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a b s t  r  a c t

Many  networks  exhibit  small-world  properties.  The structure  of  a small-world  network  is characterized
by  short  average  path  lengths  and  high  clustering  coef“cients.  Few  graph  layout  methods  capture  this
structure  well  which  limits  their  effectiveness  and  the  utility  of  the  visualization  itself.  Here  we  present
an extension  to  our  novel  graphTPP layout  method  for  laying  out  small-world  networks  using  only  their
topological  properties  rather  than  their  node  attributes.  The Watts…Strogatz  model  is  used  to  generate
a variety  of  graphs  with  a small-world  network  structure.  Community  detection  algorithms  are used  to
generate  six  different  clusterings  of  the  data.  These clusterings,  the  adjacency  matrix  and  edgelist  are
loaded  into  graphTPP and,  through  user  interaction  combined  with  linear  projections  of  the  adjacency
matrix,  graphTPP is able  to  produce  a layout  which  visually  separates  these  clusters.  These layouts  are
ode  attributes
raph  visualization
argeted  projection  pursuit

compared  to  the  layouts  of  two  force-based  techniques.  graphTPP is able  to  clearly  separate  each of  the
communities  into  a spatially  distinct  area and  the  edge relationships  between  the  clusters  show  the
strength  of  their  relationship.  As a secondary  contribution,  an edge-grouping  algorithm  for  graphTPP is
demonstrated  as a means  to  reduce  visual  clutter  in  the  layout  and  reinforce  the  display  of  the  strength
of  the  relationship  between  two  communities.

ublis
©  2016  The Authors.  P

. Introduction

Small-world  networks  are a commonly  occurring  graph  struc-
ure  characterized  by  short  average  path  lengths  and  high
lustering  coef“cients  [1] . This  means  that  even  when  the  net-
ork  is large  there  are very  few  steps  between  each pair  of  nodes.
espite  their  prevalence  very  few  methods  are able  to  lay  them
ut  such  that  their  structure  is communicated  optimally  [2] . Exam-
les  of  networks  that  display  these  characteristics  in  the  real-world

nclude  social  networks  [3] , biological  networks  [4]  and  even  geo-
hysical  ones [5] .

The high  clustering  coef“cient  of  small-world  networks  pro-
ides  an interesting  problem  for  layout  particularly  as it  has been
hown  that  users  seek to  lay  out  graphs  such  that  their  clustered
tructure  is apparent  [6] . Thus, ensuring  that  the  clustered  struc-
ure  of  the  graph  is well  represented  in  the  layout  seems crucial

or  enhancing  users• understanding  of  the  graph  in  the  context  of
ts  clusters  and  the  relationships  between  them.  van  Ham  and  van

ijk  [7]  have  proposed  one  of  the  few  small-world  network  speci“c

� Corresponding  author.  Tel.:  +44  0114  225  6819;  fax:  +44  0114  225  6702.
E-mail  addresses: h.gibson@shu.ac.uk  (H.  Gibson),
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568-4946/©  2016  The Authors.  Published  by  Elsevier  B.V. This  is  an open  access article  u
hed  by  Elsevier  B.V. This  is  an open  access article  under  the  CC BY license
(http://creativecommons.org/licenses/by/4.0/ ).

layout  methods  while  Gibson  and  Faith  [8]  put  forward  a method
based on  node-attribute  data.

How  clusters  are represented  in  a graph  is extremely  impor-
tant  as the  human  perceptual  system  will  naturally  cause users  to
assume  that  there  is a relationship  between  nodes  that  are placed
close  together  [9] . For graphs  that  are highly  clustered  adhering  to
this  principle  when  laying  out  the  graph  is key  for  communicat-
ing  the  structure  of  the  network.  Generally,  force-directed  layouts
do  not  produce  an accurate  representation  of  small-world  network
structures.  This  is  because they  try  to  optimize  the  layout  to  have
uniform  edge lengths  but  longer  edge lengths  are usually  required
to  separate  clusters  [2] .

Force-directed  methods  such  as LinLog  (linear-logarithmic)
[2,10]  and  OpenOrd  (a successor  to  VxOrd)  [11]  do  try  to  optimize
for  clustering  based on  topology  while  there  are other  methods
that  use attributes  or  pre-computed  clusterings.  Muelder  and  Ma•s
treemap  [12]  and  space-“lling  [13]  approaches  use a pre-computed
clustering,  while  the  group-in-the-box  layout  [14]  can take  any  user
input  or  pre-computed  clustering.

graphTPP (graph  targeted  projection  pursuit)  [8]  is  a method,
encapsulated  in  an interactive  software  program,  that  has pre-

viously  been  used  for  the  layout  of  small-world  networks  using
node-attributes.  The graph  is laid  out,  assisted  by  direct  user  inter-
action,  according  to  the  speci“ed  clustering  resulting  in  a clear
visual  separation  of  the  clusters.  Here  we  propose  that  rather

nder  the  CC BY license  (http://creativecommons.org/licenses/by/4.0/ ).
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han  using  node-attributes,  the  adjacency  matrix  of  the  graph  can
eplace  the  multidimensional  matrix  of  attributes  and  by  signif-
cantly  increasing  the  size of  the  graph  (in  terms  of  the  number
f  nodes)  demonstrates  that  graphTPP is scalable  beyond  the  very
mall  examples  used  in  the  previous  work.

The paper  proceeds  as follows.  Section  2 discusses related  work
n  the  layout  of  small-world  networks.  Section  3 introduces  the
atts…Strogatz  model  that  is  used  for  computing  the  small-world

etworks  and  the  community  detection  algorithms  used  by  the  lay-
ut.  Section  4 presents  the  graphTPP layouts  of  the  small-world
etworks  for  both  one  and  two-dimensional  Watts…Strogatz  mod-
ls whilst  comparing  them  to  results  obtained  using  the  OpenOrd
nd  ForceAtlas  layout  algorithms.  It  also  introduces  an edge-
rouping  technique  for  reducing  visual  clutter  caused by  the  edges

n  the  graphTPP layout.  Section  5 discusses the  results  and  the  lim-
tations  of  this  work  while  also  recommending  directions  for  future
ork.  Section  6 then  concludes  the  paper.

This  research  shows  that  graphTPP outperforms  OpenOrd  [11]
nd  ForceAtlas  [15]  as a method  for  laying  out  small-world
etworks  where  the  aim  is to  optimize  the  layout  for  the  communi-

ies  detected  through  various  community  detection  algorithms.  The
ain  contribution  then  is the  demonstration  that  graphTPP can be a

iable  layout  method  even  when  there  is no  typical  node-attribute
ata  available  upon  which  to  base the  layout.

. Related  work

.1. Small-world  networks

Small-world  networks  are characterized  by  short  average  path
engths  (the  shortest  path  between  any  pair  of  nodes)  and  high
lustering  coef“cients  (e.g., in  social  networks  this  would  be the
umber  of  friends  a person  has who  are also  friends,  i.e., they
omplete  the  triangle).  The average  path  length  only  grows  loga-
ithmically  with  the  number  of  nodes,  while  there  are many  cliques
r  near  cliques.

