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ABSTRACT  

Background: Impulse oscillometry (IOS) has previously been proposed to provide greater 

sensitivity than spirometry when employed with indirect bronchoprovocation testing for the 

diagnosis of airway dysfunction in athletes. However, this recommendation is based on a highly 

selected population of symptomatic patients. Objective: To compare IOS, spirometry and 

respiratory symptoms following indirect bronchoprovocation in a screened cohort of athletes. 

Methods: One hundred and one recreational athletes were recruited. Respiratory symptoms 

were assessed via the Dyspnoea-12 questionnaire. Spirometry and IOS were performed pre-and 

post- a eucapnic voluntary hyperpnoea (EVH) challenge. Results: Ninety-four athletes 

completed the study. Sixteen athletes (17%) were positive for airway dysfunction based on 

spirometry (i.e. ≥10% fall in FEV1) and seventeen athletes (18%) based on IOS (i.e. ≥50% 

increase in R5). Only nine athletes (10%) met both diagnostic thresholds. A poor relationship 

was observed between respiratory symptoms (i.e. Dyspnoea-12 score) and all spirometry and 

IOS variables. A direct relationship was observed between percentage change in R5 (r = 0.65), 

Z5 (r = 0.68), RF (r = 0.65), AX (r = 0.69) and the maximum fall in FEV1 (∆FEV1max) (P< 

0.001). A weak relationship was observed between R20 (r = 0.27), X5 (r = 0.37) and ∆FEV1max 

(P<0.01). Conclusion: Impulse oscillometry and spirometry do not concur precisely following 

indirect bronchoprovocation. However IOS detects additional cases of airway dysfunction in 

athletes and therefore may provide diagnostic value in this population. Further work is required 

to establish diagnostic thresholds and fully determine the place of IOS in screening athletes for 

airway dysfunction. 
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INTRODUCTION  

Airway dysfunction is prevalent in endurance athletes of all abilities (1, 2) and its detection is 

important in order to optimise respiratory health and athletic performance (3). In athletes, a 

variety of bronchoprovocation challenge tests have been recommended for the detection of 

airway dysfunction and/or to infer the presence of exercise-induced bronchoconstriction (4). 

However, regardless of the specific provocation methodology, the criteria employed to 

determine a ‘positive result’ is typically based on a change in airway function established by 

forced spirometry e.g. ≥10% reduction in forced expiratory volume in one second (FEV1) (5, 

6) .  

It is now accepted that a spirometric-based measurement can fail to detect the complex 

perturbations in airway function that can arise following a bronchoprovocation challenge (7) 

and in addition may be prone to influence from poor technique and respiratory muscle fatigue 

(8). Moreover, there appears to be a poor relationship between change in FEV1 following airway 

challenge and the presence of exertional symptoms in athletes (9). Therefore, the study and 

evaluation of other methods for assessing airway calibre and dynamic alterations in pulmonary 

function in this setting is required.   

Impulse oscillometry (IOS) is a non-effort dependent method of assessing airway function. 

Impulses generated by IOS are superimposed on tidal breathing and respiratory impedance is 

calculated by pressure and volume changes caused by impulses during the measurement. 

Respiratory impedance values are expressed over a range of impulse frequencies which can 

subsequently allow detection of the site of airway obstruction more precisely (10). In addition, 

IOS provides information regarding the elastic properties of the respiratory system.  

Impulse oscillometry has previously been utilised in athletic individuals to evaluate their airway 

function following bronchoprovocation (11, 12). Evans et al. (11) observed a change in airway 
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function following room temperature and cold air exercise challenges that would have 

otherwise remained undetected by spirometry. The conclusion from a series of studies (11-13) 

was that IOS yields greater sensitivity for detecting changes in airway function in athletes. 

These studies established diagnostic thresholds with one specific IOS parameter (i.e. ≥50% 

increase in respiratory resistance at 5 Hz) recommended as the most appropriate cut-off value 

when employed in conjunction with a EVH challenge (90% sensitivity; 80% specificity) to 

detect post-challenge airway obstruction (13).  

