
Northumbria Research Link

Citation:  Mann, Paul,  Spencer,  Robert,  Hernes,  Peter,  Six,  Johan,  Aiken, George,  Tank,
Suzanne, McClelland, James, Butler, Kenna, Dyda, Rachael and Holmes, Robert (2016)
Pan-arctic  trends  in  terrestrial  dissolved  organic  matter  from  optical  measurements.
Frontiers in Earth Science, 4. p. 25. ISSN 2296-6463 

Published by: Frontiers

URL:  http://dx.doi.org/10.3389/feart.2016.00025
<http://dx.doi.org/10.3389/feart.2016.00025>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/26135/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


   

 
Pan-arctic trends in terrestrial dissolved organic
matter from optical measurements

 

Paul J. Mann1*, Robert G. Spencer2, Peter J. Hernes3, Johan Six4, George R. Aiken5,

Suzanne E. Tank6, James W. McClelland7, Kenna D. Butler5, Rachael Y. Dyda3, Robert M.

Holmes8

 

1Department of Geography, Northumbria University, United Kingdom, 2Department of

Earth, Ocean and Atmospheric Science, Florida State University, USA, 3Department of

Land, Air, and Water Resources, University of California, USA, 4Department of

Environmental Systems Science, ETH-Zurich, Switzerland, 5United States Geological

Survey, USA, 6Department of Biological Sciences, University of Alberta, Canada, 7Marine

Science Institute, University of Texas, USA, 8Woods Hole Research Center, USA

  Submitted to Journal:

  Frontiers in Earth Science

  Specialty Section:

  Marine Biogeochemistry

  ISSN:

  2296-6463

  Article type:

  Original Research Article

  Received on:

  05 Oct 2015

  Accepted on:

  23 Feb 2016

  Provisional PDF published on:

  23 Feb 2016

  Frontiers website link:

  www.frontiersin.org

  Citation:

 

Mann PJ, Spencer RG, Hernes PJ, Six J, Aiken GR, Tank SE, Mcclelland JW, Butler KD, Dyda RY and
Holmes RM(2016) Pan-arctic trends in terrestrial dissolved organic matter from optical
measurements. Front. Earth Sci. 4:25. doi:10.3389/feart.2016.00025

  Copyright statement:

 

© 2016 Mann, Spencer, Hernes, Six, Aiken, Tank, Mcclelland, Butler, Dyda and Holmes. This is an
open-access article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution and reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Provisional

http://www.frontiersin.org/
http://creativecommons.org/licenses/by/4.0/


 
This Provisional PDF corresponds to the article as it appeared upon acceptance, after peer-review. Fully formatted PDF
and full text (HTML) versions will be made available soon.

 

Frontiers in Earth Science | www.frontiersin.org

Provisional



	 1	

Pan-arctic trends in terrestrial dissolved organic matter 
from optical measurements 

 
Paul J. Mann1*, Robert G. M. Spencer2, Peter J. Hernes3, Johan Six4, George R. 
Aiken5, Suzanne E. Tank6, James W. McClelland7, Kenna D. Butler5, Rachael Y. 
Dyda3, Robert M. Holmes8.  
 
*Correspondence: Dr Paul J Mann, 1Department of Geography, Northumbria 
University, Newcastle-upon-Tyne, UK.  
paul.mann@northumbria.ac.uk 
 
Running title: Arctic tDOM export and composition  
 
Keywords: Carbon Cycle, Arctic, Lignin, Colored Dissolved Organic Matter (CDOM), 
Parallel Factor Analysis (PARAFAC), DOC, Climate Change, Hydrology.  
 
 
1Department of Geography, Northumbria University, Newcastle-upon-Tyne, UK. 
 
2Department of Earth, Ocean and Atmospheric Science, Florida State University, 
Tallahassee, FL, 32306, USA. 
 
3Department of Land, Air, and Water Resources, University of California, Davis, 
California, USA.   
 
4Department of Environmental Systems Science, ETH-Zurich, 8092 Zurich, 
Switzerland. 
 
5United States Geological Survey, Boulder, Colorado, USA.  
 
6Department of Biological Sciences, University of Alberta, Edmonton, Canada. 
 
7University of Texas, Marine Science Institute, 750 Channel View Drive, Port 
Aransas, TX 78373, USA.	
 
8Woods Hole Research Center, Falmouth, MA, 02540, USA.  
 

Provisional



	 2	

Abstract  1	

Climate change is causing extensive warming across arctic regions resulting in 2	

permafrost degradation, alterations to regional hydrology, and shifting amounts and 3	

composition of dissolved organic matter (DOM) transported by streams and rivers. 4	

Here, we characterize the DOM composition and optical properties of the six largest 5	

arctic rivers draining into the Arctic Ocean to examine the ability of optical 6	

measurements to provide meaningful insights into terrigenous carbon export patterns 7	

and biogeochemical cycling. The chemical composition of aquatic DOM varied with 8	

season, spring months were typified by highest lignin phenol and dissolved organic 9	

carbon (DOC) concentrations with greater hydrophobic acid content, and lower 10	

proportions of hydrophilic compounds, relative to summer and winter months. 11	

Chromophoric DOM (CDOM) spectral slope (S275-295) tracked seasonal shifts in DOM 12	

composition across river basins. Fluorescence and parallel factor analysis identified 13	

seven components across the six Arctic rivers. The ratios of ‘terrestrial humic-like’ 14	

versus ‘marine humic-like’ fluorescent components co-varied with lignin monomer 15	

ratios over summer and winter months, suggesting fluorescence may provide 16	

information on the age and degradation state of riverine DOM. CDOM absorbance 17	

(a350) proved a sensitive proxy for lignin phenol concentrations across all six river 18	

basins and over the hydrograph, enabling for the first time the development of a single 19	

pan-arctic relationship between a350 and terrigenous DOC (R2 = 0.93). Combining this 20	

lignin proxy with high-resolution monitoring of a350, pan-arctic estimates of annual 21	

lignin flux were calculated to range from 156 to 185 Gg, resulting in shorter and more 22	

constrained estimates of terrigenous DOM residence times in the Arctic Ocean 23	

(spanning 7 months to 2½ years). Furthermore, multiple linear regression models 24	

incorporating both absorbance and fluorescence variables proved capable of 25	
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explaining much of the variability in lignin composition across rivers and seasons. 26	

Our findings suggest that synoptic, high-resolution optical measurements can provide 27	

improved understanding of northern high-latitude organic matter cycling and flux, and 28	

prove an important technique for capturing future climate-driven changes.  29	
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1. Introduction 30	

Northern high-latitude regions contain substantial quantities of organic carbon in 31	

perennially and seasonally frozen soils, comprising more than half the entire global 32	

carbon soil stock (Tarnocai et al., 2009). Large arctic rivers play an increasingly 33	

recognized role in regional carbon cycling by transporting a proportion of this 34	

terrigenous material from land to the ocean, whilst also acting as sites for active 35	

carbon metabolism and transformation (Holmes et al., 2011; Mann et al., 2015; 36	

Spencer et al., 2015; Striegl et al., 2005). Arctic riverine export is substantial enough 37	

(~ 10 % of the global freshwater discharge) that it imparts estuarine-like water quality 38	

characteristics throughout the Arctic Ocean, influencing coastal salinity structure on a 39	

localized basis (Aagaard and Carmack, 1989; McClelland et al., 2011; Serreze et al., 40	

2006). Furthermore, significant quantities of dissolved organic matter (DOM) 41	

accompany this freshwater flux causing higher than average dissolved organic carbon 42	

(DOC) concentrations in the Arctic Ocean relative to other ocean basins (Hernes and 43	

Benner, 2006; Mathis et al., 2005; Opsahl et al., 1999). Six major arctic rivers account 44	

for the majority of freshwater flux, each draining vast watersheds on the Eurasian 45	

(Kolyma, Ob’, Lena, Yenisey) or North American (Mackenzie, Yukon) continents, 46	

combined delivering ~ 64 % of the total freshwater supplied to the Arctic Ocean 47	

(Holmes et al., 2011).  48	

Arctic rivers are characterized by their strong seasonality and large intra-49	

annual variability in runoff, driven by extreme fluctuations in snow cover and air 50	

temperatures. Discharge rapidly peaks with the onset of snow melt and ice-breakup, 51	

resulting in dramatic spring freshet events and rapid transport of terrigenous DOM 52	

offshore (Amon et al., 2012; Mann et al., 2012; Stedmon et al., 2011a). By contrast, 53	

winter months are distinguished by low discharge and DOC concentrations, with 54	
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DOM exhibiting lower average aromaticity and molecular weight (O'Donnell et al., 55	

2012; Spencer et al., 2008). Future changes in the fluxes and composition of 56	

terrigenous DOM released to and exported from arctic rivers are likely. River 57	

discharge across much of the pan-arctic watershed is increasing, particularly during 58	

winter months (Déry et al., 2009; McClelland et al., 2006; Peterson, 2002; Rawlins et 59	

al., 2010; Smith et al., 2007). Deepening of the seasonally thawed active layer will 60	

also result in leaching of deeper soil and permafrost horizons altering the amount and 61	

type of DOM liberated to inland waters (Romanovsky et al., 2010). Changes in the 62	

quality of DOM affect the reactivity and fate of terrigenous DOM, influencing carbon 63	

turnover rates and regional carbon budgets (Holmes et al., 2008; Mann et al., 2012; 64	

2014; Wickland et al., 2012). Tracing future alterations in the composition as well as 65	

concentration of riverine DOM is therefore crucial for understanding the effects of 66	

climate change.   67	

Lignin phenols are unique biomarkers of vascular plant material and therefore 68	

act as sensitive indicators for the terrigenous component of aquatic DOM. As well as 69	

providing pertinent information on DOM source, lignin phenols also have the capacity 70	

to capture degradative processing and source information (Hernes et al., 2007; Opsahl 71	

and Benner, 1995; Spencer et al., 2010a). DOM source and composition have also 72	

been assessed via separation of the DOM pool using XAD fractionation techniques. 73	