One of  the  most  notable  examples  of  a small-world  network  is
rom  Milgram•s  [16]  six  degrees  of  separation  experiment  which
roposed  that  most  people  in  the  United  States at  that  time  were
eparated  by  only  six  people  in  a chain  of  friendship.  Recently,  Boldi
nd  Vigna  [17]  have  modelled  the  degree  of  separation  in  the  Face-
ook  graph  to  be only  3.74.  There  are multiple  other  examples  of
mall-world  networks  occurring  in  the  real-world  including  social
etworks  [3] , biological  networks  [4]  and  geophysical  networks  [5] .
lbert  and  Barabási  [4]  have  hypothesized  that  the  prevalence  of
etworks  in  biology  with  small-world  properties  is due  to  their

nherent  structural  advantages.
There  are a number  of  ways  to  model  a small-world  net-

ork,  the  most  popular  being  the  Watts…Strogatz  model  [1] . The
atts…Strogatz  model  requires  the  construction  of  a regular  ring

attice  followed  by  random  rewiring  of  the  edges according  to  a
ewiring  probability  p. This  produces  a graph  with  short  average
ath  lengths  and  a high  clustering  coef“cient;  however,  compared
o  real-world  small-world  graphs  the  degree  distribution  does not
end  to  be scale-free  (i.e., does not  follow  a power  law  distribution).
he Barabási-Albert  [4]  model  does produce  a scale-free  network
ut  it  does not  exhibit  the  clustering  properties  that  are integral

o  small-world  networks  and  essential  for  this  visualization  tech-
ique.

Given  that  small-world  networks  are such  a commonly  occur-
ing  graph  structure  it  is  surprising  that  little  attention  has been

aid  to  their  visualization.  Their  structural  properties  are not  well
uited  to  general  force-based  layout  methods  since  these  meth-
ds often  try  to  map  shortest  path  lengths  to  Euclidean  distances.
he short  average  path  lengths  possessed by  small-world  networks
Computing  42 (2016)  80…92 81

result  in  high  degree  nodes  being  placed  close  to  the  centre  of  the
graph  and  this  encourages  the  well-known  hairball-style  layout  to
form  (for  an example  in  this  paper  see Fig. 9(c)).  Further,  many
force-based  techniques  also  try  to  optimize  the  layout  according  to
certain  aesthetic  criteria.  One such  criterion  is uniformity  of  edge
length;  however,  long  edge lengths  are required  to  separate  clus-
ters  and  as such  the  force-style  layouts  do  not  well  represent  the
clusters  formed  by  the  small-world  network  [2] .

Ten years  have  passed since  Auber  et  al. [18]  commented  that
the  •the  structural  properties  of  small-world  networks  have  not
yet  been  fully  exploited  from  a visualization  perspectiveŽ  but  to  our
knowledge  still  very  few  techniques  exist  that  deal  speci“cally  with
layout  of  graphs  exhibiting  small-world  properties.  Auber  et  al.•s
[18]  multi-scale  small-world  layout  is  one  solution.  It  requires
decomposing  the  graph  in  a hierarchical  manner  by  rating  the
strength  of  each edge and  removing  the  so-called  •weaker•  ones.
This  helps  with  exploring  the  individual  clusters.

Other  small-world  network  layouts  include  van  Ham  and  van
Wijk•s  [7]  that  uses an adapted  version  of  Noack•s [2]  force-model
to  further  separate  the  clusters  while  van  Ham  and  Wattenberg
[19]  create  a sparse backbone  of  the  graph  by  removing  edges with
low  betweenness  centrality,  laying  out  the  graph  at  this  level  and
then  proceeding  to  add  edges back  in.  Topolayout  [20]  also  detects
small-world  features  while  HiMap  [21]  has adapted  Kamada  and
Kawai•s  [22]  algorithm  to  produce  clustered  layouts.

Recently,  Gibson  and  Faith  [8]  used  a projection  based technique
to  lay  out  small-world  networks  based on  node-attributes  aiming
to  produce  a clustered  layout.  Here  we  extend  that  technique  to  a
much  larger  class of  small-world  networks  and  no  longer  rely  on
the  node-attributes  but  instead  use the  topological  structure  of  the
graph  itself.

2.2. Graph layout

There  are many  hundreds  of  solutions  to  the  graph  layout
problem  each proposing  a different  method  to  highlight  different
features  of  the  graph.  While  force-based  techniques  are extremely
popular,  they  are generally  not  suitable  for  small-world  networks
for  the  reasons  detailed  above.  There  are, however,  a few  force-
based methods  that  try  to  optimize  for  clustering  and,  hence,  are
potential  candidates  for  the  layout  of  small-world  networks.

Noack•s [2,10]  LinLog  layouts  are one  such  example  and  they
have  been  applied  to  the  layout  of  small-world  networks.  The Lin-
Log technique  ignores  the  uniform  edge length  criterion  in  order
to  separate  clusters.  The name  derives  from  the  fact  that  the  model
has linear  attractive  forces  but  logarithmic  repulsive  forces.  Noack
has already  shown  that  the  method  can better  separate  a graph
into  clusters  compared  to  the  Fruchterman…Reingold  method  [23] .
OpenOrd  [11]  is  another  force-based  method  that  aims  to  encour-
age clustering  based on  the  simulated  annealing  algorithm.  It  is  a
multi-level  method  that  cuts  long  edges to  reduce  the  domination
of  the  repulsive  forces  which  improves  clustering.  It  is  a highly  scal-
able  algorithm  that  can lay  out  graphs  with  hundreds  of  thousands
of  nodes.

Similar  to  some  force-based  methods  are those  that  use
dimension  reduction.  Both  classical  and  distance  multidimensional
scaling  (MDS)  use the  dissimilarity  matrix  of  the  shortest  paths
between  node  pairs  to  generate  the  embedding  while  PivotMDS
[24]  is  a sampling  approximation  technique  to  classical  scaling
where  nodes  are positioned  according  to  the  positions  of  a subset
of  pivot  nodes.  High-dimensional  embedding  (HDE)  [25]  is  similar

to  PivotMDS  but  the  “nal  step  uses principal  component  analysis
to  project  the  layout  onto  2D  space.

Other  methods  that  make  use of  dimension  reduction  are
EdgeMaps  [26]  which  relies  on  node-attributes  and  an MDS
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rojection  for  the  layout  and  PEx-graph  [27]  which  can either  use
ttributes  or  the  graph•s  connectivity  for  layout.

Because small-world  networks  are inherently  clustered,  cluster-
ased layout  techniques  are also  appropriate.  Methods  such  as
roup-in-a-box  [14]  require  a clustering  to  be pre-de“ned  but  they

hen  place  each cluster  into  its  own  bounded  box  and  the  nodes
n  each box  (cluster)  can have  their  own  layout  applied.  Muelder
nd  Ma  also  proposed  treemap  [12]  and  space-“lling  approaches
13]  which  use community  detection  algorithms  to  pre-compute

 clustering  “rst  and  then  use the  communities  to  determine  the
ecomposition  into  the  treemap  or  the  order  of  placement  for  the
pace-“lling  method.

.3. Targeted projection  pursuit  and graphTPP

Targeted  projection  pursuit  (TPP) [28,29]  is  an open-source
xploratory,  visual,  interactive  dimension  reduction  technique

ncorporated  into  a piece  of  software,  known  as the  TPP tool,  that
rovides  a GUI front-end  that  presents  both  a real-time  visualiza-
ion  of  the  current  projection  and  the  ability  for  the  user  to  interact
ith  this  projection  directly. 2 The tool  itself  is  built  on  top  of  the
ata  mining  software  Weka  [30]  and  through  the  TPP tool  the  user  is
ble  to  explore  the  space of  possible  linear  projections  from  a high-
imensional  space onto  two  dimensions.  The technique  focuses  on
hree  areas:  “nding  a projection  that  groups  the  points  into  speci-
ed  clusters,  identifying  the  discriminatory  dimensions  that  can be
sed  to  describe  and  analyze  the  clusters  and,  thirdly,  identifying
utliers.