To date, the studies utilising IOS in athletes have been conducted in a highly selected population 

of symptomatic patients with a high pre-test probability of airway dysfunction. We therefore 

undertook this study with the aim of establishing the utility of IOS following indirect 

bronchoprovocation in a large cohort of recreational athletes screened for airway dysfunction. 

We compared the relationship between IOS and spirometry and utilised the described cut-offs 

to determine the prevalence of airway dysfunction. In addition, IOS and spirometry parameters 

were compared with respiratory symptoms. We selected eucapnic voluntary hyperpnoea (EVH) 

as the bronchoprovocation challenge since it is the test currently favoured by the International 

Olympic Committee-Medical Commission (IOC-MC) for diagnosing airway dysfunction in 

athletes (14).  
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METHODS 

Study population  

One hundred and one (male: n = 69) recreational athletes (mean ± SD: 6 ± 1 hours 

training/week) were recruited for this study. A variety of sporting disciplines were represented 

(endurance: n = 88; intermittent high-intensity: n = 9; strength: n = 4). All subjects were non-

smokers, and were free from respiratory, cardiovascular, metabolic and psychiatric disease, or 

any other significant medical condition except mild asthma. Twenty subjects had a prior 

physician diagnosis of clinical asthma; all were stable at time of study entry (i.e. no respiratory 

tract infection or change in medication for two weeks prior to inclusion) and all were prescribed 

short acting beta-2 agonist (SABA) with fourteen prescribed maintenance inhaled 

corticosteroid.  

Experimental design 

Subjects attended the laboratory on a single occasion to complete clinical assessment, 

pulmonary function measurements and a EVH challenge. Subjects were asked to refrain from 

strenuous exercise, caffeine and alcohol consumption on the day of testing. Subjects with 

asthma were asked to abstain from using short-acting inhaled beta-2 agonist and inhaled 

corticosteroids for 24 and 72 hrs, respectively, prior to the study. The study was approved by 

Northumbria University research ethics committee (Ethics ID: RE20-01-12590) and all subjects 

provided written informed consent for experimentation with human subjects.  

Clinical assessment  

Respiratory symptoms were determined via completion of the Dyspnoea-12 questionnaire (15). 

A sum of responses was calculated to determine the total score (scale range, 0 – 36; a high score 

indicating worse dyspnoea - mild: 1-12, moderate: 13-24, severe: 25-36). Subjects were 

classified as either asymptomatic (score: 0) or symptomatic (score: 1-36).  
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Pulmonary function measurement 

Spirometry 

Lung function was assessed by maximal forced flow-volume spirometry (MicroLoop ML3535; 

Cardinal Health, Basingstoke, UK) according to international guidelines (8), with established 

reference ranges employed (8).  

Impulse oscillometry 

Measures of respiratory impedance were obtained by impulse oscillometry (IOS) (MasterLab 

IOS System, Erich Jaeger Co., Wurzburg, Germany). In accordance with international 

recommendations (10) subjects performed 30 s of tidal breathing prior to maximal inspiration 

followed by passive expiration.  

Eucapnic voluntary hyperpnoea challenge 

A modified version of EVH was performed based on the protocol described previously (17, 

22). Briefly, subjects breathed a dry compressed gas mixture (21% O2, 5% CO2, balance N2) at 

a target ventilation rate equivalent to 85% (baseline FEV1 * 30) of their predicted maximal 

voluntary ventilation (MVV) for 6 min. Spirometry was performed at baseline and in duplicate 

at 3, 5, 7, 10 and 15-min post EVH.  Spirometric values within 5% were considered acceptable 

(8). Impulse oscillometry was performed pre and immediately post EVH.  A positive diagnosis 

of airway dysfunction was defined as a fall in FEV1 of ≥10% at two consecutive time points or 

≥50% increase in R5 post provocation. The maximum fall in FEV1 (∆FEV1max) was used for 

analysis.  