DOC fractionation has been used to differentiate between high molecular weight, 74	

aromatic dominated carbon DOM fractions, primarily sourced from allochthonous 75	

materials, and those dominated by microbially-derived or photodegraded DOM (e.g. 76	

Aiken et al., 1992; Spencer et al., 2012). Despite providing critical information, both 77	

lignin phenol and XAD fractionation techniques are costly and extremely time 78	

consuming to conduct, limiting their applicability for high-resolution monitoring. The 79	
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remote nature of arctic watersheds and the rapid shifts in hydrology make effective 80	

sampling and observation of these regions incredibly challenging. Despite far greater 81	

understanding of constituent fluxes and biogeochemical cycles across Arctic river 82	

systems, much garnered from international sampling campaigns (e.g. PARTNERS, 83	

Arctic-GRO;	www.arcticgreatrivers.org), insufficient temporal and spatial resolution 84	

in measurements still limits our ability to capture changes in terrigenous DOM supply 85	

and examine how it may alter under future scenarios. For example, the Arctic Great 86	

Rivers Observatory (Arctic-GRO) captures the major seasonal patterns in river 87	

chemistry and freshwater discharge across the six major arctic rivers, ensuring 88	

identical sampling and analytical protocols, yet is limited with respect to the number 89	

of samples that can be feasibly collected. The use of optical measurements, which can 90	

be rapidly collected and measured, remotely derived or determined in-situ, is one 91	

pathway that can help to address these problems. 92	

A number of studies have investigated the ability of optical measurements to 93	

capture changes in DOM composition occurring across rivers or over the hydrograph, 94	

or to relate optical and lignin-based proxies to improve estimates of terrigenous DOM 95	

residence times in the Arctic Ocean (Spencer et al., 2009; Stedmon et al., 2011a; 96	

Walker et al., 2013). Recently, chromophoric DOM (CDOM) absorbance 97	

measurements from 30 unique US watersheds were shown to correlate to DOM 98	

composition, as derived via XAD fractionation, highlighting the potential of optical 99	

measurements to improve our understanding of DOM dynamics in fluvial systems 100	

(Spencer et al., 2012). Additionally, CDOM absorbance-lignin relationships have 101	

been developed for the Yukon River and then scaled to the pan-arctic, assuming 102	

similar relative loads of lignin in freshwater fluxes across all arctic rivers (Spencer et 103	

al., 2009). Using this approach, Spencer et al., (2009) found that terrigenous DOM 104	
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export to the Arctic Ocean was higher than previously thought, and thus concluded 105	

that a greater proportion must either be modified during transit through estuaries, or 106	

removal processes in the Arctic Ocean are greater than previously thought. CDOM 107	

fluorescence measurements have also been shown to be potentially useful proxies for 108	

lignin phenol concentration and composition in freshwaters (Hernes et al., 2009; 109	

Walker et al., 2013). Successful relationships have been reported between CDOM 110	

fluorescence, collected as excitation-emission matrices (EEMs) and decomposed 111	

using parallel factor analysis (PARAFAC), and lignin measurements across individual 112	

arctic rivers, yet pan-arctic relationships remain elusive (Walker et al., 2013). In 113	

particular, no studies have attempted to develop relationships between DOM optical 114	

properties from across all six arctic rivers and DOC fractionation measurements 115	

(XAD), or with vascular plant biomarkers (lignin phenols) as rapid proxies for 116	

terrestrial DOC export and composition across the Arctic. Additionally, no studies 117	

have examined the utility of combining absorbance and fluorescence techniques to 118	

develop arctic proxies for terrigenous DOM export.  119	

Here, we characterize the DOM optical properties and composition (XAD and 120	

lignin phenol) of the six largest arctic rivers to examine the ability of optical 121	

measurements to provide meaningful insights into terrigenous carbon export patterns 122	

and biogeochemical cycling across broad spatial scales in the Arctic. Specifically, we 123	

attempt to identify common optical indices that trace DOC and lignin phenol 124	

concentration and compositional information across all six arctic rivers. Further, we 125	

examine the utility of using a combination of absorbance and fluorescence 126	

measurements to predict trends in DOC and lignin phenol biomarkers. Finally, we 127	

develop, for the first time, a pan-arctic optical proxy for estimating terrestrial OC flux 128	
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from arctic rivers to the Arctic Ocean and apply our findings to high-resolution 129	

optical measurements to improve terrigenous DOC export estimates.   130	

 131	

 132	

2. Material and Methods  133	

2.1 Study Areas and Sample Collection  134	

Samples from each of the six largest Arctic rivers (Figure 1) were collected as part of 135	

the Arctic Great Rivers Observatory (Arctic-GRO; www.arcticgreatrivers.org). Each 136	

of the six rivers was sampled five times per year in 2009 and 2010 (except for 2009 137	

on the Yukon with six samples) using a standardized collection method as detailed 138	

elsewhere (Holmes et al., 2011; McClelland et al., 2008; Raymond et al., 2007). 139	

Depth and width integrated samples were collected from near the mouth of each river 140	

(above tidal influence) across the hydrograph, incorporating baseflow, spring melt, 141	

and summer conditions. Near-daily surface sampling (0.5 m) was also conducted over 142	

the spring freshet hydrographs on each of the six Arctic rivers during both years to 143	

provide high-resolution optical measurements for this period (n = 241). 144	

  Samples collected for DOC concentration, optical properties, and lignin 145	

analyses were filtered within a few hours of collection into pre-cleaned high-density 146	

polyethylene bottles through pre-rinsed 0.45 µm capsule filters (Geotech or Pall 147	

Aquaprep 600) and measured on unfractionated waters. Samples for DOC 148	

fractionation were filtered as above and acidified to pH 2.  149	

 150	

2.2 Dissolved Organic Carbon and XAD Fractionation 151	

Dissolved organic carbon (DOC) measurements were performed on a Shimadzu 152	

(TOC-V) organic carbon analyzer as the mean of 3 – 5 replicate injections where the 153	
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coefficient of variance was < 2% (Mann et al., 2012). River water DOC samples were 154	

chromatographically separated into operationally defined hydrophobic organic acid 155	

(HPOA), hydrophobic neutral (HPON), low molecular weight hydrophilic (HPI), and 156	

transphilic organic acid (TPIA) fractions using XAD-8 and XAD-4 resins and 157	

established methodologies (Aiken et al., 1992). The amount of organic matter within 158	

each fraction is expressed as a percentage of the total DOC concentration and the 159	

sample mass of each fraction. The HPOA fraction typically contains more aromatic 160	

humic and fulvic acids and the HPI fraction less aromatic and more aliphatic forms of 161	

carbon, providing information on DOC composition.   162	

 163	

2.3 Lignin Phenol Biomarkers 164	

Lignin phenols were measured via the CuO oxidation method described by Hedges 165	

and Ertel, (1982), with modifications as outlined by Spencer et al., (2010b). In brief, 166	

filtered whole waters were acidified to pH 2 with 12N HCl, rotary evaporated to ~ 3 167	

mL, and the concentrate transferred to Monel reaction vessels (Prime Focus, Inc.) and 168	

dried under vacuum centrifugation. All samples were alkaline oxidized at 155 °C in a 169	

stoichiometric excess of CuO, followed by acidification (pH = 1 with 12 N H2SO4) 170	

and extracted three times with ethyl acetate, passed through Na2SO4 drying columns, 171	

and taken to dryness under a gentle stream of ultrapure nitrogen. After redissolution in 172	

pyridine, lignin phenols were silylated (BSTFA) and quantified on a GC-MS (Agilent 173	

6890 gas chromatograph equipped with an Agilent 5973 mass selective detector and a 174	

DB5-MS capillary column; 30 m, 0.25 mm inner diameter, Agilent) using cinnamic 175	

acid as an internal standard and a five-point calibration scheme. Eight lignin phenols 176	

were quantified for all samples, including three vanillyl phenols (vanillin, 177	

acetovanillone, vanillic acid), three syringyl phenols (syringaldehyde, acetosyringone, 178	
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syringic acid), and two cinnamyl phenols (p-coumaric acid, ferulic acid). One blank 179	

was run for every ten-sample oxidations and all samples were blank corrected. Blank 180	

concentrations of lignin phenols were low (30 – 40 ng) and consequently never 181	

exceeded 5 % of the total lignin phenols in a sample. Lignin phenol concentrations are 182	

reported as the sum of the cinnamyl, syringyl and vanillyl phenols (∑8). Additionally, 183	

the carbon normalized sum of the lignin phenols (Λ8) were calculated.  184	

 185	

2.4 DOM Absorbance and Fluorescence 186	

UV-visible absorbance was measured in a 1 cm quartz cuvette across 200 – 800 nm at 187	

room temperature (20ºC) with a dual beam Shimadzu UV-1800 spectrophotometer. 188	

Measurements were recorded in triplicate at 1 nm wavelength intervals and referenced 189	

against Milli-Q water blanks. Absorbance values were converted to Naperian 190	

absorption coefficients by multiplying raw absorbance values by 2.303 and dividing 191	

by the pathlength (m) (Hu et al., 2002). The slope (S) of the absorbance spectra was 192	

calculated from wavelength ranges spanning 275-295, 290-350, and 350-400 nm and 193	

the slope ratio (SR) determined as S275-295/ S350-400 (Helms et al., 2008). Slope 194	

coefficients can provide information pertaining to CDOM composition and source, 195	

with steeper values and increasing SR indicative of lower molecular weight and 196	

decreasing DOM aromaticity (Blough and Del Vecchio, 2002; Blough and Green, 197	

1995; Helms et al., 2008). Specific UV absorbance (SUVA254) was calculated by 198	