Through  the  interactive  user  interface,  the  user  can separate
odes  into  clusters  or  drag  them  about  in  the  two-dimensional
pace to  “t  their  intuition  or  understanding  of  the  data.  The under-

ying  TPP algorithm  will  then  search  for  the  projection  that  best
atches  the  target  view  that  the  user  wants  to  see.

Formally,  a set  of  n entities  is described  by  the  n ×  k matrix  X
hat  de“nes  each entity•s  position  in  k-dimensional  space. A k ×  2
rojection  matrix  P maps  the  entities  onto  two  dimensional  space.
hen  the  user  de“nes  an n ×  2 target  view  T, TPP searches for  a

rojection  that  minimizes  difference  between  this  target  view  and
he  projection.  That  is

in  � T Š  XP� .  (1)

The projection  matrix  is  found  by  training  a single-layer  percep-
ron  arti“cial  neural  network  with  k inputs  and  two  outputs.  The

 rows  of  the  original  matrix  are examined  in  order  and  standard
ack-propagation  is used  to  train  the  network  to  generate  the  rows
f  the  target  matrix  T according  to  a least-squares  calculation.  Once
onvergence  is reached  the  original  data  is transformed  into  the  2D
iew  where  the  connection  weight  between  each input  neuron  and
he  two  output  neurons  gives  the  weight  of  each dimension  in  the
nal  projection  and  thus  the  projection  matrix.

graphTPP leverages  the  TPP algorithm  for  graph  layout  and
xtends  the  original  TPP tool  software  to  import  graph  data  and
pdates  the  visual  display  and  control  panel  to  facilitate  view-

ng  and  interaction  with  the  graph.  The original  motivation  for
raphTPP was  to  use the  attributes  of  the  nodes  for  the  dimen-
ion  reduction  process  that  creates  the  layout.  Each node-attribute
ould  describe  a dimension  of  the  data  and  given  a clustering,

ither  pre-de“ned  or  through  the  k-means  algorithm,  the  aim  was
o  lay  out  a graph  in  a clustered  fashion  such  that  the  layout  would
e a direct  result  of  the  attributes,  bringing  the  graph•s  topologi-
al  structure  and  its  attributes  together.  This  would  facilitate  the

2 https://code.google.com/p/targeted-projection-pursuit/ .
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understanding  of  the  graph•s  structure  from  the  point  of  view  of
the  attributes.

Clustering,  in  particular,  has been  identi“ed  as an important
structural  feature  to  be represented  in  layout  with  users  favouring
it  over  traditional  aesthetic  criteria  [6]  while  the  use of  attributes
in  layout  can be used  to  create  a deeper  understanding  of  the  graph
[31] . graphTPP expressly  aims  to  separate  the  graph  into  clusters.

The use of  graphTPP here  is based on  the  same principle  of  using
a high-dimensional  data  matrix  that  describes  some  features  of  the
graph•s  nodes  but  the  attribute  matrix  is  replaced  by  the  adjacency
matrix  (see start  of  Section  4). The adjacency  matrix  associates  each
node  with  a column  and  a row.  An  entry  is  made  in  position  (i, j )
if  node  i  is  connected  to  node  j . For example,  in  Fig. 1 the  high-
lighted  nodes  and  edge shown  in  the  graph  are circled  in  the  table,
i.e., the  adjacency  matrix.  This  layout  method  has more  in  common
with  the  force  techniques  as both  rely  on  the  topological  structure
for  layout.  graphTPP is then  able  to  leverage  all  the  interactive  fea-
tures  of  the  original  TPP tool  such  as the  automatic  separation  of
points  into  clusters,  direct  user  interaction  as well  as a number  of
options  for  adjusting  the  visual  features  displayed  on  the  layout
(such  as node  size, colour,  shape  etc.).  graphTPP also  incorporates
new  options  for  controlling  the  visual  features  including  edge shape
and  appearance,  node  labelling  and  some  “ltering  options  not  uti-
lized  by  the  graphs  and  layouts  in  this  paper.  Further  explanation
of  the  process  of  using  graphTPP in  this  paper  is given  in  Section
4.1.

3. Small-world  networks

3.1. Network  generation

The small-world  networks  are generated  according  to  the
Watts…Strogatz  model  as implemented  in  R package  igraph  [32] .
The Watts…Strogatz  model  aims  to  generate  a graph  with  a high
clustering  coef“cient  and  a short  average  path  length,  thus  simu-
lating  the  characteristics  of  a small-world  network.

The basic  Watts…Strogatz  small-world  model  assumes a ring
lattice  of  n nodes  with  k connections  per  node.  Each edge is then
randomly  rewired  with  a probability  p where  p = 0 would  describe  a
regular  network  and  p = 1 describes  a completely  random  network.
The graph  has the  structural  properties  L(p) which  describes  path
length  and  C(p) which  describes  the  clustering  coef“cient.  When
p = 0 the  value  of  L grows  linearly  with  n and  is well  clustered  (high
L(p) and  high  C(p))  to  form  a large-world  network.  When  p = 1 the
random  network  is poorly  clustered  (low  L(p) and  low  C(p))  and  L
grows  logarithmically  with  n. However,  for  intermediate  values  of
p, L(p) is  almost  as small  as Lrandom while  C(p) �  Crandom . Hence,  it
approximates  the  small-world  properties  of  a short  average  path
length  and  a high  clustering  coef“cient.

The igraph  package  in  R [33]  includes  an implementation  of  the
Watts…Strogatz  model  which  was  executed  by  varying  the  follow-
ing  parameters

watts.strogatz.game(dim,  size,  neighbours,  p)
where  dim  = dimension  of  the  lattice  (1  for  a ring  lattice);  size

= the  number  of  nodes  in  each dimension;  neighbours  = num.
nearest  neighbour  connections;  p = the  rewiring  probability.

Table  1 shows  the  how  the  parameters  were  varied.  A con-
stant  rewiring  probability  of  0.05  was  used  while  only  one  and
two-dimensional  models  were  considered.

3.2. Community  detection
In  network  science,  community  detection  is the  partitioning  of
a graph  into  clusters  or  communities.  Generally  the  partitions  are
divided  such  that  a node  is more  likely  to  be connected  to  other

https://code.google.com/p/targeted-projection-pursuit/
https://code.google.com/p/targeted-projection-pursuit/
https://code.google.com/p/targeted-projection-pursuit/
https://code.google.com/p/targeted-projection-pursuit/
https://code.google.com/p/targeted-projection-pursuit/
https://code.google.com/p/targeted-projection-pursuit/
https://code.google.com/p/targeted-projection-pursuit/
https://code.google.com/p/targeted-projection-pursuit/
https://code.google.com/p/targeted-projection-pursuit/
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Table  1
The parameters  used  to  generate  the  small-world  networks  and  the  number  of  communities  detected  by  the  community  detection  algorithms.

