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Abstract

Decisions about support for predictions of theories in light of data are made using statistical inference. The dominant approach in sport and exercise science is the Neyman-Pearson significance-testing approach. When applied correctly it provides a reliable procedure for making dichotomous decisions for accepting or rejecting zero-effect null hypotheses with known and controlled long-run error rates. Type I and type II error rates must be specified in advance and the latter controlled by conducting an a priori sample size calculation. The Neyman-Pearson approach does not provide the probability of hypotheses or indicate the strength of support for hypotheses in light of data, yet many scientists believe it does. Outcomes of analyses allow conclusions only about the existence of non-zero effects, and provide no information about the likely size of true effects or their practical / clinical value. Bayesian inference can show how much support data provide for different hypotheses, and how personal convictions should be altered in light of data, but the approach is complicated by formulating probability distributions about prior-subjective estimates of population effects. A pragmatic solution is magnitude-based inference, which allows scientists to estimate the true magnitude of population effects and how likely they are to exceed an effect magnitude of practical / clinical importance thereby integrating elements of subjective-Bayesian-style thinking. While this approach is gaining acceptance, progress might be hastened if scientists appreciate the shortcomings of traditional N-P null-hypothesis-significance testing.

Running head
Distinguishing statistical significance from practical meaningfulness
1.0 Introduction

Science progresses by the formulation of theories and the testing of specific predictions (or, as has been recommended, the attempted falsification of predictions) derived from those theories via collection of experimental data [1, 2]. Decisions about whether predictions and their parent theories are supported or not by data are made using statistical inference. Thus the examination of theories in light of data and progression of ‘knowledge’ hinge directly upon how well the inferential procedures are used and understood. The dominant (though not the only) approach to statistical inference in the sport and exercise research is the Neyman-Pearson approach (N-P), though few users of it would recognise the name. N-P inference has a particular underpinning logic that requires strict application if its use is to be of any value at all. In fact, even when this strict application is followed, it has been argued that the underpinning ‘black and white’ decision logic and value of such ‘sizeless’ outcomes from N-P inference are at best questionable and at worst can hinder scientific progress 
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  The failure to understand and apply methods of statistical inference correctly can lead to mistakes in the interpretation of results and subsequently to bad research decisions. Misunderstandings have a practical impact on how research is interpreted and what future research is conducted, so impacts not only researchers but any consumer of research. This paper will clarify N-P logic, highlight limitations of this approach and suggest that alternative approaches to statistical inference could provide more useful answers to research questions while simultaneously being more rational and intuitive.

2.0 The origins of ‘classical’ statistical inference.
The statistical approach ubiquitous in sport and exercise research is often mistakenly attributed to British mathematician and geneticist Sir Ronald Fisher (1890 – 1962). Fisher introduced terms such as ‘null hypothesis’ (denoted as H0) and ‘significance’ and the concept of degrees of freedom, random allocation to experimental conditions and the distinction between populations and samples [7, 8]. He also developed techniques including analysis of variance amongst others. However, he is perhaps better known for suggesting a p of 0.05 as an arbitrary threshold for decisions about H0 that has now achieved unjustified, sacrosanct status  [8]. Fisher’s contributions to statistics were immense, but it was Polish mathematician Jerzy Neyman and British statistician Egon Pearson who suggested the strict procedures and logic for null hypothesis testing and statistical inference that predominate today [9]. 