dividing the decadal UV absorbance at 254 nm by the DOC concentration (Weishaar 199	

et al., 2003). The specific UV absorbance (SUVA254) has been shown to be positively 200	

correlated to percent aromaticity within DOM (Weishaar et al., 2003).   201	

Fluorescence was analyzed using a Horiba Fluoromax-4 spectrofluorometer 202	

(Jobin-Yvon). Excitation-emission matrices (EEMs) were collected at 20ºC in ratio 203	
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(S/R) mode over excitation and emission wavelengths of 250 - 450 and 320 - 550 nm, 204	

in 5 and 2 nm increments respectively. Measurements were performed with 0.1s 205	

integration times and 5 nm slit widths on the excitation and emission 206	

monochromators. Instrument specific correction files were applied before further 207	

analyses. Fluorescence EEMs were blank corrected from at least daily Milli-Q blanks 208	

collected identically to samples. Daily water Raman scans were collected at Ex=350 209	

nm (e.g. Lawaetz and Stedmon, 2009). Raman and Rayleigh-Tyndall scatter were 210	

removed and interpolated using the smootheem function and absorbance 211	

measurements were used to correct EEMs for inner filter effects according to the 212	

method of Lakowicz, (2013) within the drEEM toolbox (Murphy et al., 2013). The 213	

fluorescence index (FI) was also calculated as the ratio of emission at 470 nm to 520 214	

nm, at an excitation wavelength of 370 nm (Cory et al., 2010; McKnight et al., 2001). 215	

 216	

2.5 PARAFAC and statistical analyses  217	

Exploratory analysis of fluorescence EEM data was conducted using parallel factor 218	

analysis (PARAFAC) to decompose the number, shape, and amounts of underlying 219	

spectral components among samples. PARAFAC was conducted using the drEEM 220	

(version 2.0) and N-way (version 3.20) toolbox (Murphy et al., 2013) within the 221	

MATLAB R2013a environment.  222	

To aid decomposition and provide greater variance within the dataset, 223	

additional EEMs (total n = 645) collected across a wide range of stream and river 224	

environments from the Kolyma River Basin were included and analyzed alongside the 225	

Arctic-GRO fluorescence dataset. PARAFAC modeling was performed after 226	

normalizing each EEM to its total signal (to unit norm) by dividing by the sum of the 227	

squared values of all variables in the sample, and imposing non-negativity constraints, 228	
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thus negating problems caused by large concentration gradients apparent in seasonal 229	

samples (Murphy et al., 2013). The number of components within the model was 230	

validated using all of the techniques recommended in Murphy et al., (2013), including 231	

examination of systematic variation in the dataset, visualization of spectral loadings, 232	

and split half analysis. The final model was successfully validated using four splits of 233	

the data and three validation tests across six different dataset halves (S4C6T3) 234	

(Harshman and Lundy, 1994; Murphy et al., 2013). Fluorescence loadings were 235	

calculated after normalizing the dataset ensuring unscaled model scores were 236	

recovered.         237	

Principle component analysis (PCA; nonrotated solutions) was employed to 238	

explore relationships between optical properties, DOC and lignin phenol 239	

concentration, and composition using the PLS_Toolbox (Eigenvector, Inc., Seattle, 240	

WA v. 8.0) within MATLAB (R2013a). Autoscaling was used on variables measured 241	

prior to PCA. Multiple linear regression models were developed using a forward 242	

stepwise approach minimizing the Akaike Information Criterion, and were conducted 243	

in SPSS v22 (IBM). 244	

 245	

2.6 Constituent Flux Calculations 246	

Constituent fluxes were estimated using the USGS LoadEstimator software 247	

(LOADEST) within the LoadRunner software interface (Booth et al. 2007; Runkel et 248	

al., 2004). LOADEST calculates daily constituent flux estimates by generating 249	

relationships between measured discharge and element concentrations and was run as 250	

in Holmes et al., (2012). Daily discharge data were obtained from US Geological 251	

Survey (Yukon), Water Survey of Canada (Mackenzie) and Roshydromet (Kolyma, 252	

Lena, Ob’ and Yenisey), and are freely available from 253	
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http://dx.doi.org/10.5066/F7P55KJN,  http://arcticgreatrivers.org/data.html, and the 254	

Water Survey of Canada http://wateroffice.ec.gc.ca/mainmenu/ 255	

historical_data_index_e.html. Corrections were applied to allow for the distance 256	

between the discharge measurement station and sample location as has been 257	

previously described (Holmes et al., 2012). Any gaps in the discharge data were filled 258	

by interpolation, however there were no gaps during peak flow on any river. 259	

 260	

3. Results 261	

 262	

3.1 Spatial and temporal patterns in chemical fractions of DOC  263	

Total DOC concentrations ranged over the study period from 2.6 to 17.5 mg L-1
. 264	

Highest average DOC concentrations were measured in the Lena river (15.7 ± 0.9 mg 265	

L-1, ± SE) during spring, and lowest during winter in the Yukon river (2.9 mg L-1
, n = 266	

1; Table 1). DOC concentrations from all six rivers were correlated with runoff (m3 267	

km-2 d-1; R2 = 0.44, not shown). Riverine DOC was mainly composed of high 268	

contributions from the HPOA fraction, averaging 53 ± 1% across the six Arctic rivers 269	

(Table 1). Eurasian rivers contained higher average proportions of the HPOA fraction 270	

over the year (54 to 56 ± 2%) relative to the North American Yukon (50 ± 2%) and 271	

Mackenzie rivers (45 ± 2%, t-test p < 0.001). HPI and TPIA fractions contributed a 272	

smaller proportion to bulk DOC, averaging 19 ± 0% and 17 ± 0% respectively. The 273	

average HPI and TPIA fractions were less variable than HPOA, ranging from 17 to 274	

23% and 16 to 19% respectively across all sites and seasons (Table 1). HPON 275	

fractions generally contributed < 10 % to bulk DOC across rivers and were thus 276	

omitted from further study.  277	
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 The composition of DOC was further characterized by calculating specific 278	

UV-visible absorbance (SUVA254) of DOC and its major chemical fractions (Table 1). 279	

Mean SUVA254 values of total DOC varied considerably among rivers with lowest 280	

values measured in the Mackenzie River (2.5 L mgC-1 m-1) and highest in the Yenisey 281	

River (3.4 L mgC-1 m-1). Mean SUVA254 values of the HPOA fraction also varied 282	

among rivers with lowest values observed in the Kolyma River (3.6 L mgC-1 m-1) and 283	

highest in the Yenisey (4.3 L mgC-1 m-1), and were consistently higher than bulk DOC 284	

highlighting the greater number of highly aromatic compounds represented by this 285	

fraction. The SUVA254 values of the HPI (1.2 to 2.3 L mgC-1 m-1) and TPIA (2.0 to 286	

3.1 L mgC-1 m-1) fractions were less variable across rivers, and lower than bulk DOC, 287	

indicating the presence of a lower relative number of aromatic moieties (Table 1). 288	

The contribution of HPOA to the total DOC pool was generally highest during 289	

spring months with maximum contributions varying considerably between rivers (47 290	

to 60 %; Table 1). Percent contributions of the HPOA fraction were typically lowest 291	

during winter flow periods. No clear seasonal differences in the fraction of HPOA 292	

present were observed in the Ob’ River (55 ± 3 to 57 ±1 %). Mean SUVA254 values of 293	

total DOC were consistently highest across all rivers during spring months, 294	

intermediate during summer months (2.3 to 3.1 L mgC-1 m-1), and lowest in winter 295	

across all rivers (1.5 to 3.0 L mgC-1 m-1; Table 1). SUVA254 values of the HPOA 296	

fraction followed similar seasonal trends as total DOC. TPIA and HPI SUVA254 297	

values displayed less clear seasonal patterns (Table 1).     298	

 299	

3.2 Spatial and temporal patterns in lignin phenols 300	

Mean lignin phenol concentrations (∑8) varied significantly among the six rivers, with 301	

lowest concentrations observed in the Mackenzie River (9.5 µg L-1) and highest in the 302	
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Lena River (70.0 µg L-1; Table 2). Highest carbon normalized lignin yields (Λ8) were 303	

observed in the Yenisey River, mostly due to lower mean DOC concentrations 304	

relative to the Lena River (Table 2). Lowest mean Λ8 values were measured in the 305	

Mackenzie River (0.19 (mg(100 mg OC))-1). Lignin values measured in this study 306	

were consistent with prior measurements in the Yukon and Russian arctic rivers 307	

(Lobbes et al., 2000; Spencer et al., 2009) but notably lower than lignin measurements 308	

from the earlier PARTNERS project (Amon et al., 2012). 309	

The Lena and Yenisey rivers displayed lowest mean cinnamyl (C) to vanillyl 310	

(V) phenol ratios (C/V), indicative of greater contributions of woody versus non-311	

woody sources to bulk DOM of these rivers (Hedges and Mann, 1979). Highest C/V 312	

ratios were measured in the Mackenzie and Ob’ Rivers (Table 2). Spatial variability in 313	

syringyl (S) to vanillyl ratios (S/V) mainly mirrored those of C/V, except for higher 314	

S/V values in the Yukon River as compared to the Mackenzie River (Table 2). Higher 315	

S/V ratios are indicative of greater proportions of angiosperm versus gymnosperm 316	

sources to DOM (Hedges and Mann, 1979). 317	

Acid to aldehyde ratios (Ad/Al) have been suggested to provide evidence of 318	

the relative degree of DOM degradation, with higher ratios indicating greater 319	

degradation of plant tissues (Hedges et al., 1988; Hernes and Benner, 2003; Opsahl 320	

and Benner, 1995). Mean ratios of vanillic acid to vanillin (Ad/Al)v ranged from 1.07 321	

in the Mackenzie River to 1.48 in the Yukon River (Table 2). Ratios of syringic acid 322	

to syringaldehyde (Ad/Al)s varied from 0.84 in the Yenisey to 1.06 in the Mackenzie 323	

