Let 

𝜔(𝑘) = 𝐶[𝑥(𝑘 − Δ) − 𝑥(𝑘)],                     (4) 

 the output equation in (1) thus becomes 

𝑦(𝑘) = 𝐶𝑥(𝑘) + ω(𝑘).                              (5) 

Define 

𝑥𝑎(𝑘) = [
𝑥(𝑘)

𝜔(𝑘)
],   

 𝐸𝑎 = [
𝐼𝑛 0
0 0𝑝×𝑝

] ,          𝐴𝑎 = [
𝐴 0
0 −𝛼𝐼𝑝

],   

  𝐵𝑎 = [
𝐵

0𝑝×𝑚
],    𝑁𝑎 = [

0𝑛×𝑝 

𝛼𝐼𝑝
],   

 𝐶𝑎 = [𝐶 𝐼𝑝],      

  Φ𝑎(𝑥(𝑘), 𝑢(𝑘)) = [
Φ(𝑥(𝑘), 𝑢(𝑘))

0𝑝×𝑛
]                                (6) 

where 𝛼 is a constant.  

In terms of (1), and (4)-(6), we can construct an augmented 

descriptor system as follows: 

{

𝐸𝑎𝑥𝑎(𝑘 + 1) = 𝐴𝑎𝑥𝑎(𝑘) + 𝐵𝑎𝑢(𝑘)

                               +Φ𝑎(𝑥(𝑘), 𝑢(𝑘)) + 𝑁𝑎𝜔(𝑘)

𝑦(𝑘) = 𝐶𝑎𝑥𝑎(𝑘).

     (7) 

It is noted that the augmented state vector 𝑥𝑎(𝑘)  is 

composed of the original system state 𝑥(𝑘), and the perturbed 

termed 𝜔(𝑘) caused by output delay. Therefore, the 

simultaneous estimation of the original system state and the 

sensor perturbed term can be realized if the state estimation of 

the extended state 𝑥𝑎(𝑘) can be obtained.  

A discrete-time augmented observer can be constructed in 

the form of: 

{

𝑆𝑎𝜉(𝑘 + 1) = (𝐴𝑎 − 𝐾𝑎𝐶𝑎)𝜉(𝑘) + 𝐵𝑎𝑢(𝑘)

                        −𝑁𝑎𝑦(𝑘) + Φ𝑎(𝑥̂(𝑘), 𝑢(𝑘))

𝑥̂𝑎(𝑘) = 𝜉(𝑘) + 𝑆𝑎
−1𝐿𝑎𝑦(𝑘)

           (8) 

where 𝜉(𝑘) ∈ 𝑅𝑛+𝑝 is the state vector of the above dynamic 

system, 𝑥̂𝑎(𝑘) ∈ 𝑅
𝑛+𝑝 is the estimate of the augment state 

𝑥𝑎(𝑘) ∈ 𝑅
𝑛+𝑝, 𝑥̂(𝑘) = (𝐼𝑛 0𝑛×𝑝)𝑥̂𝑎  (𝑘) is the estimate of 

the original sate 𝑥(𝑘) ∈ 𝑅𝑛 , 𝑆𝑎 = 𝐸𝑎 + 𝐿𝑎𝐶𝑎, and 𝐿𝑎 ∈

𝑅(𝑛+𝑝)×𝑝 and  𝐾𝑎 ∈ 𝑅
(𝑛+𝑝)×𝑝 are respectively the derivative 

gain and proportional gain of the observer to be designed. 

Let 

𝐿𝑎 = [
0𝑛×𝑝
𝐿𝑠

],                                    (9) 

then 

𝑆𝑎
−1 = (𝐸𝑎 + 𝐿𝑎𝐶𝑎)

−1 

= [
𝐼𝑛 0

−𝐶 𝐿𝑠
−1]                                   (10) 

which implies 𝑆𝑎
−1 exists provided that 𝐿𝑠 is non-singular.  

In terms of the (6), (9) and (10), one can obtain 
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𝐴𝑎𝑆𝑎
−1𝐿𝑎 = −𝑁𝑎,    𝐶𝑎𝑆𝑎

−1𝐿𝑎 = 𝐼𝑝.                      (11) 

Substituting the second equation in (8) into the first 

equation in (8), and using (11), the augmented observer can be 

rewritten as 

𝑆𝑎𝑥̂𝑎(𝑘 + 1) 

= (𝐴𝑎 − 𝐾𝑎𝐶𝑎)𝑥̂𝑎(𝑘) + 𝐵𝑎𝑢(𝑘) + Φ𝑎(𝑥̂(𝑘), 𝑢(𝑘)) 

 +𝐾𝑎𝑦(𝑘) + 𝐿𝑎𝑦(𝑘 + 1)                     (12) 

Noticing that 𝐿𝑎𝑦(𝑘 + 1) = 𝐿𝑎𝐶𝑎𝑥𝑎(𝑘 + 1),  and  𝐾𝑎𝑦(𝑘) =
𝐾𝑎𝐶𝑎𝑥𝑎(𝑘), the dynamic equation of the plant in (7) can be 

rewritten as  

𝑆𝑎𝑥𝑎(𝑘 + 1) 
= (𝐴𝑎 − 𝐾𝑎𝐶𝑎)𝑥𝑎(𝑘) + 𝐵𝑎𝑢(𝑘) + 𝑁𝑎𝜔(𝑘) 

    +Φ𝑎(𝑥(𝑘), 𝑢(𝑘)) + 𝐾𝑎𝑦(𝑘) + 𝐿𝑎𝑦(𝑘 + 1).                (13) 

Let 

 𝑒𝑎(𝑘) = 𝑥𝑎(𝑘) − 𝑥̂𝑎(𝑘),                                      (14) 

Φ𝑟 = Φa(𝑥(𝑘), 𝑢(𝑘)) − Φ𝑎(𝑥̂(𝑘), 𝑢(𝑘)).            (15) 

Subtracting (12) from (13), one has 

𝑆𝑎𝑒𝑎(𝑘 + 1) = (𝐴𝑎 − 𝐾𝑎𝐶𝑎)𝑒𝑎(𝑘) + Φ𝑟 + 𝑁𝑎𝜔(𝑘)  (16) 

which is equivalent to the following: 

𝑒𝑎(𝑘 + 1) 
= 𝑆𝑎

−1(𝐴𝑎 − 𝐾𝑎𝐶𝑎)𝑒𝑎(𝑘) + 𝑆𝑎
−1Φ𝑟 +𝑁𝑎𝑚𝜔𝑚(𝑘)         (17)  

where  

𝑁𝑎𝑚 = [
0𝑛×𝑝
𝐼𝑝
],   𝜔𝑚 = 𝛼𝐿𝑠

−1𝜔(𝑘).                                 (18) 

From (18), one can see the effect from the bounded 

perturbed term 𝜔(𝑘) to the estimation error dynamics can be 

attenuated by selecting reasonably high matrix 𝐿𝑠 and small 

constant 𝛼. Therefore, the term 𝑁𝑎𝑚𝜔𝑚 can be ignored if a 

reasonably high matrix 𝐿𝑠 or/and a sufficient small 𝛼 is 

chosen. As a result, the estimation error dynamic equation (16) 

can be simplified as 

𝑒𝑎(𝑘 + 1) = 𝑆𝑎
−1(𝐴𝑎 − 𝐾𝑎𝐶𝑎)𝑒𝑎(𝑘) + 𝑆𝑎

−1Φ𝑟 .          (19) 

The estimation error dynamics is called asymptotically 

stable if 𝑒𝑎(𝑘) → 0 when 𝑘 → ∞.  Now it is time to design the 

proportional gain 𝐾𝑎 to ensure the asymptotic stability of the 

estimation error dynamics in (19).  

Theorem 1: The estimation error dynamic system (19) is 

asymptotically stable if there exist positive constants 𝜃 and 𝜖𝑜, 

a symmetric positive definite matrix 𝑃𝑎 , and a matrix 𝑌𝑎 such 

that for a given positive constant 𝛾 

[
−𝑆𝑎

𝑇𝑃𝑎𝑆𝑎 + 𝜖𝑜𝐼 + 𝜃𝛾
2𝐼  𝐴𝑎

𝑇𝑃𝑎 − 𝐶𝑎
𝑇𝑌𝑎

𝑇 𝐴𝑎
𝑇𝑃𝑎 − 𝐶𝑎

𝑇𝑌𝑎
𝑇

𝑃𝑎𝐴𝑎 − 𝑌𝑎𝐶𝑎 𝑃𝑎 − 𝜃𝐼 0
𝑃𝑎𝐴𝑎 − 𝑌𝑎𝐶𝑎 0 −𝑃𝑎

] 

< 0                                                                                (20) 

where 𝑆𝑎 = 𝐸𝑎 + 𝐿𝑎𝐶𝑎 is nonsingular and 𝐿𝑎 is in the form of 

(9). The proportional gain 𝐾𝑎 can be calculated as 𝐾𝑎 =
𝑃𝑎
−1𝑌𝑎 . 
Proof.   

