Barefoot running improves economy at high intensities and peak treadmill velocity.

K. A. G. Reeves¹, J. Corbett¹ & M. J. Barwood²

¹Department of Sport and Exercise Science, University of Portsmouth, Hampshire, UK.
²Department of Sport and Exercise Science, Northumbria University, Newcastle upon Tyne, UK.

Acknowledgements:
The authors would like to thank the volunteer participants and technical staff at the University of Portsmouth.

Corresponding author:
K. Reeves,
Department of Sport and Exercise Science,
University of Portsmouth,
Spinnaker Building,
Cambridge Road,
PO1 2ER, Portsmouth,
United Kingdom

Email: kevin.reeves@myport.ac.uk
ABSTRACT

Aim. Barefoot running can improve running economy (RE) compared to shod running at low exercise intensities, but data is lacking for the higher intensities typical during many distance running competitions. The influence of barefoot running on the velocity at maximal oxygen uptake ($v\text{VO}_2\text{max}$) and peak incremental treadmill test velocity ($v\text{max}$) is unknown. The present study tested the hypotheses that barefoot running would improve RE, $v\text{VO}_2\text{max}$ and $v\text{max}$ relative to shod running.

Methods. Using a balanced within-subject repeated measures design, eight male runners (aged 23.1±4.5 years, height 1.80±0.06 m, mass 73.8±11.5 kg, VO_2max 4.08±0.39 L·min$^{-1}$) completed a familiarisation followed by one barefoot and one shod treadmill running trial, 2-14 days apart. Trial sessions consisted of a 5 minute warm-up, 5 minute rest, followed by 4×4 minute stages, at speeds corresponding to ~67, 75, 84 and 91% shod VO_2max respectively, separated by a 1 minute rest. After the 4th stage treadmill speed was incremented by 0.1 km·h$^{-1}$ every 15 s until participants reached volitional exhaustion.

Results. RE was improved by 4.4±7.0% across intensities in the barefoot condition (p=.040). The improvement in RE was related to removed shoe mass ($r^2=.80$, p=.003) with an intercept at 0% improvement for RE at 0.520 kg total shoe mass. Both $v\text{VO}_2\text{max}$ (by 4.5±5.0%, p=.048) and $v\text{max}$ (by 3.9±4.0%, p=.030) also improved but VO_2max was unchanged (p=.747).

Conclusion. Barefoot running improves RE at high exercise intensities and increases $v\text{VO}_2\text{max}$ and $v\text{max}$, but further research is required to clarify the influence of very light shoe weights on RE.

Key words: $v\text{VO}_2\text{max}$, $v\text{max}$, incremental treadmill velocity
Introduction

The metabolic cost of running is often assessed as the oxygen cost of running, termed running economy (RE). This parameter has an established link to endurance running performance\(^1\). Numerous studies have assessed the effect of barefoot running on RE\(^{2,3,4,5,6,7,8,9}\), with some demonstrating an improvement in RE of 3.1-4.7% in bare-feet compared to shoes\(^{2,4,6}\). Reduced lower-limb mass and the associated decreased limb inertia explain most of this improvement\(^{2,4}\), although total mass reduction\(^{11}\), improved mechanical efficiency\(^4\), and changes in stride length\(^{5,8}\) may also contribute. A lack of RE improvement with barefoot may link to unrepresentative low running speeds or midfoot striking\(^8\), a metabolic cost of cushioning\(^5\) or the confounding biomechanics of orthotic wearers\(^3\). However, comparisons between barefoot studies have been limited by those not reporting the benefit of total mass reduction to RE\(^{10}\) by scaling to total mass rather then body mass\(^{2,4}\), not reporting the method of mass scaling\(^{6,8}\) or not quantifying the change in RE\(^7\).

