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Abstract 

 Automatic emotion recognition has been widely studied and applied to various 

computer vision tasks (e.g. health monitoring, driver state surveillance, personalized 

learning, and security monitoring). With the great potential provided by current 

advanced 3D scanners technology (e.g. the Kinect), we shed light on robust emotion 

recognition based one users’ facial and whole-body expressions. As revealed by recent 

psychological and behavioral research, facial expressions are good in communicating 

categorical emotions (e.g. happy, sad, surprise, etc.), while bodily expressions could 

contribute more to the perception of dimensional emotional states (e.g. the arousal and 

valence dimensions). Thus, we propose two novel emotion recognition systems 

respectively applying adaptive ensemble classification and regression models 

respectively based on the facial and bodily modalities.  

The proposed real-time 3D facial Action Unit (AU) intensity estimation and 

emotion recognition system automatically selects 16 motion-based facial feature sets to 

estimate the intensities of 16 diagnostic AUs. Then a set of six novel adaptive ensemble 

classifiers are proposed for robust classification of the six basic emotions and the 

detection of newly arrived unseen novel emotion classes (emotions that are not 

included in the training set). In both offline-line and on-line real-time evaluation, the 

system shows the highest recognition accuracy in comparison with other related work 

and flexibility and good adaptation for newly arrived novel emotion detection(e.g. 

‘contempt’ which is not included in the six basic emotions). The second system focuses 

on continuous and dimensional affect prediction from users’ bodily expressions using 

adaptive regression. Both static posture and dynamic motion bodily features are 

extracted and subsequently selected by a Genetic Algorithm to identify their most 

discriminative combinations for both valence and arousal dimensions. Then an 

adaptive ensemble regression model is proposed to robustly map subjects’ emotional 



states onto a continuous arousal-valence affective space using the identified feature 

subsets. Experimental results show that the proposed system outperforms other 

benchmark models and achieves promising performance compared to other 

state-of-the-art research reported in the literature. Furthermore, we also propose a novel 

semi-feature level bimodal fusion framework that integrates both facial and bodily 

information together to draw a more comprehensive and robust dimensional 

interpretation of subjects’ emotional states. By combining the optimal discriminative 

bodily features and the derived AU intensities as inputs, the proposed adaptive 

ensemble regression model achieves remarkable improvements in comparison to solely 

applying the bodily features. 
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Chapter 1 Introduction 

1.1 Background 

In recent years, ubiquitous computer and information technology has become a 

more and more indispensable part of our everyday life. It also drives innovations in 

agent-based interface development. Also, as an important aspect of human life, emotion 

and affect help us to express and perceive our goals, feelings and intentions, subtly 

impacting our daily activities such as learning, decision making and interpersonal 

communication. Thus, in the era where computer technology and human life have 

become extremely interwoven, automatic emotion recognition has become a new 

hotspot of AI research since the role played by affect in human life and everyday 

functioning is well recognized and studied (Izard et al., 2000). 

Endowing machines with emotion intelligence not only greatly benefits natural 

Human-Computer Interaction, but also shows great potential to be applied in a wide 

variety of applications, such as personalized learning (D’Mello & Graesser, 2010), 

health monitoring (Lucey et al., 2009), customer services (Zeng et al., 2009), 

anomalous event detection (Ryan et al., 2009), intelligent robotics (Fellous & Arbib, 

2005), and interactive computer entertainment (Savva et al., 2012; G’Mussel & Hewig, 

2013). Emotional information can be expressed and perceived through a wide range of 

non-verbal channels, such as face, voice, text, and bodily expressions. In this research 

we particularly shed light on the facial and bodily modalities, because of the importance 

and potential of those modalities to human affective behavior interpretation revealed by 

recent research (e.g. Kleinsmith & Bianchi-Berthouze, 2013; Chavan & Kulkarni, 

2013). 

1.2 The role of facial expressions and challenging problems 

 Facial expressions are the facial changes caused by underlining muscle movements, 
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and in response to a person’s internal feelings, intentions, emotional states, or social 

communications (Tian, 2005). Facial expression analysis was primarily a research 

subject for behavioral scientists and psychologists, since the seminal research by 

Darwin (1872). A milestone in facial expression research is the postulation of six basic 

emotions (i.e. happiness, surprise, fear, anger, sadness, and disgust), each of which 

possesses a distinctive content together with a unique prototype facial expression and is 

claimed to be universal across cultures and human ethnicities (Ekman & Friesen, 

1971). 

 Suwa et al. (1978) started a new era for automatic facial expression analysis. In 

their preliminary investigation, they attempted to automatically analyze facial 

expressions from an image sequence by tracking the motion of twenty identified facial 

landmarks. After that, the field of automatic facial expression recognition has drawn 

ever-increasing attention. The last decade has witnessed significant progress in the 

related areas (e.g. Pantic & Patras, 2006; Cohn et al., 2009; Sorci & Thiran, 2010; 

Kappas, 2010; Tsalakanidou & Malassiotis, 2010; Zhang, 2011; Valstar & Pantic, 

2012; Koelstra et al., 2010; Savran et al., 2012; Wang et al., 2006; Mpiperis, 2008; 

Zhang et al., 2013; Owusu et al., 2014; Rao et al., 2011). Thus, the importance and 

role of facial expressions in the expression and perception of emotions have been 

widely studied and accepted in both cognitive neuroscience and computer science. 

 Most existing facial emotion recognition systems, however, either only considered 

static facial features, or were limited to 2D models. They have not fully considered 

dynamic information of facial movements that are relatively subject-independent and 

may play a critical role in interpreting emotions, thus are not robust enough for 

challenging real-life recognition tasks with subject variation, head movement and 

illumination changes. Moreover, a good facial emotion recognition system is also 

expected to be well capable of detecting the arrival of novel emotion classes (e.g. 

compound emotions or other new emotions that do not belong to the six basic emotion 

categories mentioned in the training set). However, there is lack of systematic research 
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for the effective detection of novel emotions. 

To address these challenges, we present a real-time 3D facial Action Unit (AU) 

intensity estimation and emotion recognition system. We first of all extract dynamic 

motion-based facial features to robustly estimate the intensities of 16 selected Action 

Units (AUs) using Neural Networks (NNs) and Support Vector Regressors (SVRs). 

Subsequently, a set of six novel adaptive ensemble classifiers is proposed for the 

detection of six basic expressions and any newly arrived novel emotion classes. The 

details are presented in Chapter 3. 

1.3 The role of bodily expressions and challenging problems 

 In 1872, Darwin presented the first rigorous evidence for the expression of 

emotions through the body (Darwin, 1872). A series of bodily behaviors specific to 

certain emotional categories was found in his work, many of which are now regarded as 

basic emotions (e.g. anger, disgust and surprise). In the following century, the role of 

body language in the expression and perception of emotions has also been well revealed 

by many other researchers (e.g. Wallbott, 1998; Montepare et al., 1999; Van den Stock 

et al., 2007; de Gelder, 2009). Compared to the booming research on automatic facial 

expression recognition in the last decade, only recently there have been fewer 

automatic systems that are able to detect emotions based on the bodily modality (e.g. 

Bernhardt & Robinson, 2007; Kleinsmith et al., 2011; Kleinsmith & Bianchi-Berthouze, 

2013). This may be attributed to the complexity of the body itself and the lack of well 

acknowledged coding models for the body as there are for the face (e.g. the 

well-established Facial Action Coding System (Ekman et al., 2002)). 

Recent studies in cognitive neuroscience (de Gelder et al., 2003; Van den Stock et 

al., 2007) have emphasized that body posture could be the influencing factor over facial 

expression in cases of incongruent affective displays, and for the discrimination 

between some emotional states in particular, such as fear and anger, more attention 
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needs to be paid to the bodily display. Furthermore, a longstanding controversy in 

cognitive science has concerned whether emotions are better conceptualized in the 

form of discrete categories (e.g. happy and sad), or continuous dimensions (e.g. valence 

and arousal) (Hamann, 2012). According to Ekman & Friesen (1967), compared to the 

face, which is considered to be the foremost modality for expressing discrete emotion 

categories, the body may perform better for communicating affective dimensions. 

Recent research (Kleinsmith & Bianchi-Berthouze, 2013) also indicates that by the 

combination of discrete emotion labels and continuous dimension levels, a more 

complete and systematic description of the emotional state could be obtained. These 

highlight the importance of developing a dimensional emotion recognition system 

based on bodily expressions. 

 More importantly, current neuroscience studies (Vania et al., 1990; Giese & Poggio, 

2003; Lange & Lappe, 2007) indicate that our brain utilizes two separate pathways for 

the recognition of biological information from bodily expressions, one for form 

information (e.g. a specific configuration of a posture), and the other for motion 

information (e.g. velocity, acceleration, and frequency). According to Atkinson et al. 

(2007), both form and motion bodily signals make their own contributions to affect 

perception of human behavior. A number of recent developments in computer science 

(e.g. Roether et al., 2009; Kleinsmith et al., 2011) further prove that both of them are 

useful and important for automatic emotion prediction from bodily expressions. Body 

form and motion information complement each other in conveying emotions, however, 

they may also become partially redundant or inconsistent in some cases (Kleinsmith & 

Bianchi-Berthouze, 2013). Thus, it is also significant to identify the roles of both body 

form and movement information in the automatic regression of different affective 

dimensions. 

 Thus, we also aim to address the problem of continuous regression of subjects’ 

emotional states in a valence and arousal space based on their whole-body expressions. 

I.e. the proposed system is able to robustly map subjects’ emotional states to a 
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two-dimensional coordinate space spanned by arousal and valence, where each value 

ranges between -1 and 1. We systematically extract users’ static and dynamic bodily 

features and conduct feature selection using the Genetic Algorithm (GA) based 

optimization. An ensemble regression model with great adaptability is also proposed to 

deal with continuous prediction of subjects’ affective dimensions. The details are 

presented in Chapter 4. 

1.4 Research contribution 

 Within the research area of affective computing and machine learning, the 

contributions of this thesis are threefold. 

1. First of all, we propose an automatic system for real-life 3D AU intensity 

estimation and categorical facial expression recognition with novel emotion 

detection. 

 We extract dynamic motion-based facial features (e.g. the elongation of 

mouth) rather than static features (e.g. the width of mouth) to estimate AU 

intensities because of the following. Static features could change a lot 

between different subjects, whereas the motion-based features are caused by 

underlying facial muscle movements which bear anatomically similar muscle 

tension behavior among different subjects for the expression of the six basic 

emotions (Ekman et al., 2002), and thus are relatively universal and 

subject-independent, and contain comparatively richer emotional information. 

Therefore they are employed in this research for facial expression 

representations. 

 A minimal-redundancy-maximal-relevance criterion (mRMR) based 

automatic feature selection is proposed to identify the most discriminative 

and informative feature sets for AU intensity estimation. Compared with the 

manual feature selection conducted based on facial muscle anatomical and 
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FACS knowledge, the mRMR-based optimization yields comparable 

performance for the intensity estimation of the 16 selected AUs.   

 We also propose a set of six novel adaptive ensemble classifiers to robustly 

differentiate between the six basic emotions and identify newly arrived 

unseen novel emotion categories. Each ensemble model employs a special 

type of Neural Network, i.e. Complementary Neural Network, as the base 

classifier, which is able to provide uncertainty measure of its classification 

performance. We consider the following idea for novel class detection. 

Instances within the same emotion categories should be close to each other 

whereas those from different categories should indicate great distinction to 

each other. Therefore, a distance-based clustering and the uncertainty 

measures of the base Complementary Neural Network classifiers are used to 

inform the arrival of novel unseen emotion classes. The proposed ensemble 

models achieve 92.2% average accuracy and consistently outperform other 

single Support Vector Machine classifiers employed in this research and 

other related research reported in the literature when evaluated with the 

Bosphorus database (Savran et al., 2008). 

 The proposed system is also evaluated with real-time emotion detection tasks 

contributed by real human subjects. The system achieves comparable 

accuracy (84%) in comparison to the results gained from the evaluation using 

database images. It also shows great adaptation and robustness for newly 

arrived novel emotion class detection with ≥70% accuracy. The system is 

therefore proved to be effective in dealing with challenging real-life emotion 

recognition tasks. 

2. Equally importantly, the second system proposed in this thesis aims to address the 

problem of continuous and dimensional interpretation of users’ emotional states 

based on their whole-body expressions. I.e. subjects’ emotional states are mapped 

to a two-dimensional coordinate space spanned by arousal and valence, where each 
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value ranges between -1 and 1. 

 We systematically consider and extract users’ static and dynamic bodily 

features. The GA algorithm is then employed to conduct feature selection and 

identify their most optimal discriminative combinations for affective 

dimensional regression. We also examine how both static and dynamic 

features perform for the regression of each affective dimension. 

 An ensemble regression model with great adaptability is also proposed to 

robustly predict users’ continuous affective dimensions in the valence and 

arousal space using whole-body expressions. The proposed ensemble model 

with Support Vector Regressors as the base regressors achieves the best 

performance and outperforms single model based methods and other related 

research reported in the literature. Furthermore, it also employs a stand-by 

regressor to better deal with newly arrived unseen bodily expressions and 

data stream regression. 

 Continuous and dimensional affective annotation is inherently a challenging 

task. We present a novel annotation method based on inter-annotator 

correlations and mean value differences to effectively fuse multiple 

annotations to build ground truth for system evaluation. 

3. Furthermore, based on the empirical findings of the above two systems, we 

proposed a semi-feature level fusion framework that effectively combines 

affective information from both the facial and bodily modalities to boost the 

performance of the dimensional affect recognition. 

 The semi-feature level fusion is realized by concatenating the derived AU 

intensities and the optimal discriminative bodily features into a merged 

feature vector which is subsequently employed as inputs to ensemble 

regressors, and shows significant performance improvements in comparison 

to sole applying the bodily features. 
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1.5 Thesis outline 

 Figure 1-1 shows the overall system architecture. The rest of this thesis is 

organized as follows. 

Chapter 2 provides a thorough review of the literature from different disciplines. 

It starts with a brief discussion of diverse emotion theories followed by an 

introduction to the Facial Action Coding System. Then we survey related work in the 

field of automatic affect recognition from both facial and bodily expressions, and 

identify representative research challenges. 

Chapter 3 presents the methodology and implementation of the proposed facial 

expression recognition system, including facial geometric feature tracking, 

mRMR-based feature selection, AU intensity estimation and facial expression 

recognition with novel emotion detection using adaptive ensemble classifiers. 

Subsequently, we conduct extensive experiments with both on-line and off-line 

evaluations for AU intensity estimation and emotion recognition. 

Chapter 4 presents the proposed continuous and dimensional affect recognition 

system based on whole-body expressions. We first discuss feature extraction from 

whole-body expressions and automatic feature selection using the GA optimization. 

Then, the proposed adaptive ensemble regression model for continuous and 

dimensional affective regression is discussed in detail. We subsequently present the 

process of data collection and affective annotation method for system evaluation, as 

well as experiments and discussions. 

Chapter 5 explores the modality fusion for dimensional affect recognition. We 

first of all review state-of-the-art developments on multimodal emotion recognition. 

The proposed semi-feature level framework is presented subsequently, together with 

experimental results and evaluation. 

Chapter 6 summarizes the contributions and identifies future work.
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Figure 1-1 The overall system architecture
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Chapter 2 Related work 

 In this chapter, we firstly provide a succinct overview on the conceptualization of 

emotions universally acknowledged by psychologists and behavioral scientists. Then 

we introduce some essential psychological theories and domain knowledge for the face 

and body in affect communication respectively. Afterwards, we discuss existing 

research work in the field of affective computing and conduct a concise survey on 

state-of-the-art emotion recognition developments. 

2.1 Modelling of emotions - discrete vs continuous 

 In the literature of psychology, there are mainly two different approaches to 

structure and differentiate between different emotional states: discrete categories and 

continuous dimensions. The discrete model argues that the affective state is able to be 

represented by a number of prototypical emotions or their mixtures. This model has 

been well adopted and promoted by Ekman et al. (2002) and Izard (1994). According to 

their studies, there exists a series of basic emotions that can be expressed through 

corresponding prototypical facial expressions. For example, Figure 2-1 (a) shows facial 

expressions for the six basic emotions (i.e. happiness, surprise, fear, anger, sadness, and 

disgust) (Ekman & Friesen, 1967). 

 The continuous model argues that emotions are able to be described by certain 

continuous attributes, and the affective state of each participant could be placed within 

a continuous low-dimensional space. A representative model proposed by Posner et al. 

(2005) employed two orthogonal dimensions: valence and arousal. The valence 

dimension describes the level of pleasure of an emotion, and it ranges from negative 

unpleasant feelings to positive pleasant feelings. The arousal dimension refers to the 

intensity of the emotional experience, and it ranges from apathetic sleepiness to frantic 

excitement. Figure 2-1 (b) illustrates the two dimensional emotion model and the 

distributions of some identified emotion categories (Posner et al., 2005; Breazeal, 
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2003). The dimensional model could be a more flexible and effective way to interpret 

emotions, especially in the cases of (1) no clear categorical description available for an 

emotional state; (2) bodily expression-based continuous emotion communication, as 

indicated by Ekman & Friesen (1967). Therefore, we also borrow the dimensional 

model of valence and arousal for the automatic interpretation of emotional bodily 

expressions and maps emotional bodily behaviors to this two-dimensional continuous 

space in this work. 

 

Figure 2-1 a. Facial expressions for the six basic emotions (Ekman & Friesen, 1967) 

b. The arousal-valence two dimensional model and the distributions of some standard emotions 

(Posner et al. (2005) and Breazeal (2003)) 

2.2 FACS and related facial muscle anatomy 

Facial Action Coding System (FACS) (Ekman et al., 2002) is widely used for facial 

emotion research in both psychology and computer science fields. It is an objective and 

comprehensive system based on the research of experimental psychologists, which 

aims to provide human expert observers with objective measures of facial activities. In 

the field of psychology and behavioral science, FACS represents the most recognized 

standard for facial expression analysis and measurement. A total of 46 facial Action 

Units (AUs) is defined to represent all possible subtle changes in muscle activations 

caused by emotional expressions, conversational and other facial behaviors. The 
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original coding rules are generated based on visually discernible facial appearance 

changes observed from a large amount of images. According to FACS, every facial 

expression can be decomposed and represented by one AU or a combination of AUs. 

The intensity of an AU can be scored on a five-point ordinal level, from A to E (see 

Figure 2-2). The definitions of these levels are provided in the following. Level A refers 

to a trace of an action. Level B indicates slight evidence. Level C describes pronounced 

or marked evidence. Level D represents severe or extreme actions with Level E 

indicating maximum evidence. Each intensity level refers to a range of appearance 

changes. 

 

Figure 2-2 Five levels for AU intensity scores (Ekman et al., 2002) 

In FACS, each AU is anatomically related to the contraction and relaxation of one 

or a specific set out of the 17 facial muscles. Each muscle is innervated by a specific 

facial nerve and contributes to one or a number of AU(s), while a single AU can also be 

associated with more than one muscles. These muscles are related to each other 

dynamically and spatially, generating every subtle change of Action Units and enabling 

coherent and consistent facial expressions (Ekman et al., 2002). Table 2-1 summarizes 

some AU examples, their associated facial muscles and corresponding emotions. The 

possible interpretations of emotions pertaining to each AU are also provided. By 

noticing specific changes of corresponding AUs, one can visually perceive and 

recognize each subtle facial expression. 
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Table 2-1 AUs, associated facial muscles, and corresponding expressions (Ekman et al., 2002)  

AU Number and Name Facial Muscles Possible 

Expressions 

Example pictures 

AU1 Inner Brow Raiser Frontalis, 

Pars Medialis 

Sadness 

 

AU2 outer Brow Raiser Frontalis, 

Pars Lateralis 

Anger, 

Surprise 

 

AU4 Brow lower Procerus Anger, 

Anxiety, 

Pain  

AU5 Upper Lid Raiser Levator Palpebrae 

Superioris 

Fear, 

Surprise, 

Anger  

AU6 Cheek Raiser Orbicularis, 

Oculi, Pars, 

Orbitalis 

Happy 

 

AU10 Upper lip Raiser Levator Labii Superioris Disgust 

 

AU12 Lip Corner Puller Zygomaticus Major 

 

Happy 

 

AU15 Lip Corner 

Depressor 

Triangularis Sadness, 

Unsatisfying 

 

AU20 lip Stretcher Risorius Fear 

 

AU23 Lip Tightner Orbicularis 

Oris 

Anger 

 

AU24 Lip Pressor  Orbicularis 

Oris 

Anxiety 

 

AU26 jaw Drop Masetter Surprise 
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2.3 Body form vs motion information in conveying emotions 

Bodily expressions are composed of two aspects: form and movement information. 

The former, better known as body posture, is usually defined as the static configuration 

of body parts, such as head pose, hand gesture, as well as trunk, arm and leg 

configuration. The latter normally refers to dynamic body motion, which can be 

quantified in terms of velocity, acceleration, amplitude, frequency, etc. 

The importance of body posture in conveying emotion was first investigated by 

Darwin (1872), and has been widely explored in the following century (e.g. Bull, 1987; 

Wallbott, 1998). Figure 2-3 lists some archetypal example body gestures depicting 

some basic emotions in the work of Darwin (1872), i.e. disgust, anger, helplessness, 

and surprise. More recent research (Coulson, 2004) conducted a more systematic 

analysis on the effect of a variety of body posture features. Especially, in this research, 

we also observe that ‘anger’ is able to be expressed by postures such as “arms raised 

forward and upward, head bent back, and no backward chest bend” (e.g. an angry 

protestor), and ‘happiness’ is usually represented by postures such as “arms raised 

above shoulder, straight at elbow, head bent back, and no forward chest movement” (e.g. 

an excited football fan). 

 

Figure 2-3 Archetypal gestures associated with some basic emotions (Darwin, 1872) 

 Similarly, the significance of dynamic body motion in emotional 

communication has also been revealed in a variety of contexts, such as children’s music 

(Boone & Cunningham, 2001), dance (Camurri et al., 2003), interactive dialogues 
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(Clarke et al., 2005), and everyday activities such as knocking or drinking behaviors 

(Pollick et al., 2001). A series of movement qualities such as speed, jerkiness, and 

rhythm has been confirmed to be effective indicators of emotions. These findings are 

consistent with previous predictions by Scherer and Wallbott (1990), who indicated that 

it is possible to detect emotions by bodily expressions through changes in the speed, 

rhythm and fluidity of movements. This evidence provides forceful sufficient support 

for automatic emotion perception from body movements. 

