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Abstract 1 

Purpose: To investigate the phytochemical uptake following human consumption of Montmorency tart cherry 2 

(L. Prunus Cerasus) and influence of selected phenolic acids on vascular smooth muscle cells in vitro.  3 

Methods: In a randomized, double blinded, cross-over design, 12 healthy males consumed either 30 or 60 mL of 4 

Montmorency tart cherry concentrate.   Following analysis of the juice composition, venous blood samples were 5 

taken before and 1, 2, 3, 5 and 8 h post consumption of the beverage.  In addition to examining some aspects of 6 

the concentrate contents, plasma concentrations of protocatechuic (PCA), vanillic (VA) and chlorogenic acid 7 

(CHL) were analysed by reversed–phase high performance liquid chromatography (HPLC) with diode array for 8 

quantitation and mass spectrometry detection (LCMS) for qualitative purposes. Vascular smooth muscle cell 9 

migration and proliferation were also assessed in vitro.  10 

Results Both the 30 mL and 60 mL doses of Montmorency cherry concentrate contained high amounts of total 11 

phenolics (71.37 ± 0.11; 142.73 ± 0.22 mg˙L
¯1

) and total anthoycanins (62.47 ± 0.31; 31.24 ± 0.16 mg˙L
¯1

), as 12 

well as large quantities of CHL (0.205 ± 0.24; 0.410 ± 0.48 mg˙L
¯1

) and VA (0.253 ± 0.84; 0.506 ± 1.68 13 

mg˙L
¯1

).  HPLC/LCMS identified two dihydroxybenzoic acids (PCA and VA) in plasma following MC 14 

concentrate consumption.  Both compounds were most abundant 1-2 h post initial ingestion with traces 15 

detectable at 8 h post ingestion. Cell migration was significantly influenced by the combination of PCA and VA, 16 

but not in isolation.  There was no effect of the compounds on cell proliferation.   17 

Conclusions: These data show new information that phenolic compounds thought to exert vasoactive properties 18 

are bioavailable in vivo following MC consumption, and subsequently can influence cell behaviour.  These data 19 

may be useful for the design and interpretation of intervention studies investigating the health effects of 20 

Montmorency cherries.   21 

Keywords:  Montmorency, Phenolic Acids, Bioavailability, Cell behaviour  22 
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Introduction  30 

Epidemiologic studies have shown that consumption of food and beverages containing polyphenols are 31 

associated with reduced cardiovascular morbidity and mortality [1,2].   Among the 20 most commonly 32 

consumed fruits, cherries appear to have the fifth highest total phenol content [3].  Tart Montmorency cherries 33 

(L.Prunus cerasus) and their processed products are a functional food of growing interest and have been shown 34 

to be high in numerous phytonutrients [4,5]. Data support the presence of several phytonutrients in 35 

Montmorency tart cherries including the flavonoids isorhamnetin, kaempferol, quercetin, catechin, epicatechin, 36 

procyanidins, and anthocyanins [6].   These phytonutrients might be capable of exerting beneficial physiological 37 

effects and could be used as an effective intervention in health maintenance and exercise recovery [7].  It has 38 

been previously shown that tart cherries attenuate circulating inflammatory markers [8,9,4], improve recovery 39 

following exercise [9] and improve sleep quality [10,11]. Despite previous studies in cell culture and animal 40 

models, where cherry extracts have been shown to exert a range of cardio-protective effects [12,5], there has 41 

been only two published studies illustrating the pharmacokinetics of tart cherry phytochemicals and concurrent 42 

evidence of a biologic effect [13] [14].   43 

The health-related benefits have been postulated to arise from the high anthocyanin content of tart cherries; 44 

however the biological effectiveness of Montmorency cherries might be due to phytochemical interactions, 45 

which accomplish complementary effects. Such synergies occur when combinations of bioactive substances 46 

exert effects at target sites that are greater than the sum of individual components [15].  Furthermore, it has been 47 

noted that anthocyanins may not be stable during processing or storage [16].  Thus, it is not surprising that 48 

Montmorency cherry secondary metabolites could be biologically more active than individual ‘whole’ 49 

components in cherries.  The main non-flavonoid polyphenols of dietary significance are the C6 – C1 phenolic 50 

acids; these provide unique taste, flavour, and health-promoting properties and are found in many vegetables 51 

and fruits [17]. A human study, feeding blood orange juice suggested that the phenolic acid degradation product, 52 

protocatechuic acid (PCA), was a major metabolite of anthocyanins [18]. In addition, a range of phenolic acids, 53 

including vanillic acid (VA), syringic acid, caffeic acid and ferulic acid, have been identified within human 54 

serum, following the consumption of anthocyanin-rich berries [19,20], but data on the bioavailability of these 55 

phenolic acids are very scarce. 56 
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Vascular smooth muscle cells (VSMC) are responsible for the provision of vascular tone in normal, healthy 57 

blood vessels and their behaviour is critical in the development of atherosclerotic plaques [21]. The VSMC can 58 

be found in two states – healthy blood vessels are surrounded by differentiated VSMC in a contractile, quiescent 59 

state [22]. Part of the response to vascular injury and the cascade of events that lead to the build-up of an 60 

atherosclerotic plaque cause VSMC to de-differentiate in to a phenotype that proliferates and migrates [22]. 61 