3.0 Defining probability.

The meaning of probability is still debated among statisticians, but generally speaking, there are two interpretations. The first is subjective and the second objective. Subjective probability is probably the most intuitive and underpins use of statements about probability in everyday life. It is a personal degree of belief that an event will occur e.g. “I think it will definitely rain tomorrow”. This is an interpretation of probability generally applied to theories we ‘believe’ to be accurate accounts of the world around us. In contrast, the objective interpretation of probability is that probabilities are not personal but exist independent of our beliefs. The N-P approach is based on an objective, long-run-frequency interpretation of probability proposed by Richard von Mises [10]. This interpretation is best and most simply illustrated using a coin-toss example. In a fair coin, the probability of heads is 0.5 and reflects the proportion of times we expect the coin to land on heads. However, it cannot be the proportion of times it lands on heads in any finite number of tosses (e.g. if in 10 tosses we see 7 heads, the probability of heads is not 0.7). Instead, the probability refers to an infinite number of hypothetical coin tosses referred to as a ‘collective’ or in more common terms a ‘population’ of scores of which the real data are assumed to be a sample. The collective / population must be clearly defined. In this example, the collective could be all hypothetical sets of 10 tosses of a fair coin using a precise method under standard conditions. Clearly, 7 heads from 10 tosses is perfectly possible even with a fair coin, but the more times we toss the coin, the more we would expect the proportion of heads to approach 0.5. The important point is that the probability applies to the hypothetical-infinite collective and not to a single event or even a finite number of events. It follows that objective probabilities also do not apply to hypotheses as a hypothesis in the N-P approach is simply retained or rejected in the same way that a single event either happens or does not, and has no associated collective to which an objective probability can be assigned. This might come as a surprise, as most scientists believe a p value from a significance test reveals something about the probability of the hypothesis being tested (generally the null). Actually a p value in N-P statistics says nothing about the truth or otherwise of H0 or H1 or the strength of evidence for or against either one. It is the probability of data as extreme or more extreme than that collected occurring in a hypothetical-infinite series of repeats of an experiment if H0 were true [11]. In other words, the truth of H0 is assumed and is fixed, p refers to all data from a distribution probable under or consistent with H0. It is the conditional probability of the observed data assuming the null hypothesis is true, written as p(D|H). I contend that what scientists really want to know (and what most probably think p is telling them) is the probability of a hypothesis in light of the data collected, or p(H|D) i.e. ‘does my data provide support for, or evidence against the hypothesis under examination?’. The second conditional probability cannot be derived from the first. To illustrate this, Dienes [12] provides a simple and amusing example summarised below:
P(dying within two years|head bitten off by shark) = 1

Everyone that has their head bitten off by a shark will be dead two years later.