More recently, the work by Atkinson et al. (2004) and their more comprehensive 

follow-up study (Atkinson et al., 2007) concluded that both static form and dynamic 

motion signals were utilized to perceive emotions from bodily expressions. They 

further pointed out that body form and movement information can provide distinctive 

contributions to the perception of different emotion categories (e.g. body form 

information usually plays a greater role in the perception of ‘fear’ and ‘disgust’ than 

motion information). Roether et al. (2009) also indicated that analyzing posture cues 

can help to discriminate between emotions that are associated with similar dynamic 

features (e.g. ‘happiness’ and ‘anger’ could have similar features in terms of limb 

motion, but they can be distinguished through the analysis of posture cues). These 

studies not only revealed the importance of both body form and motion in conveying 

emotions, but also highlighted the significance of identifying their respective roles in 

recognizing specific emotion categories or affective dimensions. 

2.4 Automatic emotion recognition from facial expressions 

There has been extensive research focusing on automatic facial emotion 

recognition. Overall, the existing approaches in the area can be categorized into two 

groups: static and dynamic features based. 

The static feature based systems normally focused on recognizing emotional facial 

expressions by observing representative facial geometric (e.g. points or shapes of facial 
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components) or appearance features (e.g. facial wrinkles, furrows or bulges) statically 

and directly from the image data. For example, Soyel & Demirel (2007) extracted six 

characteristic distance features from the distribution of 11 manually labelled facial 

feature points in a 3D facial model, and then employed them as inputs to a Neural 

Network classifier for the recognition of the six basic emotions. Rao et al. (2011) 

extracted grey pixel features from eye and mouth regions, and then used 

Auto-Associative Neural Network (AANN) models to capture the distribution of the 

extracted features. Their system achieved an 87% average accuracy for the recognition 

of anger, fear, happiness, and sadness from video inputs. Another representative result 

was obtained by Tang & Huang (2008). They extracted 96 static distance and slope 

features from a cropped 3D face mesh model with 87 landmark points. The derived 

features were also normalized by facial animation parameter units (FAPUs) to ensure 

their person-independence. By using multi-class Support Vector Machine (SVM) 

classifiers, an average accuracy of 87.1% was achieved for the recognition of the six 

basic emotions, with the highest classification rate of 99.2% obtained for surprise. 

Mahoor et al. (2011) employed Gabor coefficients transformed from 45 facial landmark 

points based on Active Appearance Model (Lucey et al., 2006), and classified AU 

combinations using a Sparse Representation (SR) classifier. Whitehill et al. (2011) 

detected 19 AUs by feeding 72 complex-valued Gabor filtered features to a separate 

linear SVM, and subsequently recognized six basic emotions using multivariate 

Logistic Regression (MLR) from the detected AUs. There are also some other facial 

action and emotion recognition approaches using static features that have been 

investigated, such as Local Binary Patterns (Shan et al., 2009) and Haar features 

(Whitehill & Omlin, 2006), etc. 

The use of only static features, however, faces a drawback, i.e. the dynamic 

information of facial movements has been ignored and also the static features tend to 

vary a lot between different subjects (e.g. the shapes of eyes and the width of mouth). 

Thus it may lead to the inadequacy of generalization ability and efficiency. In order to 
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address this issue, recently there have been great efforts made in capturing dynamic 

facial features or making use of temporal variation of facial measurements. For 

example, Besinger et al. (2010) tracked 26 facial feature points from five facial image 

regions (eyebrows, eyes and mouth), and used the displacements of them to recognize 

three basic emotions in image sequences. Wang & Lien (2009) employed 3D motion 

trajectories of 19 facial feature points as inputs to SVMs and HMMs for the recognition 

of seven AU combinations. Kotsia et al. (2008) recognized 17 AUs and seven facial 

expressions by the fusion of displacements of 104 Candide grid nodes and texture 

information features using SVMs and Median Radial Basis Functions (MRBFs) Neural 

Networks. Their average recognition rates for AUs and facial expressions were 92.1% 

and 92.3%, respectively. Tsalakanidou & Malassiotis (2010) proposed a rule-based 

real-time AU and emotion recognition system based on facial geometric, appearance, 

and surface curvature features extracted from 2D+3D images. Their results 

demonstrated good accuracy rates for the recognition of 11 selected AUs and four basic 

facial expressions. Srivastava & Roy (2009) used spatial displacements (or residues) of 

3D facial points and SVM classifiers to recognize the six basic emotions, and 

demonstrated better recognition accuracies in comparison to the employment of pure 

static facial features (91.7% for dynamic features vs 78.3% for static features). Gong et 

al. (2009) employed shape deformation between an expressional 3D face and its 

corresponding reference (neutral) face to classify the six basic emotions using SVM 

classifiers. The estimation of the basic neutral facial shape was performed based on 

Karhunen-LoeveTransform (KLT), which is closely related to Principal Component 

Analysis. More recently, Valstar & Pantic (2012) used Gabor-feature-based boosted 

classifiers and particle filtering with factorized likelihoods to track 20 facial points 

through a sequence of images. These facial geometric points were then used as inputs to 

a hybrid classifier composed of Gentle Boost, SVMs, and hidden Markov models 

(HMMs) to recognize 22 AUs. They attained an average AU recognition rate of 72% 

when tested on spontaneous facial expression images. 
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More recently, Salahshoor & Faez (2012) proposed a novel dynamic mask to 

automatically segment the regions of face which were less sensitive to expressions and 

applied a modified nearest neighbor classifier for the recognition of the six basic 

emotions. Moreover, Ujir (2013) decomposed a face into six distinct regions and 

extracted their 3D facial surface normals instead of raw 3D points as the feature vectors. 

Then Support Vector Machines were employed to recognize facial expressions for the 

six regions independently. A weighted voting scheme was also applied to make the final 

classification. 

Moreover, a variety of feature optimization methods has been successfully 

applied to facial expression recognition. For example, Tang & Huang (2008) 

performed automatic feature optimization by maximizing the average relative entropy 

of marginalized class-conditional feature distributions, and identified less than 30 

discriminative features from the pool of all possible line segments between 83 

landmarks. Their automatic feature selection achieved approximately 2% - 5% 

performance improvements for the recognition of the six basic emotions in comparison 

to their manually selected features. Soyel & Demirel (2009; 2010) adopted Principal 

Component Analysis to reduce the dimensionality of the raw feature set that consisted 

of distances between all possible pairs of 83 facial landmarks, and then applied Linear 

Discriminant Analysis (LDA) to find the optimal subset that preserved the most 

discriminant information. A two-stage probabilistic neural network was subsequently 

employed for the classification of seven facial expressions. Tekgüç et al. (2009) 

adopted the non-dominated Sorted Genetic Algorithm II for feature optimization, 

which is developed particularly to resolve problems of multi-objective aspects with 

more accuracy and higher convergence speed, and achieved an average recognition rate 

of 88.18% for the classification of neutral plus the six basic emotions. Pinto et al. 

(2011) employed a Sequential Forward Floating Selection (SFFS) algorithm to select 

the optimal subsets of features from different scales of 2D and 3D wavelet transform 

features extracted for seven expressions. Dornaika et al. (2011) evaluated the effect of 
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applying Estimation Distribution Algorithm (EDA)-based feature optimization on a 

variety of machine learning algorithms for the recognition of different facial 

expressions from video sequences, including Naive Bayes, Bayesian Networks, 

Support Vector Machines, K-Nearest Neighbor, and Decision Trees. Their experimental 

results showed that the EDA-based feature selection significantly improved the 

recognition performance for all the above classifiers (3% - 18%). There are also other 

feature selection techniques that have been applied to facial expression analysis, such 

as GentleBoost (Sandbach et al., 2012), the Kullback-Leibler divergence measure 

(Tang & Huang, 2008), and the normalized cut-based filter (NCBF) algorithm (Sha et 

al., 2011). 

Although the above systems showed noticeable improvements on recognition 

accuracy, many state-of-the-art AU and emotion recognition systems still suffer from 

the following problems. First of all, automatic AU intensity measurement posed great 

challenges to automatic recognition systems since the differences between some AUs’ 

intensity levels could be subtle and subjective, and the physical cues of one AU might 

vary greatly when it occurs simultaneously with other AUs. Furthermore, FACS only 

defines a five point ordinal scale to describe the intensity of an AU. It does not define a 

quantifiable standard to measure the strength of corresponding facial changes. Hence, 

although there is substantial research concentrating on automatic AU recognition (e.g. 

Sorci & Thiran, 2010; Pantic & Patras, 2006; Tong et al., 2007; Li et al., 2013), the 

companion problem of accurately estimating the AU intensity levels has not been much 

investigated. There were only limited applications in the literature on AU intensity 

estimation. For instance, Kaltwang et al. (2012) realized continuous AU intensity 

estimation based on facial landmarks and appearance features by using a set of 

independent regression functions, but the work only focused on 11 specified AUs that 

were closely related to the recognition of shoulder pain facial expressions. Bartlett et al. 

(2006) found that in AU classification tasks, distances between samples to SVM 

separating hyperplanes were correlated with AU intensities. Based on this finding, 
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Savran et al. (2012) realized intensity estimation of 25 AUs from still images on both 

2D and 3D modalities using appearance features and regression based methods. They 

claimed that the proposed approach for AU intensity estimation performed better than 

other state-of-the-art methods (average correlations of 54.3% for lower face AUs and 

74.4% for upper face AUs). 

Furthermore, in contrast to AU detection, robust facial emotion recognition using 

AU intensities is still largely unexplored. Current research mainly focused on 

rule-based and statistical-based methods. For example, Valstar & Pantic (2006) 

explored both a formulated rule-based method and an Artificial Neural Network (ANN) 

based method to predict emotions from AUs. However, their recognition accuracies 

still required further improvements. It could be attributed to the fact that the former, i.e. 

the rule-based reasoning, was not robust enough to deal with noises and errors, while 

the latter, i.e. directly using machine learning techniques, relied on extensive training 

data to accommodate possible AU combinations for each emotion category. Chang et al. 

(2009) proposed a hidden conditional random fields (HCRFs) based method to map 

various combinations of 15 most frequently occurring AUs to underlying emotions, but 

extensive annotation work was required prior to mapping. 

Finally, although equipped with appropriate domain knowledge, manual feature 

selection is often time consuming and requires an endless trial-and-error process, there 

are also extensive optimization algorithms and boosting techniques devoted to 

automatic feature selection and feature dimensionality reduction including Principle 

Component Analysis (PCA), Fisher Linear Discriminant (FLD), genetic and 

evolutionary algorithms, and AdaBoost. PCA has been widely used for feature 

selection for face and facial expression recognition for decades (Jeong et al., 2009). 

According to Swets & Weng (1996), PCA derives most expressive features but may not 

embed sufficient discriminating power. FLD is another commonly used feature 

reduction technique which is claimed to provide comparatively more class separability 

by maximizing the mean between classes and minimizing the variation within a class 
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(Chavan & Kulkarni, 2013; Gu et al., 2012). However, it requires a wide coverage of 

face/class variations at the training stage in order to get more superior recognition 

performance. 

Thus, we aim to overcome these challenges discussed above, and develop a 

practical, robust and person-independent solution for real-time Action Unit intensity 

estimation and emotion recognition. We employ automatic-selected motion-based 

facial features with a strong psychological background to estimate the intensities of the 

16 AUs closely associated with the expression of the six basic emotions. Subsequently, 

the 16 AUs are ranked for each emotion according to their discriminative power. The 

derived intensities of the most discriminative AU combinations are then respectively 

employed as inputs to a set of six novel ensemble classifiers to robustly recognize the 

six basic emotions regardless of errors and noises involved in the input AU intensities. 

The proposed ensemble classifiers also have great capability to identify newly arrived 

unseen novel emotions. The details of the proposed facial expression recognition 

system are presented in Chapter 3. 

2.5 Automatic emotion recognition from bodily expressions 

Having discussed the huge progress in emotion recognition from facial expression, 

we now present the state-of-the-art research of automatic emotion recognition from 

bodily expressions. As mentioned earlier, most efforts conducted so far on automatic 

emotion recognition have concentrated on the facial modality, only until recently there 

have been some automatic systems that are able to detect emotions based on bodily 

behaviors. 

Most recent automatic emotion recognition research makes use of either body 

posture or movement as the source of affective information. For example, many early 

developments have focused on recognizing emotions from expressive dance (e.g. 

Camurri et al., 2003; Camurri et al., 2004; Park et al., 2004; Kamisato et al., 2004). 
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Camurri and colleagues (Camurri et al., 2003; Camurri et al., 2004) extracted dynamic 

motion cues from dancers’ body movements to differentiate between basic emotions. 

They found significant relations existed between certain emotion categories (e.g. happy 

and exciting) and key motion qualities (e.g., body contraction index, fluency of motion, 

and time duration). Kapur et al. (2005) used a 3D motion capture system to record 

dancers’ posed bodily movements. The participants were instructed to freely enact four 

emotional states: sadness, joy, anger, and fear. The experimental results showed that the 

Support Vector Machine based classification was able to achieve an average 

classification accuracy of 91.8%, while human observers achieved an average of 93% 

on the same data. 

These results demonstrated that body movements are an effective channel for 

automatic emotion recognition in either acted or expressive dance scenarios. However, 

in many cases, subjects are instructed to perform certain emotions, thus the recorded 

movements are exaggerated and purposely geared toward emotional expressions 

whereas bodily expressions in everyday scenarios are more subtle and thus inevitably 

pose more challenges automatic emotion decoding systems. Castellano et al. (2007) 

proposed a bodily expression recognition system which focused on non-propositional 

movement qualities of arms (e.g. velocity, amplitude and fluidity of movement) rather 

than static gesture shapes. An average recognition rate of 61% was achieved by their 

Bayesian Network-based classifier for the recognition of anger, joy, pleasure and 

sadness. Bianchi-Berthouze & Kleinsmith (2003) proposed a categorical approach to 

recognize three discrete emotions (anger, happiness and sadness) from 138 acted 

posture images. By using low-level descriptions of body postures, they obtained an 

overall classification rate around 95%. Their most recent follow-up work (Kleinsmith 

et al., 2011) considered non-acted postures and more subtle bodily expressions in the 

gaming scenarios. An average accuracy rate of 59.22% was achieved for the 

classification of the following four emotion categories: ‘concentrating’, ‘defeated’, 

‘frustrated’ and ‘triumphant’. These results seemed considerably worse than typically 
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quoted rates achieved from the acted and dance-based systems discussed above. It also 

indicates the challenges of detecting discrete emotions from subtle bodily expressions 

in real-life scenarios. 

More recently, the use of dimensional representation of emotions has shown great 

potential in automatic emotion recognition from bodily expressions. Many existing 

efforts on dimensional emotion recognition have tended to quantize the dimensional 

values into discrete levels, e.g. the work of Fragopanagos & Taylor (2005) which 

reduced the dimensional value prediction problem to a four-class classification problem, 

i.e. classification into one quadrant of a 2D Valence-Arousal space (positive vs. 

negative; active vs. passive). There are also other more comprehensive systems (e.g. 

Kleinsmith & Bianchi-Berthouze, 2007; Karg et al., 2010; Kleinsmith et al., 2011) that 

attempted to quantize the continuous range of each dimension into certain levels (e.g. 

3-7 point Likert scales). On the contrary, Kleinsmith & Bianchi-Berthouze (2013) 

indicated that a continuous representation of affective dimensions may provide a more 

accurate and generic measurement of users’ emotional states. However, relatively less 

effort has been made to interpret emotions in continuous dimensions. Gunes and Pantic 

(2010) focused on dimensional emotion recognition from head gestures in spontaneous 

conversations. They employed features of head motion, direction, and the occurrences 

of head nod and shake to estimate continuous levels of the arousal, valence, intensity 

and expectation dimensions, and achieved an average Mean Squared Error (MSE) of 

0.102 using Support Vector Regression (SVR). Nicolaou et al. (2011) proposed a 

multimodal system for continuous and dimensional emotion prediction of a speaker. 

They employed various modalities including facial expression, shoulder gesture and 

audio cues to continuously track the levels of the valence and arousal dimensions by 

using SVR and Long-Short Term memory (LSTM) regression. 

Although dimensional affect recognition from bodily expressions has drawn 

increasing research attention, most existing systems either focused on specified parts of 

the body (e.g. head gestures in the work of Gunes and Pantic (2010)), or only 
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considered either static body form or dynamic motion information as the source of 

interpretation. For example, Kleinsmith et al. (2011) focused on static posture features 

whereas Savva et al. (2012) utilized purely body motion features for emotion 

interpretation. There are only a few systems that have fully considered both form and 

motion information from whole-body expressions for emotion recognition. One notable 

milestone is the recent work by Metallinou et al. (2013), who addressed the problem of 

tracking continuous levels of valance, arousal and dominance by using full-body 

language features in inter-personal interactions. In their work, a 3D Motion Capture 

system with 12 Vicon MoCap cameras was employed to capture participants’ 

whole-body expressions. Both body posture (e.g. head rotation, hand position and body 

leaning angle) and movement (e.g. velocity of arm/foot) features were extracted 

accordingly, and then inputted to a Gaussian Mixture Model (GMM) to estimate the 

underlying emotional state. They also produced a statistical analysis of each single 

bodily feature in order to select a subset of de-correlated informative features for each 

affective dimension. Promising results were obtained for the tracking of the arousal and 

dominance dimensions (median correlation = 0. 584 and 0.37, respectively). However, 

significantly lower performance was observed for the valence dimension (median 

correlation = 0.225). This may be attributed to inadequate features employed for the 

reflection of valence. For example, the dynamic features they employed were only 

concerned with velocity, however, other informative types of features such as 

acceleration, frequency and amplitude were ignored. Moreover, although a statistical 

feature selection was performed for each feature, both body form and motion features 

were mixed indiscriminately for the prediction of each affective dimension, which is 

controversial to the psychological findings discussed earlier (i.e. static form and 

dynamic motion features could contribute distinctively to different affective 

dimensions), thus may also lead to performance drop. 

Moreover, we briefly presented some techniques that have been successfully 

applied for bodily feature selection. For example, De Silva & Bianchi-Berthouze (2004) 
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employed Discriminant Analysis to measure the saliency of the proposed 24 emotional 

posture features and identified a number of feature subsets which can explain the 

separation between different emotions. Kleinsmith & Bianchi-Berthouze (2007) 

applied non-linear mixture discriminant analysis (MDA) to select the most 

discriminating features from 24 low-level posture features for the discrimination 

between pairs of affective dimension levels (e.g., low vs. high, etc.). The MDA 

conducted an iterative process to create different models based on linear combinations 

of the most discriminating features, so that it was able to ascertain the optimal feature 

sets that led to the best performance. Bernhardt (2010) proposed a merit function to 

evaluate both of the class-feature correlations and the inter-feature correlations of a 

certain feature subset based on the information-theoretic concept of information gain, 

and then used this function as a heuristic to direct a Hill-climbing algorithm to identify 

an optimal feature subset that was highly correlated with the emotional classes, but 

uncorrelated with each other. 

Compared to the developments discussed above, this research presents an effective 

solution for real-time and dimensional affect recognition based on whole-body 

expressions. We comprehensively consider both static posture (e.g. distances, body 

leans and joint angles) and dynamic motion (e.g. velocity, acceleration and amplitude) 

features to draw a more comprehensive representation of whole-body behaviors. We 

then employ the GA for automatic feature optimization and selection. For robust 

prediction of users’ continuous affective dimensions, we propose an adaptive ensemble 

regression model which also has great capability to adapt to new bodily expressions and 

deal with data stream regression. We also examine the roles of both body form and 

motion features in predicting each of the affective dimensions (i.e. arousal and valence), 

and then identify their optimal combination tailored to each affective dimension. In 

additional, as pointed out by Kleinsmith & Bianchi-Berthouze (2013) and Metallinou et 

al. (2013), a challenging issue of emotional data annotation is that a high level of 

disagreement may arise when building the ground truth, especially for continuous and 
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dimensional annotation tasks. Therefore, we also propose a novel annotation method 

using both the correlation between different annotators and the personal bias metrics to 

effectively establish the ground truth for evaluation. The details of the proposed 

dimensional affect interpretation are presented in Chapter 4. 
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Chapter 3 Facial action unit intensity estimation and 

expression recognition 

In this chapter, we present the adaptive facial expression recognition system in 

detail. For a more comprehensive understanding, we first of all provide an overall 

description of the proposed system, which is composed of: facial geometric data 

tracking, mRMR-based feature selection, Action Unit intensity estimation using Neural 

Networks (NN) and Support Vector Regressors (SVR) and emotion recognition with 

adaptive ensemble classifiers. Figure 3-1 illustrates the system’s overall architecture 

and dataflow. 

 

Figure 3-1 System architecture and data processing pipeline 

The main processing of the facial emotion recognition system includes the following. 

1. The real-time facial geometric data tracking is implemented based on a Microsoft 

Kinect sensor (Webb & Ashley, 2012) and a variant of Candide-3 model (Ahlberg, 

2001). The Kinect’s facial analysis API is able to localize a total of 121 3D facial 

landmarks and perform continuous tracking at a frame rate of 25~30 fps. 

2. We extract motion-based facial features for AU intensity estimation, which are 

calculated based on facial wireframe node displacements. The motion-based 

features are caused by underlying facial muscle movements, and thus are relatively 
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universal and subject-independent, and contain comparatively richer emotional 

information compared to static features. 

3. We then apply both manual and mRMR based automatic feature selection 

methods to select 16 sets of informative features from the complete pool of 

candidate features for the regression of 16 diagnostic AUs. The feature sets 

selected are respectively employed as inputs to 16 AU intensity estimators, with 

each estimator dedicated to each AU. We employ Neural Networks and Support 

Vector Regressors for AU intensity estimation. 

4. For robust emotion recognition, the 16 diagnostic AUs are first ranked and 

filtered according to the AU-Emotion relationships with intention to identify the 

most discriminative AU combinations for each emotion category. We then 

propose six novel adaptive ensemble models for robust classification of the six 

basic emotions and novel emotion detection, with each ensemble dedicated to each 

emotion category. 