These de-differentiated cells migrate through the intima and form part of the fibrous cap on an atherosclerotic 62 

plaque. De-differentiated VSMC in these fibrous caps come in to direct contact with metabolites in the 63 

circulating blood and therefore makes them a biologically relevant cell type to test whether metabolites could 64 

impact on their behaviour. 65 

The presence of phytochemical compounds in Montmorency tart cherries that might improve vascular health 66 

have yet to be fully elucidated, and importantly if these compounds can be absorbed and potentially exert a 67 

physiological effect. Furthermore, metabolites from ingestion of cherries that alter the behaviour of VSMC 68 

would be of interest to ascertain further applications of this functional food. Based on previous literature, we 69 

hypothesised that Montmorency tart cherries would contain vasoactive compounds that would be absorbed and 70 

detectable in plasma and that these compounds would modulate VSMC behaviour in vitro. Therefore, this 71 

investigation aimed to examine 1) the time-course of selected phenolic compounds following ingestion of a 72 

Montmorency cherry concentrate, and 2) exposure of VSMC to phenolic compounds would influence cell 73 

behaviour in vitro.  74 

 75 

Materials and Methods  76 

Participants 77 

Twelve non-smoking males were recruited to take part in the study; the mean ± SD age, stature, mass and BMI 78 

was 26 ± 3 years, 178.5 ± 7.6 cm, 85.2 ± 11.7 kg and 26.7 ± 3.2 kg/m
2
, respectively.  All participants were in 79 

apparent good health as assessed by a health-screening questionnaire. Exclusion criteria for the study were; food 80 

allergy (as discussed with research team), history of gastrointestinal, renal or cardiovascular disease and current 81 

use of any food supplementations. The study was conducted in accordance with the Helsinki Declaration and 82 
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ratified by the University’s Research Ethics Committee. All enrolled participants provided written informed 83 

consent.  This study was registered as a clinical trial with clinicaltrials.gov (NCT01825070).   84 

Study Design   85 

As a first step in the current study, we analysed three analogues of tart Montmorency cherries (frozen, dried and 86 

concentrated) in order to identify which was superior in terms of the total anthocyanin and phenolic content as 87 

well as total antioxidant capacity and used in subsequent studies.  The second part of the study utilised a double 88 

blind, two-phase (separated by at least 10 days), randomised, cross-over, but counterbalanced design in order to 89 

identify the bioavailability of specific phenolic acids and their influence on cell behaviour following the 90 

ingestion of two different doses of Montmorency tart cherry concentrate (MC).  Each visit was at the same time 91 

of day and preceded by an overnight fast (≥10 h).  On arrival to the laboratory, participants provided a baseline 92 

venous blood sample.  As previously [13], subsequent blood samples were taken at 1, 2, 3, 4 and 8 h post MC 93 

consumption.  No additional food or fluid was provided during the study period except for low-nitrate mineral 94 

water.   95 

Treatments and Dietary Control 96 

The MC concentrate (CherryActive, Sunbury, UK) was stored at 4ºC prior to use.  Participants consumed either 97 

30 mL or 60 mL of MC concentrate diluted with 100 mL of water in a double-blind cross over manner.  98 

According to the manufacturer’s information, a 30 mL dose of concentrate was equivalent to approximately 90 99 

whole cherries.  Participants were instructed to follow a low phenol diet for 48 h prior to each arm of the trial by 100 

avoiding fruits and its equivalents (i.e., juices), vegetables, tea, coffee, alcohol, chocolate, cereals, wholemeal 101 

bread, grains and spices and were asked to refrain from strenuous exercise.  Compliance with the dietary 102 

restrictions was examined with a self-completed standardized 2-day dietary record.   103 

Montmorency Tart Cherry Analysis   104 

Total Anthocyanins (TACN) 105 

The monomeric anthocyanin pigment content of the MC concentrate and aqueous Montmorency cherry fruit 106 

extracts (whole frozen and dried) was determined using the pH-differential method [23].  The MC concentrate 107 

was diluted 1:20 in 25 M potassium chloride buffer at pH 1.0 and 0.4 M sodium acetate buffer at pH 4.5, 108 

respectively.  The absorbance was measured spectrophotometrically at 510 and 700 nm (Ultraspec 2000UV/Vis 109 
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spectrophotometer, Pharmacia Biotech, Sweden).  The absorbance difference A was calculated as A = (A510-110 