River.  324	

∑8 values among rivers were strongly linearly related to runoff (R2 = 0.69), 325	

suggesting terrigenous DOM export dynamics were largely controlled by hydrology. 326	

Accordingly, highest ∑8 concentrations were recorded across all rivers during the 327	
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spring freshet and lowest concentrations during base flow winter conditions. Highest 328	

individual ∑8 values were measured in the Lena River (120 µg L-1) and lowest in the 329	

Kolyma and Yukon Rivers (3.8 µg L-1). During the freshet, Λ8 yields were between 330	

2.6 and 4.8 times higher than winter Λ8 values across sites; the Yenisey River 331	

displayed the least variability and the Yukon the greatest (Table 2).  332	

C/V and S/V ratios generally declined with increasing runoff across all rivers 333	

(Table 2). Acid aldehyde ratios (Al/Ad) were highly variable among rivers, generally 334	

increasing with greater runoff, yet in some cases (e.g. Lena River) demonstrated 335	

opposing patterns. Highest Ad/Al ratios during the spring freshet may represent the 336	

export of greater quantities of largely ‘fresh’ microbially unprocessed DOM relative 337	

to later in the year (Hernes et al., 2007; Spencer et al., 2008; Amon et al., 2012).    338	

  339	

3.3 Chromophoric and fluorescence DOM of arctic rivers  340	

The absorbance coefficient of CDOM at 350 nm (a350) ranged from 2.3 to 42.6 m-1 341	

among rivers and seasons, and similar to DOC and ∑8 concentrations, generally 342	

increased with greater freshwater runoff (R2 = 0.57, p < 0.001, n = 60; Supplemental 343	

Table 1). Spectral slope values (S275-295, S290-350, S350-400) steepened with decreasing 344	

runoff, in good agreement with previous studies (Spencer et al., 2009; Stedmon et al., 345	

2011a), indicating the export of lower molecular weight material, or DOM with 346	

decreasing aromaticity as discharge rates decline (Blough and Del Vecchio, 2002; 347	

Blough and Green, 1995). The slope ratio (SR) showed an opposing pattern to spectral 348	

slopes, declining at higher runoff rates thus confirming an increase in DOM molecular 349	

weight during the spring freshet and reduction during winter base flow months 350	

(Helms et al., 2008; Spencer et al., 2010a; 2012).  351	
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Fluorescence index (FI) values were similar across rivers and averaged 1.34 ± 352	

0.01 across all sites and sampling dates reflecting DOM from a mixture of terrigenous 353	

and microbial sources (McKnight et al., 2001; Supplemental Table 1). Highest FI 354	

values were measured across all rivers during winter months (mean 1.41 ± 0.03), 355	

reflecting a potentially higher contribution of microbial derived or lower aromaticity 356	

DOM during this period. Lowest FI values among rivers (mean 1.31 ± 0.01), 357	

indicative of greatest terrigenous and aromatic DOM supply, were observed during 358	

the high discharge spring freshet.  359	

 360	

3.4 Parallel factor analysis (PARAFAC)  361	

The PARAFAC analysis of DOM excitation-emission scans collected from all six 362	

arctic rivers over the hydrograph identified seven unique components of DOM 363	

fluorescence (Fig. 2; Supplemental Fig. 1). The spectra of each component identified 364	

were compared with the open fluorescence database (openfluor.org) containing 365	

spectra from previous studies (currently 53 studies) detailing PARAFAC models. All 366	

seven components closely matched (tucker congruence coefficient, TCC >0.95; 367	

Tucker, 1951) the excitation and emission spectra of previously identified 368	

components from 37 independent studies (Table 3).  369	

Four of the seven AG components were very closely related (TCC ≥ 0.97) to 370	

those reported in the five-component Horsens catchment model (Murphy et al., 2014). 371	

For each of the seven components identified here, at least three independent studies 372	

had previously identified statistically similar spectra, except for component AG3 for 373	

which there was only a single match. Table 3 provides information and a description 374	

of the seven components identified.  375	
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AG3 was closely related (TCC  = 0.97) to C1 in Murphy et al., (2014) where it 376	

was identified as displaying an emission spectrum identical to syringaldehyde, a 377	

product of lignin breakdown. The AG model shared two components with a five-378	

component PARAFAC model explaining florescence DOM collected from five of the 379	

major Arctic rivers sampled here over 2004-2005 (Walker et al., 2013). AG6 was 380	

similar (TCC >0.95) to C1 from this model (Walker et al., 2013), while AG7 was 381	

identical to C5, which can be described as tryptophan-like and has been commonly 382	

associated with biological production in surface waters (Determann et al., 1994).  383	

Two AG model components were also highly related to components 384	

previously reported in sea ice. AG1 was comparable to the terrestrially-derived 385	

component C2 found within Baltic sea ice (Stedmon et al., 2007). AG1 was also 386	

identical to C3 in coastal Canadian Arctic waters, which proved to be highly 387	

positively correlated with ∑8 (Walker et al., 2009). AG5 was identical to C6 in a study 388	

of Antarctic sea ice brines (Stedmon et al., 2011b), and is similar to the commonly 389	

described ‘M’ peak across a wide range of environments (Coble, 1996; 2007; Fellman 390	

et al., 2010).  391	

 Component AG4 contributed the greatest (23.4% ±0.6%) and AG7 the lowest 392	

percentage (5.1% ±0.3%) towards total DOM fluorescence across all rivers and 393	

seasons. In contrast to previous studies, no consistent pan-arctic seasonal or spatial 394	

patterns were apparent in the fluorescence loadings or percent contribution of any of 395	

the seven components (Walker et al., 2009). Individual patterns in fluorescence were, 396	

however, observed across rivers and seasons. Component AG1 contributed a 397	

substantially higher proportion of total fluorescence during the summer months in the 398	

Kolyma (20.5% ± 0.1%) and Lena Rivers (20.6% ± 0.6%) relative to each of the other 399	

rivers (16.8 to 17.7%), yet comprised similar amounts during the rest of the year. 400	
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Similarly, the proportion of AG3 was significantly higher in the Kolyma (23.2% ± 401	

0.8%) and Lena (19.1% ± 1.4%) Rivers relative to the others (11.3% to 17.6%) during 402	

the summer months alone. Opposing patterns were observed in AG6, with 403	

significantly lower proportions in the Kolyma (4.4% ± 0.1%) and Lena Rivers (5.3% 404	

± 0.6%) relative to the others, in particular the Yenisey (9.7% ± 1.2%) and Ob’ Rivers 405	

(8.4% ± 1.8%). The Mackenzie River contained high proportions of AG7 during the 406	

summer months (6.7% ± 1.1%) relative to all other rivers (3.9 to 5.2%).  407	

  408	

 409	

4. Discussion  410	

 411	

4.1 Optical measurements, DOC concentration and DOM composition 412	

CDOM absorption (a350) correlated strongly with DOC concentration across all rivers 413	

during the standard Arctic-GRO sampling over 2009 and 2010 (R2 = 0.89; p <0.001; n 414	

= 60, not shown). This strong positive linear relationship persisted when DOC 415	

concentration and a350 values from the additional high-resolution measurements 416	

collected over the freshet period were included (R2 = 0.81; p <0.001; n = 301; Figure 417	

3a). Despite this robust pan-arctic relationship however, when rivers were analyzed 418	

independently significant differences in the slopes and intercepts for the DOC to a350 419	

relationships were observed (Table 4). This indicates that the relative amount of non-420	

chromophoric DOM varies across Arctic rivers, and suggests that the proportion of 421	

DOC per unit CDOM within individual river basins should in the future be separately 422	

determined (Table 4). Interestingly, we also find that the variability in river-specific 423	

slope and intercepts were well-explained by total annual river discharge, with 424	

increasing discharge resulting in higher DOC:a350 intercepts (R2 = 0.58 ; p <0.05, not 425	
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shown) and shallower slopes (R2 = 0.72, p <0.05, not shown). The relationship 426	

between annual discharge and DOC:a350 intercepts improved significantly (R2 = 0.98 ; 427	

p <0.01) with the exclusion of the Mackenzie River. Thus, greater dilution of DOM 428	

and export of non-chromophoric organics occurs with increasing total discharge. The 429	

different relationship observed in the Mackenzie may be due to its relatively low 430	

DOM yield, high abundance of suspended sediments, as well as high proportion of 431	

lakes relative to other watersheds (Stedmon et al. 2011a).   432	

HPOA fraction was closely related to S275-295 across rivers, with the relative 433	

proportion of HPOA decreasing with steepening slope (R2 = 0.65; p < 0.001, n = 58), 434	

as previously reported across five of these rivers in 2004-2005 (Walker et al., 2013).  435	

This suggests that average DOM molecular weight and aromaticity decreases as the 436	

proportion of HPOA declines, in good agreement with a number of previous studies 437	

(Neff et al., 2006; O'Donnell et al., 2012; Spencer et al., 2012; Striegl et al., 2007). 438	

This was further supported by a positive linear relationship between average HPOA 439	

and SUVA254 across rivers (R2 = 0.56, p < 0.01, Supplemental Fig. 2). The DOM 440	

composition of winter flow has been shown to contain lower proportions of the 441	

HPOA fraction as compared to HPI, with lower SUVA254 values relative to summer 442	

and spring months in the Yukon River (O'Donnell et al., 2012). The aromaticity of the 443	

HPOA fraction (HPOA-SUVA254), was negatively correlated with FI (R2 = 0.32, p < 444	

0.001, n = 47, not shown), confirming the role of terrigenous supply on delivering 445	

increased proportions of aromatic organics to the exported DOM pool.          446	