 The remainder of this chapter is organized as follows: Section 3.1 discusses the 

method employed for raw facial geometric feature points tracking. Section 3.2 presents 

the detailed procedures of AU intensity estimation, including motion-based feature 

extraction, both manual and mRMR based feature selection, and intensity estimation 

using NN and SVR. In Section 3.3, we discuss the proposed adaptive ensemble scheme 

for the challenging task of emotion recognition and novel unseen emotion detection 

using selected AU intensities. The experiments and both on-line and off-line 

evaluations for AU intensity estimation and emotion recognition are discussed in 

Section 3.4. We draw conclusions for this chapter in Section 3.5. 

3.1 Facial geometric information tracking 

Regarding to 3D facial geometric feature extraction, a number of well-known 

methods have been examined, such as the Kanade-Lucas-Tomasi (KLT) tracker 
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(Bouguet, 1999) and the Vukadinovic-Pantic facial point detector (Vukadinovic & 

Pantic, 2005). Both of them are able to generate good tracking results with static input 

images, but limitations rise up when dealing with real-time 3D streams. In our system, 

the 3D face geometric data are acquired through a Kinect and its embedded face 

tracking engine (Webb & Ashley, 2012). The Kinect is an effective research tool that 

physically integrates a color camera with up to 1280 x 960 resolutions, a 

depth-sensing camera with up to 640 x 480 resolutions, and an array of four 

microphones. It provides efficient real-time 3D tracking capabilities in a relatively 

inexpensive package. 

When emotions are being expressed by a subject, the facial elements change their 

shapes and positions accordingly. These geometric changes caused by facial muscles 

contain rich motion-based facial features. Once completing parameter adjustments and 

successfully detecting a user’s face, the Kinect face tracking engine performs fitting 

and subsequently tracks a 3D variant of the Candide-3 model with 121 grid nodes. The 

facial tracking algorithm makes use of both color and depth image data streams to 

reconstruct salient facial models, enabling better robustness against variations in 

illumination, scaling, skin color and especially head poses. In good lighting conditions, 

it is able to track a face reliably when the user’s head pitch, roll and yaw are 

respectively less than 10, 45 and 30 degrees (Webb & Ashley, 2012). 

 

Figure 3-2 The Kinect 3D coordinate system (left), 3D surface reconstruction with depth data 

(middle) and a tracked 3D facial wireframe (right) 

The tracked facial wireframe is able to automatically fit to the detected face in the 

Kinect 3D coordinate space and evolves through the video sequence (see Figure 3-2). It 
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is able to reach up to 30 fps on i7 quad-core CPUs with 8GB RAM. If required, the loss 

or error of tracked wireframes could be handled by a model deformation algorithm, 

which is able to add mesh fitting at the intermediate steps of tracking. Such a procedure 

increases robustness against node losses and ensures tracking effectiveness. An 

essential normalization procedure is also performed afterwards, where the information 

of head orientation and distance to the sensor is employed to adjust the tracked facial 

grid model. Figure 3-3 shows a neutral state plus facial expressions for the six basic 

emotions associated with generated corresponding 3D facial wireframes. 

 

Figure 3-3 Examples of tracked 3D facial wireframes for each expression (The green lines 

represent facial wireframes, while the red rectangles indicate detected facial areas) 

3.2 Facial action unit intensity estimation 

In the literature, most recent research work employed either image driven or prior 

model-based methods for automatic AU recognition. The former (e.g. Chang et al., 

2004) performed recognition based on static image data directly while the latter was 

developed to extract the relationships and spatial-temporal information of AUs using 

prior models (e.g. Tong et al., 2010; Valstar & Pantic, 2007). However both required a 

considerable amount of reliable training data, which sometimes could be difficult and 

expensive to acquire. More importantly, generalizing a model trained on one database 

to other databases could still be a challenging issue, especially for real-life applications 
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(Li et al., 2013; Torralba & Efros, 2011). In order to overcome these challenges, we 

propose and employ motion-based facial features, which are supported by 

psychological studies and facial anatomy, and thus are more pertinent for AU intensity 

estimation. The 16 AUs we focus on in this research are AU1 (Inner Brow Raiser), AU2 

(Outer Brow Raiser), AU4 (Brow Lowerer), AU5 (Upper Lid Raiser), AU6 (Cheek 

Raiser), AU10 (Upper Lip Raiser), AU12 (Lip Corner Puller), AU13 (Cheek Puffer), 

AU15 (Lip Corner Depressor), AU17 (Chin Raiser), AU18 (Lip Puckerer), AU20 (Lip 

Stretcher), AU23 (Lip Tightner), AU24 (Lip Pressor), AU26 (Jaw Drop) and AU27 

(Mouth Stretch). Compared to existing research on AU detection, our work has the 

following two advancements: 

1. We propose dynamic motion-based facial features (e.g. the elongation of mouth) 

for AU intensity estimation, which can be measured through the displacement of 

facial points between natural and expressive frames. As discussed earlier, such 

features are caused by underlying facial muscle movements, and thus are relatively 

universal and subject-independent. 

2. We apply both manual and automatic methods to select a unique subset of 

informative features for each AU respectively. The manual feature selection is 

guided by FACS domain knowledge, while the automatic feature selection is 

performed based on mRMR based optimization (Peng et al., 2005). Their 

performance and comparison are presented in Section 3.4.2. 

3.2.1 Extraction of motion-based facial features 

As a part of MPEG-4 FBA [ISO14496] International Standard, the MPEG-4 face 

animation framework (Pandzic & Forchheimer, 2012) is designed to deal with face 

animation applications, including reproduction of facial shape, texture, subtle 

expressions, as well as speech pronunciation. MPEG-4 defines 84 facial feature points 

to best reflect the facial anatomy and movement mechanics, which are learned from 

subtle facial actions and are closely related to muscle actions, as illustrated in Figure 
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3-4 (Pandzic & Forchheimer, 2012). Based on this standard, we derive a series of 3D 

distance features between key facial points, and then use dynamic changes of these 

distances for AU intensity estimation. 

 

Figure 3-4 Facial feature points defined in MPEG-4 (Pandzic & Forchheimer, 2012) 

When reliably detecting a user’s face, the face tracking component continuously 

outputs a sequence of normalized 3D facial wireframes (compatible with MPEG-4 

standard) in a real-world 3D coordinate system. Each wireframe consists of 121 grid 

nodes, including 16 nodes for eyes (i.e. 8 nodes for each eye contour), 20 nodes for 

eyebrows (i.e. 10 for each eyebrow), 12 nodes for the upper lip, 16 nodes for the lower 

lip, 16 for the nose, and others for making up the rest of the mesh model. The tracking 

process of 3D geometrical feature points is also robust to head rotations up to 10, 45 and 

30 degrees in pitch, roll and yaw as discussed above. 

We first of all acquire reference measurements of the neutral facial expression of 

each subject. Rather than requiring subjects to deliberately pose an initial calibration 

expression of the neutral state (which is often unreliable), we record the first 50-100 

frames (typically 2-4 seconds, when subjects are naturally in their neutral states), and 

then compute the median data of these neutral frames to form a set of reference 

measurement vectors {𝑅𝑖} for the representation of neutral faces. 

The motion-based facial features can be then calculated through facial point 

displacements between natural and expressive frames. Equations (3-1) and (3-2) define 

the calculation of any motion-based facial feature in the 3D Euclidean space. 
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𝑑𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)22
    (3-1) 

∆𝑑 = 𝑑𝑖,𝑗(𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒) − 𝑑𝑖,𝑗(𝑛𝑒𝑢𝑡𝑟𝑎𝑙)     (3-2) 

In Equation (3-1), 𝑑𝑖,𝑗 is the distance between nodei (i.e. a 3D facial feature point 𝑖) 

and nodej (i.e. a 3D facial point 𝑗) among the generated 121 3D facial wireframe nodes, 

and in Equation (3-2), ∆𝑑 defines the change of distance feature 𝑑𝑖,𝑗  between the 

reference (neutral) frame and any expressive frame. Such distance features are 

computed based on a real-world 3D coordinate system. As discussed before, the facial 

tracking engine of the Kinect is able to perform face fitting with high accuracy and is 

also able to identify the distances of different facial regions to the sensor using depth 

images obtained from its depth camera to deal with facial geometric feature tracking 

with head rotations and movements. Thus, our facial tracking component developed 

based on such a platform is capable of providing robust fitting and 3D geometric feature 

extraction to deal with head pose variations and movements in real-life applications. 

However, n number of facial feature points will result in a large number of 𝐶𝑛
2 

unique distance features (e.g. 121 facial points will produce 𝐶121
2 = 7260 distance 

features). Intuitively, not all of the distance features are informative for the detection of 

a specific AU. Thus, rather than applying the distance features between entire facial 

points for all AUs without distinction (e.g. Kotsia et al., 2008), we next step focus on 

generating a subset of informative discriminating features from the candidate feature 

pool for each AU respectively, which may lead to optimized performance. 

3.2.2 Feature selection for AU intensity estimation 

3.2.2.1 Manual feature selection 

In typical manual feature selection, the features are derived based on sufficient 

domain knowledge. We extract a total of 24 representative facial motion-based features 

(i.e. ∆𝑑 distance changes) using 22 key facial feature points out of the whole 121 

points, as illustrated in Table 3-1. According to Ekman & Friesen (1983) and Ekman et 
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al. (2002), these features are believed to play an important role in determining the level 

of AU intensities. As shown in Table 3-1, each AU is associated with a subset of 

features composed of only a small number of relevant features (typically 2 to 6 

dimensions). Such features are derived according to FACS domain knowledge, and we 

especially focus on analyzing the movement of facial muscles underlying each AU for 

subsequent AU intensity estimation. 

Table 3-1 Examples of manually selected features and measurements represented by lines of 

different colors 

AU  Measurement Nodes Distance Features 

(Neutral) 

Distance Features 

(Expressive) 

AU1 Inner 

Brow Raiser 

Inner eyebrow corner, inner 

eye corner 

  

AU2 outer 

Brow Raiser 

Outer eyebrow corner, Outer 

eye corner, Middle top of 

eyebrow   

AU4 Brow 

lower 

Eyebrow corners, 

Inner/outer eye corner, 

Middle top of eyebrow   

AU5 Upper Lid 

Raiser 

Middle eyelid top, Middle 

eyelid bottom 

  

AU6 Cheek 

Raiser 

Middle eyelid top, Middle 

eyelid bottom 

  

AU10 Upper 

lip Raiser 

Inner eye corner, Right/left 

top of upper lip 

  

AU12 Lip 

Corner Puller 

Outer eye corner, Right/left 

mouth corner 

  

AU15 Lip 

Corner 

Depressor 

Inner eye corner, Mouth 

corner, Top/bottom of lips 
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AU18 Lip 

Pucker 

Right/left mouth corner 

  

AU20 lip 

Stretcher 

Right/left mouth corner 

  

AU23 Lip 

Tightner 

Right/left top/bottom of lips 

  

AU26 jaw 

Drop 

Middle bottom/top of lips 

  

Moreover, for a deeper understanding, we provide two examples for manual feature 

selection in the following. For example, when AU1 (Inner Brow Raiser) is occurring 

for a specific facial emotion expression, the inner portion of the eyebrows is pulled 

upwards by muscle 1 (see Figure 3-5) (Ekman et al., 2002). This causes an inevitable 

increase in the distance between inner eyebrow corner and inner eye corner. Thus, the 

distance variation ∆𝑑 between the neutral and this expressive frame may contribute to 

the estimation of the occurrence and intensity of AU1. 

 

Figure 3-5 Muscles associated with upper facial Action Units (Ekman et al., 2002) 

Furthermore, the following indicates a slightly more complicated example. AU12 

(Lip Corner Puller) and AU13 (Sharp Lip Puller) are often accompanied by a smile or a 

joyful facial expression. These AUs are caused by pulling the corners of the lips back 

and upwards to form a ︶ shape of the mouth. But it is unlikely that we can directly use 

some intuitive distance features, such as the elongation of the mouth, to distinguish 

these AUs (although the mouth is indeed elongated). The reason is that there are other 
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AUs that can also cause mouth elongation, such as AU20 (Lip Stretcher). Thus the 

extraction of distance features becomes challenging. However by analyzing these facial 

movements from the perspective of anatomy, we can see there are two underlying 

muscles related to these AUs - Zygomaticus Major [12] and Caninus [13], as shown in 

Figure 3-6 (Ekman et al., 2002). Both originate on the upper cheek bone and attach with 

the corner (angle) of the lips. When contracted, they will pull the corners of the mouth 

naturally up towards the upper cheek. Thus, the distances between mouth corners and 

outer eye corners are reduced synchronically. Therefore, we select the outer eye corners 

as the reference points for AU12 or AU13, because their positions are relative fixed and 

can be tracked reliably. 

 

Figure 3-6 Locations of muscles underlying lower facial oblique Action Units (Ekman et al., 2002) 

Note that, in this research, ∆𝑑 can be either positive or negative. For instance, 

AU1 (Inner Brow Raiser) may cause a positive ∆𝑑  which means an increase in 

distance between inner eye corners and eyebrow corners. When ∆𝑑 becomes negative, 

it indicates the eyebrow is lowered, which means AU4 (Brow Lowerer) occurs. Table 

3-1 summarizes some AUs and their corresponding manually selected features, and 

gives a clear illustration on how they change synchronically with the occurrence of 

each AU (for clarity, all samples showed in Table 3-1 are in 2D although in the real 

system, 3D facial points are extracted as discussed in Section 3.1). The above FACS 

domain knowledge-based manual feature selection provides an efficient and robust 

approach against facial shape variations of different subjects. 
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3.2.2.2 Automatic feature selection based on mRMR 

As the most common form of evolutionary optimization, conventional genetic 

algorithms evolve a large population of candidate solutions by mimicking the process 

of natural selection (Sikora & Piramuthu, 2007). Other commonly used evolutionary 

algorithms include Particle Swarm Optimization (Wang et al., 2007) and Genetic 

Programming (Davis et al., 2006), etc. However, applying such algorithms in a large 

search space (e.g. thousands of dimensions) tend to be very computationally exhaustive 

and time consuming. Furthermore, inappropriate parameter configuration may easily 

lead to premature convergence to a local extremum. On the contrary, mutual 

information (MI) is information based feature selection that is not limited to linear 

dependencies, and is able to maximize information in a class. Research on the 

performance improvement of MI has brought to the development of 

minimal-redundancy-maximal-relevance criterion, which is a variant of MI. In this 

research, since a large proportion of the raw facial distance features could be less 

informative or considerably redundant with each other, it is reasonable to apply 

information theory based methods for automatic feature selection, which could well 

reflect relevance between features and outputs and within features comprehensively. 

Moreover, such methods also have relatively lower computational complexity and 

better generalization of the selected features on different classifiers. Thus, we are 

motivated by mRMR to propose an attractive alternative for automatic feature 

selection. 

Tang and Huang (2008) proposed a novel method based on maximizing the average 

relative entropy of marginalized class-conditional feature distributions, and 

successfully applied it to 3D facial distance feature selection tasks. Their automatically 

selected features achieved higher recognition accuracies than their manually devised 

features for the six basic emotions (about 2% - 5% improvements). However, their 

method is difficult to directly apply to regression problems as the lack of effective 

relevant calculation method for continuous values. Thus, we introduce a modified 
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mRMR-based feature selection method to deal with the case where both features and 

outputs are continuous data. 

We introduce the mRMR optimization algorithm in the following. mRMR is 

introduced by Peng et al. (2005) and aims to minimize the mutual information between 

the selected features (i.e. redundancy), and to maximize the mutual information 

between the selected features and the desired output (i.e. relevance). Let xi denote a 

feature and 𝑆𝑀 = {𝑥𝑖}𝑖=1
𝑀  be an instance consisting of M features. I denotes the mutual 

information with y indicating the desired output, and p(xi), p(y), p(xi, xj), and p(xi, y) 

representing the probabilistic density functions. Then the traditional mRMR measure 

can be described as follows: 

𝑚𝑅𝑀𝑅(𝑖) = 𝐼(𝑥𝑖, 𝑦) −
1

𝑀−1
∑ 𝐼(𝑥𝑖 , 𝑥𝑗)𝑥𝑗∈𝑆𝑀,𝑗≠𝑖    (3-3) 

where 

𝐼(𝑥𝑖, 𝑦) = ∑ ∑ 𝑝(𝑥𝑖, 𝑦) log(
𝑝(𝑥𝑖,𝑦)

𝑝(𝑥𝑖)𝑝(𝑦)
)𝑦∈𝑌𝑥𝑖∈𝑋𝑖
   (3-4) 

Since both the features and AU intensities in our system are continuous values, 

their mutual information is often hard to compute. I.e. it is difficult to compute the 

integral in the continuous space using a relatively limited number of samples. One 

solution is to perform a uniform data discretization processing in advance of the 

estimation of the mutual information value. However, this may lead to considerable 

information loss. 

An alternative solution is to use linear correlations to approximate the mutual 

information, as suggested by Metallinou et al. (2013). By replacing the traditional 

mutual information metric with the Pearson correlation coefficient (CORR) (David, 

2009), the mRMR measure can be well adapted to continuous values. The CORR 

represents the linear relationship between a pair of values, defined as follows: 

𝐶𝑂𝑅𝑅(𝑥, 𝑦) =
𝐶𝑂𝑉{𝑥,𝑦}

𝜎𝑥𝜎𝑦
=

∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)𝑛
𝑖=1

√∑ (𝑥𝑖−𝑥)2𝑛
𝑖=1 √∑ (𝑦𝑖−𝑦)2𝑛

𝑖=1

    (3-5) 
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where COV stands for the covariance, and σ stands for the standard deviation, while “ ”̄ 

symbolizes the mean. 

𝑚𝑅𝑀𝑅(𝑖) = |𝐶𝑂𝑅𝑅(𝑥𝑖, 𝑦)| −
1

𝑀−1
∑ |𝐶𝑂𝑅𝑅(𝑥𝑖, 𝑥𝑗)|𝑥𝑗∈𝑆𝑀,𝑗≠𝑖    (3-6) 

Then we perform a ranking of features according to their mRMR values. A higher 

value is preferred and it indicates that a specific feature contains more discriminating 

information, i.e. it has higher correlation with the desired output (e.g. 0.7) and lower 

correlation with other features (e.g. 0.3). We try different numbers of top ranking 

features as the inputs for AU intensity estimation, and those leading to the best 

performance are determined as the optimal features for each AU, as illustrated in Table 

3-2. Evaluation results indicate that the proposed mRMR-based feature selection yields 

comparable results for AU intensity estimation when compared with the manual feature 

selection process. 

Table 3-2 Comparison of manually selected features with those automatically selected by mRMR 

AU  
Manually Selected 

Features 

Automatically 

Selected Features 

Dimensions of 

Automatically 

Selected Features 

AU1 Inner 

Brow Raiser 
  

10 

AU2 outer 

Brow Raiser 
  

10 

AU12 Lip 

Corner Puller 

  

11 

3.2.3 AU intensity estimation using selected features 

For the task of automatic AU intensity estimation, we notice the following 

challenges. First, because of individual differences among subjects, overlapping 

between intensity levels (Savran et al., 2012) and annotators’ subjectivity are inevitable. 
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Second, the relationship between AU intensity levels and the scale of evidence might be 

nonlinear. To solve these problems, we employ two widely accepted algorithms, 

feedforward Neural Network with Backpropagation (Hecht-Nielsen, 1989) and Support 

Vector Regression (Vapnik, 1995) for AU intensity estimation, because of their 

effective handling of data comprising noises and non-linear relations. We also aim to 

examine the effectiveness of the mRMR based optimization in comparison to the 

manual feature selection, and to determine whether the features selected by mRMR are 

effective enough for discriminating between different levels of AU intensities. 

3.2.3.1 Feedforward Neural Networks for regression 

A feedforward Neural Network (BPNN) has the following two characteristics well 

suitable to our application: 

1. It is robust to the noise and errors involved in training data, which may be 

inevitable in many supervised applications as mentioned above (Mitchell & Hill, 

1997). 

2. It needs some training costs, which depend heavily on the sample size, the 

dimensions of the training data, and the accuracy requirements. Once the model 

trained, however, it is extremely fast to be applied to the subsequent test instances. 

This would be beneficial to our real-time application. 

A continuous value ranging from 0 to 1 is used as the single output to cover the 

whole interval of AU intensity levels (‘0’ represents absence with ‘1’ indicating 

maximum AU intensity). In this way, we can preserve sufficient AU intensity 

information for subsequent emotion recognition. Thus, we have the training data format 

as follows: 

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑛 = {∆𝑑1, ∆𝑑2, ∆𝑑3, … , ∆𝑑𝑖, 𝐼} 

where the inputs ∆d are the informative motion-based facial features for each AU 

selected by either the manual process or the mRMR-based optimization, and the output, 
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I, is the ground truth intensity of that AU. Both the training and testing datasets are 

scaled using the same procedure before applied into Neural Networks in order to 

achieve the best performance (i.e. linearly scaling each attribute to the range of [-1; +1] 

or [0; 1]). We implement 16 single-hidden layer feedforward Neural Networks. Each of 

them has an input layer, a hidden layer, and an output layer (as shown in Figure 3-7). 

Each layer contains a number of nodes, which are interconnected with adjacent layers. 

Each node is a simple processing element that responds to the weighted inputs received 

from the preceding layer. The number of the nodes in hidden layer is set to 3-6 based on 

the complexity of the input layer. 

The feedforward Neural Networks are trained by Backpropagation algorithm 

(BPNN) (Hecht-Nielsen, 1989). The Backpropagation iteratively adjusts the weights 

between the nodes in response to the errors until some targeted minimal error is 

achieved between the actual and target output values. The detailed method is shown in 

Algorithm 3-1. We also adjust the learning rate, the momentum and the termination 

error parameters to moderate values (e.g. respectively 0.1, 0.8, and 0.01), so that it is 

able to best achieve a balance between accuracy, speed and generalization performance. 

 

Figure 3-7 A sample topology of a single-hidden layer feedforward neural network 
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Algorithm 3-1 The training algorithm of the Neural Networks for AU intensity estimation 

(Hecht-Nielsen, 1989) 

 

3.2.3.2 Support Vector Machines for Regression 

Support Vector Machine (SVM) is a powerful machine learning algorithm based on 

minimizing the generalization error bound (structural risk) rather than minimizing the 

observed training error (empirical risk), so as to achieve better performance. The basic 

idea of Support Vector Regression (SVR) is to compute a linear regression function in a 

higher dimensional feature space where the lower dimensional input data are mapped 

using a kernel function (Basak et al., 2007). 