A700) pH1.0 – (A510-A700) pH 4.5.  The TACN concentration C (mg/L) was expressed as mg cyanidin-3-111 

glucoside equivalents according to the following equation: C=A.MW.DF.1000/(ɛ.l), where MW was the molar 112 

mass for cyanidin-3-glucoside (449.2 g/mol); DF was the dilution factor; 1000 was the conversion from g to mg; 113 

ɛ was the molar extinction coefficient for cyanidin-3-glucoside (26900 L/mol); and l was the path length (1 cm). 114 

Total Phenolic Content (TPC) 115 

Total phenolic content was measured using a modified Folin-Ciocalteu colorimetric method [24].  Samples were 116 

diluted in deionised water (1:10 or 1:100) and 50 µl of the diluted extract, 50 µl of Folin-Ciocaltea reagent 117 

diluted in water (1:25) and 100 µl of 6% (w/v) sodium carbonate were added into corresponding sample wells of 118 

a 96 well plate (Greiner Bio – One, Monroe, USA).  Absorbance readings were taken at 725 nm, at 5 minute 119 

intervals, over a 30 minute period at 25°C (BioTek Synergy HT Multi-Mode Microplate Reader, Winooski, 120 

USA).  A stock solution of gallic acid (5.8 mM) was prepared in aqueous methanol (80% (v/v) and 121 

quantification was performed on the basis of a standard curve in the range 0-50 mg/mL (R
2
 = 0.99).  The 122 

analysed samples were measured versus a blank sample.  All values are expressed as means of gallic acid 123 

equivalents per gram of sample ± SE for 6 replications.  124 

Trolox Equivalent Antioxidant Capacity (TEAC) 125 

A modified DPPH assay used for antioxidant activity measurements was adjusted for use in the present study 126 

[25].  The DPPH solution was prepared freshly before analysis, by dissolving the DPPH reagent (2.4 mg) in 127 

80% methanol (100 mL).  Then 10 µl of extract, 40 µl of deionized water and 200 µl of DPPH solution were 128 

added into each well of the 96 well plate (CELLSTAR, Greiner Bio-One, Monroe, USA).  Absorbance readings 129 

were taken at 515 nm, at 3 minute intervals over a 30 minute period at 37°C, using a Multi Mode Microplate 130 

Reader (BioTek synergy HT, Winooski, USA).  A calibration curve using Trolox (0-500 µM, R
2
 = 0.99) was 131 

plotted.  Final values are expressed as means of Trolox equivalents per milligram of sample ± SE for 6 132 

replications.  133 

Individual Phenolic Analysis 134 

The levels of individual phenolics (CHL, PCA and VA) were determined by HPLC and diode array detection 135 

(DAD), using the methods described by Bell and colleagues [13].  These phenolic acids were preferentially 136 
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selected as they are the most abundant degradation products of cyanidin and peonidin, the two major 137 

anthocyanins detected in the Montmorency whole cherry [6] and concentrate [13]. A 1% solution of MC juice 138 

was prepared in 1:1, 0.1% formic acid: 2% HCl in methanol (MeOH) filtered with a 0.2 µm 139 

polytetrafluoroethylene  (PTFE) filter and analysed by HPLC-DAD using a Phenomenex Luna C18, (250 x 2.0 140 

mm x 5 um).  To characterize the major phenolics present, a sample of MC concentrate was analysed by LC-141 

MS.  All of the phenolic acids were identified in the MC concentrate after applying the extractive procedure and 142 

chromatographic method.   The MS chromatogram of CHL in MC concentrate is presented in Figure 1: B (1-2).   143 

The total anthocyanin, total phenolic and total antioxidant capacities for each analogue of tart Montmorency 144 

cherry are presented in Table 1.  Additionally, the individual phenolic acid quantities in the concentrate are also 145 

provided. 146 

Blood Sampling 147 

Fasting whole blood samples were collected in a 10 mL EDTA vacutainer system (Becton, Dickinson and 148 

Company, Plymouth, New Zealand), inverted to mix the anticoagulant, and immediately centrifuged at 3000 × g 149 

for 10 minutes at 4°C.  Plasma was aspirated and pipetted into ~1 mL aliquots and then immediately stored at -150 

80°C for later analysis. 151 

HPLC Analysis 152 

Under the selected chromatographic conditions, calibration graphs were obtained by preparing standard samples 153 

of each compound in triplicate, with increasing concentration of each analyte.  From calibration graphs the limit 154 

of detection and linearity were calculated (Table 2).  The HPLC-DAD was used to identify plasma 155 

concentrations of phenolics for the acute phase of the study (pre-supplementation through to 8 h post-156 

supplementation). Plasma samples were extracted using a solid-phase extraction procedure.  Briefly, 1 mL of 157 

plasma was mixed with 4 mL oxalic acid (10 mM) and 0.1 mL HCl (12.06 M) in 15 mL Falcon tubes and 158 

centrifuged at 826 × g for 5 minutes.  The supernatant was absorbed on to a primed solid phase extraction 159 

cartridge (Waters Sep-Pak C18 plus short cartridge, 360 mg sorbent per cartridge, 55-105 µm), conditioned with 160 