Define a Lyapunov function as 

𝑉𝑜(𝑒𝑎(𝑘)) = 𝑒𝑎
𝑇(𝑘)𝑆𝑎

𝑇𝑃𝑎𝑆𝑎𝑒𝑎(𝑘).                      (21) 

In terms of (19) and (21), and (2) in Assumption 1, one has 

∆𝑉𝑜(𝑒𝑎(𝑘)) 

= 𝑉𝑜(𝑒𝑎(𝑘 + 1)) − 𝑉𝑜(𝑒𝑎(𝑘)) 

= 𝑒𝑎
𝑇(𝑘)[(𝐴𝑎 − 𝐾𝑎𝐶𝑎)

𝑇𝑃𝑎(𝐴𝑎 − 𝐾𝑎𝐶𝑎) − 𝑆𝑎
𝑇𝑃𝑎𝑆𝑎]𝑒𝑎(𝑘) 

        +2𝑒𝑎
𝑇(𝑘)(𝐴𝑎 − 𝐾𝑎𝐶𝑎)

𝑇𝑃𝑎Φr +Φ𝑟
𝑇𝑃𝑎Φ𝑟  

≤ 𝑒𝑎
𝑇(𝑘)[(𝐴𝑎 − 𝐾𝑎𝐶𝑎)

𝑇𝑃𝑎(𝐴𝑎 − 𝐾𝑎𝐶𝑎) − 𝑆𝑎
𝑇𝑃𝑎𝑆𝑎]𝑒𝑎(𝑘) 

      +2𝑒𝑎
𝑇(𝑘)(𝐴𝑎 − 𝐾𝑎𝐶𝑎)

𝑇𝑃𝑎Φr +Φ𝑟
𝑇𝑃𝑎Φ𝑟 

      +𝜖𝑜𝑒𝑎
𝑇𝑒𝑎 − 𝜖𝑜𝑒𝑎

𝑇𝑒𝑎 + θγ
2𝑒𝑎
𝑇𝑒𝑎 − θΦr

TΦr 
= (𝑒𝑎

𝑇(𝑘) Φ𝑟
𝑇)Ω𝑎(𝑒𝑎

𝑇(𝑘) Φ𝑟
𝑇)𝑇 − 𝜖𝑜𝑒𝑎

𝑇(𝑘)𝑒𝑎(𝑘)           (22)                                    

where   

Ω𝑎 = [
Ω𝑎11 (𝐴𝑎 − 𝐾𝑎𝐶𝑎)

𝑇𝑃𝑎
𝑃𝑎(𝐴𝑎 − 𝐾𝑎𝐶𝑎) 𝑃𝑎 − 𝜃𝐼 

],                (23) 

Ω𝑎11 = (𝐴𝑎 − 𝐾𝑎𝐶𝑎)
𝑇𝑃𝑎(𝐴𝑎 − 𝐾𝑎𝐶𝑎) − 𝑆𝑎

𝑇𝑃𝑎𝑆𝑎 

     +𝜖𝑜𝐼 + θγ
2𝐼.                                                 (24) 

Applying the Schur complement shown by Lemma 1 to (23), 

and noticing that 𝑌𝑎 = 𝑃𝑎𝐾𝑎 , one can conclude that (20) 

indicates Ω𝑎 < 0. Therefore, from (22), we have  

∆𝑉𝑜(𝑒𝑎(𝑘)) ≤ −𝜖𝑜‖𝑒𝑎(𝑘)‖
2.                     (25) 

which means 𝑒𝑎(𝑘) → 0 when 𝑘 → ∞, that is, the estimation 

error 𝑒𝑎(𝑘) is asymptotically stable. This completes the proof. 

Remark 2. If there exists an additional term Ψ(𝑦(𝑘)) on the 

right hand side of the first equation in (1), the observer (8) has 

to be modified readily by adding Ψa(𝑦(𝑘)) = [Ψ
T(𝑦(𝑘)),

0𝑛×𝑝]
𝑇
 on the right-hand side of the first equation in (8). In 

this case, the design methods of the proposed observer gains 

𝐿𝑎  and 𝐾𝑎 above are still valid. 

B. Compensation for Sensor Delay-Perturbation 

Apply the following feedback law to the plant (1): 

𝑢(𝑘) = −𝐹𝑥̂(𝑘) = − [𝐹,  0𝑚×𝑝]⏟      
𝐹𝑎

𝑥̂𝑎(𝑘)                            (26) 

where 𝐹 ∈ 𝑅𝑚×𝑛, and 𝑥̂𝑎(𝑘) = [𝑥̂
𝑇(𝑘), 𝜔̂𝑇(𝑘)]𝑇 . Therefore, 

the closed-loop plant becomes 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) − 𝐵𝐹𝑥̂(𝑘) + Φ(𝑥(𝑘), 𝑢(𝑘)) 

= (𝐴 − 𝐵𝐹)𝑥(𝑘) + 𝐵𝐹𝑎𝑒𝑎(𝑘) + Φ(𝑥(𝑘), 𝑢(𝑘)).     (27) 

The compensated output can be expressed as 

𝑦𝑐(𝑘) = 𝑦(𝑘) − 𝜔̂(𝑘) 
= 𝐶𝑥(𝑘) + 𝐷𝑎𝑒𝑎(𝑘)                   (28) 

where 𝐷𝑎 = [0𝑝×𝑛,   𝐼𝑝].  

Theorem 2: The closed-loop system described by (27) and 

(28) is asymptotically stable, if there exist a positive constant 

𝜖,̅ symmetric positive definite matrices 𝑋 and 𝑈, and matrix 𝑌 

such that for a given positive constant 𝛾 

[

−𝑋 + 𝛾2𝑈 𝑋𝐴𝑇 − 𝑌𝑇𝐵𝑇 𝑋𝐴𝑇 − 𝑌𝑇𝐵𝑇 𝑋
𝐴𝑋 − 𝐵𝑌 −𝑈 + 𝑋 0 0
𝐴𝑋 − 𝐵𝑌 0 −𝑋 0

𝑋 0 0 −𝜖𝐼̅

] < 0.   (29) 

Based on the solution to (29), the state-feedback control gain 

can be calculated as 𝐹 = 𝑌𝑋−1. 
Proof.   

Let 

 𝑉𝑐(𝑥(𝑘)) = 𝑥
𝑇(𝑘)𝑃𝑥(𝑘)                              (30) 

where P is symmetric and positive definite matrix.  

In terms of (27) and (30), and (3) in Assumption 1, one has 

Δ 𝑉𝑐(𝑥(𝑘)) 

= 𝑉𝑐(𝑥(𝑘 + 1)) − 𝑉𝑐(𝑥(𝑘)) 

≤ [(𝐴 − 𝐵𝐹)𝑥(𝑘) + Φ(𝑥(𝑘), 𝑢(𝑘)) + 𝐵𝐹𝑎𝑒𝑎(𝑘)]
𝑇
𝑃 

    × [(𝐴 − 𝐵𝐹)𝑥(𝑘) + Φ(𝑥(𝑘), 𝑢(𝑘)) + 𝐵𝐹𝑎𝑒𝑎(𝑘)] 

    −𝑥𝑇(𝑘)𝑃𝑥(𝑘) + 𝜖𝑐𝑥
𝑇(𝑘)𝑥(𝑘) − 𝜖𝑐𝑥

𝑇(𝑘)𝑥(𝑘) 
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+𝜃𝛾2𝑥𝑇(𝑘)𝑥(𝑘) − 𝜃Φ𝑇(𝑥(𝑘), 𝑢(𝑘))Φ(𝑥(𝑘), 𝑢(𝑘)) 

  = [𝑥𝑇(𝑘), ΦT(𝑥(𝑘), 𝑢(𝑘))]Ω[𝑥𝑇(𝑘), ΦT(𝑥(𝑘), 𝑢(𝑘))]𝑇 

   −𝜖𝑐  𝑥
𝑇(𝑘)𝑥(𝑘) + 2𝑥𝑇(𝑘)(𝐴 − 𝐵𝐹)𝑇𝑃𝐵𝐹𝑎𝑒𝑎(𝑘) 

    +2Φ𝑇(𝑥(𝑘), 𝑢(𝑘))𝑃𝐵𝐹𝑎𝑒𝑎(𝑘) 

+𝑒𝑎
𝑇(𝑘)(𝐵𝐹𝑎)

𝑇𝑃𝐵𝐹𝑎𝑒𝑎(𝑘)                                              (31)                                               

where  

Ω = 

[
(𝐴 − 𝐵𝐹)𝑇𝑃(𝐴 − 𝐵𝐹) − 𝑃 + 𝜖𝑐𝐼 + 𝜃𝛾

2𝐼 (𝐴 − 𝐵𝐹)𝑇𝑃
𝑃(𝐴 − 𝐵𝐹) −𝜃𝐼 + 𝑃

]. (32) 

Letting = 𝑃−1, 𝑈 = 𝜃𝑋𝑋, 𝑌 = 𝐹𝑋, and 𝜖̅ = 𝜖𝑐
−1, and pre-

multiplying and post-multiplying 𝑏𝑙𝑜𝑐𝑘 − 𝑑𝑖𝑎𝑔(𝑃, 𝑃, 𝑃, 𝑃) on 

both sides of (29), one  has 

[
 
 
 