Parameters  Community  detection  algorithms

Nodes  Edges Dim  Size Nearest
neighbours

Rewiring
probability

Edge
betweenness

Fast greedy  Leading
eigenvector

Spinglass  Walktrap  Label
propagation

500  5000  1 500  10  0.05  12  3 12  9 9 21
1000  5000  1 1000  5 0.05  18  6 27  10  20  74
1500  7500  1 1500  5 0.05  22  9 34  10  31  102
2000  4000  1 2000  2 0.05  51  46  45  10  93  243
2000  10,000  1 2000  5 0.05  30  7 47  10  38  150
3000  15,000  1 3000  5 0.05  … 10  … 10  … …
4000  20,000  1 4000  5 0.05  … 13  … 10  … …
5000  25,000  1 5000  5 0.05  … 14  … 10  … …

400  4800  2 20  3 0.05  7 4 8 9 7 1
400  2400  2 20  2 0.05  8 4 7 8 9 10
625  1250  2 25  1 0.05  18  12  14  10  12  56
625  3750  2 25  2 0.05  11  4 10  10  10  25
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900  5400  2 30  2 0.05  12  

1225  7350  2 35  2 0.05  12  

1600  9600  2 40  2 0.05  15  

odes  in  the  same community  than  they  are to  those  outside  their
ommunity.  Community  detection  is usually  only  based on  the
opological  properties  of  the  graph  rather  than  on  attributes.  Some
lgorithms  impose  a limit  on  the  number  of  communities  the  graph

s partitioned  into  while  others  place  no  restrictions  on  the  number.
At  the  most  basic  level,  identifying  communities  in  the  graph

elps  in  understanding  the  graph•s  structure  which  can enable
he  classi“cation  of  a node•s structural  position,  if  there  are nodes
hat  are on  the  periphery  of  a cluster  or  potentially  overlapping
lusters.  The communities  may  also  communicate  the  hierar-
hical  organization  of  the  graph  [34] . In  this  paper  we  use six
ifferent  community  detection  algorithms  included  in  the  igraph
ackage.  These are edge-betweenness  [35]  (hierarchical  decom-
osition  based on  iteratively  removing  edges with  the  lowest
dge-betweenness  centrality),  fast-greedy  [36]  (merges  nodes  into
ommunities  in  a greedy  manner  based on  optimizing  the  modu-

arity  function),  leading  eigenvector  [37]  (iteratively  divides  the
raph  into  communities  based on  the  signs  of  the  eigenvector  that
orresponds  to  the  largest  eigenvalue  of  the  modularity  matrix),
alktrap  [38]  (merges  communities  based on  short  random  walks

ince  staying  within  a cluster  is  more  likely  than  leaving  it),  Spin-
lass [39]  (statistical  physics  approach  where  a node  takes  one
f  the  n spin  states  and  states  changes  depending  on  the  state
f  neighbouring  nodes)  and  label  propagation  [40]  (each  node
ssigned  one  of  the  k labels  and  nodes  take  the  most  common

abel  of  their  neighbours).  Further  explanations  of  the  community
etection  algorithms  are given  in  the  supplemental  material  and  a
etailed  review  can be found  in  Fortunato  [34] .

. Layout  and  comparison

Gibson  and  Faith  [8]  demonstrated  graphTPP•s capabilities  for
he  layout  of  small-world  networks.  In  that  case the  network  was
mall  with  only  30  nodes  clustered  into  four  groups.  However,  it

ndicated  the  potential  of  graphTPP as a layout  method  for  small-
orld  networks.  Here  we  extend  that  work  by  applying  it  to  the

ayout  of  much  larger  networks.
More  importantly,  since  arti“cially  generated  networks  do  not

ave  attributes  the  graph•s  adjacency  matrix  is  used  instead.  This
eans  that,  like  force-based  methods,  the  layout  now  only  relies
n  the  topological  structure  of  the  graph.  It  is  compared  to  two
orce-based  techniques  as implemented  in  the  graph  layout  soft-

are  Gephi:  Martin  et  al.•s [11]  OpenOrd  layout  method  and  the
orceAtlas  [15] .

The ForceAtlas  layout  is  included  as a comparison  to  a
eneral  non-optimized  for  clustering  force-based  layout  whose
4 11  10  12  22
4 14  10  14  34
4 12  10  16  46

performance  should  be better  than  the  Fruchterman…Reingold
algorithm  but  worse  than  LinLog  in  terms  of  clustering.  Because of
system  unavailability  it  was  not  possible  to  compare  performance
against  van  Ham  and  van  Wijk•s  framework  [7] .

The networks  were  generated  using  the  Watts…Strogatz  [1]
model  in  the  igraph  package  in  R. Various  clusterings  are com-
puted  through  community  detection  algorithms  and  recorded  (see
Table  1). Each graph  created  was  the  result  of  running  one  particu-
lar  instance  of  Watts…Strogatz  method.  Due  to  the  random  rewiring
probability  each run  of  this  method,  even  with  the  same param-
eters,  will  produce  a slightly  different  graph,  in  terms  of  which
nodes  are connected  to  each other;  however,  this  difference  does
not  affect  the  validity  of  these  results  as each graph  still  has a
small-world  structure.  The community  detection  algorithms  were
executed  with  their  default  parameters  except  for  the  Spinglass
method  which  was  run  with  a maximum  of  ten  spin  states  which
limited  the  number  of  communities  to  ten.  This  was  done  to  ensure
that  there  was  at  least  one  algorithm  that  was  generating  a clus-
ter  set  that  was  not  excessively  large  and  a graphTPP layout  could
be produced.  Out  of  the  six  community  detection  algorithms  the
Edge-Betweenness,  Fast-Greedy,  Leading  Eigenvector  and  Walk-
trap  algorithms  consistently  produce  the  same community  when
run  over  the  same graph,  in  terms  of  number  and  size of  communi-
ties  created,  while  the  Spinglass  and  Label  Propagation  algorithms
produce  slightly  different  results  each time.  However,  these  differ-
ences are not  large  and  it  was  considered  that  testing  using  one
particular  example  for  these  two  algorithms  was  still  suf“cient  for
demonstration  purposes.

4.1. Data  preparation  and import

Once the  graphs  had  been  created  in  R and  each node  had
been  assigned  a community  using  each of  the  community  detec-
tion  algorithms  the  command  get.adjacency  was  used  to  create
the  adjacency  matrix  of  each graph  and  six  additional  columns  were
added  identifying  the  community  each node  belonged  to  for  each
community  detection  algorithm.  This  was  then  exported  to  CSV
ready  to  be converted  into  the  ARFF “le  format  supported  by  Weka.
Two  further  “les,  a simple  list  of  nodes  and  the  communities  they
belong  to  and  an edge list  was  also  exported.  An  ARFF “le  is  cre-
ated  by  loading  the  CSV “le  into  Weka  and  ensuring  that  the  “rst  n
columns,  where  n is  the  number  of  nodes,  are described  as numeric

columns  (as these  de“ne  the  dimensions  to  be used  in  the  projec-
tion).  The next  six  columns  are class-type  columns  which  de“ne
the  membership  of  nodes  to  particular  communities  for  each com-
munity  detection  algorithm  and  the  “nal  column  is a string  column
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Fig.  1. The graph  shown  in  (a)  has its  adjacency  matrix  in  (b).  A connection  between
t
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wo  nodes  is indicated  by  a •1• at  the  intersection  of  the  corresponding  row  and  col-
mn.  Two  nodes  8 and  10  are linked  and  highlighted  in  bold  in  (a),  the  corresponding
alues  in  the  adjacency  matrix  are then  circled  in  (b).

epresenting  the  node•s ID. This  “le  is  then  exported  from  Weka  as
n ARFF “le  and  can be imported  into  graphTPP. The edge list  “le
an then  also  be imported  so that  graphTPP is able  to  represent  the
dges in  the  graph.