MeOH with 0.2% trifluoroacetic acid (TFA) followed by 2 × 5 mL of water.  The sample was eluted with 3 mL 161 

of MeOH with 0.2% TFA, dried under N2 at 45°C.  Samples were then reconstituted in 400 µl of dilution solvent 162 

(0.1% formic acid in water: 2% HCl in MeOH), and filtered through a 0.2µm PTFE filter prior to HPLC 163 

analysis. The method’s recovery was assessed by analysing separate aqueous solutions of each of the 164 
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antioxidants at 1, 25 and 50 µL/mL, as well as blank plasma samples with added antioxidants at the same three 165 

concentrations. The recovery for all sample preparations was 99.1–101.4%. 166 

HPLC-DAD analysis of phenolics was carried out using HPLC equipped with a pump, autosampler and UV-Vis 167 

detector (UltiMate 3000 HPLC system, Dionex, Camberly, UK). Known volumes of model system solutions 168 

(0.1-0.3 mL), were transferred in to an autosampler vial and deionized water was added to afford a final volume 169 

of 1.5 mL.  Sample aliquots (10 µL) of plasma were injected on a 2.1 cm x 150 mm i.d.; 3 μm particle size 170 

reverse-phase column (Phenomenex Luna C18(2) (250 x 2.0 mm, 5 um particle size) that was thermostatically 171 

regulated at 30°C. The mobile phase consisted of water with 1% acetic acid (solvent A), and acetonitrile with 172 

1% acetic acid (solvent B). After a 5-minute equilibration with 20% B, the elution programme was as follows: 173 

0-20 min, 10-100% B, (0.2 mL/min) followed by a washing stage (100% B, 20-28 min, 0.2 mL/min) and re-174 

equilibration at the initial conditions for 5 minutes. Detection was performed at the following wavelengths: λ = 175 

260 nm for PCA and VA and λ = 326 nm for CHL.  The polyphenolic content of plasma extracts were 176 

calculated by interpolation from the calibration graph and expressed as micrograms per millilitre (µg/mL).  177 

LC-MS Analysis 178 

A liquid chromatography-mass spectrometry (LC-MS) method, utilising the same chromatographic conditions 179 

as the HPLC-DAD analyses, was used for the identification of individual compounds in the plasma and juice 180 

samples. Briefly, LC-MS analyses were carried out on a Dionex UltiMate 3000 RSLC HPLC System (Dionex, 181 

Camberly, UK) equipped with an UltiMate 3000 RS pump, an UltiMate 3000 RS autosampler and a QExactive 182 

Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific, Waltham, USA). Electrospray ionization at 183 

both negative and positive ion modes was performed with a spray voltage of 2.00 kV and capillary temperature 184 

of 280°C. The total ion current (TIC) with a range of 100-1500 m/z and 70000 resolution was measured. Sample 185 

aliquots (2 µL) were injected on an Phenomenex Luna C18(2) (250 x 2.0 mm, 5 um particle size) reverse-phase 186 

column thermostatically regulated at 40°C. The mobile phase consisted of water with 1% acetic acid (solvent 187 

A), and acetonitrile with 1% acetic acid (solvent B).  The same method as applied for the HPLC analysis was 188 

carried out on the LCMS.  The identification of phenolics in the MC concentrate was verified by retention time 189 

and spectral data comparison with the corresponding reference compounds.  190 

 191 

 192 
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Vascular Smooth Muscle Cell Culture and Migration 193 

Primary human aortic smooth muscle cells (VSMC; Life Technologies, Paisley, UK) were cultured in 231 194 

medium supplemented with smooth muscle cell growth supplement (Life Technologies, Paisley, UK) including 195 

5% foetal bovine serum. The VSMC cultures were maintained in 75 cm
2
 tissue culture flasks in a humidified 196 

incubator at 37°C. For all experiments, VSMC were used between passages 3 and 8.   Migration of VSMC in 197 

response to metabolites PCA and VA was determined using xCelligence real time cell analyser. PCA and VA 198 

were dissolved in 100% ethanol, to a concentration of 100 mM. VSMCs were serum-starved for 24 h, then 199 

detached from the flask with trypsin. The cells were then incubated with PCA at a molarity concentration of 32 200 