−𝑃 + 𝛾2𝜃𝐼 (𝐴 − 𝐵𝐹)𝑇𝑃 (𝐴 − 𝐵𝐹)𝑇𝑃 𝑃

𝑃(𝐴 − 𝐵𝐹) −𝜃𝐼 + 𝑃 0 0
𝑃(𝐴 − 𝐵𝐹) 0 −𝑃 0

𝑃 0 0 −𝜖𝑐
−1𝑃2]

 
 
 

 

< 0.                                                                                        (33) 

Applying the Schur complement to (33), one can get Ω < 0. 
Therefore from (31), one has  

Δ𝑉𝑐(𝑥(𝑘)) 

≤  −𝜖𝑐𝑥
𝑇(𝑘)𝑥(𝑘) + 2𝑥𝑇(𝑘)(𝐴 − 𝐵𝐹)𝑃𝐵𝐹𝑎𝑒𝑎(𝑘) 

    +2Φ𝑇(𝑥(𝑘), 𝑢(𝑘))𝑃𝐵𝐹𝑎𝑒𝑎(𝑘) 

+𝑒𝑎
𝑇(𝑘)(𝐵𝐹𝑎)

𝑇𝑃𝐵𝐹𝑎𝑒𝑎(𝑘).                                    (34)   

Let 

𝑉𝑐𝑜(𝑥(𝑘), 𝑒𝑎(𝑘)) = 𝑉𝑐(𝑥(𝑘)) + 𝑔𝑉𝑜(𝑒𝑎(𝑘)).                  (35)                

From (25), (34) and (35), one has 

∆𝑉𝑐𝑜(𝑥(𝑘)) = ∆𝑉𝑐(𝑥(𝑘)) + 𝑔∆𝑉𝑜(𝑒𝑎(𝑘)) 

≤ −𝜖𝑐‖𝑥(𝑘)‖
2  + 𝜖𝑥𝑒‖𝑥(𝑘)‖‖𝑒𝑎(𝑘)‖ 

+𝜖𝑎‖𝑒𝑎(𝑘)‖
2 − 𝑔𝜖𝑜‖𝑒𝑎(𝑘)‖

2                       (36) 

where 

𝜖𝑥𝑒 = 2‖(𝐴 − 𝐵𝐹)
𝑇𝑃𝐵𝐹𝑎‖ + 2𝛾‖𝑃𝐵𝐹𝑎‖            (37) 

𝜖𝑎 = ‖𝑃‖‖𝐵𝐹𝑎‖
2                                                  (38) 

Selecting  

𝑔 ≥
𝜖𝑥𝑒
2 +𝜖𝑐𝜖𝑒

𝜖𝑐𝜖𝑜
,                                                (39) 

and using (36), one has 

∆𝑉𝑐𝑜(𝑥(𝑘), 𝑒𝑎(𝑘)) 

≤ −
𝜖𝑐

2
 ‖𝑥(𝑘)‖2 −

𝑔

2
(𝜖𝑜 −

𝜖𝑎

𝑔
) ‖𝑒𝑎(𝑘)‖

2        (40) 

which indicates 𝑒𝑎(𝑘) → 0 and 𝑥(𝑘) → 0 as 𝑘 → ∞. 
Therefore the closed-loop system described by (27) and (28) is 

asymptotically stable. This completes the proof. 

C. Design Procedure for Estimation and Compensation 

The integrated design of the simultaneous observer for state 

and delay-perturbation estimation, and compensator is 

summarized as follows. 

(a).  Construct the augmented plant in the form of (7), where 

the augmented matrices 𝐸𝑎 , 𝐴𝑎, 𝐵𝑎, 𝐶𝑎 and 𝑁𝑎, and the 

augmented vectors 𝑥𝑎(𝑘) and Φ𝑎(𝑥(𝑘), 𝑢(𝑘)) are 

defined by (6). Here, 𝛼 is chosen as a small constant in 

order to reduce the effect from the perturbed term 𝜔(𝑘). 
(b).  Select the derivative gain matrix 𝐿 of the observer in the 

form of (9), where 𝐿𝑠 is chosen as a nonsingular high-

gain matrix so that 𝑆𝑎 = 𝐸𝑎 + 𝐿𝑎𝐶𝑎 is nonsingular and 

the effect from the perturbed term 𝜔(𝑘) can be further 

attenuated by 𝐿𝑠
−1. 

(c).  Solve the linear matrix inequality (20) to give the 

matrices 𝑃𝑎 and 𝑌𝑎, leading to the proportional gain 

𝐾𝑎 = 𝑃𝑎
−1𝑌𝑎 . 

(d).  Implement the augmented observer in the form of (8) to 

the plant (7), and produce the simultaneous state and 

delay-perturbation estimates as follows: 

𝑥̂(𝑘) = (𝐼𝑛 0𝑛×𝑝)𝑥̂𝑎  (𝑘) 
𝜔̂(𝑘) = (0𝑝×𝑛 𝐼𝑝)𝑥̂𝑎  (𝑘) 

         where 𝑥̂𝑎  (𝑘) is the estimate of the augmented state 

𝑥𝑎(𝑘). 
(e).  Solve the linear matrix inequality (29) to yield the state-

feedback gain 𝐹 = 𝑌𝑋−1. Apply the feedback control 

𝑢(𝑘) = −𝐹𝑥̂(𝑘) to the plant (1), and implement the 

sensor compensation as 𝑦𝑐(𝑘) = 𝑦(𝑘) − 𝜔̂(𝑘).  As a 

result, the compensated system is asymptotically stable 

and the effect from the delay to the output has been 

completely removed. 

III. ROBUST ESTIMATION AND COMPENSATION  

A. Robust Simultaneous Estimation  

Consider a discrete-time nonlinear dynamic system 

subjected to output delay, process disturbance and 

measurement noise in the form of 

{
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + Φ(𝑥(𝑘), 𝑢(𝑘)) + 𝐵𝑑𝑛𝑑(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘 − Δ) + 𝑛𝜔(𝑘)
   

(41) 

where 𝑛𝑑(𝑘) ∈ 𝑅
𝑙 is the process disturbance, 𝑛𝜔(𝑘) ∈ 𝑅

𝑝 is 

the measurement noise, and other terms are the same as in (1).  

Assume 

 𝑛𝑑(𝑘) = 𝑛𝑑𝑐(𝑘) + 𝑛𝑑ℎ(𝑘)                                  (42) 

where 𝑛𝑑𝑐(𝑘) is a piecewise-constant disturbance signal, and 

𝑛𝑑ℎ(𝑘) is a 𝑙2 norm bounded disturbance signal.  

Let 

𝜔(𝑘) = 𝐶[𝑥(𝑘 − Δ) − 𝑥(𝑘)] + 𝑛𝜔(𝑘),                     (43) 

 the output equation in (41) thus becomes 

𝑦(𝑘) = 𝐶𝑥(𝑘) + ω(𝑘).                                     (44) 

Define 

𝑥𝑎𝑟(𝑘) = [

𝑥(𝑘)
𝑛𝑑𝑐(𝑘)

𝜔(𝑘)
],  𝑛𝑎𝑑(𝑘) = [

𝑛𝑑ℎ(𝑘)
𝜔(𝑘)

], 

 𝐸𝑎𝑟 = [

𝐼𝑛 0 0
0 𝐼𝑙 0
0 0 0𝑝×𝑝

] ,          𝐴𝑎𝑟 = [

𝐴 𝐵𝑑 0
0 𝐼𝑙 0
0 0 −𝛼𝐼𝑝

],   

  𝐵𝑎𝑟 = [

𝐵
0𝑙×𝑚
0𝑝×𝑚

],    𝐵𝑎𝑑 = [

𝐵𝑑 0
0 0𝑙×𝑝 

0 𝛼𝐼𝑝

],  𝑁𝑎𝑟 = [

0𝑛×𝑝
0𝑙×𝑝 

𝛼𝐼𝑝

], 

 𝐶𝑎𝑟 = [𝐶 0𝑝×𝑙  𝐼𝑝],      

  Φ𝑎𝑟(𝑥(𝑘), 𝑢(𝑘)) = [

Φ(𝑥(𝑘), 𝑢(𝑘))

0𝑙×𝑛
0𝑝×𝑛

].                          (45) 

In terms of (41)-(45), we can construct an augmented 

descriptor system as follows: 
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{

𝐸𝑎𝑟𝑥𝑎𝑟(𝑘 + 1) = 𝐴𝑎𝑟𝑥𝑎𝑟(𝑘) + 𝐵𝑎𝑟𝑢(𝑘)

                               +Φ𝑎𝑟(𝑥(𝑘), 𝑢(𝑘)) + 𝐵𝑎𝑑𝑛𝑎𝑑(𝑘)

𝑦(𝑘) = 𝐶𝑎𝑟𝑥𝑎𝑟(𝑘).