Nevertheless, barefoot RE has typically been assessed at low to moderate running work rates\(^{2,4,5,8}\), which, due to training specific adaptations, may be unrepresentative of RE at the higher intensities often employed in long-distance training and competition\(^{11,12}\). Therefore, it has been suggested that RE should be assessed across a range of work-rates, including higher intensities\(^{11,12}\). Moreover, the predominant influence on barefoot and shod RE differences of shoe mass might be augmented where kinetic energy and limb inertia increase at a rate of velocity squared\(^{10}\). Higher velocities could also provide higher elastic energy return\(^4\) and tendon stretch-recoil\(^{13}\) barefoot than shod, with an unrestricted foot arch\(^{14}\). The mass effect may be offset somewhat by a metabolic cost of cushioning (\(~3\%)\(^5\), speculated to link to the mechanical work of ankle and knee joint adjustments\(^9\) These
biomechanical adjustments may be in response to higher loading rates and heel pressure
barefoot15 but could be foot-strike dependent14. However, loading rates that increase
similarly with velocity, barefoot and shod15, do not suggest that velocity would alter the
metabolic cushioning cost differential between footwear conditions.

Importantly, the impact of barefoot running on other parameters associated with endurance
performance, such as the velocity at VO\textsubscript{2}max (\textit{v}VO\textsubscript{2}max) and peak treadmill speed in an
incremental exercise test (\textit{v}max) has not been examined, despite the observation that these
parameters typically display a stronger relationship with endurance running performance
than RE1,16. The strong relationship between these parameters and performance likely
reflects the fact that both are influenced by RE and VO\textsubscript{2}max, although \textit{v}max may
incorporate additional anaerobic or neuromuscular factors17. However, the extent to which
these parameters would be influenced by any change in RE with barefoot running,
particularly given the aforementioned potential for intensity-dependent effects, is
unknown.

Accordingly, the aims of the present study were to compare between shod and barefoot
running, RE across a range of intensities including the higher intensities typical during
endurance running competitions, the \textit{v}VO\textsubscript{2}max and \textit{v}max. Further, to examine the
relationships between RE changes, \textit{v}VO\textsubscript{2}max, \textit{v}max and shoe mass. It was hypothesised
that RE, \textit{v}VO\textsubscript{2}max, and \textit{v}max would improve in barefoot compared to shod running.
Materials and methods

Participants

Eight males participated (age 23.1±4.5 years, height 1.80±0.06 m, mass 73.8±11.5 kg, absolute VO$_2$ max 4.08±0.39 L·min$^{-1}$). All participants were regular recreational runners with a minimum of >3 months continuous run training of 45±40 km·week$^{-1}$ on a variety of surfaces in the period prior to commencing the experiment. All of the participants wore shoes throughout all of their training and during any competitions, were not experienced barefoot runners, and had no reported illness or injury. Institutional ethical approval and written informed consent were obtained.

Design

A within-subject repeated-measures design was employed, consisting of a familiarisation and two experimental trials (shod and barefoot), undertaken in a balanced order, at the same time of day, 2 to 14 days apart. During shod exercise the participants used their own footwear (none wore orthotics) and were instructed to wear the running shoes that they would use for road races of 5 km to 10 km. All shoes were commercially available running shoes, with shoe mass dictated by a combination of size (from UK size 7.5 to 11.5) and design. Participants consumed the same food and drink on the day preceding the trials, and avoided food for 2 hours and alcohol, caffeine and strenuous exercise for 24 hours beforehand and wore the same clothing (with or without shoes) during the trials. At the outset of each session unshod body-mass was recorded (Seca 770, Germany) and the gas analyser (Cosmed Quark B2, Italy) was calibrated using a 3L syringe with certified
reference gases and ambient air. The same treadmill (Pro-XL, Woodway, USA), set at a 1% gradient18, was used for all sessions and VO\textsubscript{2}, VCO\textsubscript{2}, RER, heart rate (Polar T31, UK) recorded throughout exercise.

Methodology

Familiarisation

Shoe-mass was recorded (AND HL-3000LWP, Korea) and participants were familiarised with self-paced sub-maximal barefoot treadmill running for 10 minutes, following which they undertook 4×4 minute running stages in shoes, separated by a 1-minute rest. Stage velocities were estimated to correspond to 50, 60, 70 and 80% VO\textsubscript{2}max, based upon recent race times and empirical formula19 and were set at intensities lower than those used in the experimental trial to allow for estimation error, which might have prevented completion. After completion of the 4th exercise stage the treadmill velocity was incremented by 0.1 km·h-1 every 6 s and participants continued running until volitional exhaustion, again allowing for estimation error leading to a lack of completion by setting a faster ramp rate than later experimental trials. VO\textsubscript{2}max was then determined from trial data.