Statistical analysis 

Pulmonary function variables for airway dysfunction positive and negative subjects were 

compared using a two-way unpaired t-test. The relationship between spirometry and IOS 
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parameters were assessed using Pearson’s product-moment correlation coefficient (normally 

distributed data) (mean ± SD). A Spearman’s rank correlation was used to assess relationships 

between respiratory symptoms (i.e. Dyspnoea-12 score) and pulmonary function variables 

(median and range). Data was analysed using PASW Statistics 21 statistical software package 

(SPSS Inc., Version 21, Chicago, IL) and GraphPad Prism Version 5.0 (GraphPad Software, 

San Diego, California, USA). P<0.05 was considered statistically significant.  
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RESULTS 

Study population  

One hundred and one athletes consented to take part in the study. Seven athletes were excluded 

(n = 3; baseline airway obstruction and n = 4; unable to complete the EVH challenge). 

Consequently, ninety-four athletes (male: n = 64) completed the assessment (Table 1). 

Baseline pulmonary function  

All baseline pulmonary function measures were within normal predicted limits (Table 2). A 

direct relationship was observed between baseline FEV1, FVC and all IOS variables (P<0.05), 

with the exception of X5 (P>0.05). Baseline FEV1/FVC displayed no relationship with any IOS 

parameter.  

Neither spirometry nor IOS parameters at baseline were predictive of the ΔFEV1max (P>0.05). 

Likewise baseline spirometry did not differentiate between airway dysfunction positive and 

negative athletes, however resting X5 was lower (P<0.01) and AX was higher (P<0.05) in airway 

dysfunction positive (i.e. ≥10% fall in FEV1) compared to negative athletes respectively.  

Clinical assessment 

Exercise associated respiratory symptoms (e.g. cough, wheeze, dyspnoea etc.) were reported 

by forty-five athletes (48%) (mild: 91%; moderate: 9%). Nineteen athletes (95%) with a prior 

diagnosis of asthma were symptomatic (mild:  85%; moderate: 15%).  

A poor relationship was observed between respiratory symptoms (i.e. Dyspnoea-12 score) and 

∆FEV1max (r = 0.12) and all post challenge IOS parameters; R20 (r = 0.18), X5 (r = 0.08), RF (r 

= 0.18), AX (r = 0.14) (P>0.05), R5 (r = 0.26), Z5 (r = 0.25) (P<0.05) (Figure 1). However, those 

with a positive diagnosis of airway dysfunction based on ΔFEV1max were more likely to be 

symptomatic (75%) in comparison to IOS cut-off values (65%) (Figure 2).  



9 
 

Airway response to eucapnic voluntary hyperpnoea 

The EVH target ventilation was calculated as 121.0 ± 23.9 L.min-1.  The achieved ventilation 

rate was 101.0 ± 27.8 L.min-1 (range: 42.9 – 155.1 L.min-1) (predicted: 83.2 ± 35.4%). Eighty-

seven athletes (93%) met their target ventilation (i.e. minute ventilation ≥60% MVV) thus 

achieving test validation (16). When the athletes who failed to achieve their target ventilation 

were excluded from the analysis (n = 7), the relationship between ∆FEV1max and IOS variables 

remained similar (data not shown). 

Sixteen athletes (17%) were positive for airway dysfunction based on spirometric assessment 

(ΔFEV1 max = -18.9 ± 10.7%). Only seven athletes with a prior diagnosis of asthma had a 

positive EVH result (i.e. ≥10% fall in FEV1). When based on an IOS cut-off (i.e. ≥50% increase 

in R5), seventeen athletes (18%) had evidence of airway dysfunction. Therefore when based on 

either FEV1 or R5 cut-off values, twenty-four athletes (26%) had evidence of airway 

dysfunction. However, only nine athletes (10%) were diagnosed with airway dysfunction based 

on both diagnostic thresholds (i.e. FEV1 and R5 cut-off values did not identify the same 

patients). Post-EVH values for all IOS values were higher for athletes with airway dysfunction 

(P<0.01) (Table 3). 

Spirometry vs. Impulse oscillometry 

A direct relationship was observed between percentage change in R5 (r = 0.65), Z5 (r = 0.68), 

RF (r = 0.65), AX (r = 0.69) and ∆FEV1max (P<0.001). A weak relationship was observed 

between change in R20 (r = 0.27), X5 (r = 0.37) and ∆FEV1max, respectively (P<0.01) (Figure 

3). When the athletes whose ∆FEV1max ≥25% were excluded from the analysis (n = 2), the 

relationship between ∆FEV1max and IOS variable remained similar (data not shown). 