     (46) 

A discrete-time augmented observer can be constructed in 

the form of: 

{

𝑆𝑎𝑟𝜂(𝑘 + 1) = (𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟)𝜂(𝑘) + 𝐵𝑎𝑟𝑢(𝑘)

                        −𝑁𝑎𝑟𝑦(𝑘) + Φ𝑎𝑟(𝑥̂(𝑘), 𝑢(𝑘))

𝑥̂𝑎𝑟(𝑘) = 𝜂(𝑘) + 𝑆𝑎𝑟
−1𝐿𝑎𝑟𝑦(𝑘)

             (47) 

where 𝜂(𝑘) ∈ 𝑅𝑛+𝑙+𝑝 is the state vector of the above dynamic 

system, 𝑥̂𝑎(𝑘) ∈ 𝑅
𝑛+𝑙+𝑝 is the estimate of the augmented state 

𝑥𝑎𝑟(𝑘) ∈ 𝑅
𝑛+𝑙+𝑝, 𝑥̂(𝑘) = (𝐼𝑛 0𝑛×(𝑙+𝑝))𝑥̂𝑎𝑟  (𝑘) is the 

estimate of the original sate 𝑥(𝑘) ∈ 𝑅𝑛, 𝑆𝑎𝑟 = 𝐸𝑎𝑟 + 𝐿𝑎𝑟𝐶𝑎𝑟 , 

and 𝐿𝑎𝑟 ∈ 𝑅
(𝑛+𝑙+𝑝)×𝑝 and  𝐾𝑎𝑟 ∈ 𝑅

(𝑛+𝑙+𝑝)×𝑝 are respectively 

the derivative gain and proportional gain of the observer to be 

designed. 

Let 

𝐿𝑎𝑟 = [

0𝑛×𝑝
0𝑙×𝑝
𝐿𝑡

],                                    (48) 

then 

𝑆𝑎𝑟
−1 = (𝐸𝑎𝑟 + 𝐿𝑎𝑟𝐶𝑎𝑟)

−1 

= [

𝐼𝑛 0 0
0 𝐼𝑙 0

−𝐶 0 𝐿𝑡
−1
]                                   (49) 

which implies 𝑆𝑎𝑟
−1 exists provided that 𝐿𝑟 is non-singular.  

In terms of the (45), (48) and (49), one can obtain 

𝐴𝑎𝑟𝑆𝑎𝑟
−1𝐿𝑎 = −𝑁𝑎𝑟 ,    𝐶𝑎𝑟𝑆𝑎𝑟

−1𝐿𝑎𝑟 = 𝐼𝑝.                      (50) 

Let 

 𝑒𝑎𝑟(𝑘) = 𝑥𝑎𝑟(𝑘) − 𝑥̂𝑎𝑟(𝑘),                                      (51) 

Φ̃𝑎𝑟 = Φar(𝑥(𝑘), 𝑢(𝑘)) − Φ𝑎𝑟(𝑥̂(𝑘), 𝑢(𝑘)).            (52) 

Using (46), (47), (50)-(52) and the similar manner to derive 

(16), one can obtain 

𝑆𝑎𝑟𝑒𝑎𝑟(𝑘 + 1) 

= (𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟)𝑒𝑎𝑟(𝑘) + Φ̃𝑎𝑟 + 𝐵𝑎𝑑𝑛𝑎𝑑(𝑘)        (53) 

or the equivalent formula 

𝑒𝑎𝑟(𝑘 + 1) = 𝑆𝑎𝑟
−1(𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟)𝑒𝑎𝑟(𝑘)  

+𝑆𝑎𝑟
−1Φ̃𝑎𝑟 + 𝑆𝑎𝑟

−1𝐵𝑎𝑑𝑛𝑎𝑑(𝑘)          (54) 

In the light of (45), one can compute 

𝐵𝑎𝑑𝑛𝑎𝑑(𝑘) = [

𝐵𝑑 0
0 0𝑙×𝑝
0 𝐼𝑝

]

⏟      
𝐵𝑚𝑑

[
𝑛𝑑ℎ(𝑘)

𝛼𝜔(𝑘)
]

⏟      
𝑛𝑚𝑑(𝑘)

.               (55) 

From (55), one can see that the effect from 𝜔(𝑘) to the error 

dynamics can be effectively attenuated by selecting a small 

scalar 𝛼.  
Substitution (55) into (54) yields 

𝑒𝑎𝑟(𝑘 + 1) = 𝑆𝑎𝑟
−1(𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟)𝑒𝑎𝑟(𝑘) 

+𝑆𝑎𝑟
−1Φ̃𝑎𝑟 + 𝑆𝑎𝑟

−1𝐵𝑚𝑑𝑛𝑚𝑑(𝑘).       (56) 

If the estimation error 𝑒𝑎𝑟(𝑘) is asymptotically stable when 

the disturbance 𝑛𝑚𝑑(𝑘) is null, and satisfies ‖𝑒𝑎𝑟‖2 ≤
𝜖𝑟𝑑‖𝑛𝑚𝑑‖2 for a positive scalar  𝜖𝑟𝑑, the error dynamics is 

called robustly stable. Based on (56), the next step is to design 

the proportional observer gain 𝐾𝑎𝑟  to ensure the system (56) to 

be robustly stable.  

Theorem 3: The estimation error dynamic system (56) is 

robustly stable and satisfies the robust performance index 

‖𝑒𝑎𝑟‖2
2
≤ 𝜖𝑟

−1𝜖𝑑‖𝑛𝑚𝑑‖2
2
                       (57) 

if there exist positive constant𝑠 𝜃, 𝜖𝑟 , and 𝜖𝑑, a symmetric 

positive definite matrix 𝑃𝑎𝑟 , and a matrix 𝑌𝑎𝑟  such that for a 

given positive constant 𝛾 

Γ = [
Γ11 Γ12
Γ21 Γ22

] < 0                                  (58) 

where 

Γ11 = 

[
−𝑆𝑎𝑟

𝑇 𝑃𝑎𝑟𝑆𝑎𝑟 + 𝜖𝑟𝐼 + 𝜃𝛾
2𝐼  𝐴𝑎𝑟

𝑇 𝑃𝑎𝑟 − 𝐶𝑎𝑟
𝑇 𝑌𝑎𝑟

𝑇   𝐴𝑎𝑟
𝑇 𝑃𝑎𝑟 − 𝐶𝑎𝑟

𝑇 𝑌𝑎𝑟
𝑇

𝑃𝑎𝑟𝐴𝑎𝑟 − 𝑌𝑎𝑟𝐶𝑎𝑟 𝑃𝑎𝑟 − 𝜃𝐼 0
𝑃𝑎𝑟𝐴𝑎𝑟 − 𝑌𝑎𝑟𝐶𝑎𝑟 0 −𝑃𝑎𝑟

] 

Γ12 = [
𝐴𝑎𝑟
𝑇 𝑃𝑎𝑟𝐵𝑚𝑑 − 𝐶𝑎𝑟

𝑇 𝑌𝑎𝑟
𝑇 𝐵𝑚𝑑

𝑃𝑎𝑟𝐵𝑚𝑑
0

], 

Γ21 = Γ12
𝑇 , 

Γ22 = 𝐵𝑚𝑑
𝑇 𝐵𝑚𝑑 − 𝜖𝑑𝐼.                                                     (59) 

Moreover, 𝑆𝑎𝑟 = 𝐸𝑎𝑟 + 𝐿𝑎𝑟𝐶𝑎𝑟 is nonsingular and 𝐿𝑎𝑟  is in 

the form of (48). The proportional gain 𝐾𝑎𝑟  can be calculated 

as 𝐾𝑎𝑟 = 𝑃𝑎𝑟
−1𝑌𝑎𝑟 . 

Proof.   

Define a Lyapunov function as 

𝑉𝑜(𝑒𝑎𝑟(𝑘)) = 𝑒𝑎𝑟
𝑇 (𝑘)𝑆𝑎𝑟

𝑇 𝑃𝑎𝑟𝑆𝑎𝑟𝑒𝑎𝑟(𝑘).                      (60) 

In terms of (56) and (60), and (2) in Assumption 1, one has 

∆𝑉𝑜(𝑒𝑎𝑟(𝑘)) 

= 𝑉𝑜(𝑒𝑎𝑟(𝑘 + 1)) − 𝑉𝑜(𝑒𝑎𝑟(𝑘)) 

≤ 𝑒𝑎𝑟
𝑇 (𝑘)[(𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟)

𝑇𝑃𝑎𝑟(𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟)

− 𝑆𝑎𝑟
𝑇 𝑃𝑎𝑟𝑆𝑎𝑟]𝑒𝑎𝑟(𝑘) + Φ̃𝑎𝑟

𝑇 𝑃𝑎𝑟Φ̃𝑎𝑟  

        +2𝑒𝑎𝑟
𝑇 (𝑘)(𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟)

𝑇𝑃𝑎𝑟Φ̃ar 
+2𝑒𝑎𝑟

𝑇 (𝑘)(𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟)
𝑇𝑃𝑎𝑟𝐵𝑚𝑑𝑛𝑚𝑑(𝑘) 

+2Φ̃𝑎𝑟
𝑇 𝑃𝑎𝑟𝐵𝑚𝑑𝑛𝑚𝑑(𝑘) + 𝑛𝑚𝑑

𝑇 (𝑘)𝐵𝑚𝑑
𝑇 𝐵𝑚𝑑𝑛𝑚𝑑(𝑘) 

      +𝜖𝑟𝑒𝑎𝑟
𝑇 (𝑘)𝑒𝑎𝑟(k) − 𝜖𝑟𝑒𝑎𝑟

𝑇 (𝑘)𝑒𝑎𝑟(k) + θγ
2𝑒𝑎𝑟
𝑇 (𝑘)𝑒𝑎𝑟(𝑘) 