Given training dataset as: 

{(𝑥1, 𝑦1), … , (𝑥ℓ, 𝑦ℓ)} ⊂ 𝑥 × ℝ 

where xi and yi indicate the attribute and target values respectively, and x denotes the 

space of the input patterns (e.g. x = ℝ d). In epsilon-SVR, the goal is to find a function 
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f(x) that has at most ε deviation from the actually obtained targets yi for all the training 

data, and at the same time as flat as possible. In the simple linear case, f(x) has the form 

as: 

𝑓(𝑥) = 〈𝜔, 𝑥〉 + 𝑏 𝑤𝑖𝑡ℎ 𝜔 ∈ 𝑥, 𝑏 ∈ ℝ    (3-7) 

where <· , ·> denotes the dot product in x, and b indicates a bias value. Flatness in 

Equation (3-7) means seeking a small vector ω. To ensure this, one way is to minimize 

the Euclidean norm i.e. ║ω║2 = <ω, ω>. By introducing slack variables ξi, ξi
* to cope 

with infeasible constraints in some practical cases or allow for some errors, this 

problem can be written as the following formulations: 

minimize   
1

2
║𝜔║

2
+ 𝐶 ∑ (ξ𝑖 + ξ𝑖

∗ℓ
𝑖=1 )       

subject to   {

𝑦𝑖 − 〈𝜔, 𝑥𝑖〉 − 𝑏     ≤       𝜀 + 𝜉𝑖

〈𝜔, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖      ≤       𝜀 + ξ𝑖
∗

𝜉𝑖, ξ𝑖
∗                    ≥        0

   (3-8) 

where ξi, ξi
* denote the allowed upper and lower error bound respectively and the 

constant C > 0 determines the tradeoff between the flatness of f and the amount up to 

which deviations larger than ξ are tolerated. This corresponds to dealing with the 

ε-intensive loss function described by Equation (3-9) (Vapnik, 2001): 

|ξ|𝜀 ≔ {
0              𝑖𝑓 |ξ| ≤ 𝜀

|ξ| − 𝜀      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (3-9) 

By constructing a Lagrange function and utilizing Lagrange multipliers, the original 

problem can be solved. The objective function can be rewritten as follows (Vapnik, 

2001): 

𝑓(𝑥) = ∑ (𝑎𝑖 − 𝑎𝑖
∗ℓ

𝑖=1 )〈𝑥𝑖, 𝑥〉 + 𝑏     (3-10) 

where αi, αi
* are computed Lagrange multipliers. Here, by using a nonlinear kernel 

function k (xi, x) satisfying Mercer’s condition (Basak et al., 2007) instead of the dot 

product <xi, x> in Equation (3-10), SVR can be employed for nonlinear regression. 

Support Vector Regression shows two great capabilities that well meet our 

requirements: 
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1. SVR is especially suitable for the regression problems for a small sample size. The 

establishment of facial databases, especially the manual annotation, is an expensive 

process, therefore it is necessary to maximize the use of limited amount of data. 

2. The structural risk minimization principle endows SVR with good generalization 

capability for unseen data, thus the robustness and adaptation to different subjects 

of the system are enhanced. 

We employ the established LibSVM Library (Chang & Lin, 2011) for the SVR 

implementation. We apply 16 epsilon-SVRs for the regression of the 16 selected AUs 

respectively, using the same input/output data format as discussed above. A scaling 

procedure is also performed before applying SVRs to achieve the best performance. 

Moreover, kernel selection also plays a key role for the SVR model, since using 

different kernels may significantly influence the performance when dealing with the 

same problem. In this research, we consider the non-linear radial basis function (RBF) 

kernel as a reasonable choice, because: 

1. RBF nonlinearly maps inputs into a higher dimensional space, thus it can well 

handle the case that the relation between facial features and AU intensity levels is 

nonlinear. 

2. RBF has fewer number of hyperparameters than other nonlinear kernels (e.g. 

polynomial kernel), which may reduce the complexity of model selection (Hsu et 

al., 2010). 

3. RBF usually has lower computational complexity, which in turn indicates better 

real-time computational performance. 

Please note that when the dimensions of features are very high (e.g. thousands), the 

RBF kernel may become not suitable in comparison to a linear kernel (Hsu et al., 2010). 

However, it is not the case in this application. 

Once the RBF kernel is selected, an essential step is to find optimized sets of cost 

(C), gamma (g) and epsilon (ε) parameters. We perform a “grid search” procedure on 
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those parameters using the cross-validation technique, since it is regarded as one of the 

most effective methods to prevent over-fitting (Chang & Lin, 2011). In v-fold 

cross-validation, the overall dataset is firstly divided into v groups with equal number of 

samples in each group, then we use v-1 groups of the data for training and the remaining 

group for testing. This process is repeated v times so that each group can be tested in 

turn. Specifically, various combinations of parameter values (i.e. exponentially 

growing values: C = 2-10, 2-9, ..., 215; g = 2-15, 2-14, ..., 210; ε = 2-10, 2-9, ..., 2-1) are 

conducted and the one with the lowest Mean Squared Error (MSE) under 5-fold 

cross-validation is selected. The MSE evaluates the prediction results by taking into 

account the squared error of the predicted value from the ground truth and can be 

computed as follows (DeGroot & Schervish, 2011): 

MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖

~)2𝑛
𝑖=1       (3-11) 

where yi is the predicted value, and yi
~ is the ground truth. Moreover, the Pearson 

correlation coefficient is also employed to evaluate the linear relationship between the 

prediction and the ground truth, i.e. how they change together. 

Thus, 16 Neural Network and 16 SVR based predictors are implemented to 

estimate the intensity for each AU respectively. Both manually and automatic selected 

features are compared and employed as inputs respectively to NNs and SVRs to 

measure the intensities of 16 AUs. A total of 729 3D facial scans extracted from the 

Bosphorus database (Savran et al., 2008) from 56 subjects is used for performance 

evaluation. The databases, experiments and evaluations are detailed in Section 3.4. 

3.3 Facial expression recognition using the derived AU 

intensities 

The mapping between AU intensities and emotions could be a challenging task. 

For example, a ‘surprised’ facial expression may indicate the presence of {AU1, AU2, 

AU5, AU26}, or the physical cues of {AU1, AU2, AU26} in different cases. The 
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intensities of these present AUs could also be variable. These practical issues make 

deterministic rule-based techniques less effective (e.g. using translating formula: 

surprise = AU1+AU2+ AU5+AU26 (Ekman et al., 2002)). Likewise, directly applying 

machine learning algorithms could be still very challenging, since extensive training 

data are needed to accommodate various possible combinations of AUs for emotional 

expressions. There are, however, more than thousands of possible AU combinations in 

spontaneous facial expressions (Ekman & Friesen, 1983), which are far beyond the data 

available in any existing databases. In order to deal with such challenges, we propose a 

novel method to robustly map AU intensities to the six basic emotions using a limited 

number of samples, which consists of two steps: (1) AU-Emotion relationship mining 

and ranking; (2) facial expression recognition using the identified discriminative AU 

combinations. 

3.3.1 Mining and ranking AU-emotion relationships 

As mentioned above, instead of using the full set of 16 AUs for emotion 

interpretation indiscriminately, we first derive AU-Emotion relationship, and then 

identify the AU combinations with the best recognition accuracies as the discriminative 

AU combinations for each emotion category for subsequent recognition. The 

AU-Emotion relationship is derived through statistical analysis of sufficient amount of 

valid samples with AU intensity and emotion annotations provided by the extended 

Cohn Kanade (CK+) (Lucey et al., 2010) and Bosphorus databases (Savran et al., 

2008). 

Velusamy et al. (2011) suggested a concept called discriminative power, which 

applied the probability of an AU, given that a specific emotion has occurred to describe 

the AU-Emotion relationship. In this research, the AU intensities are described by 

continuous values rather than only “true” or “false”. Thus, a new concept, Influence 

Power, is proposed to describe the weights of the AU-Emotion relationship, as defined 

in Equation (3-12): 



 

47 

 

𝑃 = (∑ 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑥,𝑖
𝑛
𝑖=1 )/𝑛      (3-12) 

where n is the number of examples belonging to a given emotion category, 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑥 

donating the intensity value of AU𝑥 occurred corresponding to the given emotion, and 

the magnitude of 𝑃 quantifies the Influence Power of AU𝑥 for that emotion category. 

A higher Influence Power represents a closer connection between an AU and an 

emotion, while a lower value may indicate the weak association between them. 1200 

samples (equally distributed to the six basic emotions) collected from the CK+ (Lucey 

et al., 2010) and Bosphorus databases (Savran et al., 2008) have been taken into account 

for AU-Emotion relationship identification. After normalizing 𝑃 across all of the 16 

AUs for each emotion, we draw the relation confusion matrix between the 16 AUs and 

the six basic emotions in Figure 3-8. Thus, a set of association weights between AUs 

and emotions is established. 

 

Figure 3-8 The AU-Emotion relation confusion matrix (lighter color indicating higher Influence 

Power with darker color representing lower Influence Power) 

Having obtained the relation confusion matrix, we then select the top N AUs with 

the highest Influence Power for the recognition of each emotion. On the positive aspect, 

this may significantly reduce the potential negative impact of those non-dominant or 

haphazard AUs and improve classification accuracy. For example, ‘happy’ expressions 

have AU6, AU12 as highly weighted associations with AU2 as a comparatively lower 

weighted association, while AU2 is also served as a key physical cue and thus has a 

higher association weight for ‘surprise’ expressions. However, on the negative aspect, 
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over-filtering those AUs with lower Influence Power may also increase the risk of 

information loss. Thus, in order to optimize the selection of the N number of AUs, we 

perform a series of experiments with different N number of AUs (i.e. using different 

numbers of top ranking AUs as inputs) for each emotion category. The AU 

combinations with the best recognition accuracy will be finalized for subsequent 

emotion classification. The details are discussed in the following. 

3.3.2 Selection of discriminative AU combinations 

We employ a unique set of discriminative AUs as inputs for the recognition of each 

emotion category. The selection of the discriminative AU combinations is detailed as 

follows: We first perform emotion recognition using different numbers of top ranking 

AUs (i.e. N = {2, 3, 4, 5, 6}) as inputs, and record the recognition accuracies in each 

round. Specifically, for each classifier, we collect 120 samples in total, 50 from the 

CK+ database (Lucey et al., 2010) and 70 from the Bosphorus database (Savran et al., 

2008), covering both positive and negative cases (presence/absence of that emotion) 

with roughly equal quantities. We also apply a 5-fold cross-validation scheme 

depending on the sample size. The average cross-validation accuracies obtained by 

SVM classifiers are summarized in Figure 3-9 (the other classifiers yield very similar 

patterns, thus are omitted in the Figure). 

 

Figure 3-9 Average classification accuracies for the six basic emotions using SVMs and top ranking 
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AUs (N = {2, 3, 4, 5, 6}) as inputs 

Based on the results shown in Figure 3-9, the AU combination leading to the best 

recognition accuracy is determined as the most discriminative AU combination for each 

emotion. These AU combinations are summarized in Table 3-3 and employed 

respectively as the finalized inputs for the six emotion classifiers. For example, in 

Figure 3-9, since the highest recognition accuracy for ‘anger’ is achieved when N 

equals to 5, we select the top five ranking AUs as the discriminative AU combination, 

i.e. AU4, AU5, AU17, AU23 and AU24. Thus, the derived intensities of these five AUs 

are subsequently used as inputs to the ‘anger’ emotion classifier. The discriminative AU 

combinations for other emotion categories are also determined as above. The 

experimental results and evaluations are presented in Section 3.4. 

Table 3-3 Identified discriminative AU sets for the six emotions 

Emotions Discriminative AU Combinations 

Anger AU 4 AU 5 AU 17 AU 23 AU 24 

Disgust AU 4 AU 10 AU 17   

Fear AU 1 AU 4 AU 10 AU 20 AU 26 

Happy AU 6 AU 12    

Sadness AU 1 AU 4 AU 15 AU 17  

Surprise AU 1 AU 2 AU 26 AU 27  

3.3.3 Emotion recognition using adaptive ensemble classifiers 

In this research, we propose an adaptive ensemble scheme for the detection of six 

expressions and any newly arrived novel emotion classes. In this scheme, there are six 

ensemble classifiers with each ensemble robustly differentiating the presence/absence 

of each emotion. We also employ single Support Vector Machines (C-SVC) classifiers 

to conduct the same expression recognition tasks, and their results will be used as the 

benchmark for comparison with those achieved by the ensemble classifiers. 

Ensemble learning generally refers to approaches that generate several base models 

that are combined to make a prediction, as illustrated in Figure 3-10. Compared to 

traditional single model-based methods, ensembles have the advantages of improved 
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robustness and increased accuracy (Garcia-Pedrajas et al., 2005). For an exhaustive 

review of ensemble approaches, readers may refer to Rokach (2010). 
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Figure 3-10 An example of an ensemble learning model 

In the field of facial emotion recognition, a number of ensemble approaches have 

been proposed. For example, Whitehill & Omlin (2006) employed the AdaBoost 

algorithm for AU recognition using Haar features. More recently, Zavaschi et al. (2013) 

created a pool of base SVM classifiers with features extraction conducted by Gabor 

filters and Local Binary Patterns, and then applied a multi-objective genetic algorithm 

to find the best ensemble by minimizing both the error rate and the size of the ensemble. 

Although ensemble models have been used for facial expression recognition, few of 

them are capable to detect novel emotion classes. 

Moreover, in the field of data stream mining, most of the existing ensemble 

algorithms integrated with novel class detection employed classic decision tree (e.g. 

Farid et al., 2013) or k-nearest neighbor (e.g. Masud et al., 2011) classifiers as their base 

models. In our research, we employ a special type of Neural Network, i.e. 

Complementary Neural Network, as the base classifier and propose a novel mechanism 

to further improve the performance of the 6-class emotion recognition and novel 

emotion detection. The details of our approach are discussed as follows. 

Each of the proposed ensemble classification models consists of two phases: 

ensemble model generation (training) and classification with novel class detection 

(testing). Figure 3-11 illustrates the work flow of the generation of an ensemble 
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classifier. It starts with the weight initialization procedure for each training instance 

based on the posterior probability, as detailed in Section 3.3.3.1. Afterwards, the 

ensemble model generates a new training subset from the original training set using 

instances with higher weights. Then, a base model is trained using the newly generated 

training subset. Here, we employ a novel Complementary Neural Network (CMTNN) 

as the base classifier, because of its ability to estimate the vagueness level of 

classification results (see Section 3.3.3.2). The CMTNN is introduced in Section 

3.3.3.2. A weight is subsequently calculated and assigned to the current base CMTNN 

classifier based on its classification accuracy rate for the original training dataset. We 

also update the weights of the original training instances with the goal of increasing the 

weights of those misclassified instances. The weight calculation and update methods 

are discussed in Section 3.3.3.3. The generated training subset is also clustered based 

on the similarities and differences of the instances, as discussed in Section 3.3.3.4. We 

employ the following idea for novel emotion class detection. A distance-based 

clustering technique and the vagueness measure of the classification results obtained by 

CMTNN will be employed to identify the arrival of novel emotion class (i.e. unseen 

expressions absent from the training set). Overall, the above procedures iterate three 

times, thus three weighted base models are generated (considering a balance between 

performance and computational complexity). The final ensemble classification results 

can be obtained by using majority of weighted votes of the three base models. 
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Figure 3-11 Flow chart of the generation of the proposed ensemble model 
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Figure 3-12 Flow chart of classification with novel emotion detection 

Moreover, Figure 3-12 shows the flow chart of classification and novel emotion 

class detection. As mentioned above, the proposed ensemble scheme is expected to 

effectively detect novel emotional expressions. Such capability is achieved by the 

analysis of both the vagueness values of the based models and the corresponding 
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similarity-based clustering results. More specifically, once a testing instance arrives, 

the three base models for each ensemble respectively output both the individual 

classification results and the vagueness/uncertainty estimation values of the results 

(detailed in Section 3.3.3.2). If any of the three vagueness values is greater than a 

threshold and the instance does not belong to any existing data clusters, then the 

instance is identified as a potential novel emotion class and will be stored in a separate 

dataset. Finally, if this instance is identified as a potential novel emotion by more than 

half of the ensemble classifiers of the six basic emotions (e.g. more than three 

ensembles), then it is determined as a newly arrived novel emotion. 

3.3.3.1 Weight initialization for training instances 

First of all, we present the method on how to initialize the weight of each training 

instance based on naïve Bayes (NB) classifier. Although traditional ensemble 

approaches (e.g. boosting algorithms) normally initialize the weight of each training 

instance with an equal value, assigning appropriate weights using non-equal values has 

been also proved to improve the performance of ensemble classifiers (e.g. Farid et al., 

2013). 

In this research, the weight of each training instance is initialized based on the 

posterior probability obtained by a NB classifier. Specifically, we first estimate the 

prior probability P(Ci) for each class Ci, by calculating how often each class occurs in 

the given training dataset. Similarly, for each attribute Aj and each class Ci, the class 

conditional probability P(Aj|Ci) can be obtained by counting how often each attribute 

value occurs in each class. Given an instance xi, assuming all attributes are independent, 

the conditional probability P(xi|Ci) can be estimated by combining the effects of each 

different attribute as shown in Equation (3-13): 

𝑃(𝑥𝑖|𝐶𝑖) = ∏ 𝑃(𝐴𝑗|𝐶𝑖)
𝑛
𝑗=1      (3-13) 

Then, the posterior probability P(Ci|xi) can be calculated according to Bayes’ theorem 
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as: 

𝑃(𝐶𝑖|𝑥𝑖) =
𝑃(𝑥𝑖|𝐶𝑖)𝑃(𝐶𝑖)

𝑃(𝑥𝑖)
      (3-14) 

Thus, the posterior probability is obtained for each class. We then assign a weight 

for the instance xi using the highest posterior probability. The weights of the rest 

instances are initialized using the same method. Once the weights of all instances are 

initialized, their weights will be normalized so that their sum equals to 1. 

3.3.3.2 Base model generation (CMTNN) 

Having initialized the weight for each training instance, we focus on the generation 

of each base model. Here, we introduce a CMTNN as the base classifier, which is not 

only especially suitable for binary classification problems, but also able to provide 

vagueness estimation of the classification results. 

 

Figure 3-13 Topology of a Complementary Neural Network (Kraipeerapun, 2008) 

CMTNN, originally proposed by Kraipeerapun (2008), consists of a pair of 
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opposite feedforward Neural Networks with the same architecture (i.e. a truth Neural 

Network and a falsity Neural Network). The truth Neural Network is trained by original 

training data to predict the degree of the truth membership values, and the falsity Neural 

Network is trained to predict the degree of the false membership values using the same 

inputs but the complement of target outputs of the original training instances (as 

illustrated in Figure 3-13). For instance, if the target output of original training data is 1, 

the complement of this target output used to train the falsity Neural Network should be 

0. 

For each test pattern, a CMTNN outputs both the truth and false membership 

values, and they are supposed to be complementary to each other ideally (i.e. if the truth 

membership value is 1 then the false one is supposed to be 0, or vice-versa). In practice, 

however, both membership values predicted may not always be informative enough for 

the final classification. For example, both the truth and false membership values are 

around 0.5. Thus, an uncertain classification occurs. Empirically, the greater proximity 

of the truth and false membership values, the higher the degree of vagueness exists. 

Given a testing pattern, let yi be the output. T(yi) denotes the truth membership output, 

and F(yi) denotes the false membership output, then the vagueness value of the 

prediction V(yi) can be estimated as: 

𝑉(𝑦𝑖) = 1 − |𝑇(𝑦𝑖) − 𝐹(𝑦𝑖)|      (3-15) 

By combining T(yi) and the complement of F(yi) using a simple equal weighted method, 

the final output O(yi) for the pattern can by calculated as: 

𝑂(𝑦𝑖) =
𝑇(𝑦𝑖)+(1−𝐹(𝑦𝑖))

2
      (3-16) 

A threshold value is applied to Equation (3-16) to classify the output into binary 

classes (generally, the most commonly used threshold value is 0.5). An output pattern is 

classified as 1 (true) if O(yi) is greater than the threshold value, otherwise, it is classified 

as 0 (false). Compared to other traditional methods which solely apply truth 

membership values, CMTNN has two outstanding features: improved classification 
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accuracy for binary problems and the ability to assess uncertainty of classification using 

the vagueness value (Jeatrakul & Wong, 2009). 

3.3.3.3 Weight calculation and update 

We then introduce the weight calculation methods for both of the base classifiers 

and training instances. First, once a base classifier is generated, a weight will be 

assigned based on its classification accuracy rate for the original training instances. 

Once all the three classifiers are generated, their weights will be normalized so that 

their sum equals to 1. 

Moreover, for training instances, we apply the following steps to update their 

weights, with the intention to increase the weights of those instances which are more 

difficult to classify (i.e. those with higher error rates). We first assign an error rate for 

each training instances xi by: 

𝑒𝑟𝑟𝑜𝑟(𝑥𝑖) = {
1,                 𝑖𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑        
0,              𝑖𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑖𝑓𝑖𝑒𝑑

   (3-17) 

We then calculate the overall error rate for all instances as follows: 

𝑒𝑟𝑟𝑜𝑟𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∑ 𝑤𝑖 ∗ 𝑒𝑟𝑟𝑜𝑟(𝑥𝑖)
𝑛
𝑖=1      (3-18) 

where wi is the current weight for instance xi. Afterwards, the weights of the correctly 

classified instances will be decreased by Equation (3-19): 

𝑤𝑖,𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑤𝑖 ∗ (
𝑒𝑟𝑟𝑜𝑟𝑜𝑣𝑒𝑟𝑎𝑙𝑙

1−𝑒𝑟𝑟𝑜𝑟𝑜𝑣𝑒𝑟𝑎𝑙𝑙
)       (3-19) 

Thus, the weights of correctly classified instances are decreased and the weights of 

those misclassified ones become increased comparatively. Once the weights of all 

instances are updated, their weights will be normalized, so that their sum remains the 

same as it was before. 

3.3.3.4 Distance-based data clustering 

Clustering is a widely-used unsupervised learning technique. It is a main task of 
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exploratory data mining, and has been applied to many application domains such as 

image analysis, pattern recognition, information retrieval, medicine, and bioinformatics. 

It is a form of learning by observation, and aims to determine the intrinsic grouping for 

a set of unlabeled data based on the principle that instances in the same group (called a 

cluster) are similar (or related) to each other and different from (or unrelated to) the 

instances in other groups. The greater the difference between clusters, and the greater 

the similarity within a cluster, the better the clustering. 