Moreover, in athletes who were not previously prescribed ICS (n = 80), the relationships 
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remained unchanged; R5 (r = 0.67), Z5 (r = 0.68), RF (r = 0.69), AX (r = 0.68) and ∆FEV1max, 

respectively (P<0.001) and R20 (r = 0.34), X5 (r = 0.31) and ∆FEV1max (P<0.01).  
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DISCUSSION  

The accurate detection of airway dysfunction is important in order to optimise the health and 

performance of athletes. The present study indicates that the application of IOS in conjunction 

with an indirect bronchoprovocation challenge identifies abnormalities in airway function that 

would otherwise have remained undetected if only spirometry was performed. This finding has 

important implications for the utility of IOS in clinical practice and its potential application as 

a non-volitional means for identifying bronchoconstriction in athletes.   

The prevalence of airway dysfunction in our cohort of recreational athletes when utilising a 

spirometric cut-off value (i.e. ≥10% fall in FEV1) was 17% and similar to previous work in a 

comparable population (>13%) (17). Similarly, when employing a previously published IOS 

cut-off value (i.e. ≥50% increase in R5) (13) a prevalence of 18% was observed. However 

importantly, only 10% of athletes met both diagnostic thresholds. Indeed only moderate 

correlations were observed between change in R5, Z5, RF and AX and weak correlations between 

R20 and X5 and ∆FEV1max respectively. This discrepancy in diagnostic methodologies 

highlights a potential for misdiagnosis of both athletes with and without airway dysfunction. 

Indeed the implications of over and under-diagnosis of airway dysfunction have previously 

been raised in elite level athletes (18).  

In agreement with previous findings (11, 12), neither resting spirometry nor IOS correlated 

with ∆FEV1max; supporting the recommendation that bronchoprovocation testing is required 

to confirm a diagnosis of airway dysfunction in athletes (19). However, interestingly we found 

significantly lower resting X5 and higher resting AX values in athletes with airway dysfunction. 

Whilst speculative, this may imply that patients with airway dysfunction have more rigid 

airways which might contribute to low-grade airway remodelling as a consequence of airway 

injury (20).  



12 
 

The present study highlights a similar relationship between IOS and spirometry following 

indirect bronchoprovocation as described previously (11, 12). However a number of important 

differences between studies should be acknowledged. In contrast to our screened cohort of 

athletes, Evans and colleagues (11, 12) only recruited subjects with “probable EIB” as 

determined by a “maximal fall of ≥7% in FEV1” following EVH, with variability in severity of 

bronchoconstriction not considered. Indeed 64% of their cohort had a previous physician 

diagnosis of asthma, with all subjects reporting symptoms suggestive of airway dysfunction 

during and post exercise. In addition, peak percentage change in FEF50 was the principal 

variable shown to correlate with resistance of the airways determined by IOS. However, the 

use of mid-expiratory flow has been previously highlighted as insufficiently sensitive to 

diagnose airway dysfunction reliably in athletic populations (21).  

Although Rundell et al. (13) reported strong correlations between IOS variables (resistance and 

reactance) and ∆FEV1max following EVH, the study consisted of only twenty subjects with (n 

= 10) and without (n = 10) a previous diagnosis of airway hyper-responsiveness (AHR). In 

addition, the average reduction in lung function following EVH for individuals with a positive 

diagnosis was significantly greater (30.6%) i.e. moderate severity in contrast to only mild 

severity (18.9%) in the present study. More specifically, 30% of athletes in the study by Rundell 

et al. were classified as having moderate to severe airway dysfunction whereas the majority of 

positive athletes (88%) in the current study were classified as only mild airway dysfunction 

(i.e. ≥10 - <25% FEV1). In addition, a mean fall of 4.5% in FEV1 for negative athletes was 

observed which is comparable with prior literature (22).  