    −θΦ̃𝑎𝑟
𝑇 Φ̃𝑎𝑟 + 𝜖𝑑𝑛𝑚𝑑(𝑘)𝑛𝑚𝑑(𝑘) − 𝜖𝑑𝑛𝑚𝑑(𝑘)𝑛𝑚𝑑(𝑘) 

= (𝑒𝑎𝑟
𝑇 (𝑘) Φ̃𝑎𝑟

𝑇 𝑛𝑚𝑑
𝑇 (𝑘))Ω𝑎𝑟(𝑒𝑎𝑟

𝑇 (𝑘) Φ̃𝑎𝑟
𝑇 𝑛𝑚𝑑

𝑇 (𝑘))𝑇  

−𝜖𝑟𝑒𝑎
𝑇(𝑘)𝑒𝑎(𝑘) + 𝜖𝑑𝑛𝑚𝑑

𝑇 (𝑘)𝑛𝑚𝑑(𝑘)                         (61)                                    

where  

Ω𝑎𝑟 = [
Ω𝑎𝑟1 Ω𝑎𝑟12
Ω𝑎𝑟12
𝑇 Ω𝑎𝑟2

],                                 (62) 

with the followngs: 

Ω𝑎𝑟1 = [
Ω𝑎𝑟11 (𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟)

𝑇𝑃𝑎𝑟  

𝑃𝑎𝑟(𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟) 𝑃𝑎𝑟 − 𝜃𝐼
], 

Ω𝑎𝑟11 = (𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟)
𝑇𝑃𝑎𝑟(𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟) 

                −𝑆𝑎𝑟
𝑇 𝑃𝑎𝑟𝑆𝑎𝑟 + 𝜖𝑟𝐼 + 𝜃𝛾

2𝐼, 

Ωar12 = [
(𝐴𝑎𝑟 − 𝐾𝑎𝑟𝐶𝑎𝑟)

𝑇𝑃𝑎𝑟𝐵𝑚𝑑
𝑃𝑎𝑟𝐵𝑚𝑑

], 

Ωar2 = 𝐵𝑚𝑑
𝑇 𝐵𝑚𝑑 − 𝜖𝑑𝐼. 

Applying the Schur complement to (62), and noticing that 

𝑌𝑎𝑟 = 𝑃𝑎𝑟𝐾𝑎𝑟 , one can conclude that (58) indicates Ω𝑎𝑟 <
0. Therefore, from (61), we have  

∆𝑉𝑜(𝑒𝑎𝑟(𝑘)) ≤ −𝜖𝑟𝑒𝑎𝑟
𝑇 (𝑘)𝑒𝑎𝑟(𝑘) + 𝜖𝑑𝑛𝑚𝑑

𝑇 (𝑘)𝑛𝑚𝑑(𝑘).   (63) 

When the perturbed term 𝑛𝑚𝑑(𝑘) is zero or can be ignored, 

the estimation error dynamics is asymptotically stable 

according to (63).  

Now let us look at the robust performance index when 

𝑛𝑚𝑑(𝑘) cannot be ignored. 
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Under zero initial conditions, it is followed from (63) 

0 ≤ 𝑉𝑜(𝑒𝑎𝑟(𝑛 + 1)) 

≤ −𝜖𝑟 ∑ 𝑒𝑎𝑟
𝑇 (𝑘)𝑒𝑎𝑟(𝑘)

𝑛
𝑘=0 + 𝜖𝑑 ∑ 𝑛𝑚𝑑

𝑇 (𝑘)𝑛𝑚𝑑(𝑘)
𝑛
𝑘=0       (64) 

which implies (57) . This completes the proof. 

B. Compensation for Delay-Perturbation and Disturbance 

Apply the following feedback law to the plant (41): 

𝑢(𝑘) = −𝐹𝑥𝑥̂(𝑘) − 𝐹𝑑𝑛̂𝑑𝑐(𝑘) 

= − [𝐹𝑥   𝐹𝑑   0𝑚×𝑝]⏟        
𝐹𝑎𝑟

𝑥̂𝑎𝑟(𝑘),                            (65) 

where 𝐹𝑥 ∈ 𝑅
𝑚×𝑛, 𝐹𝑑 ∈ 𝑅

𝑚×𝑙, and 𝑥̂𝑎𝑟(𝑘) = [𝑥̂
𝑇(𝑘), 𝑛̂𝑑𝑐(𝑘),

𝜔̂𝑇(𝑘)]𝑇. Therefore, the closed-loop plant becomes 

𝑥(𝑘 + 1) 

= 𝐴𝑥(𝑘) − 𝐵𝐹𝑎𝑟𝑥̂𝑎𝑟(𝑘) + Φ(𝑥(𝑘), 𝑢(𝑘)) + 𝐵𝑑𝑛𝑑(𝑘) 

= (𝐴 − 𝐵𝐹𝑥)𝑥(𝑘) + (𝐵𝑑 − 𝐵𝐹𝑑)𝑛𝑑𝑐(𝑘) + 𝐵𝐹𝑎𝑟𝑒𝑎𝑟(𝑘) 

+Φ(𝑥(𝑘), 𝑢(𝑘)) + 𝐵𝑑𝑛𝑑ℎ(𝑘).                                 (66) 

Select  

𝐹𝑑 = 𝐵
+𝐵𝑑 ,                                         (67) 

which indicates 

 𝐵𝑑 − 𝐵𝐹𝑑 = 0                                          (68) 

provided that  

𝑟𝑎𝑛𝑘 [𝐵𝑑     𝐵] = 𝑟𝑎𝑛𝑘(𝐵).                       (69) 

Therefore, the system (66) becomes readily 

𝑥(𝑘 + 1) = (𝐴 − 𝐵𝐹𝑥)𝑥(𝑘) + 𝐵𝐹𝑎𝑟𝑒𝑎𝑟(𝑘) 

+Φ(𝑥(𝑘), 𝑢(𝑘)) + 𝐵𝑑𝑛𝑑ℎ(𝑘).                  (70) 

The compensated output can be expressed as 

𝑦𝑐(𝑘) = 𝑦(𝑘) − 𝜔̂(𝑘) 
= 𝐶𝑥(𝑘) + 𝐷𝑎𝑟𝑒𝑎𝑟(𝑘)               (71) 

where 𝐷𝑎𝑟 = [0𝑝×(𝑛+𝑙),   𝐼𝑝].  

Let  

𝑒𝐹𝑎(𝑘) = ⌈
𝑒𝑎𝑟(𝑘)
𝐹𝑥𝑒𝑥(𝑘)

⌉ 

𝑒𝑥(𝑘) = [𝐼𝑛 ,   0𝑛×𝑙  , 0𝑛×𝑝]𝑒𝑎𝑟(𝑘) 

𝐵𝐹𝑎 = [0𝑛×𝑛  𝐵𝐹𝑑  0𝑛×𝑝  𝐵] 

𝐷𝐹𝑎 = [𝐷𝑎𝑟   0𝑝×𝑚].                                              (72) 

The plant described by (70) and (71) can be modified as 

{

𝑥(𝑘 + 1) = (𝐴 − 𝐵𝐹𝑥)𝑥(𝑘) + Φ(𝑥(𝑘), 𝑢(𝑘))

+𝐵𝑑𝑛𝑑ℎ(𝑘) + 𝐵𝐹𝑎𝑒𝐹𝑎(𝑘)

𝑦𝑐(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝐹𝑎𝑒𝐹𝑎(𝑘)

         (73)  

Now it is ready to design the gain 𝐹𝑥 to ensure the stability 

of (73) and satisfy a robust performance index. 

Theorem 4: The closed-loop system (73) is robustly stable, 

and satisfies the robust performance index: 

‖𝑦𝑐‖2 ≤ 𝛾𝑐𝑑‖𝑛𝑑ℎ‖2 + 𝛾𝑐𝑒‖𝑒𝐹𝑎‖2                   (74) 

if there exist positive constants 𝛾𝑐𝑑 and 𝛾𝑐𝑒 , symmetric 

positive definite matrices 𝑋 and 𝑈, and matrix 𝑌 such that for 

a given positive constant 𝛾 

Ψ = [
Ψ11 Ψ12
Ψ21 Ψ22

] < 0                           (75) 

where 

Ψ11 =

[
 
 
 
−𝑋 + 𝛾2𝑈 𝑋𝐴𝑇 − 𝑌𝑇𝐵𝑇 0 0
𝐴𝑋 − 𝐵𝑌 𝑋 − 𝑈 𝐵𝑑 𝐵𝐹𝑎

0 𝐵𝑑
𝑇 −𝛾𝑐𝑑

2 𝐼 0

0 𝐵𝐹𝑎
𝑇 0 −𝛾𝑐𝑒

2 𝐼]
 
 
 

 

Ψ21 = [
𝐴𝑋 − 𝐵𝑌 0 𝐵𝑑 𝐵𝐹𝑎
𝐶𝑋 0 0 𝐷𝐹𝑎

] 

Ψ12 = Ψ21
𝑇  

Ψ22 = [
−𝑋 0
0 −𝐼

]                                                          (76) 

Based on the solution to (76), the state-feedback control gain 

can be calculated as 𝐹𝑥 = 𝑌𝑋
−1. 

Proof.  