Once the  ARFF and  edge list  “le  are imported  into  graphTPP the
ser  can select  a particular  set  of  communities  to  try  to  separate

he  nodes.  In  the  following  cases once  a community  detection  algo-
ithm  had  been  selected  the  •Separate points•  button  was  pressed

nd  held  down  to  begin  an automatic  separation  of  the  commu-
ities.  When  such  an action  is chosen  the  graphTPP algorithm

denti“es  a number  of  points  in  space (based  on  the  number
f  communities  to  separate)  where  these  points  are maximally
Computing  42 (2016)  80…92

separated  from  one  another.  This  becomes  the  target  projection
and  the  automatic  layout  progresses  by  trying  to  achieve  this  max-
imal  separation.  If  a user  believes  that  the  automatic  separation  is
not  achieving  the  desired  level  of  separation  they  can select  a set  of
nodes,  either  individually,  by  community  or  using  a rectangle  selec-
tion.  Once selected,  the  user  can attempt  to  move  this  node  around
in  order  to  achieve  something  closer  to  their  desired  target  view.
Fig. 2 shows  how  the  graph  and  the  layout  appear  in  graphTPP. The
“gures  presented  in  this  paper  are based on  the  SVG “le  exported
directly  from  graphTPP. The code  and  data  “les  needed  to  recreate
these  and  the  following  steps  can be found  at  https://github.com/
helengibson/graphTPP .

The Force-Atlas  layout  and  the  OpenOrd  layouts  were  produced
by  loading  the  nodes  “le  (with  the  community  attributes)  and  the
edge “le  into  the  graph  layout  software  Gephi  and  running  each
method  with  their  default  parameters  and  exporting  to  SVG using
Gephi•s export  tool.

The next  section  explores  the  layouts  produced  using  these
three  layouts  for  a number  of  different  sized  graphs  and  community
detection  algorithms.

4.2. One-dimensional  models

The “rst  network  produced  from  the  one-dimensional  model
contained  500  nodes  and  5000  edges. The 5000  edges were
produced  by  requiring  each node  to  connect  to  its  ten  nearest  neigh-
bours  and  the  small-world  graph  was  produced  by  using  a rewiring
probability  of  0.05.

Each community  detection  algorithm  was  run  on  the  graph  and  a
set  of  clusters  was  produced  for  each algorithm.  The six  algorithms
produced  cluster  sets of  varying  sizes ranging  from  3 to  21.  The
Walktrap  community  detection  algorithm  [38]  is  based on  random
walks  and  partitioned  the  graph  into  9 clusters.  Fig. 3 shows  the
graph  with  this  Walktrap  community  detection  algorithm  applied
for  each of  the  three  layout  methods.  Table  1 in  the  supplemen-
tal  material  shows  the  layout  for  all  of  the  community  detection
algorithms  for  this  graph.

Each layout  is  clearly  in”uenced  by  the  original  ring  structure
from  which  the  network  was  generated.  However,  only  graphTPP
is able  to  separate  the  clusters  correctly  and  into  their  own  distinct
area. ForceAtlas  also  separates  the  clusters  correctly  but  the  snake-
like  layout  means  that  they  lead  on  to  one  another.  This  makes
analysis  of  how  each cluster  is  connected  to  the  others  dif“cult.
Colour  is  also  required  to  determine  where  each cluster  starts  and
ends. The OpenOrd  method  also  shows  the  clusters  leading  on  to
one  another  but  the  nodes  are now  positioned  into  tight  groups.  The
algorithm  actually  subdivides  them  into  smaller  clusters  than  those
detected  by  the  Walktrap  algorithm.  Again,  it  is  not  clear  without
the  colouring  to  which  cluster  each of  these  sub-clusters  belongs.
However,  seeing  these  clusters  could  also  stimulate  further  inves-
tigation  into  why  they  are sub-divided  up  by  this  method  and,  in
particular,  the  signi“cance  of  where  the  clusters  overlap.

graphTPP is not  only  a tool  for  layout,  it  also  facilitates  analysis
of  the  graph  according  to  its  attribute  composition.  Fig. 4 shows
the  contribution  that  four  different  nodes  make  to  the  layout.  In
Fig. 4(a)  and  (b)  the  red  nodes  are those  possessing  that  particular
attribute  (in  this  case that  means  nodes  which  are connected  to  that
particular  node).  Those highlighted  attributes  are clearly  two  of  the
main  contributors  to  that  speci“c  cluster,  i.e., that  node  connects
to  many  nodes  within  that  cluster.  The attributes  highlighted  in
Fig. 4(c)  and  (d)  show  these  nodes  connect  equally  to  adjacent  clus-
ters.  This  indicates  that  those  two  nodes  may  be bridges  between

the  two  communities.

While  a graph  with  500  nodes  is a signi“cant  increase  on
the  graph  used  in  Gibson  and  Faith  [8]  it  is  still  fairly  small.  A
further  six-fold  increase  in  the  number  of  nodes  has a marked

https://github.com/helengibson/graphTPP
https://github.com/helengibson/graphTPP
https://github.com/helengibson/graphTPP
https://github.com/helengibson/graphTPP
https://github.com/helengibson/graphTPP
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ig.  2. A screenshot  of  the  graphTPP layout  interface  where  the  number  of  nodes  

vailable  to  users  when  laying  out  the  graph.
mpact  on  the  ability  to  separate  nodes  into  clearly  de“ned  clus-
ers  for  both  the  ForceAtlas  and  OpenOrd  algorithms  as shown
n  Fig. 5. With  3000  nodes  and  15,000  edges graphTPP is still
ble  to  separate  the  clusters  clearly.  In  this  case there  are

ig.  3. The small-world  graph  with  500  nodes  and  5000  edges laid  out  using  the  three  diff
ing  lattice  structure  is clearly  visible  in  all  three  layouts.
 and  the  number  of  edges is 500.  The right  hand  panel  shows  some  of  the  options
10  clusters  which  were  again  determined  using  the  Walktrap
algorithm.  The clear  separation  enables  some  analysis  of  the
strength  of  the  relationships  between  different  communities,  fur-
ther  evidenced  in  Fig. 7.

erent  algorithms  using  the  Walktrap  community  detection  algorithm.  The original
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Fig.  4. The same small-world  graph  with  500  nodes  and  5000  edges as in  Fig. 3(a).  Four  different  attributes  are selected  and  the  nodes  that  have  those  attributes  are
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ighlighted.  A red  node  indicates  that  that  node  has that  particular  attribute.  Imag
ttributes  fall  in  the  same cluster  while  images  (c)  and  (d)  show  how  nodes  in  adjac
his  “gure  legend,  the  reader  is referred  to  the  web  version  of  this  article.)