No pan-arctic relationships were observed between any of the fluorescence 447	

component loadings and DOC concentration or composition (Supplemental Tables 2 448	

& 3). However, weak yet significant relationships were observed between the relative 449	

proportions of components AG3 and AG4 to total fluorescence and DOC 450	
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concentrations across all six rivers (R2 = 0.15 and 0.16 respectively, p < 0.01). AG3 451	

proportions generally decreased with increasing DOC concentrations, where AG4 452	

proportions increased with greater DOC concentrations. These relationships were 453	

largely driven by particularly strong relationships across the Kolyma and Lena Rivers 454	

(AG3 R2 = 0.70; AG4 R2 = 0.70, p < 0.001). The relatively weak pan-arctic 455	

relationships we observe here contrasts with the findings of Walker et al., (2013), 456	

whom report strong correlations between DOC concentration and fluorescence 457	

loadings. These conflicting findings may have been due to the additional 458	

normalization step we applied to scale each EEM to its total signal, thus ensuring the 459	

model focused entirely on compositional rather than concentration gradients. 460	

Alternately, the addition of a significant number of EEMs from upstream sources may 461	

have resulted in the validation of different components during PARAFAC 462	

decomposition. The latter seems unlikely however, as two of the seven components 463	

were spectrally identical (TCC >0.95) to the PARAFAC model used by Walker et al., 464	

(2013), including component AG6 which was spectrally indistinguishable from a 465	

component (C1) identified as most closely tracing DOC and ∑8 concentrations. Other 466	

potential causes include differences in the treatment of inner filter effects. We applied 467	

a commonly employed post-hoc method by Lackowicz (2013) to correct our EEMs 468	

for inner filter effects using parallel CDOM absorbance measurements, whereas 469	

Walker et al. (2013) diluted samples prior to measurement. Our method more closely 470	

reflects direct measurement of field samples and is similar to information that could 471	

be derived from in-situ instruments. Our findings suggest that loadings derived from 472	

fluorescence EEMs decomposed using PARAFAC may not always be useful when 473	

tracing DOC concentration.  474	

 475	
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4.2 Optical measurements and lignin concentration and composition 476	

CDOM (a350) measurements were highly correlated to ∑8 across all six rivers basins 477	

(R2 = 0.93; p <0.001; n = 31; Figure 3b). This represents the first pan-arctic 478	

relationship to be reported between a350 and ∑8 across all six major rivers. The 479	

observed linear relationship (∑8  = -8.06 ± 2.71+ (2.80 ± 0.14a350)) was similar to, yet 480	

displayed a slightly higher slope, than reported in Spencer et al., (2008) for the Yukon 481	

River Basin only (∑8  = -6.67 ± 2.88+ (2.21 ± 0.11a350). Previous studies have 482	

reported a much steeper linear relationship between a350 and ∑8, with the Mackenzie 483	

and Ob’ Rivers grouping separately from the Kolyma, Lena and Yenisey (Walker et 484	

al., 2013). The steeper slope of the previously reported relationship is caused by the 485	

substantially higher (often greater than double) lignin concentrations (∑8) reported in 486	

Amon et al., (2012) and used in Walker et al., (2013) relative to those presented here. 487	

The differences in ∑8 concentrations may be due to methodological differences, as 488	

suggested by Walker et al., (2013), and raises concern over future potential in 489	

comparing datasets. For example, comparison of data from Spencer et al., (2008) in 490	

Walker et al., (2013) suggested low relative lignin concentrations in DOM from the 491	

Yukon, whereas we identify a similar ∑8 to a350 relationship across all six major arctic 492	

rivers.  493	

Carbon normalized lignin (Λ8) yields decreased exponentially with steepening S275-295 494	

values across all rivers and seasons (R2 = 0.80 ; p < 0.01, n = 31; Table 2 and 495	

Supplementary Table 1). Steepening S275-295 values were associated with decreasing 496	

runoff rates (section 3.3), thus Λ8 yields typically increased as DOM average 497	

molecular weight and aromaticity increased, and during spring and summer months in 498	

response to greater allochthonous DOM supply.  499	
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Lignin phenols have been shown to comprise a major component of the HPOA 500	

fraction (Spencer et al., 2008; 2010a; Templier et al., 2005). This was confirmed by a 501	

significant positive correlation between proportion HPOA and Λ8 yields (R2 = 0.71, p 502	

< 0.001, n = 29; not shown). Lignin phenol biomarkers thus appear capable of 503	

providing information on the biogeochemical cycling of the entire hydrophobic DOM 504	

pool, which comprises up to two-thirds of aquatic DOM.      505	

Lignin phenol C/V ratios increased with steepening S275-295 values (R2 = 0.54; 506	

p < 0.001, n = 31) and declining total SUVA254 values (R2 = 0.48; p < 0.001, n = 31) 507	

(Tables 1 and 2 and Supplementary Table 1). The overall decline in C/V ratios with 508	

increasing freshwater runoff appears to represent increased contributions of lignin 509	

from litter and surface soil layers alongside greater proportions of aromatic and higher 510	

molecular weight DOM export (Hedges and Mann, 1979). These findings however 511	

appear counterintuitive relative to what we currently understand about hydrologic 512	

flow paths and sources of DOM to aquatic systems. Non-woody litter tissues 513	

associated with surficial, predominantly overland flow paths are expected to impart 514	

higher C/V ratios and lower degradative alteration than observed in DOM exported 515	

during base flow conditions derived from deeper flow paths. Physical processes, such 516	

as leaching and sorption, can also influence lignin phenol ratios (Hernes et al., 2007; 517	

2008) and may therefore be responsible for the observed trends. S/V and acid to 518	

aldehyde ratios did not correlate closely with spectral slope, SUVA254, or SR values. 519	

The overall trends in lignin phenol composition we report are similar to those 520	

previously shown across Arctic rivers (Amon et al., 2012; Spencer et al., 2008; 2009), 521	

and demonstrate a shift from predominantly modern surface-derived and lignin-rich 522	

DOM during the spring freshet to older, less lignin-rich DOM under base-flow winter 523	

conditions.     524	

Provisional



	 24	

No pan-arctic relationships were observed between fluorescent PARAFAC 525	

component loadings and lignin phenol concentration or composition measures 526	

(Supplemental Tables 2 & 3). A weak yet significant relationship was however found 527	

between the relative proportions of components AG3 and AG4 to ∑8 concentration 528	

(R2 = 0.18; p < 0.02) but again was significantly stronger across the Kolyma and Lena 529	

Rivers in particular (R2 = 0.79 ; p < 0.001). FI values positively correlated with 530	

increasing C/V ratios (R2 = 0.48, p < 0.001, n = 30) confirming losses in the 531	

proportion of woody tissues with increased autochthonous or less aromatic DOM 532	

supply.      533	

 534	

4.3 Linking optical properties to Arctic river DOM composition  535	

Underlying patterns and relationships between optical DOM parameters, DOC, and 536	

lignin were further explored using principle component analysis (PCA), which can 537	

identify the structure of data that best explains the variance within the dataset. The 538	

optical properties of DOM varied with season across all rivers, as demonstrated by 539	

PCA plots containing PARAFAC fluorescence components (percent contribution) and 540	

spectral slope information. The addition of FI and SR values added little additional 541	

information to the PCA analyses. Furthermore, SUVA254 followed identical patterns 542	

to each of the spectral slope parameters and its inclusion led to similar PCA plots. 543	

These indices were therefore omitted from the final PCA model for clarity. Three 544	

principle components (PCs; eigenvalue > 1) were identified that together explained 545	

80% of the total variance in the optical data (PCopt 1-3). PC1opt was related to 546	

increasing fluorescence contributions from AG3, AG1, and AG5, but decreasing 547	

contributions from AG6, AG4, and AG2 (Fig. 4). Components AG1, 3, and 5 548	

represent DOM fluorescence signatures that have all previously been reported to be 549	
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susceptible to microbial processing, or to be a byproduct of vascular material 550	

degradation (Table 3 and references herein). These fluorescence signatures may 551	

therefore represent indicators of ‘degraded’ or processed humic-like components. In 552	

contrast, components AG 2, 4, and 6 appear to represent more unreactive and stable 553	

components, previously being described as refractory in nature and shown not to co-554	

vary with bacterial production (Table 3). PC1opt may therefore reflect potential 555	

reactivity or be an indicator of prior DOM processing. PC2opt appeared to be related 556	

to the shifting molecular weight of DOM, as indicated by strong relationships with 557	

changes in all spectral slopes (and SUVA254, not shown), whereas PC3opt was 558	

positively related to increased protein-like or phenolic DOM (AG7) and decreasing 559	

contributions from humic-like DOM (AG2 and AG1). PCA models run with only 560	

PARAFAC components contained two principle components, each indistinguishable 561	

from PC1opt and PC3opt, demonstrating that information on DOM potential 562	

reactivity and the relative contribution of protein-like versus humic-like could be 563	

obtained from fluorescence measurements alone. 564	

 Seasonal changes in DOM composition across all six rivers were most clearly 565	

separated along the PC2opt axis, with spring waters containing higher molecular 566	

weight material with shallower spectral slopes than summer and winter month waters. 567	