Let 𝑋 = 𝑃−1, 𝑈 = 𝜃𝑋𝑋, and 𝑌 = 𝐹𝑥𝑋. Pre-multiplying and 

post-multiplying 𝑏𝑙𝑜𝑐𝑘 − 𝑑𝑖𝑎𝑔(𝑃, 𝑃, 𝐼, 𝐼, 𝑃, 𝐼) on both sides of 

(75), and using the Schur complement to (75), one can 

conclude that Ψ < 0 in (75) implies Ω𝑎𝑐 < 0, that  is, 

Ω𝑎𝑐 = [
Ω𝑎𝑐1 Ω𝑎𝑐12
Ω𝑎𝑐21 Ω𝑎𝑐2

] < 0                           (77) 

where 

Ω𝑎𝑐1 = 

[
(𝐴 − 𝐵𝐹𝑥)

𝑇𝑃(𝐴 − 𝐵𝐹𝑥) − 𝑃 + 𝜃𝛾
2𝐼 + 𝐶𝑇𝐶 (𝐴 − 𝐵𝐹𝑥)

𝑇𝑃
𝑃(𝐴 − 𝐵𝐹𝑥) 𝑃 − 𝜃𝐼

] 

Ω𝑎𝑐12 = [
(𝐴 − 𝐵𝐹𝑥)

𝑇𝑃𝐵𝑑 (𝐴 − 𝐵𝐹𝑥)
𝑇𝑃𝐵𝐹𝑎 + 𝐶

𝑇𝐷𝐹𝑎
𝑃𝐵𝑑 𝑃𝐵𝐹𝑎

] 

Ω𝑎𝑐21 = Ω𝑎𝑐12
𝑇  

Ω𝑎𝑐2 = [
𝐵𝑑
𝑇𝑃𝐵𝑑 − 𝛾𝑐𝑑

2 𝐼 𝐵𝑑
𝑇𝑃𝐵𝐹𝑎

𝐵𝐹𝑎
𝑇 𝑃𝐵𝑑 𝐵𝐹𝑎

𝑇 𝑃𝐵𝐹𝑎 + 𝐷𝐹𝑎
𝑇 𝐷𝐹𝑎 − 𝛾𝑐𝑒

2 𝐼
].   

(a). Stability.  

Firstly, let us to consider the stability when 𝑛𝑑ℎ(𝑘) = 0.   
Let 

 𝑉𝑐(𝑥(𝑘)) = 𝑥
𝑇(𝑘)𝑃𝑥(𝑘)                              (78) 

where P is symmetric and positive definite matrix.  

 In terms of (73) and (78), and (3) in Assumption 1, one has 

Δ 𝑉𝑐(𝑥(𝑘)) 

= 𝑉𝑐(𝑥(𝑘 + 1)) − 𝑉𝑐(𝑥(𝑘)) 

≤ [(𝐴 − 𝐵𝐹𝑥)𝑥(𝑘) + Φ(𝑥(𝑘), 𝑢(𝑘))+𝐵𝐹𝑎𝑒𝐹𝑎(𝑘)]
𝑇   

    × 𝑃[(𝐴 − 𝐵𝐹𝑥)𝑥(𝑘) + Φ(𝑥(𝑘), 𝑢(𝑘)) + 𝐵𝐹𝑎𝑒𝐹𝑎(𝑘)] 

−𝑥𝑇(𝑘)𝑃𝑥(𝑘) + 𝜃𝛾2𝑥𝑇(𝑘)𝑥(𝑘) 

−𝜃ΦT(𝑥(𝑘), 𝑢(𝑘))Φ(𝑥(𝑘), 𝑢(𝑘)) 

= (𝑥𝑇(𝑘), ΦT(𝑥(𝑘), 𝑢(𝑘)) )Ω𝑎𝑥(𝑥
𝑇(𝑘), ΦT(𝑥(𝑘), 𝑢(𝑘)) )

𝑇
 

+2𝑥𝑇(𝑘)(𝐴 − 𝐵𝐹𝑥)
𝑇𝑃𝐵𝐹𝑎𝑒𝐹𝑎(𝑘) 

+2ΦT(𝑥(𝑘), 𝑢(𝑘))𝑃𝐵𝐹𝑎𝑒𝐹𝑎(𝑘) 

+𝑒𝐹𝑎
𝑇 (𝑘)(𝐵𝐹𝑎

𝑇 𝑃𝐵𝐹𝑎)𝑒𝐹𝑎(𝑘)                                           (79) 

where  

Ω𝜙𝑥 = 

[
(𝐴 − 𝐵𝐹𝑥)

𝑇𝑃(𝐴 − 𝐵𝐹𝑥) − 𝑃 + 𝜃𝛾
2𝐼 (𝐴 − 𝐵𝐹𝑥)

𝑇𝑃

𝑃(𝐴 − 𝐵𝐹𝑥) 𝑃 − 𝜃𝐼
]. 

(80) 

Since Ωac < 0 in (77), it is evident that Ω𝜙𝑥 in (80) is 

negative definite, that is,  

Ω𝜙𝑥 < 0.                                      (81) 

Substitution (81) into (79) yields 

 Δ 𝑉𝑐(𝑥(𝑘)) 

≤ −𝜖𝜙𝑥‖𝑥𝜙(𝑘)‖
2
+ 2𝑥𝑇(𝑘)(𝐴 − 𝐵𝐹𝑥)

𝑇𝑃𝐵𝐹𝑎𝑒𝐹𝑎(𝑘) 

+2ΦT(𝑥(𝑘), 𝑢(𝑘))𝑃𝐵𝐹𝑎𝑒𝐹𝑎(𝑘)  

+𝑒𝐹𝑎
𝑇 (𝑘)(𝐵𝐹𝑎

𝑇 𝑃𝐵𝐹𝑎)𝑒𝐹𝑎(𝑘)                     (82) 

where  

𝜖𝜙𝑥 = 𝜆𝑚𝑖𝑛(−Ω𝜙𝑥)                                  (83) 
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𝑥𝜙(𝑘) = [
𝑥(𝑘)

Φ(𝑥(𝑘), 𝑢(𝑘))
].                          (84) 

Define 

𝑉𝑐𝑜(𝑥(𝑘), 𝑒𝑎𝑟(𝑘)) = 𝑉𝑐(𝑥(𝑘)) + 𝑔𝑉𝑜(𝑒𝑎𝑟(𝑘)).          (85)         

According to (63), (82) and (85), one has 

Δ𝑉𝑐𝑜(𝑥(𝑘), 𝑒𝑎𝑟(𝑘)) 

= Δ𝑉𝑐(𝑥(𝑘)) + 𝑔Δ𝑉𝑜(𝑒𝑎𝑟(𝑘)) 

≤ −𝜖𝜙𝑥‖𝑥𝜙(𝑘)‖
2
+ 𝜖𝜙𝑒‖𝑥𝜙(𝑘)‖‖𝑒𝐹𝑎(𝑘)‖ 

+𝜖𝑒𝑒‖𝑒𝐹𝑎(𝑘)‖
2  − 𝑔𝜖𝑟‖𝑒𝐹𝑎(𝑘)‖

2.                     (86) 

where 

𝜖𝜙𝑒 = ‖2(𝐴 − 𝐵𝐹𝑥)
𝑇𝑃𝐵𝐹𝑎‖ + 2𝛾‖𝑃𝐵𝐹𝑎‖                    (87) 

𝜖𝑒𝑒 = ‖𝐵𝐹𝑎
𝑇 𝑃𝐵𝐹𝑎‖.                                                         (88) 

In the derivation of (86), 𝑛𝑚𝑑(𝑘) = [𝑛𝑑ℎ
𝑇 (𝑘), (𝛼𝜔(𝑘))

𝑇
]
𝑇

 is 

ignored as 𝑛𝑑ℎ(𝑘) = 0, and 𝛼𝜔(𝑘) is small by selecting a 

sufficient small α.  
Selecting  

𝑔 ≥
𝜖𝜙𝑒
2 +𝜖𝑒𝑒𝜖𝜙𝑥

𝜖𝜙𝑥𝜖𝑟
,                                                (89) 

and using (86), one has 

∆𝑉𝑐𝑜(𝑥(𝑘), 𝑒𝑎𝑟(𝑘)) 

≤ −
𝜖𝜙𝑥

2
 ‖𝑥𝜙(𝑘)‖

2
−
𝑔

2
(𝜖𝑟 −

𝜖𝑒𝑒

𝑔
) ‖𝑒𝐹𝑎(𝑘)‖

2 

≤ 0                                                                       (90) 

which indicates 𝑒𝐹𝑎(𝑘) → 0 and 𝑥(𝑘) → 0 as 𝑘 → ∞. 
(b). Robust performance index.  