In the distance-based clustering, we use the Euclidean distance as the metric to 

determining the similarity (or differences) of two instances. For a given instance xi, if 

we can find any instance xj in an existing cluster N that fulfills: (1) the Euclidean 

distance Di, j between xi and xj is minimum, and (2) Di, j < a predetermined threshold, the 

instance xi is assigned to N. Otherwise, xi is assigned to a newly generated or any other 

cluster. During the training phase, the distance-based clustering is employed to 

specially measure the distribution of the training instances. During the testing phase, if 

the output uncertainty level (i.e. the vagueness value of a CMTNN) of an instance is 

greater than a predetermined threshold, this instance will be further determined by the 

distance-based clustering. If the instance does not belong to any existing clusters, it is 

confirmed as a potential novel class. 

3.4 Evaluation and discussion 

In this section, we perform two types of evaluations of the proposed system: static 

off-line and real-time on-line evaluations. The off-line evaluation is purely based on 

annotated facial images borrowed from the Bosphorus database, for which we conduct 

exhaustive experiments for both AU intensity estimation and emotion classification to 

evaluate the system performance. The on-line testing mainly focuses on the assessment 

of the system’s real-time performance and newly arrived novel emotion class detection, 

where we use the system trained with the database images to recognize facial 

expressions of real human subjects in real time. 
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3.4.1 Facial expression databases 

In this research, we employ two facial expression image databases. The first 

database employed is the CK+ database, which is based on 2D facial images but 

provides rich AU intensity and expression annotations. However, this database is only 

used for the statistical computation of the discriminative AU sets for each emotion as 

discussed in Section 3.3. The second database employed for this research is the 

Bosphorus 3D Database, which contains both 3D facial scans and manually labeled 

landmarks, as well as a large variety of Action Unit and expression annotation. This 

database is used for the evaluation of both AU regression and emotion classification. 

The introduction of these two databases is provided in the following: 

 The Extended Cohn-Kanade Database consists of 593 image sequences across 

123 subjects with each image sequence starting from a neutral expression and 

ending in a peak frame emotional expression. Among 593 image sequences, the 

annotations of the six basic emotions and facial AUs are provided for 327 peak 

frame images. The AU annotations in the CK+ database have been provided with a 

numbered scale from 1 to 5 and hence the target intensity values in the range levels 

of A – E are accordingly scaled. These AU intensity and expression data are used 

only for the AU-Emotion Relationship analysis and discriminative AU set 

selection, as detailed in Section 3.3.1. 

 The Bosphorus 3D Database includes a rich set of 4652 3D facial scans and 

corresponding manually labeled facial landmarks collected from 105 subjects 

(including 60 men and 45 women; 29 of them are professional actors/actresses). 

Both Action Units (25 out of the 44 defined in FACS) and the six basic emotions 

are annotated specifically for the purposes of facial expression analysis. The 3D 

facial scans are acquired by Inspeck Mega Capturor II 3D, with about 0.3mm depth 

resolution in x, y, and z dimensions and 1600x1200 pixels high color texture 

resolution (Savran et al., 2008). In this study, excluding occlusion facial scans, a 
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subset of the database containing clear annotation for both AU intensity and the six 

basic emotions is selected. The subset includes 729 facial scans covering 56 

subjects, and we extract a total of 960 samples for the evaluation of the intensity 

estimation of the 16 AUs (a scan can contain more than one AUs). These scans 

contain both frontal and non-frontal head poses with yaw rotations from 0 to 30 

degrees and pitch rotations ranging from slight upwards, neutral, to slight 

downwards. 

3.4.2 Off-line evaluation 

In off-line evaluation, we assess the system’s performance by using database 

sample images with AU intensity and emotion annotations. All the results are obtained 

using the cross-validation technique. The setting of the off-line evaluation is described 

in the following: 

 For the off-line evaluation, both the training and testing phases were purely based 

on database images. Therefore, we did not use the Kinect for this evaluation. 

 We apply n-fold cross-validation to evaluate the performance of both AU 

intensity estimation and emotion classification, which embeds training and testing 

phases of the system together. As detailed before, the cross-validation process 

uses n -1 groups of the data for training and the remaining group for testing. This 

process is repeated n times. There are overall 729 FACS coded emotional facial 

images across 56 subjects borrowed from the Bosphorus 3D Database employed 

for the cross-validation evaluation for both AU intensity estimation and emotion 

classification. Specifically, we employ 5-fold cross-validation in our work 

according to the sample size. 

 The computational cost of the learning stage in each round of the cross-validation 

process is approximately 2-5 seconds for AU intensity estimators on average, and 

4-6 seconds for emotion classifiers (such as the ensemble classifiers) on average. 

The computational cost of the test stage in each round of cross-validation process 
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is approximately 100-200 milliseconds. 

3.4.2.1 Evaluation on AU intensity estimation 

As mentioned before, a total of 729 FACS coded emotional facial scans across 56 

subjects extracted from the Bosphorus 3D Database (Savran et al., 2008) is used for the 

evaluation of AU intensity estimation and subsequent emotion classification. The 

features we used for AU intensity estimation are solely based on the differences of the 

extracted Euclidean distance features between the neutral and any expressive frames. 

They are either generated by the manual selection or the mRMR based optimization. 

For each AU, we have collected around 60 samples, covering both positive cases, i.e. 

AU presence at any intensity levels (approximately 75%) and negative cases, i.e. AU 

absence (approximately 25%). A single output value ranging from 0 to 1 is used to 

represent AU absence through maximum intensity. We apply the 5-fold 

cross-validation as described above to evaluate the prediction accuracy and 

generalization capability for each AU. The output AU intensities are subsequently 

compared against the ground truth to calculate the MSE and CORR for each AU. 

 In the existing research of AU recognition, the accuracy tends to heavily depend on 

the training sample size. Typically, most of them required a large number of training 

images (e.g. thousands) with good diversity and coverage to maintain sufficient 

accuracy and robustness (e.g. Koelstra et al., 2010; Whitehill et al., 2011; Savran et al., 

2012). In order to deal with such challenges, we employ the most discriminative 

motion-based facial features which enable a significant reduction of training data for 

AU intensity estimation and in the meantime provide an impressive performance. As 

shown in Figure 3-14, the average MSE for SVR based AU intensity estimation 

remains stably below 0.1 once the sample size reaches approximately 50. 
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Figure 3-14 Average cross-validation MSE for AU regression in relation to the data sample size 

used 

Using manually selected features 

First of all, Table 3-4 shows the results obtained by the feedforward Neural 

Networks (BPNNs) and Support Vector Regressors (SVRs) for AU intensity estimation 

using manually selected features. For both BPNNs and SVRs, the lowest MSEs (below 

0.05) are observed for AU13 (Cheek Puffer), AU2 (Outer Brow Raiser), AU26 (Jaw 

Drop), AU10 (Upper Lip Raiser), AU12 (Lip Corner Puller) and AU17 (Chin Raiser) 

followed by AU1 (Inner Brow Raiser), AU15 (Lip Corner Depressor), AU20 (Lip 

Stretcher), AU18 (Lip Puckerer), AU4 (Brow Lowerer), AU23 (Lip Tightner) and 

AU27 (Mouth Stretch), which also obtain fairly low MSEs below 0.1. These results 

demonstrate the effectiveness and robustness of the extracted motion-based facial 

features for AU intensity regression. 

In contrast, relative higher MSEs (above 0.1) are also observed for the intensity 

estimation of some AUs, such as AU6 (Cheek Raiser), AU5 (Upper Lid Raiser) and 

AU24 (Lip Pressor). These results can be explained by the fact that the facial 

movements of these AUs are very subtle. Especially for AU24, which has the highest 

MSE and lowest CORR. It could be attributed to the reason that both AU23 and AU24 

can cause similar lip boundary changes (e.g. the red parts of lips are narrowed), which 

may lead to ambiguous annotations even for expert coders. On average, BPNNs and 

SVRs yield similar performances for AU intensity estimation. However, SVRs are 
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found to perform better than BPNNs for more subtle AUs, in terms of both MSE and 

CORR measurements (e.g. AU5, AU6 and AU24). 

Table 3-4 Results for AU intensity estimation using manually selected features (BPNN= 

Backpropagation Neural Network, SVR=Support Vector Regression) 

AUs MSE (%) CORR 

BPNN SVR BPNN SVR 

AU 13 1.1 2.0 0.952 0.957 

AU 2 1.3 2.7 0.970 0.978 

AU 26 2.5 3.1 0.954 0.976 

AU 10 3.6 3.3 0.924 0.939 

AU 12 4.2 3.9 0.939 0.930 

AU 17 4.3 4.1 0.896 0.923 

AU 1 4.7 5.1 0.957 0.960 

AU 15 5.6 6.0 0.890 0.892 

AU 20 5.8 4.6 0.878 0.913 

AU 18 6.4 5.6 0.955 0.947 

AU 4 6.6 5.9 0.893 0.824 

AU 23 9.2 9.9 0.921 0.925 

AU 27 9.7 10.4 0.931 0.969 

AU 6 11.9 10.7 0.841 0.859 

AU 5 13.4 12.3 0.881 0.895 

AU 24 14.9 12.6 0.790 0.863 

Overall 6.5% 6.3% 0.911 0.921 

Using automatically selected features 

Next, we employ the automatically selected features obtained by using the 

mRMR-based optimization to estimate the intensities of the 16 selected AUs. The 

results obtained are summarized in Table 3-5. Empirically, a few informative features 

with great discrimination power (i.e. 10 to 20 features in general) are sufficient to yield 

good results. On average, the automatically selected features achieve comparable 

performance in comparison to the manually selected features for the intensity 

estimation for many AUs (e.g. AU2, AU13, AU15, AU26, and AU27). For some AUs, 

such as AU2 and AU13, the automatic features generate even lower MSE values when 

SVRs are used. However, for some other AUs, such as AU4, AU20 and AU24, the 

performance drops slightly in comparison to the manual feature selection. Overall, the 
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mRMR-based feature selection yields a very close performance to the manually 

devised features in terms of both averaged MSE and CORR values. Thus, the AU 

intensities obtained by SVRs with the corresponding automatically selected features as 

inputs will be used for subsequent emotion recognition. 

Furthermore, since all the results are obtained in the form of continuous AU 

intensity levels, they reflect more physical truth of facial expressions in comparison to 

other applications that only performed presence or absence binary-classifications (e.g. 

Tsalakanidou & Malassiotis, 2010; Li et al., 2013). Such AU intensity measurements 

may also indicate effective physical cues to contribute to the sequent emotion 

classification. 

Table 3-5 Results for AU intensity estimation using automatically selected features (BPNN= 

Backpropagation Neural Network, SVR=Support Vector Regression) 

AUs 
MSE (%) CORR 

BPNN SVR BPNN SVR 

AU 2 1.3 1.7 0.937 0.953 

AU 13 2.1 1.4 0.919 0.975 

AU 26 3.2 3.1 0.923 0.975 

AU 10 3.9 4.1 0.885 0.938 

AU 12 5.9 5.3 0.895 0.926 

AU 17 5.7 5.9 0.873 0.900 

AU 1 6.6 6.0 0.906 0.936 

AU 15 6.6 6.2 0.874 0.891 

AU 20 5.9 6.4 0.875 0.912 

AU 18 7.7 6.9 0.911 0.936 

AU 4 8.0 7.8 0.897 0.805 

AU 23 9.5 9.4 0.893 0.905 

AU 27 10.2 9.7 0.886 0.963 

AU 6 12.0 11.7 0.822 0.838 

AU 5 13.6 13.3 0.831 0.878 

AU 24 15.2 14.2 0.787 0.857 

Overall 7.3% 7.1% 0.882 0.912 
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3.4.2.2 Evaluation on facial expression recognition 

The 729 facial scans used for AU intensity estimation above are then applied for 

the evaluation of the facial emotion recognition. As mentioned earlier, the intensities of 

the 16 diagnostic AUs generated by SVRs with mRMR based feature selection are 

subsequently used as inputs to the six ensemble classifiers for facial expression 

recognition. Six single SVM classifiers are also used to perform facial expression 

recognition for the comparison with the ensemble classifiers. We also apply a 5-fold 

cross-validation to measure the accuracy performance of each emotion recognition 

classifier. We measure the performance of the proposed emotion recognition 

approaches in terms of the accuracy confusion matrix and F1-measure. A confusion 

matrix is a 𝑛 ∗ 𝑛 matrix, where the row labels are ground-truth emotion annotations 

and the column labels are the classification results. The diagonal entries indicate the 

correct classifications, while the off-diagonal entries correspond to misclassifications. 

The F1-measure is a harmonic mean of precision and recall rate, which is considered to 

be a more comprehensive metric. 

Table 3-6 presents the recognition accuracy confusion matrices for the six basic 

emotions obtained by SVMs and the proposed ensemble classifiers. Overall, by using 

SVMs for emotion classification, we achieve an average recognition accuracy rate of 

90.5% (shown in Table 3-6 (a)), while by using ensemble models, we obtain a higher 

overall accuracy of 92.2% (see Table 3-6 (b)). More specifically, for either approach, 

the best performances are achieved for the recognition of ‘happy’ and ‘surprised’ facial 

expressions, with recognition accuracies beyond 95%. For ‘anger’ and ‘fear’, slightly 

lower recognition accuracies are observed for both approaches with the ensembles 

(92.8% for ‘anger’ and 92.1% for ‘fear’) outperforming the SVM classifiers (91.3% for 

‘anger’ and 91.1% for ‘fear’). 
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Table 3-6 Confusion matrices of facial emotion recognition accuracies 

 Anger Disgust Fear Happiness Sadness Surprise 

a. Recognition accuracy (average 90.5%) using SVM classifiers 

Anger 91.3 6.7 0 0 13.6 0 

Disgust 11.1 85.6 4.3 0 0 0 

Fear 0 0 91.1 0 0 11.8 

Happy 0 0 0 95.6 0 8.8 

Sadness 5.8 3.1 9.8 0 82.7 0 

Surprise 0 0 0 7.9 0 96.5 

b. Recognition accuracy (average 92.2%) using the proposed ensemble classifiers 

Anger 92.8 3.3 0 0 9.3 0 

Disgust 9.8 88.6 2.3 0 0 0 

Fear 0 0 92.1 0 0 9.9 

Happy 0 0 0 96.1 0 8.9 

Sadness 4.7 0 7.3 0 86.6 0 

Surprise 0 0 0 7.3 0 96.7 

For ‘disgust’, a lower recognition accuracy of 85.6% is observed when using the 

SVMs, and 88.6% when using the ensembles. A possible explanation is that those 

emotions with comparatively lower recognition accuracies often entangled with more 

complicated and subtle facial changes than the ones with higher recognition accuracies, 

and thus more challenging to recognize. The lowest recognition rates are observed for 

‘sadness’ (82.7% by SVM and 86.6% by the ensemble classifier). This could be due to 

the fact that in some facial scans, subjects inaccurately express ‘sadness’ using the 

combination of AU20 (Lip Stretcher) and AU15 (Lip Corner Depressor), rather than 

solely using AU15 as indicated by FACS (Ekman et al., 2002). But AU20 is also served 

as a key physical cue for ‘fear’, which may lead to misclassification of ‘sadness’ as 

‘fear’. 

  



 

67 

 

Table 3-7 Comparison of recognition accuracies for the six basic emotions 

 Accuracy 

_SVM 

Accuracy 

_Ensemble 

Salahshoor 

& Faez  

(2012) 

Ujir 

(2013) 

Surprise 96.5 96.7 91.4 90.8 

Happiness 95.6 96.1 74.3 100.0 

Fear 91.1 92.1 92.9 21.5 

Anger 91.3 92.8 87.3 75.4 

Disgust 85.6 88.6 78.3 43.1 

Sadness 82.7 86.6 95.5 67.7 

Overall 90.5% 92.2% 86% 66.4% 

We subsequently compare our work with other state-of-the-art developments such 

as Salahshoor & Faez (2012) and Ujir (2013) in Table 3-7. These related applications 

are chosen because of their focus on a similar research challenge of 3D facial emotion 

recognition and the employment of the same Bosphorus 3D database and similar 

evaluation strategies. The comparison in Table 3-7 indicates that our proposed facial 

emotion recognition system outperforms both of the above related developments. 

Specifically, the ‘surprised’ facial expression has been well recognized by all the three 

systems (accuracies > 90%). However, the two related systems also respectively show 

considerable limitations for the recognition of the other emotion categories. For 

example, the system of Salahshoor & Faez (2012) performed poorly for the recognition 

of ‘happy’ and ‘disgust’ (accuracies < 80%) emotions, whereas the work of Ujir (2013) 

also indicated very unstable classification performance for ‘fear’ (only 21.5%) and 

‘disgust’ (43.1%) expressions. In comparison to these state-of-the-art applications, our 

system is proved to be more stable for the recognition of all of the six emotion 

categories and achieves the highest overall recognition accuracy among the related 

applications.  
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Table 3-8 Comparison of F1-measures for the six basic emotions 

 F1_SVM F1_ 

Ensemble 

F1_ Sandbach 

et al. (2012) 

Surprise 0.889 0.897 0.826 

Happiness 0.94 0.945 0.812 

Fear 0.888 0.913 0.462 

Anger 0.877 0.895 0.500 

Disgust 0.876 0.923 0.644 

Sadness 0.843 0.884 0.625 

Overall 0.89 0.91 0.65 

Since the classification accuracy rate could be less informative sometimes, 

especially when the data is unbalanced, the F1-measure for each emotion category is 

also presented in Table 3-8. We also compare our system with the work by Sandbach et 

al. (2012) because of their state-of-the-art performance and the employment of the 

same performance metric (i.e. the F1-measure). Based on the comparison of the 

F1-measure results, it is noticed that the performance of our system significantly 

outperforms those of the work by Sandbach et al. (2012). Although their HMM based 

approach also generated good results for the recognition of ‘happy’ and ‘surprised’ 

facial expressions, our system performs more stably for the detection of each emotion 

category. 

Overall, the above results demonstrate that the proposed system is consistently an 

efficient and robust solution for AU intensity estimation and emotion recognition. 

Furthermore, facial expressions sometimes may contain a mixture of emotions, thus it 

is possible that two (or more) emotional states occur simultaneously in one emotional 

facial scan. The proposed approach also shows great potential to detect such 

combination of emotions (e.g. happy + surprise) by deriving recognition results for 

each emotion category separately. 

3.4.3 On-line evaluation 

The facial emotion recognition system has also been applied to real-time emotion 

detection tasks contributed by test human subjects. The facial feature point localization 
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of our system is able to integrate both color and 3D depth image data so that it provides 

great robustness against illumination changes and pose variations. It thus lays solid 

foundations for subsequent AU intensity measurement and emotion recognition. 

Moreover, the computational complexity of the face tracking and landmark localization 

requires 20-30 milliseconds under normal lab lighting conditions. The mRMR-based 

feature selection, AU regression, and emotion classification take an averaged run time 

of 3-5 milliseconds (which may change slightly depending on different types of 

regressors and classifiers used). Overall, the system is able to perform efficiently for 

facial emotion recognition at a frame rate of 25~30 fps on i7 4700MQ quad-core CPUs 

with 8GB RAM. 

For the on-line evaluation, our system has been trained with database images first 

and then is used to recognize human subjects’ facial expressions in real time. The 

setting of the online testing is provided in the following: 

 In the online evaluation, our system has been trained with database images first. 

Then the Kinect is used in the testing phase to track human subjects’ facial 

landmarks. Based on the tracked facial landmarks, the system subsequently 

performs feature extraction and selection, AU intensity estimation and emotion 

recognition. 

 In the on-line evaluation, the above 729 FACS coded database images from 56 

subjects employed for the off-line evaluation are entirely used for training of both 

the AU intensity estimators and emotion classifiers. The training computational 

cost of the system is approximately 4-5 seconds for AU intensity estimators while 

5-7 seconds for emotion classifiers. 

 For on-line testing, we recruit eleven participants with five females and six males 

aging from 25 to 40 years old. Majority of them are postgraduate students and all 

the test subjects are non-experts in the field. The computational cost of the system 

in the real-time testing is about 3-5 milliseconds per frame. 
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As mentioned above, we recruit eleven participants for real-time system evaluation. 

In order to ensure effective tracking of facial geometric features, the distance between 

the participants and the Kinect was controlled within the range of 2 (±0.5) meters. The 

participants were required to display a series of emotional clips. Each clip lasts 

approximately 10–15 seconds (i.e. 300–450 frames). It starts from a short neutral state 

period (4–5 seconds) and followed by a posed facial expression period. Both the neutral 

state and expression periods were manually labeled in each clip by an expert annotator. 

In addition to the six basic emotions (happiness, sadness, disgust, surprise, fear and 

anger) that are collected from the test subjects and used to test the system, we also 

evaluate the system with some novel emotional expressions (e.g. contempt and 

excitement) contributed by the test subjects. 

In our experiment, the expressions of ‘contempt’ emotion require a subject to show 

the facial behavior of dimpler (AU14) while the expressions of ‘excitement’ emotion 

require the combination of ‘surprise’ and ‘happy’ expressions with the upper face 

showing inner and outer brow raiser and upper lid raiser and the lower face indicating 

cheek raiser and lip corner puller. We use the above guidance for the posing and 

collection of these two novel emotion classes for testing. Figure 3-15 shows examples 

of the six basic emotions plus ‘contempt’ and ‘excitement’ expressions posed by two 

test subjects during testing. Eventually, the system was evaluated with a total of 136 

emotional clips. The detailed results and discussions are presented as follows. 

Figure 3-16 shows an example of real-time detection of a ‘surprise’ emotional clip 

using the six ensemble classifiers. The vertical axis indicates the emotion detection 

results from absence (0) to maximum presence (1) of the ‘surprise’ expression, and the 

horizontal axis marks the timeline (in frames). As illustrated in Figure 3-16, for the 

recognition of ‘surprise’, ideally, only the corresponding ensemble classifier for 

‘surprise’ generates an output curve consistent with the ground truth. The outputs of the 

other five ensemble classifiers consistently remain in a much lower level. Overall, the 

average classification accuracy rate for this emotion clip is 93.2%. 
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Figure 3-15 Snapshots of the six basic emotions plus ‘contempt’ and ‘excitement’ posed by two test 

subjects in the on-line evaluation 

 

 

Figure 3-16 Examples of real-time detection of ‘surprise’. The bold black line indicates the 

ground-truth (presence/absence), and the six color lines respectively indicate the real-time outputs 

of the six ensemble classifiers 
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Table 3-9 Real-time recognition accuracies for the six basic emotions and novel emotion classes 

 Recognition Accuracy 

(average 84%) 

Surprise 93.2 

Happiness 88.1 

Fear 81.6 

Anger 79.4 

Disgust 83.7 

Sadness 77.9 

 
Classified as a Novel 

Emotion (average 72.2%) 

Contempt 77.2 

Excitement 67.1 

Table 3-9 summarizes the real-time recognition accuracy rates for the six basic 

emotions and novel emotion detection rates for ‘contempt’ and ‘excitement’. Generally, 

the on-line system yields comparable results to those obtained in off-line evaluation. 