However,  for  this  graph  it  is  more  dif“cult  to  identify  nodes
hich  contribute  the  most  to  the  determination  of  cluster  member-
hip.  This  is  because the  average  degree  of  each node  is 10  whereas
ach cluster  contains,  on  average,  300  nodes.  This  does not  affect

he  clustering  ability  of  the  graphTPP algorithm  though.
For this  graph  (Fig. 5), the  volume  of  edges in  the  graphTPP

ayout  overwhelms  the  overall  layout  of  the  graph  and  its  clus-
ered  structure.  This  means  that  while  the  nodes  are well  clustered,
he  sheer  number  of  edges impedes  the  ability  to  interpret  the
trength  of  the  relationships  between  the  clusters.  Section  4.3 dis-
usses a solution  to  this  problem  as an extension  of  the  graphTPP
ool.

Beyond  3000…4000 nodes  it  becomes  dif“cult  both  to  gener-
te  the  graphs  and  calculate  the  communities.  The large  number
f  attributes  that  including  every  node  as an attribute  brings  led
o  slow  system  performance;  running  graphTPP on  a typical  desk-
op  computer  meant  that  it  was  impractical  to  attempt  to  lay  out
raphs  of  5000  nodes  and  above.  Of course,  increased  processing
ower  would  mitigate  this  effect.  Future  work  should  also  focus
n  carrying  out  a detailed  performance  analysis  of  the  graphTPP
lgorithm  to  look  for  opportunities  for  code  optimization.  For this

ype  of  graph  structure  � 3000  nodes  is the  current  practical  limit

or  graphTPP operating  in  a regular  desktop  environment.  Further
ayouts  for  graphs  with  1000,  1500  and  2000  nodes  can be found  in
he  supplementary  material.
)  and  (b)  show  how  for  those  two  example  attributes,  other  nodes  with  the  same
lusters  sometimes  share  attributes.  (For  interpretation  of  the  references  to  color  in

4.3. An edge-grouping  method

When  experimenting  with  this  layout  method  it  quickly  became
clear  that  the  volume  of  edges to  be displayed  was  impacting  on
graphTPP•s ef“cacy.  For example,  in  Fig. 5(a)  the  clusters  are well
separated  but  the  number  of  edges makes  it  dif“cult  to  interpret
how  strongly  each cluster  is  connected.  Thus, while  the  layout  was
successful  in  positioning  the  nodes,  dealing  with  the  edges was
becoming  a problem  and  distracting  from  the  interesting  structures
on  display.

Edge-bundling  algorithms  group  edges to  reduce  visual  clutter.
Multiple  edge-bundling  algorithms  have  been  proposed  previously
[41…43] but  here  we  use an edge-grouping  method  that  makes  use
of  the  intrinsic  properties  of  the  graphTPP layout,  namely  the  clus-
ters.  The centroid  of  each cluster  is  found  and  an edge is drawn  from
each node  to  the  centroid  of  its  own  cluster  with  its  exact  position
offset  slightly  from  the  centroid  in  order  to  allow  the  thickness  of
the  edge-group  to  be proportional  to  the  number  of  edges it  con-
tains.  When  the  bundle  reaches  the  centroid  of  the  other  cluster  the
edges split  from  the  edge-group  and  complete  the  edge, as shown
in  Fig. 6. Unlike  in  Fig. 6, in  the  actual  graphTPP layout  there  are
usually  nodes  placed  over  the  centroid  position  and  so the  artefact

of  where  the  edges meet  the  edge-group  is hidden.  The bundled
view  is intended  to  improve  the  overview  of  the  graph  rather  than
for  when  individual  edges are being  explored.
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supports  this  conclusion  since  the  values  show  that  cluster  2
has either  the  highest  or  second  highest  number  of  connec-
tions  to  each of  the  other  six  clusters.  The edge-grouped  version
of  graphTPP was  able  to  show  this  cluster•s  high  connectivity
ig.  5. The small-world  graph  with  3000  nodes  and  15,000  edges laid  out  using  eac
ith  nine  clusters.  Here  we  clearly  see that  graphTPP is the  only  layout  algorithm  th

ayouts  produce  a much  more  tangled  layout.

Fig. 7 shows  the  edge-grouped  layout  that  corresponds  to  the
ayout  in  Fig. 5(a).  The visual  clutter  is  signi“cantly  reduced  and  it
s much  easier  to  see relationship  strengths  between  the  various
lusters.

Using  a slightly  smaller  example,  with  2000  nodes  and  10,000
dges and  also  with  fewer  clusters  (7  compared  to  10),  the  clar-

ty  the  edge-groups  offer  becomes  more  obvious.  Fig. 8 shows
he  graphTPP layout  for  this  graph  with  the  original  edges and
ith  the  grouped  edges side-by-side.  In  Fig. 8(a)  it  is  very  dif“-
ult  to  distinguish  that  the  volume  of  edges between  the  clusters
iffers  depending  on  which  pair  of  clusters  is chosen  whereas

n  Fig. 8(b)  it  is  much  clearer.  For example,  the  edge-groups

inked  to  cluster  2 in  Fig. 8(b)  appear  thicker  than  those  belong-
ng  to  most  of  the  other  clusters.  Table  2 shows  the  total  number
f  edges between  each cluster  in  this  2000  node  graph  which

ig.  6. Example  of  the  grouping  method.  Edges are drawn  from  each node  to  a posi-
ion  slightly  offset  from  the  cluster•s  centroid.  From  here  the  edges are grouped  and
rawn  to  the  centroid  of  the  corresponding  cluster  where  the  group  then  splits  apart
gain  to  make  the  individual  connections.
e  three  layout  algorithms  based on  the  fast  greedy  community  detection  algorithm
ble  to  separate  the  clusters  successfully  while  both  the  ForceAtlas  and  the  OpenOrd
Fig.  7. The corresponding  graphTPP edge-grouped  layout  for  the  small-world  graph
with  3000  nodes  and  15,000  edges shown  in  Fig. 5(a).  The edge-groups  reduce  the
clutter  on  display  and  make  the  graph  easier  to  interpret  while  keeping  the  clustered
structure.
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F e nodes  are grouped  into  seven  communities  by  the  fast-greedy  community  detection
a s. (c)  and  (d)  The graph  grouped  by  the  same clusters  with  each cluster  individually  laid
o  edges while  (d)  uses combined  edges.
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Table  2
Number  of  edges between  each cluster  for  the  7 clusters  de“ned  by  the  fast-greedy
algorithm  for  the  graph  with  2000  nodes  and  10,000  edges. The “nal  column  shows
the  total  number  of  nodes  in  each cluster.

Cl. 1 2 3 4 5 6 7 Size

1 1520  72  59  50  44  19  46  334
2 72  1758  71  75  54  24  36  384
3 59  71  1782  75  61  16  39  389
4 50  75  75  1347  39  20  27  298
5 44  54  61  39  1337  38  33  293
ig.  8. The one-dimensional  model  layout  with  2000  nodes  and  10,000  edges. Th
lgorithm.  (a)  The regular  graphTPP layout  while  (b)  the  layout  with  grouped  edge
ut  using  Harel  and  Koren•s [44]  fast  multiscale  method  in  NodeXL.  (c)  Uses bundled

mmediately  while  the  original  graphTPP version  could  only  cluster
he  nodes  but  could  not  expressly  distinguish  how  well  connected
hey  were.