Consider then case when 𝑛𝑑ℎ(𝑘) ≠ 0. In terms of (73), (77) 

and (78), one has 

Δ 𝑉𝑐(𝑥(𝑘)) 

= 𝑉𝑐(𝑥(𝑘 + 1)) − 𝑉𝑐(𝑥(𝑘)) 

≤ [(𝐴 − 𝐵𝐹𝑥)𝑥(𝑘) + Φ(𝑥(𝑘), 𝑢(𝑘)) + 𝐵𝑑𝑛𝑑ℎ(𝑘) 

+𝐵𝐹𝑎𝑒𝐹𝑎(𝑘)]
𝑇 𝑃[(𝐴 − 𝐵𝐹𝑥)𝑥(𝑘) + Φ(𝑥(𝑘), 𝑢(𝑘)) 

+𝐵𝑑𝑛𝑑ℎ(𝑘) + 𝐵𝐹𝑎𝑒𝐹𝑎(𝑘)] − 𝑥
𝑇(𝑘)𝑃𝑥(𝑘) 

+𝜃𝛾2𝑥𝑇(𝑘)𝑥(𝑘) − 𝜃ΦT(𝑥(𝑘), 𝑢(𝑘))Φ(𝑥(𝑘), 𝑢(𝑘)) 

+𝑦𝑐
𝑇(𝑘)𝑦𝑐(𝑘) − 𝑦𝑐

𝑇(𝑘)𝑦𝑐(𝑘) − 𝛾𝑐𝑑
2 𝑛𝑑ℎ

𝑇 (𝑘)𝑛𝑑ℎ(𝑘) 

+𝛾𝑐𝑑
2 𝑛𝑑ℎ

𝑇 (𝑘)𝑛𝑑ℎ(𝑘) − 𝛾𝑐𝑒
2 𝑒𝑎𝑟

𝑇 (𝑘)𝑒𝑎𝑟(𝑘) 

+𝛾𝑐𝑒
2 𝑒𝑎𝑟

𝑇 (𝑘)𝑒𝑎𝑟(𝑘) 

= (𝑥𝑇(𝑘), ΦT(𝑥(𝑘), 𝑢(𝑘)), 𝑛𝑑ℎ
𝑇 (𝑘), 𝑒𝐹𝑎

𝑇 (𝑘) )Ω𝑎𝑐 

× (𝑥𝑇(𝑘), ΦT(𝑥(𝑘), 𝑢(𝑘)), 𝑛𝑑ℎ
𝑇 (𝑘), 𝑒𝐹𝑎

𝑇 (𝑘) )
𝑇
 

−𝑦𝑐
𝑇(𝑘)𝑦𝑐(𝑘) + 𝛾𝑐𝑑

2 𝑛𝑑ℎ
𝑇 (𝑘)𝑛𝑑ℎ(𝑘) 

+𝛾𝑐𝑒
2 𝑒𝐹𝑎

𝑇 (𝑘)𝑒𝐹𝑎(𝑘)                                                   

≤ −𝑦𝑐
𝑇(𝑘)𝑦𝑐(𝑘) + 𝛾𝑐𝑑

2 𝑛𝑑ℎ
𝑇 (𝑘)𝑛𝑑ℎ(𝑘) 

+𝛾𝑐𝑒
2 𝑒𝐹𝑎

𝑇 (𝑘)𝑒𝐹𝑎(𝑘).                                                        (91) 

Under zero initial conditions, it is followed from (91) 

0 ≤ 𝑉𝑐(𝑥(𝑛 + 1)) 

≤ −∑ 𝑦𝑐
𝑇(𝑘)𝑦𝑐(𝑘)

𝑛
𝑘=0 + 𝛾𝑐𝑒

2 ∑ 𝑒𝐹𝑎
𝑇 (𝑘)𝑒𝐹𝑎(𝑘)

𝑛
𝑘=0      

+𝛾𝑐𝑑
2 ∑ 𝑛𝑑ℎ

𝑇 (𝑘)𝑛𝑑ℎ (𝑘)
𝑛
𝑘=0                     (92) 

which implies (74) . This completes the proof. 

Remark 3. 

From (68) and (69), one can see the condition of 𝐵𝑑 −
𝐵𝐹𝑑 = 0 is rank [𝐵𝑑     𝐵] = rank(𝐵), which often meets 

particularly for disturbances acting on the actuators. However, 

even if   𝐵𝑑 − 𝐵𝐹𝑑 ≠ 0 , but 𝐹𝑑 = 𝐵
+𝐵𝑑  can still minimize 

‖𝐵𝑑 − 𝐵𝐹𝑑‖ so that the effect from 𝑛𝑑𝑐(𝑘) is reduced.  

Furthermore, the disturbance term in equation (70) can be 

modified as [(𝐵𝑑     𝐵𝑑 − 𝐵𝐹𝑑 )]⏟          
𝐵𝑑𝑡

[
𝑛𝑑ℎ(𝑘)

𝑛𝑑𝑐(𝑘)
]. Therefore, by 

replacing 𝐵𝑑  by 𝐵𝑑𝑡 in Theorem 4, the influences from both 

𝑛𝑑ℎ(𝑘) and 𝑛𝑑𝑐(𝑘) can be attenuated by using the obtained 

feedback gain 𝐹𝑥. 

C. Procedure for Robust Estimation and Compensation 

Now we can summarize the integrated design of the 

simultaneous robust observer and compensator as follows. 

(a).  Construct the augmented plant in the form of (46), where 

the augmented matrices 𝐸𝑎𝑟 , 𝐴𝑎𝑟 , 𝐵𝑎𝑟 , 𝐶𝑎𝑟 , 𝐵𝑎𝑑  and 𝑁𝑎𝑟 , 

and the augmented vectors 𝑥𝑎𝑟(𝑘),  Φ𝑎𝑟(𝑥(𝑘), 𝑢(𝑘)) and 

𝑛𝑎𝑑(𝑘)  are defined by (45). Here, 𝛼 is chosen as a small 

constant in order to reduce the effect from the perturbed 

term 𝜔(𝑘). 
(b).  Select the derivative gain matrix 𝐿𝑎𝑟  of the observer in 

the form of (48), where 𝐿𝑡 is chosen as a nonsingular 

matrix so that 𝑆𝑎𝑟 = 𝐸𝑎𝑟 + 𝐿𝑎𝑟𝐶𝑎𝑟  is nonsingular. The 

disturbance distribution matrix 𝐵𝑚𝑑  and disturbance 

𝑛𝑚𝑑(𝑘) is constructed as in (55).  

(c).  Solve the linear matrix inequality (58) to give the 

matrices 𝑃𝑎𝑟  and 𝑌𝑎𝑟 , leading to the proportional gain 

𝐾𝑎𝑟 = 𝑃𝑎𝑟
−1𝑌𝑎𝑟 . 

(d).  Implement the augmented observer in the form of (47) to 

the plant (46), and produce the simultaneous state, input 

disturbance and delay-perturbation estimates as follows: 

𝑥̂(𝑘) = (𝐼𝑛 0𝑛×(𝑙+𝑝))𝑥̂𝑎𝑟  (𝑘) 

𝑛̂𝑑𝑐(𝑘) = (0𝑙×𝑛 𝐼𝑙        0𝑙×𝑝)𝑥̂𝑎𝑟  (𝑘) 
𝜔̂(𝑘) = (0𝑝×(𝑛+𝑙) 𝐼𝑝)𝑥̂𝑎𝑟  (𝑘) 

         where 𝑥̂𝑎𝑟  (𝑘) is the estimate of the augmented state 

𝑥𝑎𝑟(𝑘). 
(e).  Select 𝐹𝑑 = 𝐵

+𝐵𝑑 . Solve the linear matrix inequality (75) 

to yield the state-feedback gain 𝐹𝑥 = 𝑌𝑋
−1. Apply the 

feedback control 𝑢(𝑘) = −𝐹𝑥𝑥̂(𝑘) − 𝐹𝑑𝑛̂𝑑𝑐(𝑘) to the 

plant (41), and implement the sensor compensation as 

𝑦𝑐(𝑘) = 𝑦(𝑘) − 𝜔̂(𝑘).  As a result, the compensated 

system is robustly stable and the effect from the delays to 

the output and the input disturbance to the system 

dynamics can be attenuated. 

IV. SIMULATION STUDY 

A. Chemical reactor with delayed recycle streams  

A two-stage chemical reactor with delayed recycle streams 

can be described as follows: 

{
 
 
 
 

 
 
 
 
[
𝑥̇1(𝑡)

𝑥̇2(𝑡)
] = [

−
1

𝑠1
− 𝑟1

1−𝑅2

𝑉1

0 −
1

𝑠2
− 𝑟2

] [
𝑥1(𝑡)

𝑥2(𝑡)
]

⏟    
𝑥(𝑡)

+ ⌈
0
𝑊

𝑉2

⌉ 𝑢(𝑡)

               + ⌊
0 0
𝑅1

𝑉2

𝑅2

𝑉2

⌋ 𝑦(𝑡) + Φ(𝑥(𝑡), 𝑢(𝑡))

𝑦(𝑡) = [
𝑥1(𝑡 − 𝜏1(𝑡))
𝑥2(𝑡 − 𝜏2(𝑡)

]

      (93) 

where 𝑥1(𝑡) and  𝑥2(𝑡) are the compositions, 𝑠1 and 𝑠2 are the 

reactor residence times, 𝑅1 and 𝑅2 are the recycle flow rate, 𝑊 
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is the feed rate, 𝑉1 and 𝑉2 are the reactor volumes,  
𝑟1 and 𝑟2 are the reaction constants, Φ(𝑥(𝑡), 𝑢(𝑡)) =

[0,   sin(𝑥1(𝑡))]
𝑇
 is a nonlinear perturbed term, and 𝑦(𝑡) is 

the output subjected to time-varying delays.  