Except for ‘anger’ and ‘sadness’, the recognition accuracy rates for the other four basic 

emotions are consistently beyond 80%, which only show a slight decrease compared to 

the results obtained in previous off-line evaluation. More important, 77.2% of 

‘contempt’ and 67.1% of ‘excitement’ expressions are successfully identified as novel 

emotion classes rather than only roughly classified as one of the six basic emotions. 

These results demonstrate that the proposed ensemble classifiers are well capable of 

detecting newly arrived novel emotion categories and show great improvements 

compared to other existing systems. 

3.5 Summary 

In this chapter, we presented a fully automatic system for real-time 3D AU 

intensity estimation and emotion recognition. We first realized real-time 3D face 

tracking and facial landmark extraction based on the Kinect platform. Then 16 sets of 

motion-based facial features containing rich person-independent emotional information 

were extracted and selected by using both manual and mRMR-based automatic feature 
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selection methods. These feature sets were subsequently employed as inputs to an array 

of Neural Networks and Support Vector Regressors respectively to estimate the 

intensities of the 16 diagnostic AUs. Experimental results indicated that the mRMR 

based optimized feature selection yields comparable results in comparison to the 

manually selected features when using either Neural Networks or SVRs for AU 

intensity measurement. Moreover, the SVR-based AU intensity estimation slightly 

outperformed the Neural Network based method. This is probably caused by the fact 

that the grid search with cross validation has been conducted for optimal parameter 

selection for the SVR models. By using the automatically selected features and SVRs, 

we have achieved an averaged MSE of 0.071 and an averaged CORR of 0.912 for the 

intensity estimation of the 16 AUs. The intensities of AU2 (Outer Brow Raiser), AU10 

(Upper Lip Raiser), AU13 (Cheek Puffer) and AU26 (Jaw Drop) were well estimated 

with lowest errors (MSE < 0.05), whereas more subtle AUs, such as AU5 (Upper Lid 

Raiser), AU6 (Cheek Raiser), and AU24 (Lip Pressor) were estimated with relatively 

higher estimation errors (MSE > 0.1). The above results also demonstrated the 

extracted motion-based facial features are very efficient and robust for AU intensity 

estimation. 

We subsequently used the derived AU intensities to recognize the six basic 

emotions using the identified discriminative AU combinations and dedicated 

ensemble classifiers for each emotion category. The proposed novel adaptive 

ensemble classifiers show great robustness and flexibility for not only the recognition 

of six basic emotions but also the detection of newly arrived unseen novel emotion 

categories. The off-line evaluation results using the Bosphorus database indicated that 

the proposed ensemble models consistently outperform the SVM-based classification, 

and have achieved an averaged recognition accuracy of 92.2% and an averaged 

F1-measure of 91% for the recognition of the six basic emotions. The best recognition 

accuracies were obtained for ‘happy’ and ‘surprise’ facial expressions (> 96%) with 

‘fear’, ‘anger’ and ‘disgust’ reasonably recognized (>88%). The lowest recognition 
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accuracy rate was observed for ‘sadness’ (86.6%). The system also outperforms other 

state-of-the-art research on 3D facial emotion recognition tasks based on the 

comparison of both the recognition accuracy and F1-measure results. 

We also conducted an on-line evaluation with real human subjects to assess the 

system’s real-time performance and the efficiency for novel emotion class detection. 

Overall, the proposed system is able to perform facial emotion recognition efficiently 

with a frame rate of 25~30 fps on i7 4700MQ quad-core CPUs with 8GB RAM. We 

obtained an impressive average recognition accuracy rate of 84% for the detection of 

the six expressions when tested with real human subjects (only slightly lower than 

those achieved in off-line evaluation). Moreover, the proposed ensemble classifiers 

also show superior ability to detect the arrival of novel emotion classes with 72.2% 

detection rate on average. 
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Chapter 4 Dimensional emotion regression for 

whole-body expressions 

In this chapter, we address the problem of real-time continuous regression of users’ 

emotional states in a valence and arousal space based on their whole-body expressions. 

That is the proposed system maps subjects’ emotional states to a two-dimensional 

coordinate space spanned by arousal and valence, where each value ranges between -1 

and 1. First of all, we systematically consider and extract users’ static and dynamic 

bodily features. Genetic Algorithm (GA) optimization is then employed to conduct 

feature selection and identify their most optimal discriminative combinations for 

affective dimensional regression. We also examine how both static and dynamic 

features perform for the regression of each affective dimension. In order to robustly 

predict users’ continuous affective dimensions in the valence and arousal space, we 

propose a novel ensemble regression model with great adaptability to deal with newly 

arrived unseen bodily expressions and data stream regression. Additionally, as pointed 

out by Kleinsmith & Bianchi-Berthouze (2013) and Metallinou et al. (2013), 

continuous and dimensional affective annotation is inherently a challenging task. We 

present a novel annotation method based on inter-annotator correlations and mean 

value differences to effectively fuse multiple annotations to build ground truth for 

system evaluation. 

The remainder of this chapter is organized as follows: Section 4.1 presents feature 

extraction from whole-body expressions and automatic feature selection using the GA. 

The proposed adaptive ensemble model for continuous and dimensional affect 

regression is subsequently discussed in Section 4.2, together with the other two 

benchmark single regression methods. In Section 0, we discuss the process of data 

collection and affective annotation, as well as experimental results in comparison with 

other state-of-the-art research. Finally, we draw conclusions in Section 4.4. 
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4.1 Feature extraction and selection 

In this section, we first of all discuss the method about how the body expression 

information is captured and extracted. We then present the GA-based automatic feature 

selection in order to identify the most optimal and discriminative combination of static 

and dynamic features for the interpretation of each affective dimension. 

4.1.1 Whole-body expression feature extraction 

In this research, we use Microsoft Kinect and its Natural User Interface SDK 

(Microsoft Corporation, 2013) to recognize users and track their bodily behaviors in 

real-time. The Kinect provides an effective and economical way for 3D body 

information tracking, as mentioned earlier which physically contains an RGB camera, a 

multi-array microphone, and an infrared (IR) emitter together with an IR depth sensor. 

By computing the IR depth data, the Kinect is able to detect and track up to two users 

based on either the distance of the subjects to the background or the subjects’ body 

movement. 

For each tracked user, it is able to robustly locate a total of 20 skeletal joints and 

track their movements over time in a 3D coordinate space (see Figure 4-1). It does not 

require any specific calibration posture or action from a user for tracking, while 

resulting in sufficient tracking accuracy. The tracking frame rate for a single user is able 

to reach about 30fps on i7 quad-core CPUs with 16GB RAM. For a comprehensive 

review of Kinect vision research, readers may refer to Han et al. (2013). 
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Figure 4-1 The tracked user’s skeleton with 20 joints, edited from Webb & Ashley (2012) 

Our automatic affect recognition system is based on whole-body features extracted 

from the Kinect skeletal tracking data stream with 20 tracked joints in a geometric 

manner. Both the body form and movement information are modelled and extracted. 

The extraction of features is based on the recent psychology literature which indicates 

that some specific body behaviors may carry emotional information (e.g. Coulson, 

2004; Harrigan et al., 2005). Studies in computer science automatically modeling 

affective body behaviors are also employed to guide the bodily feature extraction and 

selection (e.g. Kleinsmith et al., 2005; Kleinsmith et al., 2011; Savva et al., 2012; 

Metallinou et al., 2013). A comprehensive review on a variety of bodily expression 

features is provided in the work of Kleinsmith & Bianchi-Berthouze (2013). In this 

research, a total of 54 whole-body expression features (25 static posture features and 29 

dynamic motion features) is extracted for each frame, and afterwards employed for the 

affective dimensional regression. These features range from lower-level features, such 

as the joint angles of elbow and knee, to more interpretable higher-level features, such 

as the lean angle of spine and the degree of body contraction/expansion. The 

comprehensive feature set and computation methods are summarized in Table 4-1. 
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These extracted features are potentially informative and may make distinctive 

contributions to each affective dimension. Furthermore, in order to identify the most 

optimal discriminative set of features for each dimension, we employ GA-based 

optimization to reduce feature dimensionality, as detailed in Section 4.1.2. 

For some complicated features, we also provide the detailed explanations as 

below: 

 Body Expansion Index measures the degree of contraction and expansion of the 

body, in frontal, lateral and vertical directions, respectively. Figuratively speaking, 

it computes a 3D bounding region, i.e., the minimum cuboid surrounding the 

entire body. 

 Instantaneous Velocity can be calculated by dividing the displacement of a given 

joint between the current and last frames by the time interval of the two frames. It 

is related to the kinetic energy of a motion. 

 Average Velocity states the averaged value of speed, and can be calculated by 

dividing the total motion trajectory length of a joint by the corresponding time 

interval. 

 Amplitude indicates the maximum Euclidean Distance among the positions of a 

given joint within a predetermined time interval. 

 Acceleration is the rate of change of velocity between the current and last frames. 

It is caused by the force applied to move the body part, and can be used to 

distinguish between smooth and sudden motions. 
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Table 4-1 Whole-body expression features and calculation methods 

 

Feature Type Features Related Body Parts Description & Calculation 

Static Posture 

Features 

(25 in total) 

Body Expansion 

Index 

(in X, Y, Z axes) 

Whole Body The degree of contraction or 

expansion of the whole 

body, in x, y and z axes 

Distance 

(in X, Y, Z axes) 

Left hand to Left 

shoulder, 

Right hand to Right 

shoulder, 

Left hand to Left elbow, 

Right hand to Right 

elbow 

The distance between the 

two given joints, in x, y and 

z axes (could be positive 

values, e.g. hand above 

shoulder; or negative values, 

e.g. hand below shoulder) 

Lean Angle Head, Spine The geometric angle of lean 

forward/backward 

Joint Angle Left/Right elbows, 

Left/Right knees 

The geometric angle of a 

given joint 

Euclidean 

Distance 

Left hand - Right hand, 

Left elbow - Right elbow, 

Left hand - Right elbow, 

Right hand – Left elbow 

The Euclidean distance 

between the two given joints 

Dynamic 

Motion-based 

Features 

(29 in total) 

Instantaneous 

Velocity 

Head, Left/Right hands, 

Left/Right elbows 

Instantaneous speed of a 

given joint, at the current 

frame 

Average 

Velocity (1s) 

Head, Left/Right hands, 

Left/Right elbows 

Average speed of a given 

joint within the past 1 

second (≈30 frames) 

Average 

Velocity (3s) 

Head, Left/Right hands, 

Left/Right elbows 

Average speed of a given 

joint within the past 3 

seconds (≈90 frames) 

Amplitude (1s) Head, Left/Right hands, 

Left/Right elbows 

Amplitude of a given joint 

within the past 1 second 

(≈30 frames) 

Amplitude (3s) Head, Left/Right hands, 

Left/Right elbows 

Amplitude of a given joint 

within the past 3 seconds 

(≈90 frames) 

Acceleration Left/Right hands, 

Left/Right elbows 

Instantaneous acceleration 

of a given joint, 

between two adjacent 

frames 
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4.1.2 Automatic feature selection based on GA optimization 

Although great effort is spent on the feature extraction process, the 54 whole-body 

expression features listed in Table 4-1 are not necessarily of equal importance or quality. 

Some redundant or irrelevant features could result in an inaccurate conclusion whereas 

a compact and non-redundant subset of features could benefit subsequent regression 

models by improving their generalization and interpretability. Although domain 

knowledge could be applied to identify discriminative features, there is only limited 

understanding of how body posture and motion cues convey emotions due to the 

complexity of body language itself (Kleinsmith & Bianchi-Berthouze, 2013). Therefore, 

a GA-based automatic feature selection is employed to identify the most optimal 

discriminative feature subset for effective interpretation of bodily behaviors. 

The GA, as a biologically inspired optimization search methodology based on a 

series of mechanisms mimicking Darwinian natural evolution and genetics in 

biological systems, is a promising alternative to conventional feature selection methods 

(Goldberg, 1989). The advantages of the GA for feature selection have been revealed 

by many studies (e.g. Oh et al., 2004; Huang & Wang, 2006). In a GA, a set of candidate 

solutions (called a population) to an optimization problem is evolved iteratively toward 

better solutions. In each iteration, each candidate solution (called an individual) is 

evaluated by a fitness function, and the more superior individuals are stochastically 

selected to form a new population (called a generation) through genetic crossover and 

mutation operation based on the Darwinian principle of ‘survival of the fittest’. The GA 

stops when the number of iterations reaches a preset threshold or acceptable results are 

obtained. Figure 4-2 illustrates a cycle of the GA evolutionary process. The details of 

our GA feature optimization are presented below. 
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Figure 4-2 The evolutionary cycle of the GA 

4.1.2.1 Chromosome encoding and population initialization 

For the feature selection problem, solutions (i.e. selected features) are represented 

in a string with n binary digits, with each binary digit representing each feature, and 

values 1 and 0 meaning selected and removed features respectively. For example, 

chromosome ‘10001001’ indicates the first, fifth and eighth features are selected. The 

GA starts with an initial population consisting of a number of d randomly generated 

solutions. In this research, the population size d is set to 20 according to original feature 

dimensions and computational complexity. 

4.1.2.2 Fitness evaluation, selection, and replacement 

The fitness evaluation for each chromosome normally consists of two criteria: 

prediction performance and number of selected features. Thus, the fitness function of a 

chromosome C is straightforward and defined as: 

fitness(𝐶) = 𝑤𝑎 ∗ regression_accuracy𝐶 + 𝑤𝑓 ∗ (number_features𝐶)−1  (4-1) 

where 𝑤𝑎 and 𝑤𝑓 are two predefined weights for regression accuracy and the number 

of selected features, respectively. Since the dimensions of the original dataset are 

relatively low (only 54), we focus on the regression accuracy rather than the number of 

selected features, i.e. the weight 𝑤𝑎 is set to a large value (e.g. 0.9) whereas 𝑤𝑓 is set 

to a much smaller value (e.g. 0.1). 

During each successive generation, a proportion of the existing individuals is 

selected to form a new population for the next generation. According to Darwin’s 
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natural evolution theory, the fitter the individuals are, the higher the probabilities are to 

survive and create new offspring. Here, we adopt the roulette wheel selection 

mechanism (Goldberg, 1989). The probability that individual i is selected, 𝑃(𝑐ℎ𝑜𝑖𝑐𝑒 =

𝑖), is computed by: 

𝑃(𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑖) =
fitness(𝑖)

∑ fitness(𝑗)𝑛
𝑗=1

       (4-2) 

We then select two parent chromosomes based on the above method. The crossover 

operation subsequently generates two offspring out of the two parents, whereas the 

mutation operation slightly perturbs some offspring. The details of crossover and 

mutation are discussed in the following subsection. If the mutated offspring is fitter 

than both parents, the more similar parent is replaced by it; if it is fitter than only one 

parent, it replaces the inferior parent; otherwise, it replaces the most inferior individual 

in the population. We also employ an elitist selection strategy which allows some of the 

best individual solutions from the current generation to carry over to the next without 

alteration. 

4.1.2.3 Genetic operation with crossover and mutation 

The crossover and mutation functions are the two major factors that influence the 

fitness values of the generated individuals. We employ a standard crossover operator, 

i.e. single point crossover, for the exchange of genes between two parent chromosomes. 

Specifically, the binary string from beginning of chromosome to a random crossover 

point is copied from one parent, and the rest is copied from the other parent. The 

mutation mechanism is applied to the offspring, so that the genes may be altered 

occasionally. Specifically, in binary code, randomly selected bits are inverted, i.e. 

converting 0 to 1 or vice versa (see Figure 4-3). The newly generated offspring replaces 

the old population to form a new population in the next generation as discussed above. 
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Figure 4-3 Examples of genetic crossover and mutation operations 

4.1.2.4 GA Computational Complexity Analysis 

Computational complexity normally refers to a property of a problem that how 

much computing resources are needed to solve the problem according to their intrinsic 

computational difficulty (Papadimitriou, 1994). It provides fundamental concepts for 

algorithm selection based on the rate of growth of space, time, or other fundamental 

unit of measure as a function of the size of the input (Bovet & Crescenzi, 1994). 

According to Ankenbrandt (1991), GAs have a probabilistic convergence time. 

The average convergence time of a specific GA (typically measured as the number of 

generations to convergence) is possible to be determined by repeating an experiment a 

number of times. However, this average convergence may be mistaken for the 

complexity of the problem itself. Recent theory work (Rylander & Foster, 2000) and 

their follow-up study (Rylander & Foster, 2001) suggested that the GA-complexity 

can be measured by the growth rate of the minimum problem representation. 

Specifically, the GA-complexity of a problem is determined by the growth rate of the 

minimum representation as the size of the problem instance increases. In their work, a 

method based on Minimum Chromosome Length (MCL) was introduced predict the 

complexity of problems specific to GAs, which was then verified in two specific cases 

experimentally. These studies lead to the beginning of a theory that may enable us 

evaluate whether GAs are indeed efficient for a specific problem. 
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Soltani et al. (2002) suggest that GA performance can be measured by the number 

of fitness function evaluations carried out during the course of a GA run. In their work, 

a range of optimization algorithms (i.e. Dijkstra, A*, and GA) are compared and 

critically analyzed, and the GA is able to find the optimum or near-optimum solutions 

in considerably less execution time than the other two algorithms. They also indicate 

that efficiency of GA can also be analyzed by estimating the theoretical total number 

of possible solutions if an exhaustive search had been carried out, i.e. the size of the 

search space. This research is therefore motivated by Soltani et al. (2002) for the 

estimation and calculation of the computation efficiency of the GA. 

The chromosome length equals to the number of features (i.e. 54) while the 

population size in each generation is set to 20, and the maximum generations is 2000. 

For fixed population sizes, the number of fitness function evaluations is given by the 

product of population size by the number of generations (Lobo et al., 2000). Thus, we 

can measure the computational complexity of GA as follows: 

i. The theoretical total number of possible solutions to the problem, i.e. all possible 

combinations of features if we use a full enumeration search: 

𝑁𝑡𝑜𝑡𝑎𝑙 = 2𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 254     (4-3) 

ii. The total number of ‘actual’ GA function evaluations: 

𝑁𝑎𝑐𝑡𝑢𝑎𝑙 = (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒) ∗ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) 

= 20 ∗ 2000(𝑚𝑎𝑥𝑖𝑚𝑢𝑚)      (4-4) 

iii. Then, we calculate the ratio of: i. (total number of‘theoretical’ possible solutions) 

to ii. (total number of ‘actual’ GA function evaluations): 

𝑅𝑎𝑡𝑖𝑜 =
𝑁𝑡𝑜𝑡𝑎𝑙

𝑁𝑎𝑐𝑡𝑢𝑎𝑙
=

254

20∗2000(𝑚𝑎𝑥𝑖𝑚𝑢𝑚)
≈ 4.5𝐸 + 11   (4-5) 

It can be noted from the ratio that the GA is able to generate the optimum or 

near-optimum solutions in substantially less execution time (i.e. 
1

4.5𝐸+11
) compared to 
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that of a full enumeration search. 

4.1.2.5 Parameter configurations 

In this research, we apply the following parameter setting to achieve a balance 

between the regression accuracy and the computational complexity: 

control procedure: steady-state; 

population size = 20; 

crossover probability = 1.0; 

mutation probability = 0.05; 

maximum generations = 2000; 

These parameters are originated by the default setting of the GA algorithm with 

slight adjustment to our application domain which has an overall small feature set (i.e. 

54 features). We perform GA-based optimization for both the arousal and valence 

dimensions, respectively. The selected feature subsets that lead to the best regression 

performance are finalized as the most discriminative subsets for each affective 

dimension, which is detailed in Section 4.3.2. 

4.2 Dimensional affect interpretation using adaptive 

ensemble regression 

To robustly predict the levels of affective dimensions (i.e. valence and arousal) 

from real-time bodily expression data stream, we propose an adaptive ensemble 

regression model that automatically generates and combines several base models to 

make a more reliable interpretation and regression of the valence and arousal 

dimensions. The proposed ensemble model is able to update itself and represents the 

most recent concepts in data streams. Therefore it has great adaptation to unseen bodily 

expression patterns and novel users. Feedforward Neural Networks with 
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Backpropagation (i.e. BPNNs) and Support Vector Machines for Regression (i.e. SVRs) 

are respectively used as the base regressors for the construction of the ensemble models 

for affective dimensional regression of bodily expressions. These techniques are also 

commonly used for continuous affect regression problems in the existing applications 

(e.g. Wollmer et al., 2008; Nicolaou et al., 2011). Experiments have also been 

conducted with single BPNN and SVR models for affective dimensional regression. 

The experimental results of such single regression models are also used as the 

benchmark for comparison. 

Different from the ensemble classifiers proposed in Chapter 3.3, which aim to 

robustly differentiate between discrete emotions and detect novel emotion classes, the 

adaptive ensemble regression model proposed in this chapter is to effectively handle 

continuous affective dimension prediction tasks. Thus, we employ a series of different 

base models and ensemble mechanisms for the model generation, which are presented 

in detail below 

Firstly, a number of bodily expression clips were collected from various 

participants for ensemble model generation and evaluation. Each clip collected in the 

dataset consists of a continuous sequence of instances (frames): {x1, x2, …, xi, y}, where 

xi is an attribute (i.e. one of the bodily features listed in Table 4-1), and y is the target 

value (i.e. the annotated value of one affective dimension). The goal of a typical 

regression problem is to induce a function f^(x) on data consisting of a finite set of n 

instances to best approximate an unknown true function f(x). In this research, we build 

an adaptive ensemble model that generates several base regressors that complement 

each other for robust regression of continuous affective dimensions. 