P(head bitten off by shark|died in the last two years) ~ 0

Very few people that died in the last two years would be missing their head from a shark bite so the probability would be very close to zero. Knowing p(D|H) does not tell us p(H|D) which is really what we would like to know. Note that the notation ‘p’ refers to a probability calculated from continuous data (interval or ratio) whereas ‘P’ is the notation for discrete data, as in the example above. Unless the example requires it, the rest of this paper will use ‘p’ when discussing associated probabilities and will assume that variables producing continuous data are the topic of discussion.
4.0 Neyman-Pearson logic and decision rules.
N-P statistics are based on the long-run-frequency interpretation of probability so tell us nothing about the probability of hypotheses of interest or how much data support them. Neyman and Pearson were very clear about this and in the introduction of their seminal paper to the Royal Society stated “… as far as a particular hypothesis is concerned, no test based on the (objective) theory of probability can by itself provide any valuable evidence of the truth or falsehood of that hypothesis” [9]. Instead, they set about defining rules to govern decisions about retaining or rejecting hypotheses such that, by following them, in the long run, wrong decisions will not often be made. 
The starting point of the N-P approach is the formation of a pair of contrasting hypotheses (H0 and H1). For example, H0 could be that μs (population mean time to fatigue given supplement 𝑥) = μp (population mean time to fatigue given placebo), or to put it another way, the difference between μs and μp is zero. The alternative (H1) could be μs > (μp + 20) i.e. that the supplement will increase time to fatigue by at least 20 units. Note that H0 need not be ‘no difference’ (μs = μp) as is usually the case. It could be a hypothesised difference or even range of differences that ought not to be possible given the theory being tested. In fact, under the philosophy of Popper, the latter constitutes a far more severe test of a theory, such that survival of the test (i.e. failure to reject H0) offers strong corroboration for the theory [1]. By the same token, H1 ought also to be a specific difference or band of differences because merely specifying that μs – μp > 0 is a vague prediction, rules out little and allows for any effect greater than 0. Furthermore, with continuous data, an effect of zero has a probability of precisely zero as does any exact integer so such an H0 is always false! It would be fruitful to elaborate on this link between philosophy and statistical inference, but it is a digression from the issue at hand, which is how N-P statistics proceed from here.  
The two hypotheses should be mutually exclusive such that if H0 is rejected, then by deductive logic H1 is assumed true and vice versa, if H0 is not rejected, H1 is assumed false. However, statistical inference and indeed science does not deal in absolute proofs, truths or falsehoods, there is always a magnitude of uncertainty. If this uncertainty is extended to this example of N-P logic, we have: If H0 then probably NOT H1, data arise consistent with H1, therefore H0 is probably false.
This logic has been challenged. Pollard and Richardson [13] highlight a flaw using the following example: ‘if a person is American, they are probably not a member of Congress; person 𝑥 is a member of Congress therefore person 𝑥 is probably not American’. Furthermore, Oakes [11] points out that we are concluding the truth of H1 based on H0 being unlikely, when H1 might be even less likely but we shall never know as it has not been tested nor has the likelihood of multiple other possible versions of H1. This paradox has been called the fallacy of the transposed conditional [3].
N-P logic gives rise to two possible errors in decision making, namely wrongly rejecting H0 when it is actually true (type I error) and wrongly retaining H0 when it is actually false (type II error). Neyman and Pearson devised procedures whereby the acceptable risk of each type of error were specified in advance of testing (subjectively and according to the type of error the researcher deemed more harmful), and were then fixed and controlled such that, over an infinite number of hypothetical repeats of the experiment, the probability of making each type of error was known [9]. The probability of a type I error is termed α and is conventionally and without reason set at 0.05. The probability of a type II error is termed β. This error rate is less formally agreed and in the majority of research in sport and exercise is never actually specified or controlled, violating N-P decision-rule logic. The few studies that do control β generally specify it at 0.2 giving the study an 80% chance (1 – β) of correctly rejecting a false H0 or having 80% statistical power. That researchers class the consequences of a type II error as less harmful than a type I error is interesting and the discussion of this could form a paper in its own right. Nevertheless, for the type II error rate to be fixed, a minimum worthwhile / interesting effect that researchers wish to detect must be specified in advance of data collection, and an appropriate sample size calculated that provides the power (and thus the type II error rate) deemed acceptable. Exactly that number of participants should be tested to control the type II error rate at the specified level. Failure to specify β in advance and ensure it is controlled by testing an appropriately-sized sample renders decisions about H0 impossible in situations where it cannot be rejected. It can also result in effects not large enough to be of practical / clinical importance being deemed ‘significant’ if a larger-than-necessary sample is collected (i.e. the experiment is overpowered).   
In the time-to-fatigue example outlined previously, having specified hypotheses and error rates and calculated an appropriately-sized sample, a sample (assumed to be random) is taken from the population(s) of interest. The sample means for the supplement (Ms) and the placebo (Mp) and the difference between them can be calculated. The standard error of the mean difference (SEMdiff) can also be calculated. These values are then used to calculate a sample statistic that combines them, in this case a t statistic, where t = (Ms – Mp / SEMdiff). In order to calculate the long-run probability that such a t statistic could occur given H0 is true, the collective that gave rise to this t statistic must be defined. The collective in this case is a probability distribution of t statistics from an infinite number of hypothetical repeats of the experiment assuming H0 is true (so having a mean of 0 and an assumed-normal distribution). The distribution represents all values of t that are probable given H0. Now the decision rule is applied by defining a rejection region of the distribution where t statistics are deemed so extreme that they would occur infrequently in the long run if H0 is true. The probability of obtaining a t  score in that region is equal to the predefined α. Thus, if the observed t from the sample data falls into the region of the probability distribution beyond α, in the N-P approach, H0 is rejected as such a t statistic would occur infrequently in the long run if H0 were true. Note that the interpretation such a finding is that ‘an effect exists that should not be likely if there really was no effect’. Little can be concluded about the size of the effect or the practical / clinical value of it, which is arguably much more important [3, 4] (see Fig 1)

Fig 1. A distribution of probable t scores given H0 of no mean difference between μs and μp. Note, the shaded rejection region (representing possible values of t as or more extreme than that observed) is in a single tail of the distribution because H1 in the example above is a directional hypothesis i.e. μs > (μp + 20). Note μs is the population mean time to fatigue after a nutritional supplement, μp is the population mean time to fatigue after a placebo, H0 and H1 denote the null and experimental hypotheses respectively. 
Note that the exact probability of the observed t is irrelevant to the decision to reject H0. It need only be less than α. Furthermore, having set α at 0.05, upon a significant result with p of 0.004, an author should not report significance at p < 0.01 because this was not the long-run error rate specified before data were collected. This is fairly common though. The requirement for authors to report exact p values is also redundant and stems from a mistaken belief that the calculated p is in some way a measure of strength of evidence against H0 such that the lower the p the stronger the evidence against H0 and by extension for H1. This common misinterpretation of p reveals the researcher’s true interpretation of probability i.e. that it is subjective and can be assigned to individual events and hypotheses. This interpretation of probability forms the basis of Bayesian statistical inference that will be introduced shortly. Most researchers probably believe the p value tells them something about the probability of their hypothesis in light of the data i.e. p(H|D), and that the magnitude of p is in some way a continuous measure of the weight of evidence against H0, when in fact, any given p could simply be a function of random sampling variation [14]. Note also the desire for p to indicate ‘magnitude’ of evidence in this example. The importance of estimating the likely ‘size’ of an effect has been recognised as a more important goal of statistical inference 
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4.1 Other criticisms of Neyman-Pearson statistics