The parameters, 𝑠1 = 𝑠2 = 1, 𝑟1 = 𝑟2 = 1, 𝑅1 = 𝑅2 =
0.5, and 𝑉1 = 𝑉2 = 1, are taken from [24], and  𝑢(𝑡) =
6 𝑠𝑖𝑛(𝑡), 𝜏1(𝑡) = 20 + 5 𝑠𝑖𝑛(0.1𝑡), and 𝜏2(𝑡) = 10 +
10 𝑠𝑖𝑛(0.2𝑡)  are used in this simulation study.  

(a) Taking the sampling as 0.025𝑠, the system (93) can be 

discretized using the Euler discretization leading to 

{
 
 
 
 

 
 
 
 𝑥(𝑘 + 1) = [

0.9500    0.0125
0 0.9500

]
⏟            

𝐴

𝑥(𝑘) + ⌈
0

0.0125
⌉

⏟      
𝐵

𝑢(𝑘)

              + [
0 0

0.0125 0.0125
]

⏟            
𝐵𝑦

𝑦(𝑘) + [
0

0.025sin (𝑥1(𝑘))
]

⏟            
Φ(𝑥(𝑘),𝑢(𝑘))

𝑦(𝑘) = [
1 0
0 1

]
⏟  
𝐶

[
𝑥1(𝑘 − 𝜏1(𝑘))

𝑥2(𝑘 − 𝜏2(𝑘))
]

 

(94) 

(b) Let 𝜔1(𝑘) = 𝑥1(𝑘 − 𝜏1(𝑘)) − 𝑥1(𝑘) and 𝜔2(𝑘) =

𝑥2(𝑘 − 𝜏2(𝑘)) − 𝑥2(𝑘). Based on the discrete-time model 

(94), we can construct the augmented matrices 𝐸𝑎 , 𝐴𝑎, 𝐵𝑎 , 𝐶𝑎 

and 𝑁𝑎, and the augmented vectors 𝑥𝑎(𝑘) and Φ𝑎(𝑥(𝑘), 𝑢(𝑘)) 
in terms of (6), where 𝛼 = 0.001. In addition, we also can 

have the augmented matrix 𝐵𝑦𝑎 = [
𝐵𝑦
02×2

].   

Select the derivative gain  

𝐿𝑎 = [
0 0 100 0
0 0 0 100

]
𝑇

. 

Solve the linear matrix inequality (20), one can then obtain 

the proportional gain: 

𝐾𝑎 = [

0.4766  0.0066
0.0003 0.4764
−0.0005 0.0000
0.0000 −0.0005

].          

 Therefore, we have obtained the observer in the form of  

{
 

 
𝑆𝑎𝜂(𝑘 + 1)

  = (𝐴𝑎 − 𝐾𝑎𝐶𝑎)𝜂(𝑘) + 𝐵𝑎𝑢(𝑘) + 𝐵𝑦𝑎𝑦(𝑘)

       −𝑁𝑎𝑦(𝑘) + Φ𝑎(𝑥̂(𝑘), 𝑢(𝑘))

𝑥̂𝑎(𝑘) = 𝜂(𝑘) + 𝑆𝑎
−1𝐿𝑎𝑦(𝑘)

          (95) 

 
Fig. 1. States and their estimates: reactor. 

Implement the observer (95) to the plant (93), we can have 

the estimates for the states and delayed perturbed terms. Fig. 1 

and Fig. 2 show the continuous states 𝑥1(𝑡) and 𝑥2(𝑡), the 

delay perturbed terms 𝜔1(𝑡) and 𝜔2(𝑡) and their estimates by 

using the discrete-time observer (95), which have shown 

excellent tracking performance. 

 
Fig. 2. Delay perturbation estimates: reactor. 

 

(c) Subtracting the estimates of the delay perturbed terms 

from the system outputs, we can realize the sensor signal 

compensation. From Fig. 3, one can see the delayed outputs 

are seriously distorted compared with the outputs without 

delays.  It is more interesting to see the outputs have been 

successfully recovered after the sensor signal compensation. 

 
Fig. 3. Output compensation: reactor. 

B. Electromechanical servo system 

An electromechanical servo system is described by the 

following discrete-time model with the sampling time 0.1s: 

{
  
 

  
 𝑥(𝑘 + 1) = [

0.0468 0.1564
0.2083 0.8154

]
⏟            

𝐴

𝑥(𝑘) + ⌈
39.2076
11.5299

⌉
⏟      

𝐵

𝑢(𝑘)

                   +Φ(𝑥(𝑘), 𝑢(𝑘)) + 𝐵𝑑𝑛𝑑(𝑘)

𝑦(𝑘) = [
1 0
0 1

]
⏟  
𝐶

[
𝑥1(𝑘)

𝑥2(𝑘 − 𝜏(𝑘))
] + 𝑛𝜔(𝑘)
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(96) 

where 𝑥1(𝑘) is the load angular position, 𝑥2(𝑘) is the shaft 

speed, 𝑢(𝑘) is the input voltage, Φ(𝑥(𝑘), 𝑢(𝑘)) =

[0, 0.005 sin(𝑥1(𝑘))]
𝑇 is the perturbed nonlinear term, 

𝜏(𝑘) = 2 + 0.5sin (0.02𝑘) is the time-varying delay, 𝑛𝜔(𝑘) is 

the measurement random noise vector with values between 

−20 and 20. In addition, 𝑛𝑑(𝑘) = 𝑛𝑑𝑐(𝑘) + 𝑛𝑑ℎ(𝑘) where 

𝑛𝑑ℎ(𝑘) = 0.02sin (50𝑘), and 𝑛𝑑(𝑘) is a step signal at 30𝑠, 
jumping from 0 to 2, and 𝐵𝑑 = 𝐵.   

(a) Select α = diag(1, 0.015) and construct the augmented 

matrices in the form of (45) and (55). Choose the derivative 

gain as  

𝐿𝑎𝑟 = [
0 0 0 500 0
0 0 0 0 500

]
𝑇

. 

Solving the linear matrix equality (58), one can thus obtain 

the proportional gain, that is, 

𝐾𝑎𝑟 =

[
 
 
 
 
356.8383 3.8149
388.1853 5.3232
7.5665 0.0749
305.3800 3.4334
4.2370 0.0540]

 
 
 
 

. 

Implementing the observer in the form of (47) to the plant 

(96) and using real data, the estimates of the states, delay-

perturbed term and the input disturbance are obtained. The 

curves in Figs. 4 and 5 show excellent tracking performance. 

 
Fig. 4. States and estimates: servo system. 

 
 Fig. 5. Estimates of delay perturbed term and input disturbance: 

            servo system. 

 

(b) One can compute 𝐹𝑑 = 𝐵
+𝐵𝑑 = 1.  Apply 𝑢(𝑘) =

−𝐹𝑑𝑛̂𝑑𝑐(𝑘) to the plant (96) for disturbance compensation, 

and implement 𝑦𝑐(𝑘) = 𝑦(𝑘) − 𝜔̂(𝑘) for delay compensation. 

In Fig. 6, the upper sub-figure shows the shaft speed has been 

seriously distorted by the measurement delay and the input 

disturbance before compensation, while the sub-figure on the 

bottom shows the shaft speed is successfully recovered after 

the signal compensation.   

 
Fig. 6. Output with and without compensation: case 1 

 
 Fig. 7. Output with and without compensation: case 2 

 

(c) In order to improve the robustness against the 

disturbances and estimation errors, the feedback gain 𝐹𝑥 can 

be obtained as 𝐹𝑥 = [0.0046,    0.0173] by solving the linear 

matrix inequality (75). Along with the delay compensation, 

the disturbance compensation and attenuation can be done by 

applying  𝑢(𝑘) = −𝐹𝑥𝑥̂(𝑘) − 𝐹𝑑𝑛̂𝑑𝑐(𝑘) to the plant (96). For 

comparison, we also do the simulation for the system via the 

output feedback 𝑢(𝑘) = −𝐹𝑥𝑦(𝑘) under the scenarios with 

and without output delays and disturbances. In the upper 

subfigure of  Fig. 7, one can see the shaft speed is divergent 

via the direct output feedback, mainly caused by the 

measurement delays. In the subfigure on the bottom, the 

output curve after the disturbance and delay compensation is 

consistent with the output under ideal status (i.e, no delays and 
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disturbances). As a result, the compensation has recovered the 

system performance successfully. 

V. CONCLUSION 

   For a Lipschitz nonlinear discrete-time system subjected 

to unknown output delays, the novel estimation technique has 

been proposed to estimate the unknown delay-perturbed term, 

and the sensor signal compensation has been employed to 

remove the effect from the delay to the system output. The 

robustness has been addressed by decoupling the constant 

piece-wise input disturbance and further attenuating other 

disturbances/noises via the linear matrix inequality technique. 

The proposed methods have been demonstrated via the 

simulation study for two engineering-oriented examples. It 

worthy to point out that no prior knowledge is needed for the 

types of the output delays, the results developed in this paper 

would have a wide scope of applications in a variety of 

industrial systems.  

In the future, it would of interest to extend the proposed 

techniques to a system with unknown delays acting on 

states/inputs, or a system subjected to both unknown 

measurement delays and missing measurements (see [25] 

about missing measurements), or a system simultaneously 

corrupted by unknown faults [26] and unknown measurement 

delays. 
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