The proposed adaptive ensemble regression model consists of two phases: 

ensemble model generation (during the training stage) and regression and model 

updating (during the test stage). Figure 4-4 illustrates the work flow of the generation 

of the ensemble model. The model generation phase starts with the weight initialization 

for each training clip, which is detailed in Section 4.2.1. Then a subset of training clips 
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with higher weights is selected from the original training set. Subsequently, we train a 

base model using the newly generated training dataset with higher weights. Although a 

variety of algorithms, such as Decision Trees, could be used as the base regressor, in 

this research, we select BPNNs and SVRs respectively as the base regressors for the 

construction of two ensemble models. The details are discussed in Section 4.2.2. 

Subsequently, we calculate and assign a weight to the current base model based on its 

regression performance for the original training dataset. We also update the weights of 

the training clips with the aim of increasing the weights of those clips which have 

higher error rates and are more difficult to predict. The weight assignment and updating 

methods are detailed in Section 4.2.3. Overall, the above procedures iterate three times, 

thus three weighted base models are generated for ensemble, considering a balance 

between performance and computational complexity (Rokach, 2010). The final 

ensemble regression result can be thus obtained by calculating the weighted average of 

the outputs of the three base models. 

Moreover, Figure 4-5 shows the flow chart of the automatic update of the ensemble 

model in the test stage. As mentioned above, the proposed ensemble model is able to 

deal with valence and arousal regression for newly arrived unseen bodily expression 

patterns to deal with data stream regression. In this research, such adaptability is 

achieved by gradually updating its base models with a stand-by base regressor. Once a 

new test instance arrives, it adds to the latest training dataset. The ensemble model 

generates a new stand-by base regressor using this new dataset. Then, we calculate and 

update the weights of both the newly generated and the original base models based on 

their prediction performance for the new dataset. If the new base model has a higher 

weight than any of the existing ones, then it is used to replace the base model with the 

lowest weight (i.e. the lowest regression accuracy). After that, an essential weight 

normalization procedure is performed for the updated base regressors. Thus, the 

ensemble model represents the latest concepts in the data and possesses great 

adaptation to the new data stream. The test stage of the ensemble model is discussed in 
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Section 4.2.4. For an exhaustive review of ensemble approaches for regression, readers 

may refer to Mendes-Moreira et al. (2012). 
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Figure 4-4 Flow chart for the generation of the proposed ensemble regression model 

4.2.1 Weight initialization for training clips 

First of all, we discuss the weight initialization of the training dataset. Many 

existing ensemble approaches (e.g. boosting algorithms) tend to initialize the weight of 

each training instance using an equal value. However, assigning appropriate weights 

has also been proved to increase the classification accuracy of the ensemble classifiers. 

For instance, Farid & Rahman (2013) assigned different weights for training instances 
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based on the highest posterior probability generated by a Naive Bayes classifier, and 

demonstrated higher classification accuracies than uniform weight initialization. 

 In this research, we initialize a weight for each training clip based on the Pearson 

correlation coefficient (CORR) of a multiple linear regression analysis against the 

ground truth. That is, once a training clip is assigned a weight, the weight will be shared 

by all instances (frames) contained in that clip. A multiple linear regression model 

(David, 2009) linearly approximates the relationship between a set of i explanatory 

variables (x1, x2, …, xi) and the dependent variable y, which can be represented by the 

following equation: 

𝑦𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + ⋯ + 𝛽𝑖𝑥𝑖𝑗                  (4-6) 

where 𝛽0 denotes a constant value, and 𝛽1 – 𝛽𝑖 are the coefficients of the explanatory 

variables. Inspection of the training dataset shows that the clips with higher weights 

(CORR) usually have greater agreement levels between annotators than others with 

lower weights. 

4.2.2 Base model generation 

Having initialized the weights for each training clip, the second step is to build a set 

of complementary and typical base models. In this research, the diversity and accuracy 

of each base model is achieved by manipulating the training data, i.e. we select a unique 

subset of training clips for the training of each base model. Specifically, in the first 

iteration, the base model is trained using a subset of clips that are initialized with higher 

weights and considered to be “more typical”, while in the following iterations, different 

subsets of clips that have higher regression errors in the valence and arousal space are 

selected to generate the corresponding base models. Thus, in each new iteration there 

are more “challenging clips” in the training subset.  

  As discussed earlier, in this research, we build two adaptive ensemble models, 

which respectively employ BPNN and SVR as their base regression models. BPNN and 
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SVR are chosen because they are among the most representative supervised algorithms 

for regression problems. Specifically, the former is a well-known adaptive algorithm 

(i.e. small changes in the training set may imply significantly different outputs), which 

is well suitable for ensemble learning models (Mendes-Moreira et al., 2012). The latter 

is usually regarded as a stable learning algorithm. However, it is sensitive to parameter 

and kernel function variations, and thus the model diversity can be also achieved 

through properly adjusting these parameters. Therefore, they are respectively employed 

for the construction of the two effective ensemble models for affective bodily behavior 

regression. 

4.2.3 Weight calculation and update 

The weight of each training clip is updated with the intention to increase the 

weights of those clips which are more challenging for affective dimensional regression 

in the valence and arousal space (i.e. with lower CORR). In order to update the weights 

appropriately, we firstly calculate the overall 𝐶𝑂𝑅𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙 for the original n training 

clips: 

𝐶𝑂𝑅𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
1

𝑛
∑ 𝐶𝑂𝑅𝑅𝑖

𝑛
𝑖=1                       (4-7) 

Then, the updated weights can be calculated as follows: 

𝑤𝑖,𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑤𝑖 ∗ (
1−𝐶𝑂𝑅𝑅𝑖

1−𝐶𝑂𝑅𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙
)                    (4-8) 

where wi is the original weight and wi, updated is the newly updated weight for clip i. Once 

the weights of all training clips are updated, the weights are normalized, so that their 

sum remains the same value as it was before. In this way, the weights of the instances 

that have higher regression accuracy are decreased while those of the instances that 

pose great challenges to affective dimensional regression are increased. 

Furthermore, after a base model is generated, a weight is also assigned to this base 

model based on its prediction performance on the original training set, i.e. the CORR of 

the predictions obtained by a base model against the ground truth is assigned to this 
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base model as its weight. Once the weights of the three base models are generated, then 

they are also normalized so that the sum equals to 1. 
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Figure 4-5 Flow chart for ensemble regression and automatic model updating 

By this stage, we have generated the proposed ensemble model. When dealing with 
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dimensional regression of continuous bodily expression data streams in the test stage, 

the results of the base models are used to calculate the weighted average composite 

regression result as the final output for the affective behavior regression. 

4.2.4 The adaptability of the ensemble regression model 

Figure 4-5 presents the detailed steps for the generated ensemble model to deal 

with newly arrived test clips and automatic model updating. When a new test clip 

arrives, the update procedure starts with generating a new base model using the latest 

training dataset plus this newly arrived clip. Then we not only assign a weight to the 

new base model but also update the weights of the original base models based on their 

performance on this newly updated training dataset. For consistency, the CORR is used 

again to measure the prediction performance of each base regressor. 

If the new base model has a higher weight than any of those existing models, then it 

is used to replace the minimum weighted base regressor. Thus, the new base model is 

added to the ensemble. Finally, the weights of the updated base models are normalized 

so that their sum remains ‘1’ (the same value as it was before). 

4.3 Evaluation and discussion 

In this section, we present the data collection, affective annotation and system 

evaluation for the proposed dimensional affect interpretation. 

4.3.1 Data collection and dimensional affective annotation 

First of all, we discuss whole-body expression data collection and affective 

annotation for evaluation. Since inappropriate fusion of annotations from multiple 

evaluators may significantly degrade the reliability and feasibility of an annotated 

corpus, we especially address the issue of continuous affective labelling and its 

follow-on problem of high inter-annotator disagreement. 
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4.3.1.1 Data collection of whole-body expressions 

For our current study, eleven participants, five female and six male, ranging from 

25 to 40 years old, were recruited for our bodily expression data collection. Most of 

them were postgraduate students and university lecturers, so that it is able to minimize 

the risks of inconsistent emotional expressions caused by differences between cultures, 

education backgrounds, and age groups, etc. Each participant was aroused to express 

various emotional states several times, and a total of 116 clips that contain more than 

50,000 valid frames were recorded (detailed in the rest of this section). The number of 

participants and sample size are adequate compared to existing research (e.g. Nicolaou 

et al., 2011; Metallinou et al., 2013). Moreover, five annotators participated in total, 

rating overlapping for each participants, so that each recording would be annotated by 

five people justly (detailed in Section 4.3.1.2). 

To ensure properly tracking participants’ whole-body expressions (i.e. the 20 major 

joints illustrated in Figure 4-1), all participants were asked to stand in front of the 

Kinect with the distance between participants and the Kinect controlled within the 

range of 3 (±0.5) meters, so that it was able to achieve the best skeletal tracking effect. 

Before starting the data collection process, all participants were briefly trained, which 

allowed them to be more familiar and comfortable with the Kinect sensor and 

laboratory conditions to enable them to perform body language in a more natural way. 

Moreover, in order to avoid stereotypical and strongly acted expressions, we employed 

more diverse and interactive methods to arouse emotional responses of participants, 

such as viewing tragic/comedic movie clips, telling jokes, and making improvised 

performances with each other, instead of directly guiding them to perform specific 

emotional bodily expressions. Thus, it is able to well reflect the variety and subtleness 

of natural bodily expressions in real-life scenarios (e.g. high/low arousal/valence). 

A total of 116 clips containing various emotional expressions was recorded 

(including both skeletal tracking data from the depth sensor and color video data from 



 

94 

 

the RGB camera). The time length of each clip varies between 10 and 20 seconds (i.e. 

between approximate 300 and 600 frames per clip, with 450 frames on average, thus a 

total of more than 50,000 frames were collected). Each clip starts from a natural state 

and includes one or a few emotional bodily expressions (see Figure 4-7). After 

examining the skeletal tracing data, 31 out of the 116 clips were found to be 

considerably noisy (mainly due to involuntary sideways poses of participants, which 

may lead to tracking performance degradation since a part of the body is not visible to 

the sensor), and thus were excluded from this research. Therefore, our final bodily 

expression corpus contains 85 emotional bodily expression clips in total. Our modelling 

of emotions is based on both static body form and dynamic motion features extracted 

from the skeletal tracking data. The color videos have been used for our data collection 

and annotation in this work. 

4.3.1.2 Continuous and dimensional affective annotation 

In this experiment, the ground truth of emotions is established based on the 

analysis of observers’ annotation rather than participants’ self-statements. Because 

firstly, the self-statement about feelings may not be always consistent with their 

emotional behaviors (Kleinsmith & Bianchi-Berthouze, 2013). Furthermore, our 

automatic recognition system is built to model the observer’s judgment rather the 

expresser. The building observer-based ground truth has been preliminarily addressed 

in several existing research applications. For example, Kleinsmith et al. (2011) 

measured agreement of annotators by iteratively comparing each pair of them. Meng et 

al. (2011) applied multi-labeling techniques that attempted to model the ranking of 

preferences instead of an absolute judgment, and thus can reduce the noise caused by a 

forced choice annotation approach. 

 However, the continuous and dimensional nature of the annotation task poses a 

great challenge in this research. It is difficult and not always possible to achieve 

high-level agreement between all participating annotators, even for expert annotators. 



 

95 

 

This is not only because it is considerably more difficult to achieve general agreement 

between annotators in rating the level of each affective dimension than discrete 

emotional categories, but also because continuous annotation itself requires more 

constant attention from observers. To address this issue, we present a systematic 

method to filter out noisy annotations and build reliable ground truth. The detailed 

method is presented as follows. 

 

Figure 4-6 Screenshot of the GTrace annotation tool 

The whole period of each clip is continuously annotated frame-by-frame by five 

annotators, most of whom had essential experience in affective annotation tasks. All of 

them had to pass a short training session before starting the annotation work, where the 

definitions of the arousal and valence dimensions were explained, and the GTrace 

labelling tool (Cowie & Sawey, 2011) was introduced briefly. GTrace has been widely 

applied to emotion database annotation tasks, and it allows annotators to create 

real-time continuous annotations of participants’ emotional states that appear to be 

changing over time (see Figure 4-6). The main interface of GTrace consists of video 

screen (top left), rating window (top right), and control panel (lower part of screen) 

which contains various selection options. Each annotator was first asked to view a 

number of clips to get an overall idea of our corpus, and then practice annotation with 
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the first clip multiple times so that they can get more acquainted with the GTrace tool. 

During the annotation process, annotators were required to concentrate on only one 

dimension each round and encouraged to perform annotation as many times as desired 

for each clip until they felt satisfied with their annotations for each dimension. In this 

way, we are able to minimize person-specific instability during the real-time annotation 

tasks. Having obtained the annotations from each annotator, we subsequently focus on 

how to establish reliable ground truth for each affective dimension using these 

annotations. 

 

Figure 4-7 An example of valence rating for one clip by five annotators and the final calculated 

ground truth (The two grey dotted lines represent noisy annotations with CORR < 0.4) 

We present an example segment of the valence annotations by the five annotators 

in Figure 4-7. The range of valence/arousal ratings is from -1 (the most 

negative/inactive) to +1 (the most positive/active) as mentioned above. As illustrated, 

the actual valence values from the five annotators could be different considerably at one 

time point. These differences are thought to be caused by inter-annotator variability (e.g. 

personal bias, annotation skill, and emotional state of annotators) and may typically 
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occur in dimensional affective annotation tasks. 

However, compared to the actual values, annotators tend to achieve higher-level 

agreement on the trends of the valence rating curves (i.e. general up-slope or 

down-slope). Such findings also hold truth for the arousal dimension and are consistent 

with previous research (e.g. Nicolaou et al., 2011; Metallinou et al., 2013). Thus, 

instead of using absolute values to evaluate the agreement levels between annotators, 

we determine to focus on the inter-annotator correlation, i.e. the Pearson correlation 

coefficient, to contribute to the ground truth generation. 

For each clip, we apply the following three steps to establish the ground truth for 

both valence and arousal: 

iv. We calculate the CORR for each pair of annotations, and then filter out the pair(s) 

with the CORR lower than a cutoff threshold (e.g. the two annotations show 

dramatic trend differences to each other as marked by the grey dotted lines shown 

in Figure 4-7). 

v. We calculate the mean value of each annotation, and then filter out the pair(s) with 

the difference of the mean values greater than a cutoff threshold. 

vi. Then the rest annotations are selected to compute the ground truth for the 

corresponding clip by taking the average of them. If there is no annotation left (i.e. 

all the five annotations are filtered out), that clip will be excluded from our corpora, 

as lacking essential inter-annotator agreement to establish the ground truth. 

The cutoff thresholds for the CORR and the mean value difference are respectively 

set to 0.4 (a standard for moderate correlations in statistics) and 0.5, empirically. In this 

way, we select 68 and 72 valid emotional clips (with acceptable inter-annotator 

agreement and well-founded ground truth) for the valence and arousal dimensions 

respectively, out of the 85 clips produced in the previous step in total. The rest of the 

unselected clips will be excluded from further analysis as they could be either 

incomplete or ambiguous for emotional expression. 
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Although effectively fusing multiple annotations and generating proper ground truth 

based on different annotators’ subjective judgments are challenging research problems 

(e.g. Audhkhasi & Narayanan (2013)), in this research, the use of the inter-annotator 

correlation and mean value difference metrics provides an effective solution for robust 

establishment of the underlying ground truth in continuous and dimensional annotation 

tasks. The presented method is able to effectively filter out potential noisy annotations 

(e.g. confusing or conflicting annotations with obvious trend differences or personal 

bias), and in the meanwhile it is more tolerant to non-noise value differences (e.g. 

different inter-annotator rating scales) that commonly exist in human affective 

annotation. 

4.3.2 Experimental results and discussion 

As mentioned earlier, a total of 72 (for arousal) and 68 (for valence) valid 

emotional clips from eleven participants is employed in our experiments, resulting in a 

rich corpus with around 45,000 samples (frames). All experiments are conducted 

following a leave-one-subject-out cross-validation scheme as it could be a more 

reliable evaluation method especially when the quantity of data/subjects is relatively 

limited. More specifically, we use the data of ten subjects for training, and the rest one 

for testing. This process is repeated 11 times (as we have eleven subjects in total), so 

that each subject can be tested in turn. The final cross-validation result is an average 

over these rounds. 

 In Table 4-2 and Table 4-3, we present the results of applying single regressors, i.e. 

BPNN and SVR, and the proposed ensemble models with BPNN and SVR as the base 

regressors respectively for the regression of arousal and valence dimensions using 

automatically selected features based on the GA optimization. The termination criteria 

of the GA optimization are that (1) the number of generations reaches 2000, or (2) the 

fitness value does not show obvious improvement during the last 50 generations. The 

best solution, i.e. the selected feature subset, is obtained when either termination 
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criterion is satisfied. Since the GA optimization is a stochastic method, we perform a 

number of trials to find the most discriminative feature subset. Empirically, the GA is 

able to achieve convergence within 1000-1500 generations in most trials, and the 

number of selected features ranges between 25 and 40. The detailed results of each trial 

are presented in the first five rows of Table 4-2 and Table 4-3. We also perform three 

additional trials using manually devised features, i.e. either full set of static or dynamic 

features, or the combination of them. The results are presented in the last three rows. 

First of all, as shown in experimental results, both BPNN-based and SVR-based 

ensemble models achieve consistently better performance than their corresponding 

single regressors for affective behavior regression in the arousal-valence space. More 

specifically, with the SVR-based ensemble models and the GA based feature 

optimization, we obtain the highest correlations with the ground truth (arousal: 

CORR=0.903, valence: CORR=0.815) and the lowest MSE values (arousal: 

MSE=0.057, valence: MSE=0.093) followed by the ensemble model with BPNNs as 

the base regressors which achieves comparable correlation (arousal: CORR=0.883, 

valence: CORR=0.811) and MSE (arousal: MSE=0.06, valence: MSE=0.105) values. 

These empirical findings indicate that the proposed adaptive ensemble models with the 

GA-based feature optimization are efficient and robust enough for challenging 

dimensional affect interpretation and regression tasks. 

It is also hypothesized in this thesis that static and dynamic bodily features may 

contribute distinctively to different affective dimensions. We examine how the different 

combinations of features perform for the affect behavior interpretation and regression 

for the arousal and valence dimensions. With respect to the arousal dimension, it is 

observed in Table 4-2 that, in all the five trials of the GA-based feature optimization, 

the feature combinations selected consist of roughly equal numbers of static and 

dynamic features. The best regression results for the arousal dimension (CORR=0.903, 

MSE=0.057) are obtained using the optimal feature set generated by the GA with 19 

static and 18 dynamic features and the SVR-based ensemble model. The best results of 
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the BPNN-based ensemble and other single regression models are also achieved by 

employing the same feature set. Moreover, the sole use of static or dynamic features is 

still able to achieve relatively promising results (see the sixth and seventh trials in Table 

4-2). These results suggest that both static and dynamic features play significant roles in 

the regression of the arousal dimension. 

Compared to arousal, however, for the valence dimension, the feature 

combinations leading to promising results consist of the vast majority of static and only 

few dynamic features. As shown in Table 4-3, the best regression performance for 

valence (CORR=0.815, MSE=0.093) is achieved using the optimized feature set 

generated by the GA with 23 static and 2 dynamic features and SVR-based ensemble. It 

is also noticed that, by using static features exclusively (see the seventh trial in Table 

4-3), we are also able to obtain relatively promising results. But on the contrary, the 

combination of entire sets of static and dynamic features does not provide any 

performance enhancement, although the results of solely using dynamic features show 

some basic positive correlations with the ground truth (see the sixth and eighth trials in 

Table 4-3). Inspection of clips with higher regression errors indicates that subjects with 

obviously different levels of valence can still have very similar patterns of bodily 

motion features in some cases (e.g. no matter if subjects are ecstatic or furious, they 

may unconsciously raise and shake their arms fiercely), and thus such dynamic features 

are considered to be less informative and may lead to confusion for the regression of 

valence. However, the role of dynamic features in valence prediction should not be 

dismissed entirely, as there is still great potential for further improvement by 

introducing more subtle and context-specific dynamic features. 

Moreover, by the comparison between Table 4-2 and Table 4-3, it indicates that the 

arousal dimension regression performance generally outperforms the valence 

dimension. This suggests that the bodily expressions could be a better indicator of the 

arousal dimension than valence. This result is also supported theoretically by Ekman & 

Friesen (1967), and largely consistent with recent research of continuous affect 
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Table 4-2 Regression performance for arousal using the GA-based feature optimization (the first five trials) and manually devised features (the last three trials) 

Trials. Number of selected 

static features 

Number of selected 

dynamic features 

BPNN SVR Ensemble (NN) Ensemble (SVR) 

CORR MSE CORR MSE CORR MSE CORR MSE 

1 18 16 0.778 0.076 0.845 0.069 0.856 0.068 0.885 0.064 

2 19 17 0.784 0.073 0.855 0.064 0.864 0.066 0.891 0.061 

3 17 19 0.795 0.072 0.864 0.062 0.871 0.063 0.902 0.061 

4 19 18 0.797 0.069 0.876 0.061 0.883 0.06 0.903 0.057 

5 18 22 0.778 0.076 0.845 0.069 0.856 0.068 0.885 0.062 

6 / 29 (entire set) 0.687 0.11 0.726 0.108 0.728 0.111 0.745 0.102 

7 25 (entire set) / 0.733 0.102 0.796 0.095 0.807 0.094 0.81 0.091 

8 25 (entire set) 29 (entire set) 0.776 0.077 0.845 0.072 0.853 0.069 0.882 0.067 
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Table 4-3 Regression performance for valence using the GA-based feature optimization (the first five trials) and manually devised features (the last three trials) 

Trials. Number of selected 

static features 

Number of selected 

dynamic features 

BPNN SVR Ensemble (NN) Ensemble (SVR) 

CORR MSE CORR MSE CORR MSE CORR MSE 

1 21 4 0.73 0128 0.783 0.11 0.803 0.105 0.809 0.102 

2 23 2 0.733 0.127 0.792 0.105 0.811 0.111 0.815 0.093 

3 22 3 0.726 0.13 0.769 0.106 0.783 0.123 0.791 0.111 

4 21 5 0.722 0.135 0.781 0.116 0.794 0.115 0.788 0.107 

5 20 6 0.727 0.141 0.762 0.121 0.788 0.119 0.793 0.102 

6 / 29 (entire set) 0.374 0.239 0.412 0.226 0.789 0.217 0.42 0.199 

7 25 (entire set) / 0.728 0.129 0.781 0.115 0.772 0.113 0.798 0.095 

8 25 (entire set) 29 (entire set) 0.719 0.131 0.766 0.117 0.767 0.104 0.78 0.112 
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modelling (e.g. Kleinsmith et al., 2011; Metallinou et al., 2013) which claimed bodily 

expressions tend to convey less information about valence in comparison with other 

affective dimensions. Furthermore, there is evidence that the valence dimension could 

be better reflected and recognized by other modalities, such as facial expressions 

(Kleinsmith & Bianchi-Berthouze, 2013). Thus, it could be quite promising to explore 

the fusion of whole-body expressions with facial expression detection, which will be 

detailed in Chapter 5. 