µM and VA at 4 µM or ethanol only (<0.04% (v/v)) control for 1 h at 37°C. These concentrations were based on 201 

the plasma bioavailability concentrations ascertained by the in vivo part of this work and fall within the range of 202 

maximum values we observed following consumption of the cherry juice. The VSMC were plated onto an 203 

xCelligence cell invasion and migration (CIM) plate containing serum-free medium in the top and bottom 204 

chambers. The VSMC were added to the top chamber at a density of 8000 cells/chamber. Migration of VSMCs 205 

was determined by measuring impedance, which is created as cells move from the top chamber, through a 206 

microporous membrane to the bottom chamber and attach to a gold electrode on the underside of the top 207 

chamber. Measurements were taken every 15 minutes over a 24 h period.  Measurements were then converted to 208 

cell index values, which were used as a relative measure of cell migration. 209 

Vascular Smooth Muscle Cell Culture and Proliferation  210 

Kinetic Proliferation Assay-An xCelligence real time cell analyser was used to monitor cell proliferation in real 211 

time (Acea Biosciences Inc, CA, USA).  Primary VSMCs were seeded onto an xCelligence E plate at 6,000 212 

cells/well, with metabolites or ethanol only as control in normal VSMC growth media. E plates consist of a gold 213 

microelectrode and growth of cells is determined by measuring relative electrical impedance across the cell 214 

monolayer.  Impedance measurements were taken every 15 minutes for up to 72 h to determine cell 215 

proliferation. 216 

Statistical Analysis    217 

Statistical Analysis was performed using PASW Statistics 21.0 for Windows (SPSS, Inc., Chicago, IL.). 218 

Descriptive statistics are reported as means ± SEM.  All dependant variables were analysed by using a treatment 219 

(30 mL v 60 mL) by time (baseline, 1, 2, 3, 5 and 8 h) mixed model analysis of variance (ANOVA).  Maulchy’s 220 
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Test of Sphericity was used to check homogeneity of variance for all variables; where necessary any violations 221 

of the assumption were corrected using the Greenhouse-Geisser adjustment. Significant interaction effects were 222 

followed up using LSD post-hoc analysis.  Further analysis was conducted to identify maximum plasma 223 

concentrations (Cmax) and times to achieve maximum plasma concentrations (tmax), which were directly obtained 224 

from the plasma concentration-time profiles.  As a measure of overall plasma bioavailability of individual 225 

phenolic acids, the area under the plasma concentration-time curve (AUC0-8h) was estimated by using the linear 226 

trapezoidal rule.  For the cellular experiments, significance was judged using Student’s t-test.   The alpha level 227 

for statistical significance was set at 0.05 a priori.  Results are reported as means ± SEM.   228 

 229 

Results 230 

Protocatechuic (PCA), Vanilic (VA) and Chlorogenic (CHL) Acid 231 

Firstly, all participants (n=12) complied with the low-polyphenolic experimental diet according to the food 232 

diaries.  The MS chromatogram of PCA in plasma is presented in Figure 1: A (1-2). The PCA (Figure 2) 233 

revealed no significant treatment effect (F1,11 = 0.59, p=0.810 or treatment by time interaction effect (F5,105 = 234 

0.405, p=0.845).  Following supplementation, there was a significant time effect on PCA plasma levels (F5,105 = 235 

2.956, p=0.015).  The PCA levels in plasma were significantly higher 1 h following consumption of the low (30 236 

mL) and the high dose (60 mL) of MC when compared to baseline (p=0.014 and 0.05, respectively). For both 237 

the 30 and 60 mL MC dose, the tmax was 1 h for PCA.  The Cmax values for PCA were not different between the 238 

60 mL (2.75 ± 0.13 μg*h/mL
-1

) and the 30 mL (2.76 ± 0.10 μg*h/mL
-1

) dose. Furthermore, AUC0-8h values for 239 

PCA were not different between the 30 mL and 60 mL doses, 102.4 ± 0.9 μg*h/mL
-1 

and 106.4 ± 0.1 μg*h/mL
-1

, 240 

respectively.  The presence of PCA was confirmed in plasma by comparison of the experimentally determined 241 

monoisotopic molecular weights to literature value, in which all were within ± 1.5 ppm (Table 3). 242 

Plasma VA (Figure 3) revealed no treatment effect (F1,11 = 0.004, p=0.951) or treatment by time interaction 243 

effect (F3.456,105 = 1.583, p=0.195).However, following supplementation, there was a time effect (F3.456,105 = 244 

3.329, p=0.008).  VA levels were higher 1 h after consumption of the higher dose (60 mL) when compared to 245 

baseline (p<0.05).  Pairwise comparisons revealed increases in VA from 1 h to 5 h and 8 h post 60 mL MC Juice 246 

consumption (p<0.05) compared to baseline.  However, no significant time effects were observed with the lower 247 

dose.  For VA, the tmax differed depending on the dose administered, occurring at 1 h with the 60 mL dose and 2 248 



11 

 

h in the 30 mL dose.  Cmax values for VA were not significantly different between the 60 mL (0.29 ± 0.03 249 