The diagnostic threshold recommended by the IOC-MC when employing EVH in athletes is 

currently ≥10% reduction in FEV1 post challenge (14). However, it has been argued that this 

cut-off value may not provide optimum diagnostic accuracy (5) with poor short-term test re-

test reproducibility recently observed (23). Interestingly, when employing a 15% reduction in 
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FEV1 as the diagnostic cut-off in the present study, IOS detected 88% of positive athletes. 

Moreover, when a 20% reduction in FEV1 was employed IOS detected 100% of positive 

athletes (i.e. spirometry and IOS detected the same patients). The possibility that the 

relationship between IOS and spirometry improves as the severity of airway dysfunction 

increases is therefore consistent with our findings and previous research (13). In addition, this 

observation suggests that performing a solitary IOS measure immediately post provocation in 

athletes with greater severity bronchoconstriction (i.e. ≥15% fall in FEV1) accurately detects 

airway dysfunction. This finding supports the concept that IOS may provide greater sensitivity 

when employed with an indirect bronchoprovocation challenge (11, 12).   

Although we have shown that IOS does not concur precisely with spirometry in identifying 

athletes with mild airway dysfunction, the application of IOS appears to identify additional 

individuals with an underlying airway abnormality. Therefore whilst our findings do not 

support the sole use of IOS in diagnosing airway dysfunction, they do provide a strong 

argument for IOS as an adjunctive tool. In addition, the utility of IOS in populations unable to 

perform forced breathing manoeuvres (i.e. paediatric populations) (24, 25) or in providing a 

common differential diagnosis, such as exercise-induced laryngeal obstruction, should not be 

overlooked (26).   

No clear relationship was found between respiratory symptoms and presence of airway 

dysfunction as detected by changes in either spirometry or IOS. Although this is a common 

observation in studies that have employed spirometry to objectively assess airway dysfunction 

(27), this is the first study to evaluate respiratory symptoms against changes in IOS in athletes. 

The discrepancy observed may be in part explained by the general perception of breathing 

discomfort when approaching maximal exercise (5). This finding provides further evidence for 

the poor prognostic value of respiratory symptoms in athletes (27).  
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In order to differentiate between ‘normal’ exertional breathlessness associated with increasing 

exercise intensity and abnormal respiratory symptoms suggestive of airway dysfunction, recent 

studies have focussed on the ‘perception’ of symptoms in athletes and non-athletes following 

indirect bronchoprovocation (i.e. EVH and methacholine). However only minor differences in 

perception of bronchoconstriction-related symptoms were observed between groups (9). The 

explanation between the presence of classic airway-centric symptoms (i.e. chest tightness) 

suggestive of airway dysfunction and physiological airway changes (i.e. increased work of 

breathing) in athletic populations therefore remains to be determined and warrants further work.  

Methodological considerations/future research  

At present there is no specific guidance in the relevant Respiratory Society statements (4) 

regarding the optimum protocol when utilising IOS for the diagnosis of airway dysfunction in 

athletes. Our findings highlight that IOS may detect airway dysfunction from a solitary 

measurement post challenge in athletes with moderate to severe airway dysfunction. Therefore 

whilst future studies may wish to provide a direct comparison between IOS and spirometry at 

several time points post EVH, it is more appropriate to establish diagnostic thresholds based on 

the mean plus two or three standard deviations of the response in healthy subjects (28). Future 

studies should therefore apply this principle to IOS in conjunction with the traditional indirect 

bronchoprovocation measures in order to be able to establish cut-off values to be employed in 

clinical practice. 

Conclusion 

In conclusion, in a large screened cohort of athletes, we have demonstrated that although IOS 

does not concur precisely with spirometry, it does detect additional athletes with evidence of 

airway dysfunction. This highlights the potential utility of IOS as a supplementary measure in 

detecting airway dysfunction in athletes. Furthermore our findings emphasise the poor 
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relationship between respiratory symptoms and objective testing. Future work is required to 

establish diagnostic thresholds in order to determine the role and overall utility of IOS in 

detecting athletes for airway dysfunction.  
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TABLE HEADINGS 
 
 
Table 1. Subject clinical characteristics. 
 
Definitions of abbreviations: BMI, body mass index. 
 
 
 

Table 2. Baseline pulmonary function. 