The proposed system has been also applied to real-time bodily affect regression 

tasks. The computational complexity of the skeletal tracking normally needs 10-15 

milliseconds. The feature extraction, selection and affect behavior ensemble regression 

require an averaged run time of 3-10 milliseconds (which may vary with different base 

models used). Overall, this system is able to perform efficiently and reach around 30fps 

on i7 quad-core CPUs with 16GB RAM. 

4.3.3 Comparison with state-of-the-art performance 

Furthermore, we compare the proposed system with other state-of-the-art 

developments. These methods (as listed in Table 4-4) are selected as the benchmarks 

because they produced state-of-the-art performance using similar bodily features for 

continuous and dimensional affect interpretation and regression, and presented their 

results through the same metric (i.e. the CORR). As shown in Table 4-4, as both 

Nicolaou et al. (2011) and Metallinou et al. (2013) applied various modalities and 

leaning models, we only use their best results for a more explicit comparison. 

In Nicolaou et al. (2011), the bodily features employed in their work only 

contained static shoulder points, which are much simpler compared to our feature sets. 

Their work also obtained a comparably promising result for valence (CORR=0.796). It 

could be attributed to the fact that they also employed other modalities (e.g. facial 

expressions) to incorporate with their bodily features, which are able to greatly boost 

the prediction performance for valence. Moreover, Metallinou et al. (2013) employed 
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full-body language features and Gaussian Mixture Model (GMM)-based approach to 

track continuous levels of valance, arousal and dominance in inter-personal interactions. 

Their system achieved a relatively lower performance (CORR=0.584 and 0.225, for 

arousal and valence, respectively). It may be attributed to inadequate features employed, 

e.g. the dynamic features they extracted were only concerned with velocity. Overall, in 

comparison with related research, our system consistently outperforms the above 

applications reported in the literature. The well-refined whole-body features and the 

proposed SVM-based adaptive ensemble model enable us to achieve the best regression 

performance for both arousal (CORR=0.903) and valence (CORR=0.815) dimensions. 

Overall, the above comparison further proves the effectiveness of our proposed system 

for continuous and dimensional affect regression. 

Table 4-4 Comparison with related research 

(SAL: SAL database (Douglas-Cowie et al., 2007), BLSTM-NN: Bidirectional Long Short-Term 

Memory neural network, LSTM: Long Short-Term Memory neural network, GMM: Gaussian 

Mixture Model) 

 Feature type Static 

(posture) 

/ Dynamic 

(motion) 

Learning 

Model 

Database/Number 

of sample used 

Performance 

(CORR) 

Arousal Valence 

Nicolaou 

et al., 

(2011) 

Shoulder 

point / facial 

/ audio 

features 

Static (with 

temporal 

information) 

SVR;  

BLSTM-NN 

SAL, 4 subjects, 

30,000 visual and 

60,000 audio 

samples 

0.642 0.796 

Metallinou 

et al., 

(2013) 

Body 

language / 

audio 

features 

Static & 

Dynamic 

(partially) 

LSTM-NN; 

GMM model 

Private dataset, 16 

subjects, 100 

recordings 

0.584 

 

0.225 

This work Whole-body 

expression 

features 

Static & 

Dynamic 

BPNN; SVR; 

Ensemble 

model 

Private dataset, 11 

subjects, 140 clips, 

45,000 samples 

(frames) 

0.903 0.815 
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4.4 Summary 

In this chapter, we shed light on the bodily modality and address the problem of 

continuous affective dimensional regression using whole-body expressions in an 

arousal-valence space. We systematically extract both users’ static posture and dynamic 

motion-based bodily features. The GA is subsequently applied to perform feature 

optimization to identify their optimal discriminative combination for the regression of 

each dimension. We also propose an adaptive ensemble regression model to robustly 

predict affective dimensions and map users’ affective states into an arousal-valence 

dimensional space. The proposed adaptive ensemble model employs the weighted 

average for regression and significantly outperforms other single model based methods, 

in terms of both regression accuracy (MSE) and correlation (CORR). It also shows 

good adaptation to newly arrived unseen bodily expressions.  

Our empirical findings also indicate that static and dynamic bodily features have 

distinctive contributions to different affective dimensions, especially to valence. 

Specifically, the combination of static posture and dynamic motion features achieves 

the best regression performance for arousal, whereas the static posture features seem to 

contribute more than dynamic features for the regression of valence. Also, arousal is 

generally better predicted than valence in this research, which is also consistent with 

both psychological literature (e.g. Ekman & Friesen, 1967) and other dimensional 

affect recognition research (e.g. Nicolaou et al., 2011; Metallinou et al., 2013). Overall, 

the proposed system with the SVM-based ensemble model outperforms existing 

research reported in the literature and achieves the best regression performance for both 

arousal with CORR=0.903 and MSE=0.057, and valence with CORR=0.815 and 

MSE=0.093 respectively with a promising real-time performance of 30fps. 
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Chapter 5 Fusion of facial and bodily modalities for 

enhancing dimensional affect interpretation 

In this chapter, we present a bimodal dimensional affect recognition system by 

incorporating affective information from both bodily and facial modalities. We propose 

a semi-feature level fusion framework that integrates users’ whole-body expression 

features with facial Action Unit intensities and demonstrate significantly improved 

regression prediction performance for dimensional affect interpretation. Section 5.1 

reviews the state-of-the-art developments in bimodal/multimodal emotion recognition. 

In Section 5.2, we present the detailed methodology of the proposed semi-feature level 

fusion. Experiments, evaluation and discussion are presented in Section 5.3. 

5.1 Review of state-of-the-art developments 

Automatic emotion recognition is a well-established and fast growing field, and 

there is an extensive literature available on emotion recognition from different 

modalities (or their combinations). It has been widely acknowledged that the use of 

multimodal information allows for a more complete emotional description and 

enables more accurate recognition results. Currently, the mainstream multimodal 

research has mostly focused on the recognition of facial and vocal expressions in 

terms of a small number of discrete emotion categories (e.g. Gunes et al., 2008; Gunes 

& Pantic, 2009; Cohn et al., 2009). For an extensive survey on multimodal emotion 

recognition research, readers may refer to Zeng et al. (2009).
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Table 5-1 Summary of multimodal and dimensional affect recognition systems (SAL: SAL database (Douglas-Cowie et al., 2007), BLSTM-NN: Bidirectional Long 

Short-Term Memory Neural Network, LSTM: Long Short-Term Memory Neural Network, BPNN: Backpropagation Neural Network, LDA: Linear Discriminant 

Analysis, SVM: Support Vector Machine, SVR: Support Vector Regression, GMM: Gaussian Mixture Model) 

System Modality/Feature 

type 

Database/Number of 

sample 

Learning/Classification 

model 

Fusion strategy Results 

Karpouzis et 

al. (2007) 

Various visual & 

acoustic features 

SAL, 4 subjects, 76 

passages 

Recurrent Network with 

4 class-outputs 

not reported Negative/positive/active/passive, 

67% recognition accuracy with vision, 73% with 

prosody, 82% after fusion 

Kim (2007) Speech & 

physiological 

signals 

Private database, 3 

subjects, 343 samples 

Modality-specific 

LDA-based classification 

Integration of feature 

and model-level fusion 

4 Arousal-Valence quadrants, 

55% for feature fusion, 52% for decision fusion, 

54% for hybrid fusion 

Nicolaou et 

al. (2010) 

Facial expression, 

shoulder gesture, 

audio cues 

SAL, 4 subjects, 30,000 

visual and 60,000 audio 

samples 

HMM and likelihood 

space via SVM 

Model-level fusion, 

likelihood space fusion 

Negative vs. positive valence (quantized), 

91.76% by facial expressions, 94% by modal 

fusion 

Nicolaou et 

al. (2011) 

Facial expression, 

shoulder gesture, 

audio cues 

SAL, 4 subjects, 30,000 

visual and 60,000 audio 

samples 

SVR and BLSTM-NN Feature/model-level, 

output-associative 

fusion 

Valence and arousal (continuous), best results: 

RMSE=0.15 and CORR=0.796 for valence; 

RMSE=0.21 and CORR=0.642 for arousal 

Metallinou 

et al. (2013) 

Body language and 

speech cues 

Private database, 16 

subjects, 100 recordings 

LSTM and GMM-based 

prediction 

Feature-level fusion Valence, arousal and dominance (continuous), 

CORR=0.584, 0.056, 0.337, respectively 

This work Facial and 

whole-body 

expressions  

Private database, 11 

subjects, 40,000 samples 

(frames) 

BPNN, SVR, and 

proposed ensemble 

models 

Semi-feature level 

fusion 

Valence and arousal (continuous), 

MSE= 0.077 and CORR= 0.886 for valence; 

MSE= 0.056 and CORR= 0.907 for arousal 
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It has been shown that in real-life interactions people tend to exhibit more subtle 

and complex emotional states rather than only a small number of basic discrete 

emotion categories acquired in laboratory settings. This poses a great challenge to the 

aforementioned systems which aim to describe users’ emotional state by single 

discrete labels. Thus, it is not surprising that a growing body of research has recently 

focused on dimensional affect recognition. For example, Karpouzis et al. (2007) 

employed a Simple Recurrent Network which lends itself well to modeling dynamic 

events in both users’ facial expressions and speech for the recognition of emotion in 

naturalistic video sequences. In their work, a quantized dimensional representation of 

users’ emotional states (i.e. activation and valence) was applied, instead of detecting 

discrete emotion categories. Kanluan et al. (2008) employed late fusion of facial 

expression and audio channels by using weighted linear combinations of their outputs 

respectively obtained by SVM for regression to estimate the valence, activation, and 

dominance dimensions (on a 5-point scale, for each dimension). 

Most recently, a few attempts have been proposed for actual continuous affective 

dimension regression (without quantization). For example, Nicolaou et al. (2011) 

employed three modalities including facial expression, shoulder gesture and vocal cues 

for continuous tracking of the valence and arousal affective dimensions. Metallinou et 

al. (2013) proposed a Gaussian Mixture Model-based approach to continuously predict 

levels of participants’ activation, valence and dominance during the course of affective 

dynamic interactions using body language and speech features. For a more clear 

comparison, in Table 5-1, we briefly summarize some state-of-the-art applications that 

employ multiple modalities to model and recognize affect in terms of affective 

dimensional space, together with our work presented in this chapter. Although some 

earlier applications listed in Table 5-1 (Karpouzis et al., 2007; Kim, 2007; Nicolaou et 

al., 2010) applied a discretized classification scheme rather than a continuous 

dimensional space, we still include them as they are relevant to this study. 

In comparison to the existing work listed in Table 5-1, our research presents the 
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first semi-feature level fusion framework in the literature that effectively combines 

users’ whole-body features and facial Action Unit intensities to improve prediction 

performance for affective dimensions. The detailed fusion method is presented in the 

following. 

5.2 Modality fusion strategy for dimensional affect 

interpretation 

As illustrated in Figure 5-1, the proposed semi-feature level fusion is realized by 

concatenating the derived AU intensities (as discussed in Section 3.2) and the optimal 

discriminative bodily features (as discussed in Section 4.1) into a new feature vector 

which is subsequently employed as inputs to affective dimensional regressors. A 

feature normalization procedure is also performed, in which each attribute is linearly 

scaled to the range of [0; +1]. The adaptive ensemble regression model proposed in 

Section 4.2 is employed for our bimodal affective interpretation as it outperforms the 

two other benchmark single models, i.e. BPNN and SVR. 

mRMR Based 

Feature Selection

GA Feature 

Optimization 

Facial 

Features

Bodily 

Features

Regression for

Valence/Arousal

Derived AUs with 

Intensities

Discriminative 

Bodily Features

Final  

Valence/Arousal 

Prediction

AU Intensity 

Estimation

 

Figure 5-1 The proposed semi-feature level fusion framework 

Our motivation is threefold. Firstly, there is strong psychological evidence (e.g. 

Ekman & Friesen, 1967; Ekman & Friesen, 1983) indicating that the bodily 

expressions could be a better indicator of the arousal dimension, whereas some facial 

actions convey rich information of the valence dimension (e.g. the occurrence of AU1 

Inner Brow Raiser usually indicates a ‘sad’ emotion, whereas AU12 Lip Corner Puller 
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normally occurs with ‘happiness’). Thus, their combination is able to contribute more 

complementary information for dimensional affect prediction. 

Secondly, in this chapter we focus on dimensional interpretation of affect. Because 

in such an approach, even complex/blended emotion expressions and subtle emotion 

transitions can be captured and represented properly using continuous scale of different 

dimensions, which could be too difficult to deal with through the categorical approach. 

Most importantly, although it remains largely unclear how humans achieve 

effective fusion of multimodal affective signals for a final decision, recent literature 

(Stein & Meredith, 1993; Zeng et al., 2009) was more supportive of early stage fusion 

(e.g. feature-level fusion) rather than late stage fusion (e.g. decision-level fusion), 

because the feature-level fusion is able to catch more information and relations of 

different modalities to inform affect interpretation. However, it is difficult to directly 

combine features from different modalities with various metrics, dimensionalities and 

temporal structures. Thus, we propose the semi-feature level fusion that appropriately 

integrates the derived AU intensities with GA-optimized discriminative bodily features 

for dimensional affective interpretation, which is evaluated in the following section. 

5.3 Evaluation and discussion 

Our established corpus (as discussed in Chapter 4) with 85 emotional clips across 

eleven subjects used for the previous bodily affect recognition is employed for the 

evaluation of the proposed bimodal affect recognition with semi-feature level fusion. 

We select a total of 60 (for arousal) and 58 (for valence) valid emotional clips out of the 

85 clips that has both effective skeleton and facial landmark tracking data for our 

experiments. We also follow a leave-one-subject-out cross-validation scheme, i.e. the 

data of ten subjects are used for training and the rest one for testing, and each subject is 

tested in turn. The final result is an average over these rounds. As mentioned earlier, the 

merged feature vector consists of the derived AU intensities and the most 
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discriminative bodily features. The AU intensities are obtained from the SVR-based 

AU intensity regressors which are pre-trained with database images, whereas the 

bodily features are selected based on the GA optimization. 

In Table 5-2, we present the experimental results of applying the ensemble 

regression models with BPNNs and SVRs as the base regressors respectively for 

arousal and valence dimensions using the merged feature vector by semi-feature level 

fusion. As shown in Table 5-2, the fusion of facial and bodily modalities provides 

obvious performance enhancement for both arousal and valence dimensions. Especially 

for valence, integrating facial AU intensity information appears to perform much better 

than solely using bodily features in terms of both MSE (0.077 vs. 0.093) and CORR 

(0.886 vs. 0.815). These results are theoretically consistent with psychological research 

(e.g. Ekman & Friesen, 1967; Ekman & Friesen, 1983) which hypothesizes that facial 

expressions communicate rich and explicit affective information of the valence 

dimension (e.g. happiness and sadness). These results demonstrate that the proposed 

semi-feature level fusion framework provides an effective solution for facial and bodily 

modality fusion, and achieves very promising performance improvements.  

Table 5-2 Experimental results of the proposed semi-feature level fusion for arousal and valence   

 

Modality  

Ensemble (NN) Ensemble (SVR) 

CORR MSE CORR MSE 

Arousal 

Bodily 0.883 0.06 0.903 0.057 

Bimodal 0.889 0.058 0.907 0.056 

Valence 

Bodily 0.811 0.111 0.815 0.093 

Bimodal 0.872 0.083 0.886 0.077 

5.4 Summary 

In this chapter, we propose a semi-feature level fusion framework that 

incorporates affective information of both the facial and bodily modalities to draw a 
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more reliable interpretation of users’ emotional states. Experimental results show that 

the proposed adaptive ensemble regression model achieves remarkable performance 

improvements for the regression of both the arousal and valence dimensions by 

combining the optimal discriminative bodily features and the derived AU intensities 

as inputs, in comparison to solely applying the bodily features.  
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Chapter 6 Conclusion and future work 

In this research, we focused on automatic affect recognition based on facial and 

bodily modalities. In this chapter we summarize the principle contributions arising 

from our work and then identify potential future directions. 

6.1 Summary of contributions 

A number of core contributions have been raised in the research presented in this 

thesis. First of all, we proposed two different types of adaptive ensemble models (i.e. 

ensemble classification with novel emotion class detection and ensemble regression 

with adaptability to newly arrived unseen patterns), which are respectively tailored to 

discrete facial expression recognition and continuous dimensional bodily emotion 

regression tasks. We also made efforts in the stage of feature extraction and selection. 

An mRMR-based method and the GA optimization are employed for automatic feature 

selection from facial and bodily expressions respectively. The empirical findings 

indicate that these feature selection processes benefit the subsequent emotion 

recognition and regression significantly. Furthermore, a semi-feature level fusion 

framework has been also proposed to effectively integrate affective information from 

both the facial and bodily modalities for a more reliable and comprehensive emotion 

interpretation. We discuss these contributions in more detail below. 

6.1.1 Facial action intensity regression and categorical emotion 

recognition 

For AU intensity estimation, we employed dynamic motion-based facial features 

(e.g. the elongation of mouth) rather than static features (e.g. the width of mouth) as in 

many previous literatures. The motion-based facial features are caused by underlying 

facial muscle movements and thus are relatively universal and subject-independent for 

the expression of the six basic emotions, whereas the static features could change a lot 
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between different subjects. These motion-based features were subsequently selected by 

using both manual and mRMR-based automatic methods, and then employed as inputs 

to 16 Neural Networks and Support Vector Regressors for AU intensity estimation, 

with each regressor dedicated to each diagnostic AUs. The mRMR-based automatic 

feature selection achieved comparable performance in comparison to the manually 

well-devised features. 

We also proposed a set of six adaptive ensemble classifiers to differentiate 

between the six basic emotions and identify newly arrived unseen novel emotions using 

the derived AU intensities. Each ensemble classifier employs a special type of Neural 

Network, i.e. Complementary Neural Network, as the base classifier, which is able to 

provide uncertainty measure of its classification performance. The uncertainty 

measures and a distance-based clustering are used to inform the arrival of novel unseen 

emotion classes. Both off-line and on-line evaluation results demonstrated that the 

ensemble classifiers have great robustness and flexibility for not only the recognition of 

six basic emotions but also the detection of newly arrived unseen novel emotions. 

6.1.2 Dimensional emotion regression based on whole-body 

expressions 

In order to robustly map subjects’ affective bodily expressions onto a valence–

arousal space, we systematically extracted both static and dynamic whole-body 

features and applied the GA optimization to conduct feature selection and identify their 

optimal discriminative combinations for the regression of each affective dimensions. 

We also proposed an ensemble regression model with great adaptability for the 

regression of each dimension, which also employs a stand-by regressor to better deal 

with newly arrived unseen bodily expressions and novel subjects. Our empirical 

findings first proved that static and dynamic bodily features have distinctive 

contributions to different dimensions, e.g. static posture features seem to contribute 

more significantly than dynamic features for the valence dimension. 
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Moreover, the high level of disagreement between different annotators is 

inherently a problem of continuous and dimensional affective annotation. We also 

presented a novel annotation method that takes consideration of both the correlation 

between different annotators and the personal bias metrics to build reliable ground truth 

for system evaluation. 

6.1.3 Bimodal emotion regression using semi-feature level fusion 

There is recently a shift of focus from discrete and unimodal emotion recognition 

to continuous and multimodal recognition, as the latter is more flexible and reliable for 

the interpretation of spontaneous emotions in real-life scenarios. Thus, we also 

proposed a bimodal dimensional affect recognition system by semi-feature level fusion 

of facial and bodily modalities and achieved significantly performance improvements 

for the regression of both arousal and valence. To the best of our knowledge, this is the 

first attempt to combine AU intensities and whole-body features for automatic affect 

recognition, and overcomes the inherent shortcomings of conventional feature and 

decision-level fusion. 

6.2 Future work 

In this section, we identify the following several potential directions for further 

work. First of all, although we have employed different public databases and privately 

collected data for system evaluation, these data are all recorded under laboratory 

conditions. As pointed out by Kleinsmith & Bianchi-Berthouze (2013), a more 

naturalistic and extensive corpus with various subjects and challenging spontaneous 

affective expressions could better reflect the system performance. Thus, we will 

further validate the system’s performance in more challenging real-life interaction 

scenarios, since in spontaneous emotional expressions, both AUs and bodily 

expressions usually occur with relatively lower intensities in more subtle combinations 

comparing to the posed ones. Besides, by using an extensive database (i.e. with a larger 
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number of subjects or labeled in a richer affective space with other dimensions, such as 

dominance and expectation), the proposed arousal-valence dimensional emotion 

recognition framework can be easily extended to other dimensions, and we can also 

further explore the correlations between those different affective dimensions. 

Furthermore, literature indicates that, in some cases, the performance of ensembles 

could be potentially boosted by combining different types of base learning algorithms 

in one ensemble (Mendes-Moreira et al., 2012). Thus, it shows potential to further 

improve the proposed adaptive ensemble models by exploring such combinations of 

diverse base models. Moreover, although the GA-based feature selection shows 

advantages compared to other deterministic algorithms, in the future it would be further 

improved in various ways, such as exploring more suitable genetic operators or gene 

rearrangement algorithm for chromosomal encoding. Besides, further tuning of genetic 

parameters, such as analyzing the effect of different population sizes may also leave 

some room for further improvement. 

Finally, the proposed adaptive ensemble emotion recognition systems could be 

integrated in various real-life applications and the benefits are evident in many areas 

of society, such as security surveillance, health care, interactive entertainment, and 

education. For example, students may lose motivation and efficiency when high levels 

of negative emotional states such as anxiety, frustration, and fear of failure are 

experienced (Kapoor et al., 2007). A computer-assisted learning system is able to read 

affective states of students from their facial expression and body language and react 

appropriately (e.g. adjust course difficulty and teaching speed) in an effort to help 

students maintain adequate motivation and efficiency. We believe that in the near future, 

the proposed systems may play an important role in our daily life. 
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