μg*h/mL
-1

) and the 30 mL (0.30 ± 0.01 μg*h/mL
-1

) dose.  Furthermore, AUC0-8h values for VA were not 250 

different between the 30 mL and 60 mL doses, 10.7 ± 0.1 μg*h/mL
-1 

and 11.8 ± 0.1 μg*h/mL
-1

, respectively.  251 

The presence of VA was confirmed in plasma by comparison of the experimentally determined monoisotopic 252 

molecular weights to literature value, in which all were within ± 1.5 ppm. (Table 3). The current study did not 253 

detect CHL in the plasma post MC consumption.   254 

Cell behaviour  255 

The maximum mean concentration of PCA measured in plasma was 2.5g/mL (range: 0.33 – 6.65 µg/mL) 256 

(Figure2) and VA was 0.3g/mL (range: 0.1-1.32 µg/mL) (Figure 3), these correspond to molar concentrations 257 

of 16M and 2M, respectively.  The concentrations were doubled to 32M PCA and 4M VA for the cell 258 

experiments to fall within the maximum range of concentrations we observed in vivo.  Both PCA and VA were 259 

applied to VSMC in isolation and showed no significant increase in migration behaviour in comparison to a 260 

control.  When PCA and VA were combined and added to the culture, there was an increase (p = 0.038) in 261 

migration of VSMC by 36±12% when compared to the control (Fig 4).  Finally, there was no effect of the 262 

metabolites on VSMC proliferation (Supplemental Fig. 1).  263 

 264 

Discussion 265 

Following the identification of which Montmorency cherry analogue (frozen, dried, concentrate) had the 266 

greatest antioxidant activity, total anthocyanin and phenolic content, MC concentrate was used to investigate the 267 

plasma kinetics of selected phenolic acids and their subsequent effect on cell behaviour in vitro. This 268 

investigation presents new information on the appearance and time course of phenolic compounds in plasma 269 

following consumption of a lower and higher dose of MC concentrate.  The hydroxybenzoic acid content of 270 

edible plants is generally very low, with the exception of certain red fruits, black radish, and onions [25].  As a 271 

result, very little is known about the metabolism and absorption of these compounds. However, this study 272 

showed that both PCA and VA, are most bioavailable in plasma 1-2 h post MC consumption, whilst other 273 

hydroxycinnamic acids (CHL) were not present in the plasma.  Furthermore, the combination of PCA and VA 274 

increased cell migration, but had no effect on the proliferation of VSMC.   275 
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High concentrations of VA in vivo can be attributed to the large quantity of anthocyanins in fruit and vegetables 276 

[20].   Ou et al [26] previously established the anthocyanins (in order of decreasing prevalence) in processed tart 277 

cherry products were cyanidin-3-glucosylrutinoside, cyanidin-3-rutinoside, and peonidin-3-rutinoside. These 278 

findings concur with those data from Balaton cherries [27] and Montmorency cherries [6]. VA is the major 279 

degradation product of the parent compound peonidin and this could explain the detection of VA in plasma 1-2 280 

h post MC consumption in the current study. Interestingly, it has been proposed that VA possesses 281 

chemopreventive properties due to its antioxidant activity and its ability to scavenge free radicals [28]. VA has 282 

also been shown to exhibit immunostimulatory effects in enhancing interferon gamma (IFN-γ) secretion and 283 

stimulating proliferation of human peripheral blood mononuclear cells [29].   284 

Similar to VA, high concentrations of PCA in vivo is likely to be as a direct result of the original anthocyanin 285 

content of both fruit and vegetables [30].  Cyanidin is the main anthocyanin in tart cherry products [6], this was 286 

recently clarified in the MC concentrate (3.346 mg∙mL
-
1) where cyanidin accounted for the overwhelming 287 

majority of anthocyanins with far smaller amounts of peonidin and malvidin [13]. Cyanidin-3-glucoside has 288 

been shown to readily degrade to cyanidin, and then further metabolised to PCA.  Vitaglione and colleagues 289 

[18] reported that PCA accounts for almost 73% of cyanidin ingested.  They [18] concluded that a high 290 

concentration of PCA could explain the short-term increase in plasma antioxidant activity observed after intake 291 

of cyanidin-rich food. PCA has also been shown to remain in biological tissues for longer periods of time than 292 

the parent anthocyanin [31]. A recent addition to the literature [32] examined the tissue bioavailability of cherry 293 

phenolic compounds in rats following three weeks of supplementation. The work showed some tissues 294 

preferentially store these phenolic compounds; but importantly when examined with the data from the current 295 

study the transient increase in compounds seen in plasma might be the first step to increase tissue bioavailability 296 

and hence a potential pathway to the proposed health-enhancing benefits of cherry phenolics.  Consequently 297 

more longitudinal supplementation studies should investigate tissue bioavailability in humans to ascertain if 298 

increased tissue concentrations of these compounds is possible in a human model.  The detection of high 299 

concentrations of PCA in human plasma 1-2 h post MC ingestion has the potential to exert some physiological 300 

potential; for example, previous research has shown that PCA possess antibacterial, antioxidant, antidiabetic, 301 

anticancer, antiulcer, antiaging, antiviral, anti-inflammatory, anti-atherosclerotic properties [33].  302 