Definitions of abbreviations: FEV1, Forced expiratory volume in 1-s; FVC, Forced vital 
capacity; R5, Resistance at 5 Hz; R20, Resistance at 20 Hz; X5, Reactance at 5Hz; Z5, Magnitude 
of impedance at 5 Hz; RF, Resonance frequency, AX, Area of reactance (area integrated from 
5Hz to RF). 
 
 
 
Table 3. Impulse oscillometry values post eucapnic voluntary hyperpnoea. 
 
Definitions of abbreviations: R5, Resistance at 5 Hz; R20, Resistance at 20 Hz; X5, Reactance 
at 5Hz; Z5, Magnitude of impedance at 5 Hz; RF, Resonance frequency, AX, Area of reactance 
(area integrated from 5Hz to RF). 
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Table 1.  
 
 
 

Variables  

Sex (M:F)  64 : 30 

Age (years)  32 ± 9 

Height (cm)  174.2 ± 8.8 

Weight (kg)  73.7 ± 12.6 

BMI (kgm-2)  24.2 ± 3.0 

Training (hrswk-1)  6 ± 1 

Data presented as Mean ± SD 
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Table 2.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data presented as Mean ± SD. *P<0.05; ** (P<0.01) denotes difference between 
airway dysfunction negative and positive athletes. Note: positive athletes 
determined based on current guidelines (i.e. ∆FEV1max).  

 
  

Variables Airway dysfunction 

 Negative   Positive 

FEV1 (L)  4.02 ± 0.81  4.12 ± 0.74 

FEV1 (% predicted)  105.1 ± 9.5   101.0 ± 9.5 

FVC (L)  4.89 ± 0.95  5.19 ± 0.85 

FVC (% predicted)  108.3 ±  11.1  106.7 ± 10.2 

FEV1/FVC (%)  82.2 ± 5.6  79.5 ± 7.5 

R5 (kPaL-1s-1)          0.24 ± 0.06          0.27 ± 0.07 

R20 (kPaL-1s-1)    0.22 ± 0.06          0.24 ± 0.05 

X5 (kPaL-1s-1)         -0.08 ± 0.05         -0.14 ± 0.12** 

Z5 (kPaL-1s-1)          0.26 ± 0.06          0.29 ± 0.08 

RF (Hz)        10.57 ± 2.76        11.62 ± 3.16 

AX (Hz. kPaL-1s-1)          0.21 ± 0.14          0.34 ± 0.32* 
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Table 3.  
 
 

 

 
 
 
 
 
 

Data presented as Mean ± SD. ** (P<0.01) denotes difference between 
airway dysfunction negative and positive athletes. 

  

Variables Airway dysfunction 

 Negative Positive 

R5 (kPaL-1s-1)  0.30 ± 0.09   0.43 ± 0.14** 

R20 (kPaL-1s-1)  0.25 ± 0.06   0.30 ± 0.07** 

X5 (kPaL-1s-1) -0.09 ± 0.04  -0.14 ± 0.10** 

Z5 (kPaL-1s-1)   0.32 ± 0.09   0.46 ± 0.16** 

RF (Hz) 13.20 ± 3.86 20.36 ± 6.94** 

AX (Hz. kPaL-1s-1)   0.37 ± 0.31   1.32 ± 1.09** 



24 
 

FIGURE LEGENDS  
 

Figure 1. Relationship between Dyspnoea-12 score and (a) maximum fall in FEV1; (b) 

resistance at 5Hz post eucapnic voluntary hyperpnoea.  

 

 

Figure 2. Venn diagram depicting the association between respiratory symptoms and objective 

evidence of airway dysfunction.  

 

 

Figure 3.  Resistance at 5 Hz (a); Resistance at 20 Hz (b); Reactance at 5Hz (c); Magnitude of 

impedance at 5 Hz (d); Resonance frequency (e), Area of reactance (f) vs. maximum fall in 

FEV1 post eucapnic voluntary hyperpnoea. Broken vertical line represents abnormal lung 

function (i.e. ≥10% fall in FEV1). 
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Figure 1.  
 



26 
 

 
Figure 2. 
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Figure 3.  
 
 