Positive scores on PC3opt during spring and winter months, relative to summer, 568	

suggest greater contributions of protein-like or phenolic material (as inferred by the 569	

proportion of component AG7), potentially representing reductions in allochthonous 570	

supply or increased export of fresh organics from surface layers, respectively. No 571	

clear separation among the six different rivers was apparent with optical properties 572	

alone across any of the PC axes.  573	
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   To examine if the observed trends in DOM optical properties were related to 574	

geochemical changes in organic matter we conducted a separate PCA incorporating 575	

all lignin phenol and DOC fractionation variables. We subsequently compared the 576	

identified PCs with those extracted from optical measurements alone. Two PCs 577	

(PCmol 1-2) were identified, in combination explaining 67 % of the total variance in 578	

geochemical composition (Fig. 5). PC1mol positively related to increasing HPOA, ∑8, 579	

and Λ8 contributions and negatively with C/V ratio and proportions of the 580	

hydrophobic neutral and hydrophilic fractions. The axis therefore primarily separates 581	

seasonal variability observed in DOC, with spring months delivering greater 582	

proportions of HPOA with high concentrations of ∑8 and Λ8 values. PC2mol most 583	

strongly correlated to (Ad/Al) ratios suggesting it represented changing proportions of 584	

DOM degradation state. S/V ratio was also positively related with PC2mol, indicating 585	

that shifts in the relative proportions of sources waters may also be represented by this 586	

axis or similar processes (e.g. leaching and sorption) may be driving the observed S/V 587	

and (Ad/Al) ratios. 588	

  Comparing separate PCs from both optical and geochemical PCAs across all 589	

sites and sampling dates, only a single significant positive correlation was observed 590	

between PC2opt extracted from optical characteristics and PC1mol from DOC and 591	

lignin composition (r2 = 0.65, p < 0.001, n = 30; Fig. 5). Thus, seasonal variability in 592	

DOC composition was explained by relatively simple CDOM slope (and SUVA254) 593	

metrics. Separating over seasons, PC1opt correlated significantly with PC2mol during 594	

the summer (r2 = 0.85, p < 0.05, n = 8) and winter months (r2 = 0.65, p = 0.06, n = 6), 595	

but not over spring periods across all six rivers. This further suggests that shifts in the 596	

relative proportions of PARAFAC components reflect shifts in the relative 597	

degradation signature of DOC inferred from acid:aldehyde ratios during certain 598	
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periods of the year. Information pertaining to the source (S/V ratios) of DOM may 599	

therefore also be contained in the relative ratio of more or less reactive or degraded 600	

PARAFAC components. Interestingly, (Ad/Al)v ratios have also been shown to 601	

correlate with the average 14C age of DOC within these Arctic rivers (Amon et al., 602	

2012). Fluorescence measurements may therefore provide information pertaining to 603	

both the age and degradation history of DOM across Arctic systems. Broad patterns in 604	

the temporal variability of DOM composition over pan-arctic scales therefore appear 605	

best captured using simple CDOM spectral slope and SUVA254 measurements. 606	

Information on DOM processing, source, and age may instead be contained within 607	

CDOM fluorescence spectra and the relative contributions of PARAFAC components. 608	

 609	

4.4 Modeling terrestrial biomarkers with optical measurements 610	

We ran a series of multiple linear regression models with the aim of predicting Λ8, 611	

C/V, S/V, (Ad/Al)s, and (Ad/Al)v across all sampling dates and rivers. Incorporating 612	

absorbance (a350, slope ratios, SUVA254,) and fluorescence optical measurements (FI, 613	

% PARAFAC component contributions) as potential parameters, Λ8 (R2 = 0.76; Fig. 6 614	

a), C/V (R2 = 0.70; Fig. 6 b) and S/V values (R2 = 0.68, Fig. 6 c) could be 615	

successfully predicted by model fits (all p < 0.001; n=31). Modeled values for 616	

(Ad/Al)v were also strongly correlated with observed values (p <0.001), but 617	

predictive capability was low (R2 = 0.49, not shown). Model fits failed to accurately 618	

predict the variability in the (Ad/Al)s ratios (p > 0.05).  619	

The optical parameters providing the greatest predictive power varied between 620	

each lignin parameter. Models predicting Λ8 only incorporated S275-295 and a350 values 621	

(Λ8 = 1.136 ±0.250 + (55.742 ±14.152 *S275-295) + (0.006 ±0.003 *a350)). Modeling 622	

C/V values also used S275-295 and a350 values (alone explaining 58% of the variance), 623	
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but improved with inclusion of %AG7 and S290-350 values (C/V = -0.153 ±0.127-624	

(57.265 ±17.921*S275-295)+(0.040 ±0.015*%AG7)+(45.225 ±18.604*S290-350)-625	

(0.002*a350)). Models explaining S/V values incorporated S290-350, a350, %AG7, and FI 626	

(S/V = -2.704 ±0.827+(64.131 ±14.843*S290-350)+(2.896 ±0.695*FI)-(0.009 627	

±0.002*a350)+(0.074 ±0.027*%AG7)). S/V could not be explained with absorbance 628	

measurements alone. The ability to predict lignin composition as well as 629	

concentration using fluorescence measurements has previously been reported using 630	

partial least squares models of samples collected over a two year period on the 631	

Sacremento River/ San Joaquin River Delta, California (Hernes et al., 2009). The 632	

authors demonstrated that the most significant predictive capability for lignin was 633	

within the commonly referred to protein-like fluorescence region (similar to our 634	

component AG7). Fluorescence of propylphenol monomers, that structurally comprise 635	

lignin, can generate fluorescence signatures in a similar region to amino acids and in 636	

the region known as ‘protein-like’, thus our results may indicate information obtained 637	

from changes in phenolics rather than amino acid or proteins (Hernes et al., 2009). 638	

Therefore, it seems that rapid, inexpensive optical measurements may be capable of 639	

acting as a proxy for dissolved lignin compositional parameters as well as 640	

concentration across pan-arctic scales and catchments. The combination of 641	

absorbance and fluorescence metrics can also add predictive power when attempting 642	

to predict shifts in the composition of terrigenous DOC.   643	

 644	

4.4 Improving terrigenous OC export estimates 645	

The absorbance coefficient at 350nm (a350) has previously been shown to be a 646	

sensitive and inexpensive proxy for lignin phenol concentration across a range of 647	

freshwater environments within Arctic river basins (Spencer et al., 2008; 2009; 648	
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Stedmon et al., 2011a). Furthermore, increased sampling frequency of Arctic rivers 649	

has led to significantly higher and better constrained DOC export estimates, 650	

particularly after the inclusion of samples from across the spring freshet period (e.g. 651	

Köhler et al., 2003; Striegl et al., 2005; Holmes et al., 2012). Here, we investigate if 652	

the combination of a lignin proxy with high-resolution monitoring of a350 over Arctic 653	

river hydrographs may be used to develop improved estimates of pan-arctic 654	

terrigenous DOC export, hereby refining land-to-ocean carbon flux estimates.  655	

 CDOM-derived lignin phenol concentrations (lignin350) were calculated using 656	

the linear regression of ∑8 and a350 (Fig. 3b). Lignin350 values were derived from a350 657	

measurements taken from waters collected over the main Arctic-GRO sampling 658	

campaign and additional high-resolution samples taken over the freshet hydrographs. 659	

Inclusion of near-daily absorbance measurements collected over the peak discharge 660	

period alongside measurements spanning the entire year was crucial in adequately 661	

constraining fluxes during the spring freshet, when the majority of annual lignin 662	

export is expected (Amon et al., 2012; Spencer et al., 2008). Lignin350 concentrations 663	

calculated for samples with concurrent ∑8 measurements were highly correlated across 664	

all Arctic rivers (r2 = 0.92, p < 0.01, n = 31, Standard error of estimate, SEE = 8.8%) 665	

demonstrating the robust nature of this approach.  666	

Daily model loads (mass d-1) of ∑8 in each river were calculated using a 667	

hydrologic load estimation model (LOADEST) integrating the lignin350 668	

concentrations and twelve years of daily discharge data ranging from 1999 – 2010 669	

(see Methods). Estimated lignin loads varied from 4.0 Gg y-1 in the Mackenzie to 43.1 670	

Gg y-1 in the Lena River (Table 5). The Lena, Yenisey, and Ob’ Rivers export > 85 % 671	

of the total annual lignin discharge from the six largest Arctic rivers, a proportion that 672	

is very similar to that found by Amon et al., (2012). Flux estimates using lignin 673	
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phenol concentrations measured using identical methods and approaches compared 674	

well. Our mean annual Yukon River lignin flux derived for 2001-2009 (5.4 ± 1.7 Gg 675	

y-1; Table 5) is similar to previous estimates of 5.3 ± 1.3 Gg y-1
 independently derived 676	

from measurements from 2004-2005 (Spencer et al., 2009), confirming the modeling 677	

approach is reproducible and robust. Our estimated lignin loads from all six major 678	

arctic rivers (98.4 Gg yr-1) were, however, almost half of the 192.0 Gg yr-1 reported by 679	

Amon et al., (2012) for the same rivers from 2003 to 2007. These differences were 680	

primarily due to the significantly higher lignin concentrations (∑8) reported by Amon 681	

et al., (2012) versus those of Spencer et al., (2009) and reported here, demonstrating 682	

the necessity for more standardization and intercomparison across lignin phenol 683	

measurements to ensure comparable datasets across studies.  684	

Freshwater fluxes were scaled to the unsampled proportion of the Arctic using 685	

two published estimates of total Arctic Ocean watershed area. The smallest estimate 686	

(PA1; black line Fig. 1) spans an area of 16.8 x 106 km2, where the largest (PA2; red 687	

line; Fig. 1) encompassing Hudson Bay drainage covers an area of 20.5 x 106 km2 688	

(Hernes et al., 2014). Pan-arctic lignin fluxes were estimated to span between 155.5 689	

Gg y-1 (PA1) to 185.3 Gg y-1 (PA2; Table 5) across these two geographic regions.       690	

Dissolved lignin concentrations have previously been applied as a tracer of 691	

terrigenous DOM to the Arctic Ocean (Benner et al., 2005; Fichot et al., 2013; Opsahl 692	

et al., 1999) and used to estimate turnover rates of terrigenous DOC in the ocean 693	