Despite there being high quantities of CHL in the MC concentrate, it was not detected in plasma.  Other food 303 

and beverage studies administered much higher concentrations of CHL; for example, Stalmach et al [34] gave 304 
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participants a single serving of a coffee beverage fortified with CHL, the serving consisted of low (412 μmol), 305 

medium (635 μmol) and high (795 μmol) quantities of CHL.  Although 412 µmol/L represented the low dose, 306 

this is still far greater than the amounts identified in the MC concentrate in the current study; where 6.8 µg/mL 307 

which equates to ~22.1 µmol/L.  Unlike the previous work, this study utilized an ecologically valid quantity of 308 

CHL that was found the MC concentrate that represents a sensible portion to consume, rather than an artificially 309 

derived concentration used previously [34,35].  In support of this, a previous study using comparable 310 

concentrations of CHL also failed to detect its presence in vivo (rodent plasma) following CHL ingestion [36].  311 

Given that CHL was present in the MC concentrate, it is quite plausible that CHL was metabolised quickly to 312 

the downstream metabolites caffeic, quinic and ferulic acid.  This provides  some explanation for the non-313 

detection in plasma; however, the possibility remains that CHL become degraded during sample treatment 314 

process [37].  A study [38] evaluating the pharmacokinetic profile and bioavailability of CHL in plasma and 315 

urine of 10 healthy participants showed a great deal of inter-individual variation in CHL absorption, metabolism 316 

and kinetics with uptake values ranged from 7.8% to 72.1% amongst participants.  Large inter-individual 317 

variations in the plasma concentrations of all compounds in the current study are not unexpected because of the 318 

multifaceted factors such as metabolism and genetic disposition to gut microbial composition [39].   319 

The effects of the metabolites PCA and VA on the migration of VSMC in vitro were also assessed. Migration 320 

increased when the cells were treated in concert with both metabolites, demonstrating that these metabolites, at a 321 

similar level to that seen in plasma, can alter VSMC function. Migration of de-differentiated VSMC is required 322 

for vessel remodelling which occurs from exercise and vascular injury. The VSMC migration in advanced 323 

atherosclerotic plaques are often considered to be protective as it increases stability, protecting against plaque 324 

rupture and ensuing vascular trauma such as myocardial infarction or stroke [40].  By increasing VSMC 325 

migration, the metabolites may potentially be beneficial for blood vessel remodelling, although this would 326 

require further investigation.  Elsewhere there are conflicting reports of the effects of PCA on cell migration; for 327 

example, PCA has been shown to increase the migration of adipose tissue derived stromal cells [41] and to 328 

inhibit the migration of gastric cancer cells [42]; the mechanism of which are thought to involve alterations in 329 

matrix metalloprotease activity.  These conflicting reports are likely attributable to the different cell culture 330 

models used in each study.  It is interesting to note that the concentration of PCA used in this study was similar 331 

to physiological concentration observed in vivo; whereas previous studies required between 15-47 times greater 332 

concentrations to observe an effect on cell behaviour [41,42].  VA is less studied, but has been reported to have 333 
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a small effect on lung cancer cell migration in comparison to controls, at a concentration 1000 times greater than 334 

used in the current investigation [43]. This is the first study where PCA and VA have been examined in concert 335 

and show that VSMC migration can be influenced at physiologically relevant levels that can be consumed from 336 

MC.  Importantly, the work suggests that the examination of phenolic acids (or other phytochemicals) in 337 

isolation may be of limited value, particularly when whole foods and their analogues are far more complex.   338 

An acknowledged limitation of the current study is that the analysis was not exhaustive, and so not every 339 

polyphenol was analysed; instead the focus was on the degradation products of two of the main anthocyanidins 340 

reported in the MC juice that could exert a positive effect on vascular function.  In addition, we did not 341 

investigate compounds, for instance procyanidins, which appear to have poor bioavailability due to instability, 342 

large molecular weight or are quickly excreted. Conceivably, these compounds might also contribute to any 343 

potential physiological effects exerted by MC and cannot be excluded.  Furthermore, enterohepatic metabolism 344 

could predict that the absorption of phytochemicals and their metabolites are not limited to few hours after 345 

intake [14,19].  As a result, the timeframe of the analysis in the current study may be regarded as a potential 346 

limitation. 347 

In conclusion, these data provide new information on the presence of phenolic acids in plasma following MC 348 

concentrate consumption in humans.  The time course of metabolite absorption peaks at 1-2 hours post-349 

consumption and this information could inform future in vivo work that examines the health-related benefits 350 

associated with Montmorency tart cherries.  Lastly, MC concentrate provides a bioavailable source of 351 

phytochemicals that could be helpful in modulating vascular function [44] [45] and influencing cell behaviour. 352 
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Figure Captions 