N-P statistics are sensitive to the conditions under which a researcher chooses to stop collecting data and perform the analysis, called the stopping rule. For example, a stopping rule could be (and often is) ‘test as many participants as is common in the area of interest’. Unless the number of participants happens to match that required to achieve a predefined power to detect a smallest worthwhile effect, this rule is poor. Power is not controlled at any known value and the probability of type II error is unknown. Should a non-significant result arise, the researcher cannot know if the sample statistic arose by chance alone and H0 should be retained, or the study was not powerful enough to reject H0 when it was actually false. The only conclusion to draw is one of uncertainty. Another illegitimate stopping rule is to carry on testing participants until a significant result is achieved. The issue here is that, even if H0 is true, a significant result is guaranteed to occur eventually i.e. both power and α are 1. The legitimate stopping rule under the N-P approach is to calculate the sample size that will yield the required power and β before data are collected, then test that number of participants. An amalgam of the two illegitimate stopping rules described here is setting out to test the number of participants common in the area, and upon analysing the data and finding a non-significant result, adding a few more and testing again to find a significant result (say p = 0.03). The type I error rate for the ‘second look’ cannot be 0.05, it must be higher because there have been two attempts to reject H0 (it is actually a little under 0.1). Furthermore, the associated p value of the second attempt is associated with a different collective to the first attempt i.e. a collective defined by the stopping rule ‘test the common number of participants, if not significant, add more until significant’. To retain α of 0.05 for the two attempts, each attempt must be carried out at a lower α level. There are many approaches to this, the simplest being the Bonferroni method where each attempt is carried out at an α of 0.05/k and k is the number of attempts to reject H0. This problem arises any time more than one H0 is tested and is a particular problem where effects not specified as being of interest before data collection catch the researchers attention after data collection. For example, the research might specify one particular comparison, but the researcher threw in some extra (two) conditions while there was access to the participants, and the additional comparisons show effects that appear interesting. The only effect that can be tested at the 0.05 level is the one specified in advance of data collection. The others must be tested at a lower level because they belong to a collective defined by ‘perform three t tests: if any of them are significant at α of 0.05, reject that H0 ’ which actually has an α of just under 0.15 (almost a 15% chance of type I error). The ‘family’ of tests to perform must be specified before data are collected. This seems illogical as most scientists would agree that if data suggest an interesting effect, why should it matter when you chose to think about the effect. Scientists that think this way are believers in the likelihood law, which put simply, is that all the information relevant to inference is contained in the data [16]. N-P statistics violate the likelihood law because inferential decisions are based on when one chose to think about interesting effects. Given this situation, the value of N-P statistics for making valid inferential judgements about hypotheses has been questioned [3, 4, 11]. Note that while the preceding section has discussed ‘significance’ testing, the same issues (i.e. multiple testing, unplanned comparisons etc.) also apply to confidence intervals calculated in the frequentist-probability framework, though it must be acknowledged that interval estimation is superior to and more informative than the dichotomous decision procedures of null-hypothesis-significance testing as it offers some estimate of the likely magnitude of an effect though such estimates are still not often framed against pre-determined ‘interesting / worthwhile’ effects. Many users of frequentist confidence intervals prefer a 95% interval estimate and interpret these in relation to whether the interval spans zero – hence essentially still ‘testing’ for a null hypothesis of zero effect at a threshold alpha of 0.05 and somewhat missing the point of ‘estimating’ the likely magnitude of a population effect [4, 6].
5.0 Bayesian inference – combining prior knowledge with observed data   
It seems that most scientists wish statistics to provide probabilities of their theories being correct and in fact many believe that a N-P p provides this. This is not and cannot be the case with objective probabilities. It can however be the case with a subjective probability. Bayesian inference allows scientists to alter initial degree of belief in a hypothesis in light of experimental data. It is likely that most readers will not have heard of the Bayesian approach as N-P methods are the dominant and unchallenged approach in sport and exercise research and most other sciences. Given that most will scarcely recognise the names of these methods, let alone understand the conceptual differences and issues of their use, unquestioning adoption of N-P statistics is hardly an informed choice. 
Bayes theorem was developed by fellow of the Royal Society, Reverend Thomas Bayes (1702-1761) while working on the problem of assigning a probability to a hypothesis given observed data. The theorem is directly derived from the axioms of probability theory such that:
p(H|D) = p(D|H) × p(H)/p(D)
p(H) is called the prior is a probability distribution of the unknown population effect suggested by the researcher prior to collecting any data. p(H|D) is the posterior and is the probability distribution of the unknown population effect (the prior) altered in light of the data that were collected. It represents how prior estimates about an effect should be changed based on observations. p(D|H) is the probability of the observed data arising given the prior estimated effect and is called the likelihood of the hypothesis. It is distinct from the p(D|H) described in N-P statistics where the hypothesis is held constant and the probability of data that did not occur but might have is considered. Conversely, likelihood is p(obtaining exactly this sample mean|prior estimated effect) where the likelihood of different effects (e.g. population means) are considered, but the data are fixed. Fig 2 shows the distinction between the meaning of p(D|H) in significance testing versus Bayesian inference. Note the location of the effect of interest (mean difference) on the x axis in each approach. Most researchers “think” like a statistician interested in likelihoods (panel B), yet apply a statistical approach that does not mirror their beliefs (panel A). 
Fig 2. Likelihood in Neyman-Pearson and Bayesian inference. (a) – a distribution of probable sample means given H0 of ‘zero’ difference; (b) – a distribution of probable population means given the actual observed sample mean. (Ms – Mp) in both panels is the location of sample mean difference in time to fatigue after supplementation and placebo respectively. The height of the likelihood curve in panel (b) shows which population mean difference (in this example) is likely given the data. The shaded area in (a) are values for mean difference that are unlikely assuming H0 of zero difference.
The outcome of a Bayes analysis is generally expressed as an interval estimate for the magnitude of the true population effect, called a credibility interval. This is similar to a confidence interval except that it can be claimed that this interval has a specified probability (say 95%) of including the true population effect.   However, the subjective choice of the components (e.g. mean and SD) of a prior probability distribution for the estimated-unknown population effect can be difficult to defend and, given the same data, two scientists with different prior opinions would obtain different posterior distributions and estimates of the true population effect. Nevertheless, careful consideration of what constitutes a practically / clinically meaningful effect, prior to data collection, is not only a worthwhile venture but a must for meaningful interpretation of data analysis. While it is a requirement of N-P inference to specify a smallest-worthwhile effect to control type II error, ‘significance’ and therefore conclusions relate to rejection of a zero-effect H0 and is generally irrespective of effect magnitude and therefore of questionable value [3, 4].
6.0 Magnitude-based inference: a pragmatic solution?
The frequentist use of probability dominates sport and exercise sciences, yet Bayesian incorporation of prior beliefs is something that most scientist probably do if not formally at least subconsciously and likelihood-based methods of inference are clearly more intuitive. The days of a clear divide between Bayesian and frequentist philosophies have passed, and pragmatic statisticians [17, 18] and scientists [4, 15] now recommend and practice approaches that combine a frequentist approach to with elements of Bayesian thinking. One such approach, magnitude-based inference [4] focusses on estimating the magnitude of population effects with reference to a priori  subjective estimates of practically / clinically worthwhile effect magnitudes, without the complication of expressing the latter as a probability distribution.  Moreover, the tools and instructions required to perform and interpret such analyses are readily available [19] whereas common statistical-software packages do not offer options for full Bayesian analysis or other hybrid methods such as the calibrated Byes approach [18]. 
7.0 Summary and recommendations
Significance testing is designed to provide a reliable procedure for making black and white decisions for accepting or rejecting (usually zero-effect) null hypotheses with known and controlled long-run error rates. If that is what a scientist wishes to know, then all is well, but type I and type II error rates must be specified in advance and ought to be based on careful thought about potential costs incurred by each type of error, not dictated simply by convention. It follows that sample size must be determined in advance and that the resulting number of participants are tested to ensure type II error rate is controlled. The outcome of an analysis allows conclusions about the mere existence of non-zero effects but provides no information about the likely size of true effects or their practical / clinical value. 
If a scientist wishes to estimate the true magnitude of an effect and how likely it is to exceed an effect magnitude of practical / clinical importance, while allowing for elements of subjective Bayesian-style thinking, magnitude-based inference provides a solution. While this approach is gaining acceptance, progress might be hastened if scientists appreciate the shortcomings of traditional N-P null-hypothesis-significance testing. In summary, it is up to the individual scientist to decide what they wish statistics to do for them and be aware of which approach is best suited to this purpose.
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