(Hernes and Benner, 2006; Opsahl et al., 1999). Applying our pan-arctic flux (derived 694	

using our lignin350 proxy) and assuming Arctic Ocean lignin concentrations ranging 695	

between 84 to 320 ng L-1 (Opsahl et al., 1999), we calculate the residence time of 696	

terrigenous DOC in polar surface waters to be in the order of 7 months to 2.5 years. 697	

This compares well, yet slightly shorter than residence time estimates of <1 to 4 years 698	
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calculated with comparable freshwater fluxes but scaled from the Yukon River alone 699	

(Spencer et al., 2009). Assuming the export of lignin phenol concentrations twice as 700	

high, similar to those reported by Amon et al., (2012), would result in even faster 701	

residence time estimates of < 4 months to 1 year. Overall, the short timeframes 702	

identified by these studies indicate either rapid losses of terrigenous DOC, via 703	

microbial, photochemical, or flocculation processes, or faster physical transport from 704	

Arctic Ocean waters to the North Atlantic than previously thought. 705	

 706	

5. Conclusions 707	

Employing optical techniques can increase the temporal and spatial coverage of DOM 708	

measurements across arctic river systems, shedding light on future changes in the 709	

composition and concentration of exported DOM, and help to more accurately 710	

estimate the amount and timing of terrigenous DOC flux. Here, river-specific 711	

relationships between a350 and DOC concentrations are presented and attributed to the 712	

export of varying proportions of non-chromophoric DOM from arctic catchments. We 713	

show that simple absorbance proxies (a350, S275-295), which can be measured with in-714	

situ techniques, are capable of tracing dissolved lignin concentrations (∑8) and 715	

seasonal changes in geochemical DOM composition (e.g. Λ8 and percent HPOA) 716	

occurring across the six major arctic rivers. Furthermore, we demonstrate that lignin 717	

phenol biomarkers appear capable of providing information on the biogeochemical 718	

cycling of the hydrophobic DOC fraction, thus knowledge on a major proportion of 719	

the aquatic DOM pool. More complex fluorescence DOM measurements followed by 720	

PARAFAC decomposition provided few direct pan-arctic proxies of DOM 721	

concentration or composition. However, the proportion of fluorescence signatures 722	

previously attributed to microbial processing or suggested to be by-products of 723	

Provisional



	 32	

vascular material degradation co-varied with lignin monomer ratios over much of the 724	

year, suggesting these optical measurements may be capable of offering insights into 725	

changing DOM degradation state and source. Combining fluorescence and absorbance 726	

indices further strengthened our ability to predict DOM composition; in particular, 727	

inclusion of fluorescence index and protein-like contributions with absorbance 728	

coefficient and spectral slope measurements enabled predictive models of lignin 729	

ratios, suggesting potential to distinguish DOM source characteristics. Finally, we 730	

combine our pan-arctic relationship between a350 and ∑8 with high resolution 731	

monitoring of a350 to develop more accurately constrained residence times for 732	

terrigenous DOC in the Arctic Ocean of between 7 months to 2 ½ years. Optical 733	

measurements can provide key insights into the flux and biogeochemical cycling of 734	

terrigenous DOC in the Arctic, which will prove critical for understanding how 735	

carbon budgets and fluxes alter under future climate change scenarios. 736	
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 751	

Figure legends 752	

 753	

Figure 1. Map showing the six Arctic river catchments sampled. Black dots indicate 754	

sampling locations. The thick black (PA1) and red lines (PA2) represent two 755	

estimates of the total pan-arctic watershed area (16.8 x 106 km2 and 20.5 x 106 km2, 756	

respectively).  757	

 758	

Figure 2. Seven independent fluorescent components (AG1-7) identified using 759	

PARAFAC analysis of 645 excitation-emission matrices. Excitation and emission 760	

peak positions are reported alongside descriptions in Table 3. 761	

 762	

Figure 3. Panel A: Dissolved organic carbon (DOC) concentration versus the CDOM 763	

absorbance coefficient at a350 nm from across the hydrograph of the six Arctic rivers. 764	

Panel B: Lignin phenol concentration (∑8) versus the CDOM absorbance coefficient 765	

at a350 nm from across the hydrographs of the six Arctic rivers. Black line represents 766	

the linear regression of the data. Thin grey lines represent the extent of the prediction 767	

of fit (95 % confidence limit). SSE indicates the error of the sum of squares providing 768	

an indication of variation around the fit.  769	

 770	

Figure 4. Panel A: Principle component scores for optical properties across PC1opt 771	

and PC2opt for all optical samples labelled by season. Panel B: PC scores of each 772	

optical parameter across PC1opt and PC2opt. Panel C: Principle component scores 773	

across PC2opt and PC3opt for all optical samples labelled by season. Panel D: PC 774	
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scores of each optical parameter across PC2opt and PC3opt. FI and SUVA254 values 775	

were not included in the final optical PCA, see text for details.  776	

 777	

Figure 5. Panel A: Principle component scores for geochemical composition (lignin 778	

phenol and DOC fractionation variables) across PC1mol and PC2mol for all 779	

compositional measurements labelled by season. Panel B: PC scores of each 780	

compositional parameter across PC1mol and PC2mol. Panel C: Principle component 781	

scores across PC1mol and PC2mol for all compositional measurements labelled by 782	

river. Panel D: Relationship between PC2opt derived from optical data alone and 783	

PC1mol explaining compositional measurements. Black line represents the linear 784	

regression (r2 = 0.65, p < 0.001). 785	

 786	

Figure 6. Model predicted values against measured measurements of: Panel A: 787	

Carbon normalized sum of the lignin phenols (Λ8; mg (100 mg OC)-1), Panel B: 788	

Cinnamyl to vanillyl phenol ratios (C/V), and Panel C: Syringyl to vanillyl phenol 789	

ratios (S/V).  790	 Provisional
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Table 1.  Total dissolved organic carbon concentrations (DOC) and major chemical fractions of DOC and fraction-specific ultraviolet absorbance (SUVA254) across the six 
major arctic rivers (mean ± standard error) during Spring (May and June), Summer (July through to October) and Winter (November through to April). Hydrophobic acids 
(HPOA), transphilic acids (TPI) and hydrophilic organic matter (HPI) presented as percentage of total DOC concentrations and the sample mass of each fraction (HPON 
comprises the remaining <10 % of the DOC pool).   
 
Site Season Total 

DOC 
(mgC-1)  

Total 
SUVA254 
(L mgC-1 

m-1) 

HPOA 
(%) 

HPOA 
SUVA254 

(L mgC-1 m-1) 

TPIA 
(%) 

TPIA 
SUVA254 

(L mgC-1 m-1) 

HPI  
(%) 

HPI 
SUVA254 

(L mgC-1 m-1) 

Kolyma Spring 10.8 ± 1.7 2.9 ± 0.1 54 ± 2 3.9 ± 0.1 16 ± 1 2.4 ± 0.0 21 ± 1 1.5 ± 0.2 
 Summer 3.7 ± 0.2 2.5 ± 0.0 56 ± 7 3.4 ± 0.2 18 ± 0 2.2 ± 0.0 20 ± 2 1.7 ± 0.2 
 Winter 4.3 ± 1.7 2.0 ± 0.1 50 ± 7 2.9 ± 0.1 18 ± 0 2.0 20 2.1 
Lena Spring 15.7 ± 0.9 3.7 ± 0.0 57 ± 1 4.3 ± 0.0 17 ± 0 2.9 ± 0.0 17 ± 0 1.7 ± 0.0 
 Summer 7.4 ± 0.6 2.8 ± 0.4 52 ± 3 4.0 ± 0.4 16 ± 1 2.5 ± 0.1 18 ± 0 1.5 ± 0.1 
 Winter 9.7 ± 2.0 2.6 ± 0.3 53 ± 1 3.7 ± 0.1 17 ± 1 2.6 ± 0.1 16 ± 0 1.7 ± 0.2 
Mackenzie Spring 4.7 ± 0.3 2.5 ± 0.6 47 ± 1 3.6 ± 0.2 19 ± 0 2.4 ± 0.1 20 ± 1 1.4 ± 0.1 
 Summer 5.4 ± 0.5 2.3 ± .0.1 46 ± 2 3.8 ± 0.2 20 ± 1 2.4 ± 0.1 20 ± 1 1.3 ± 0.0 
 Winter 5.1 1.5 40 3.2 16 2.2 24 1.2 
Ob’ Spring 9.0 ± 0.4 3.4 ± 0.0 57 ± 1 4.1 ± 0.0 15 ± 1 2.8 ± 0.1 18 ± 1 1.8 ± 0.1 
 Summer 11.4 ± 0.9 3.1 ± 0.4 56 ± 1 4.2 ± 0.1 16 ± 1 2.8 ± 0.2 17 ± 1 - 
 Winter 9.2 ± 1.9 3.0 ± 0.1 55 ± 3 4.0 ± 0.0 17 ± 1 2.8 ± 0.2 16 ± 1 - 
Yenisey Spring 10.1 ± 0.2 3.9 ± 0.0 60 ± 2 4.4 ± 0.1 16 ± 1 3.1 ± 0.1 16 ± 0 1.7 ± 0.0 
 Summer 7.4 ± 1.8 2.8 ± 0.2 49 ± 3 4.2 ± 0.1 17 ± 1 2.6 ± 0.0 22 ± 2 1.5 
 Winter 4.7 ± 0.7 2.6 ± 0.2 49 ± 6 3.9 ± 0.2 18 ± 1 2.5 ± 0.1 23 ± 3 2.3 
Yukon Spring 9.8 ± 2.3 3.2 ± 0.1 53 ± 1 4.2 ± 0.1 15 ± 0 2.8 ± 0.0 19 ± 1 2.2 ± 0.2 
 Summer 7.1 ± 1.5 2.5 ± 0.2 50 ± 2 4.0 ± 0.4 19 ± 1 2.6 ± 0.1 21 ± 2 1.9 ± 0.2 
 Winter 2.9 2 43 3.3 18 2.1 22 2.2 
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Table 2. Sampling location and date of discharge (Q), dissolved organic carbon (DOC) and lignin phenol concentration (∑8), carbon normalized sum of lignin yields (Λ8), 
lignin ratios (C/V and S/V) and acid aldehyde ratios (Ad/Al) measurements; ratios of vanillic acid to vanillin (Ad/Al)v and ratios of syringic acid to syringaldehyde (Ad/Al)s. 
Site-normalized discharge (Q) is also presented.  
 