 

Fig 1 A (1) LCMS Chromatograms of CHL, extracted ion mode range m/z 352-256 (RT=4.87 min) (2) MS 

output of CHL, @ RT = 4.87 min (the m/z at 707 could be a CHL dimer, formed in the MS) B (1) MC Juice, 

extracted ion, range m/z 352-356. The two distinct peaks in the juice (RT=4.37 and 4.87 min) have similar MS 

spectra (m/z 353 main ion) which could indicate the presence of another isomer i.e. crypto- or neo- CHL (2) MC 

Juice @ RT = 4.87 min C (1) PCA, extracted ion range m/z 150-155 (RT=7.17 min) (2) PCA @ RT = 7.17 min 

D (1) Plasma sample (S1-B-Z), extracted ion, range m/z 150-155 (RT=7.17 min) (2) Plasma sample (S1-B-Z), 

@ RT=7.17 min 

Fig 2 PCA responses from baseline to 30 mL and 60 mL Montmorency cherry concentrate (MC).  Absolute 

baseline values were 1.16 ± 0.326 and 1.70 ± 0.435 ug/mL for 30 mL and 60 mL, respectively.  * indicates a 

significant time effect (p < 0.05) (30 mL and 60 mL dose); data presented as mean ± SEM 

Fig 3 VA responses from baseline to 30 mL and 60 mL Montmorency cherry concentrate (MC).  Absolute 

baseline values were 0.158 ± 0.031 and 0.093 ± 0.024 ug/mL for 30 mL and 60 mL, respectively.  * indicates a 

significant time effect (p < 0.05) (60 mL dose only); data presented as mean ± SEM 

Fig 4 % Migration of human vascular smooth muscle cells in vitro in response to metabolites PCA (32µM) and 

VA (4µM) compared to ethanol only control, over 24hours. Combined data from three separate experiments # 

indicates a significant difference between condition (p<0.05); data presented as mean ±SEM 
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Table 1: Total anthocyanin, phenolics and antioxidant activity in pitted, frozen, whole, dried and concentrated Montmorency tart cherry. 

 TACN  TPC TEAC Total CHL
*
 Total PCA

*
 Total VA

*
 

30 mL MC Concentrate 31.24 ± 0.16 71.37± 0.11 0.30±0.01 0.205±0.24 0.020±0.11 0.253±0.84 

60 mL MC Concentrate 62.47 ± 0.31 142.73 ±0.22 0.60±0.03 0.410±0.48 0.040±0.22 0.506±1.68 

Frozen cherries 0.03 ± 0.0009 0.005± 0.0004 0.002±  0.0002 - - - 

Dried cherries 0.008 ± 0.0003 0.006±  0.0005 0.002±  0.0001 - - - 

Values are presented as Mean ± SEM, n = 6 per analysis, (*n=3).  TACN, total anthocyanin content, MC = mg cyanidin-3-glucoside /L, Whole Food = mg cyanidin-3-

glucoside/100 g; TPC, total phenolic content, MC = mean gallic acid equiv/L, Whole Food = mean gallic acid equiv/g; TEAC, trolox equivalent antioxidant capacity, MC 

= mean Trolox equiv /L, Whole Food: mean Trolox equiv/g; CHL, chlorogenic acid; PCA, protocatechuic acid; VA, vanillic acid, MC = µg/mL. 
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Table 2: Retention times (min) and selected UV-Vis wavelengths for quantitation of phenolics by HPLC-UV/Vis 

Compound UV/Vis wavelength (nm) Retention time (min) LOD (µg/mL) Range of linearity(µg/mL) 

PCA 260 9.263 <0.05 0.5-80 

CHL 326 10.140 <0.04 0.4-80 

VA 260 11.326 <0.04 0.5-100 

LOD, limit of detection. 

 

 

 

 

 



23 

 

Table 3: LCMS characterization of phenolic peaks. 

Polyphenol Formula Found Monoisotopic Mass 

   Ionisation Mode 

 

Literature Value
1 

 

PCA C7H6O4 154.034 Negative 154.026611 

CHL C16H18O9 354.102 Negative 354.095093 

VA C8H8O4 168.049 Negative 168.042252 
1
Royal Society of Chemistry, (2013), Chemspider chemical database. Found at: http://www.chemspider.com/. 

ND, Not Detected. 
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Fig 3 
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Online Supporting Material 

 

Supplemental Figure 1 

 

 

Fig S1 % Proliferation of human vascular smooth muscle cells in vitro in response to metabolites PCA (32µM) 

and VA (4µM) compared to ethanol only control, over 24hours. Combined data from four separate experiments; 

data presented as mean ±SEM. 
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