Fig. 8(c)  and  (d)  also  shows  this  2000  node  graph  laid  out  in
odeXL  [45]  using  the  Group-in-a-box  layout  [14]  for  the  main  lay-
ut  and  Harel  and  Koren•s fast  multi-scale  layout  [44]  for  the  within
ox  layouts.  This  is  a method  that  rigidly  adheres  to  the  clustered
tructure  by  constraining  each cluster  to  its  own  box.  Fig. 8(c)  uses
n edge bundling  algorithm  to  display  the  edges while  Fig. 8(d)
ses a combined  edge method  which  does not  take  into  account
he  number  of  edges between  each cluster.  In  terms  of  understand-
ng  the  relationships  between  the  clusters  neither  layout  is  able  to
o  this  as well  as graphTPP although  the  layout  in  Fig. 8(d)  is  able
o  show  some  of  the  within-cluster  structure.

.4. Two-dimensional  models

The two-dimensional  model  incrementally  increases  the  num-
er  of  nodes  along  each dimension.  For example,  a size of  20  gives
00  nodes  (20  ×  20).  Here  we  test  models  up  to  a maximum  of

600  nodes  (40  ×  40).  In  this  model,  setting  the  nearest  neigh-
ours  parameter  to  two  balanced  the  requirement  of  having  enough
dges so that  they  could  be used  as attributes  without  overloading

he  graph.
6 19  24  16  20  38  441  9 102
7 46  36  36  27  33  9 908  200

The initial  400  node  model  had  4800  edges and  the  community
detection  algorithms  divided  the  graph  into  sets of  clusters  of  rea-
sonable  sizes for  each of  the  algorithm;  the  algorithms  yielded  7, 4,
8, 9, 7 and  1 communities  respectively  (see corresponding  row  in
Table  1). Using  the  leading  eigenvector  community  detection  algo-
rithm  [37] , Fig. 9 shows  the  ForceAtlas  layout  struggling  to  produce
anything  other  than  what  could  be described  as a hairball  layout
and  although  the  OpenOrd  algorithm  shows  a clear  structure,  it  is
one  that  does not  seem  to  correspond  to  any  of  the  community

detection  algorithms  used  in  this  case (see Table  6 in  the  supple-
mental  material  for  further  comparisons).  graphTPP was  again  able
to  cluster  the  nodes  into  their  communities  and  the  bundling  of
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Fig.  9. The small-world  graph  with  400  nodes  and  4800  edges laid  out  using  each of  the  layout  three  algorithms  based on  the  leading  eigenvector  community  detection
a nto  th
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lgorithm  which  detects  eight  clusters.  graphTPP is clearly  able  to  cluster  the  graph  i
hat  demonstrates  how  strongly  each of  the  clusters  are connected.

dges brings  out  this  structure  even  more  clearly,  preventing  the
dges from  overpowering  the  graph.

The graphs  produced  from  the  two-dimensional  model  have
 lower  limit  on  the  maximum  number  of  nodes  that  graphTPP
an lay  out  compared  to  the  one-dimensional  model.  In  this  case
225  nodes  with  7350  edges was  the  maximum.  As can be seen in
ig. 10, which  displays  the  clustering  found  by  the  edge-betweeness
lgorithm,  ForceAtlas  was  again  unable  to  produce  a layout  that
learly  represented  the  structure  of  the  graph.  The OpenOrd  algo-
ithm  is able  to  show  some  structure  although  it  divides  the
odes  into  many  different  communities.  graphTPP displays  a layout
hich  clearly  respects  the  communities  detected  by  the  edge-
etweenness  algorithm.  This  is  particularly  useful  if  the  aim  is to
nderstand  the  relationships  between  the  different  communities
ecause the  thicker  the  bundle  the  greater  the  number  of  edges
etween  any  two  communities.  Further  examples  of  layouts  are
hown  in  the  supplemental  material  for  graphs  with  400,  625  and
00  nodes.

In  this  section  we  have  shown  how  graphTPP is able  to  layout
mall-world  graphs  which  respect  a community  clustered  struc-
ure  in  such  a way  that  the  community  structure  is communicated
hrough  the  layout  of  the  graph.  We  have  also  demonstrated,  in
erms  of  the  visual  separation  between  each cluster,  that  graphTPP
s able  to  produce  this  type  of  layout  more  reliably  and  consistently
han  two  other  layout  methods:  Force Atlas  and  OpenOrd.  Thus,
aying  out  a small-world  network  with  graphTPP allows  us to  (1)

iew  the  clustered  structure  of  the  graph  visually;  and  (2)  from  this
lear  visual  separation,  we  can better  understand  the  relationships
etween  different  clusters.  One of  the  main  aims  of  graph  layout  is

o  better  understand  the  relationships  between  the  different  nodes
e  communities  and  the  grouped  edges in  (b)  provides  useful  additional  information

in  the  graph  and  to  do  this  visually.  Therefore,  since  graphTPP pro-
vides  this  ability  to  do  this,  through  an interactive  platform,  it  has
the  potential  to  be applied  to  a number  of  different,  real-world,
small-world  networks  and  generate  insights  about  such  graphs.
Thus, although  the  Force-Atlas  and  OpenOrd  were  often  able  to
produce  layouts  that  appeared  aesthetically  pleasing  these  layouts
were  not  able  to  communicate  the  clustered  structure  in  the  same
way  that  graphTPP was.  Furthermore,  while  graphTPP has its  lim-
its  in  terms  of  the  size of  graph  that  it  can lay  out,  the  degradation
in  layout  quality  for  lager  graphs  was  much  more  apparent  for  the
Force-Atlas  and  OpenOrd  graphs  than  it  was  for  graphTPP despite
the  fact  that  overall  Force-Atlas  and  OpenOrd  are able  to  lay  out
graphs  of  a larger  size.

5. Discussion

The structure  of  a small-world  network  should  make  it  per-
fectly  suited  to  visualization.  Representing  the  communities  that
form  within  the  graph  should  be a principal  aim  for  layout  if  we
want  the  visualization  to  communicate  this  structure  effectively.
The original  graphTPP relied  largely  on  node-attributes  to  drive
the  layout  methods  [8] . The highly  clustered  structure  that  char-
acterizes  small-world  networks  meant  that  there  was  potential  to
adapt  this  layout  method  by  replacing  the  node-attribute  matrix
with  the  symmetric  adjacency  matrix  of  the  graph.  Since the  edges,
and  hence  entries  in  the  attribute  matrix,  should  be concentrated

within  clusters  graphTPP was  a good  candidate  for  graph  layout.

In  this  paper  we  have  shown  that  for  small-world  networks
generated  by  the  Watts…Strogatz  model  in  both  one  and
two  dimensions  graphTPP was  successful  (in  terms  of  visual
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ig.  10.  The small-world  graph  with  1225  nodes  and  7350  edges laid  out  using  eac

resentation,  visual  distinction  of  clusters  and  representation  of
he  clusters)  in  clustering  the  nodes  into  their  appropriate  prede-
ned  communities  and,  in  doing  so, producing  a graph  layout  that
utperformed  other  layout  algorithms  in  terms  of  representing  this
tructure.

While  both  the  force-based  methods  initially  clearly  showed  the
tructure  of  the  communities  in  their  layouts,  as the  graphs  grew

arger  and  more  complex  the  quality  of  the  techniques  degraded.
ven with  the  smallest  of  the  two-dimensional  models  the  ForceAt-

as method  was  not  able  to  produce  a layout  with  any  kind  of
tructure  while  the  OpenOrd  method  usually  further  divided  the
lusters  or  even  divided  them  completely  differently.