River Date Q (m3 s-1) DOC (mgC L-1) ∑8 (µg L-1) Λ8 (mg(100 mg 

OC))-1 C/V S/V (Ad/Al)v (Ad/Al)s 

Kolyma 05 Jun 2009 12,800 10.7 54.2 0.51 0.16 0.51 1.58 1.14 
Kolyma 12 Jun 2009 11,100 9.1 45.1 0.50 0.18 0.58 1.42 1.00 
Kolyma 21 Jun 2009 8,270 5.5 16.8 0.31 0.18 0.41 1.29 1.06 
Kolyma 09 Sep 2009 8,390 3.9 17.0 0.44 0.19 0.64 1.51 1.08 
Kolyma 08 Nov 2009 3,850 2.6 3.8 0.15 0.24 0.47 1.41 1.02 
Lena 31 May 2009 68,328 17.5 120.0 0.69 0.04 0.17 1.28 0.98 
Lena 05 Jun 2009 128,769 16.7 107.2 0.65 0.05 0.19 1.28 0.94 
Lena 11 Jun 2009 83,800 12.9 85.2 0.66 0.07 0.25 1.30 0.96 
Lena 22 Aug 2009 33,400 6.8 20.9 0.31 0.14 0.28 1.36 1.05 
Lena 18 Nov 2009 4,102 7.7 16.5 0.22 0.12 0.30 1.34 1.09 
Mackenzie 11 Jun 2009 24,300 4.3 16.2 0.38 0.17 0.34 1.01 0.81 
Mackenzie 30 Jun 2009 20,900 5.3 9.3 0.18 0.28 0.50 1.24 1.38 
Mackenzie 02 Jul 2009 21,100 6.6 8.3 0.13 0.19 0.43 0.98 0.89 
Mackenzie 08 Sep 2009 13,800 5.0 8.0 0.16 0.18 0.37 1.06 1.00 
Mackenzie 25 Mar 2010 4,380 5.1 5.5 0.11 0.32 0.51 1.09 1.13 
Ob' 02 Jun 2009 36,300 8.1 55.5 0.69 0.23 0.61 1.39 0.93 
Ob' 07 Jun 2009 36,100 8.5 40.4 0.48 0.19 0.58 1.39 0.89 
Ob' 13 Jun 2009 35,400 7.7 55.7 0.73 0.19 0.59 1.38 0.88 
Ob' 25 Aug 2009 13,500 10.5 22.4 0.22 0.20 0.46 0.93 0.90 
Ob' 01 Dec 2009 5,152 7.3 17.2 0.24 0.31 0.68 0.97 0.75 
Yenisey 17 Jun 2009 85,400 9.8 71.2 0.73 0.07 0.29 1.39 0.91 
Yenisey 21 Jun 2009 67,200 9.5 74.7 0.79 0.08 0.29 1.40 0.86 
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Yenisey 27 Jun 2009 45,600 9.6 57.6 0.60 0.07 0.26 1.17 0.77 
Yenisey 08 Aug 2009 15,200 5.6 18.7 0.33 0.15 0.37 0.99 0.80 
Yenisey 30 Nov 2009 11,167 4.0 12.2 0.31 0.18 0.35 0.84 0.88 
Yukon 14 May 2009 11,836 5.2 17.2 0.34 0.10 0.57 1.70 1.05 
Yukon 20 May 2009 10,874 13.0 62.1 0.48 0.11 0.48 1.90 1.03 
Yukon 26 May 2009 26,901 15.0 95.5 0.64 0.13 0.54 1.79 1.28 
Yukon 07 Jul 2009 15,008 5.6 11.5 0.21 0.15 0.46 0.99 0.77 
Yukon 18 Aug 2009 7,759 2.6 4.2 0.16 0.27 0.51 1.02 0.77 
Yukon 12 Jan 2010 1,869 2.9 3.8 0.13 0.33 0.63 1.10 1.14 
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Table 3. Excitation and emission maxima (Exmax/ Emmax) of the seven components identified using parallel factor analysis of DOM fluorescence 
(Fig. 2). Description of previously identified components displaying similar optical properties (TCC > 0.95; see text for details). *ID number 
refers to assigned study number in OpenFluor (http://www.openfluor.org).  
 

ID*:  7[Murphy et al., 2006], 8[Murphy et al., 2014], 9[Murphy et al., 2008], 22[Kothawala et al., 2012], 26[Stedmon et al., 2011b], 28[Stedmon et al., 2007], 29[Stedmon and 
Markager, 2005], 31[Søndergaard et al., 2003], 32[Jørgensen et al., 2011], 33[Stedmon et al., 2003], 34[Stedmon and Markager, 2005], 35[Osburn and Stedmon, 2011], 
37[Walker et al., 2009], 39[Yamashita et al., 2011], 41[Yamashita et al., 2010a], 44[Yamashita et al., 2010b], 47[Kowalczuk et al.,  2009], 48[Graeber et al., 2012], 53[Kothawala 
et al., 2013], 54[Osburn et al., 2012], 55[Osburn et al., 2011], 64[Walker et al., 2013], 68[Tanaka et al., 2014], 69[Lapierre and del Giorgio, 2014].

Component Exmax 
(nm) 

Emmax 
(nm) 

Comparable study ID*                                 
(component with TCC >0.95) Description 

AG1 265 492 7 (C3), 8 (C2), 28 (C2), 31 (C4), 37 
(C3), 44 (C2), 48 (C2), 54 (C2)  

Humic-like fluorophore, terrigenous or autochthonous source, fulvic acid-like, present in all 
environments; Positively related to agriculture and bacterial production. Identified in many 
models and possibly formed as intermediate during photochemical degradation. Susceptible to 
microbial degradation.  

AG2 270 448 29 (C5), 31 (C3), 69 (C4) Similar to classical 'C peak'. Terrigenous component identified across a range of environments.  

AG3 315  434 8 (C1) Humic-like, emission spectum identical to syringaldehyde (producted in breakdown of lignin) 
associated with waters containing high DOM loadings. 

AG4 365 444 22 (C3), 34 (C1), 41 (C2), 47 (C2), 
53 (C5), 55 (C3) Similar to classical 'A peak' , Terrigenous humic-like substances, refractory in nature. 

AG5 320 392 8 (C4), 22 (C2), 26 (C6), 32 (C4), 
47 (C3), 68 (C2) 

Similar to classical 'M peak', marine and terrigenous humic material source, possibly derived 
from microbial reprocessing. 

AG6 305 424 9 (C1), 28 (C3), 35 (C1), 44 (C3), 
48 (C1), 54 (C3), 64 (C1) Humic-like fluorophore, terrigenous; not correlated with land use or bacterial production 

AG7 280 364 8 (C5), 9 (C7), 33 (C5), 34 (C7), 35 
(C5), 39 (C5), 64 (C5) 

Tryptophan-like associated with biological production in surface waters. Also a region known to 
be associated with phenolic fluorescence.  
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Table 4. Linear regression fits for linear relationships between dissolved organic 
carbon concentration (DOC) and absorbance coefficient (a350) determined for each 
river. n represents number of measurements, R2

 the coefficient of determination and 
SEE the standard error of the mean. aAnnual average discharge from each river from 
Holmes et al. (2012).   
 

 

River n R2 slope intercept 
SEE Dischargea 

(%) (km3 y-1) 

Kolyma 23 0.84 0.478 ± 0.045 0.845 ± 1.022 2.0 111 
Lena 57 0.83 0.333 ± 0.020 3.429 ± 0.666 1.5 581 
Mackenzie 60 0.86 0.310 ±0.017 3.871 ± 0.256 0.9 298 
Ob' 54 0.74 0.295 ± 0.024 2.240 ± 0.531 1.0 427 
Yenisey 58 0.66 0.231 ± 0.022 3.793 ± 0.528 0.8 636 
Yukon 49 0.95 0.405 ± 0.014 1.346 ± 0.310 1.0 208 
ALL 301 0.81 0.343 ± 0.009 2.414 ± 0.229 1.6 2261 
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Table 5. Total annual mean fluxes of CDOM-derived lignin (Lignin350) and DOC 
calculated using LOADEST. Arctic-GRO refers to the sum of all 6 rivers studied, and 
pan-arctic1 & 2 are the regions delineated in Figure 1. Mean annual discharge is 
calculated for the 1999 – 2010 period. #Averaged over 2001 – 2010. 
 
 
 

River/ region Watershed Area 
(106 km2) 

Discharge 
(km3 y-1) 

  Lignin350 (Gg y-1) 

  2009 2010 1999-2010 

Kolyma  0.65 132   3.6 3.2 5.0 ± 1.2 
Lena 2.4 591   50.5 36.2 43.1 ± 8.6 
Mackenzie 1.75 319   5.2 3.5 4.0 ± 1.0 
Ob' 2.95 421   15.5 16.2 18.6 ± 4.8 
Yenisey 2.56 671   20.9 21.9 22.3 ± 2.3 
Yukon 0.83 207   4.6 6.3 5.4 ± 1.7# 

Arctic-GRO 11.14 2342   100.3 87.3 98.4 

pan-arctic1 (PA1) 16.8 3700   158.5 137.9 155.5 
pan-arctic2 (PA2) 20.5 4410   188.9 164.4 185.3 
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