The edge-grouped  graphTPP layout  further  enhanced  the
ppearance  and  utility  of  the  graphTPP layout  by  removing  the
isual  clutter  caused by  the  edges which  had  a tendency  to  overload
he  representation.  The edge-groups  provide  a further  advantage  by
howing  how  strongly  each cluster  is  connected  to  the  others  and
his  can be used  to  determine  the  more  important  clusters  in  the
raph  and  those  which  have  more  in”uence.

.1. Limitations  of small-world  network  layout  with  graphTPP

Despite  the  advantages  of  the  graphTPP layout  we  have
escribed  in  the  last  few  sections,  there  are still  a number  of  limi-

ations  associated  with  the  graphTPP method  of  laying  out  graphs.
When  importing  data  into  graphTPP there  is no  limit  on  the
umber  of  clusters  into  which  the  nodes  can be divided  or  how
any  it  can attempt  to  spatially  separate;  however,  a limitation,
specially  with  this  small-world  structure,  is  that  the  clusters  begin

o  become  equally  spaced over  the  display  space. This  results  in
e  layout  three  algorithms  based on  the  edge-betweeness  detection  algorithm.

graphTPP losing  some  of  its  power  in  being  able  to  show  the  struc-
ture  of  the  graph.

One of  the  goals  of  using  TPP and  the  attribute-based  graphTPP is
to  identify  the  most  common  attributes  that  occur  in  each cluster.  In
typical  uses of  TPP only  a few  attributes  emerge  as being  signi“cant
and  so these  attributes  can be used  to  de“ne  the  cluster  and  form
a useful  part  of  the  analysis.  A limitation  in  this  case, since  we  are
now  using  the  nodes  as attributes  and  the  edges as the  attribute
values,  is  that  the  set  of  signi“cant  attributes  for  each cluster  is
much  larger.  This  is  because each node  only  connects  to  a few  other
nodes  and,  therefore,  each attribute  only  has a few  non-zero  values.
In  terms  of  analysis  this  means  that  when  a cluster  is  analyzed  its
most  signi“cant  attributes  are most  likely  to  be the  nodes  contained
in  that  cluster  thus  telling  us little  new  about  the  graph  from  an
attribute  analysis  perspective.

The clustering  of  the  nodes  also  causes a further  issue. As can
be seen in  Table  2 the  number  of  within  cluster  edges is far  higher
than  between  any  of  the  clusters.  This  is  a good  thing  in  the  sense
that  it  is  what  makes  the  graphTPP layout  algorithm  work  so well
for  this  type  of  graph  but  this  tight  clustering  comes  at  the  expense
of  being  able  to  see any  of  these  within  cluster  edges and  instead
they  are obscured  by  the  nodes.  However,  this  is  not  just  a problem
limited  to  graphTPP and  can occur  in  any  layout  that  clusters  nodes
closely  together.  The Group-in-a-box  layout  showed  the  opposite
problem  to  this  where  the  within  cluster  structure  was  clearer  but
the  relationships  between  the  clusters  less so.
One of  the  dif“culties  of  representing  these  small-world  graphs
and,  in  particular,  their  edges is that  each community  is  usually
connected  to  every  other  community.  This  means  that  even  in  the
edge-grouped  layout  there  are a lot  of  displayed  edges which  can
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ake  the  graph  look  cluttered  and  disorganized.  In  effect,  this  bun-
led  layout  is  actually  the  layout  of  a small  clique  where  each cluster
ould  be represented  by  a single  node  and  connected  to  every  other
ode.  This  problem  is exacerbated  as the  number  of  communities

ncreases.  The advantage  that  the  graphTPP layout  maintains  over
ther  layouts  is that  the  proximity  of  the  clusters  is related  to  the

opology  and  each one  can be analyzed  for  each node•s contribu-
ion.  A potential  solution  would  be to  “lter  edges based on  bundle
ize and  only  show  edges which  are part  of  a bundle  over  a certain
ize.

A limitation  on  the  computation  side  is that  due  to  the  volume  of
ttributes  graphTPP is not  able  to  keep  up  with  the  calculations  and
o although  the  layout  is  still  interactive  the  interaction  no  longer
appens  in  real-time  and  there  is a gap between  the  user  instruct-

ng  the  nodes  to  move  and  when  they  actually  move.  They  also  tend
o  •jump•  across the  screen  rather  than  move  smoothly.  This  dimin-
shes  the  interaction  experience  of  graphTPP and  the  intermediate
tages of  interactive  exploration.

.2. Future  research directions

As mentioned  in  the  previous  section,  the  ability  to  “lter  out
ome  of  the  weaker  bundled  edges may  also  aid  the  clarity  and
sefulness  of  the  layout.  These edges would  still  be used  in  the
rojection  but  not  displayed.

Further  investigation  into  other  methods  beyond  matrix  dia-
rams  [46]  as a way  to  show  the  density  of  within  cluster  edges
ould  aid  not  only  this  visualization  method  but  also  any  others
hich  group  nodes  into  clusters  but  then  suffer  from  the  occlusion
f  within  cluster  edges. This  would  allow  the  user  to  investigate

f  there  are any  sub-patterns  within  the  cluster  or  particular  fea-
ures  that  may  have  not  been  apparent  when  the  nodes  are tightly
lustered  together.

Determining  if  there  is a speci“c  set  of  tasks  that  are most  easily
ccomplished  with  this  type  of  layout  would  also  provide  an advan-
age. In  particular,  this  kind  of  layout  seems to  support  overview
ased tasks  and  in  this  case, it  would  mean  that  the  user  would
now  that  they  could  lay  out  the  graph  using  the  graphTPP tech-
ique  when  they  had  a speci“c  query  or  line  of  investigation  in
ind.  This  paper  has already  shown  that  assessing the  strength  of

he  connectivity  between  two  clusters  is one  such  potential  task.

. Conclusions

This  paper  has presented  an extension  to  the  small-worlds  pilot
tudy  presented  in  Gibson  and  Faith  [8]  where  graphTPP was  used
o  lay  out  a small-world  network  using  node  attributes.  In  this
ase the  number  of  nodes  has been  signi“cantly  increased  but
raphTPP still  shows  a superior  ability  to  produce  a layout  that
e”ects  the  clustered  structure  of  the  graph  compared  to  two  force-
ased methods.  The addition  of  the  edge bundling  method  means

hat  the  strength  of  association  between  two  communities  is clearly
isible.  The use of  the  community  detection  algorithms  resulted  in
easonably  equally  sized  clusters  which  also  aided  the  analysis  and
isualization.  It  also  showed  that  small-world  networks  are com-
atible  with  re-purposing  edges as attribute  values,  thus  graphTPP
ould,  in  theory,  be applied  as a viable  layout  option  for  any  graph
egardless  of  the  existence  of  pre-existing  attributes  or  not.

. Supplemental  material
.1. Community  detection  algorithms

A more  detailed  description  of  each of  the  community  detection
lgorithms  can be found  in  the  supplementary  material.

[
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7.2. All  layouts

Further  examples  of  layouts  of  graph  of  different  sizes clustered
using  the  community  detection  algorithms,  as detailed  in  Table  1,
can be found  in  the  supplementary  material.

Appendix  A. Supplementary  data

Supplementary  data  associated  with  this  article  can be found,  in
the  online  version,  at  http://dx.doi.org/10.1016/j.asoc.2016.01.036 .
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