Experimental trials

Following a standardised warm-up, participants completed 4×4 minute running stages separated by a 1-minute rest at velocities estimated to elicit 70%, 76%, 82% and 88% VO\textsubscript{2}max, based upon linear interpolation of the VO\textsubscript{2}-treadmill speed relationship and VO\textsubscript{2}max obtained using the familiarisation trial data. Rating of perceived exertion (RPE)20 was recorded in the last minute of each stage. Participants continued running after the 4th stage until exhaustion (velocity incremented by 0.1 km·h-1 every 15 s).
Statistical analysis

VO_2 was calculated by linear interpolation between breath by breath VO_2 to 1 s values, then averaged over the last minute of each sub-maximal stage and as the 15 s sequential average24 thereafter. VO_2max was defined by the criteria, no rise in VO_2 despite a rise in velocity, a respiratory exchange ratio ≥ 1.10, a heart rate within 10 beats per minute of the age-predicted maximum (209-0.7*age in years)21 or volitional exhaustion. RE was expressed as the VO_2 per kg of body mass per km of distance22, v_{max} the velocity of the final completed 15 s segment and $v_{\text{VO}_2\text{max}}$ the lowest velocity at which VO_2max was attained23. Additional confirmation of $v_{\text{VO}_2\text{max}}$ was sought from linear extrapolation to VO_2max of the individual velocity-VO_2 relationship ($v_{\text{VO}_2\text{max}}^{\text{est}}$). Smallest worthwhile changes for RE, $v_{\text{VO}_2\text{max}}$ and v_{max} were calculated according to Hopkins24.

SPSS-PASW 18.0.0 was used for statistical analysis ($\alpha=0.05$) with data reported as mean±standard deviation. Tests for normality (Kolmogorov-Smirnov, Shapiro-Wilk, skewness and kurtosis ratios to standard errors) revealed that RE and RPE data were normal but did not maintain sphericity (Mauchly's test). Accordingly, changes in RE and in RPE were assessed by two-way repeated measures ANOVA (footwear condition x intensity) with the Greenhouse-Geisser statistic and post-hoc analysis by pair-wise comparisons. Differences in VO_2max, $v_{\text{VO}_2\text{max}}$, v_{max} and body-mass between conditions were assessed by paired samples t-tests and observed powers (1-\(\beta\)) clarified changes in RE, $v_{\text{VO}_2\text{max}}$, v_{max}. Pearson’s correlation coefficients determined the relationships between RE, VO_2, $v_{\text{VO}_2\text{max}}$, v_{max}, shoe mass, including the mean change in RE across intensities.
Results

Sub-maximal experimental trial stage speeds ranged from 8.1-18.3 km·h⁻¹ and corresponded to 67±5%, 75±6%, 84±4% and 91±5% shod VO₂max. The ANOVA indicated a significant main effect of footwear condition on RE (F(1.0,7.0)=6.30, p=.040, 1-β=.579) which was improved by an average of 4.4±7.0% in barefoot compared to shod running. Post-hoc analysis showed these differences to be significant during the third (p=.014) and fourth stages (p=.012) where RE was improved by 5.2±5.1% and 3.4±2.9%, respectively (Table 1). Although similar in magnitude, improvements in RE during the first (4.8±9.7%, p=.095) and second (4.3±9.3%, p=.108) stages were not statistically significant. The ANOVA indicated that the main effect of exercise intensity on RE was not significant (F(1.4,10.1)=3.0, p=.106). Total shoe mass (0.670±0.191 kg per pair) represented 0.90±0.20% body-mass and was significantly correlated with the improvement in RE during the first (r=.90, p=.003), second (r=.76, p=.030), third (r=.88, p=.004) and fourth stages (r=.91, p=.002). Overall, the removed shoe mass explained 80% of the variance in the mean improvement in RE for each individual (across intensities) with barefoot running (p=.003) (Figure 1). Regression analysis revealed an intercept at 0% improvement for RE at 0.520 kg total shoe mass.

vVO₂max improved by 4.5±5.0% (from 16.0±2.2 to 16.6±1.7 km·h⁻¹ (t(7)=2.40, p=.048, 1-β=.536) and vVO₂maxest by 5.8±4.5% with barefoot (t(7)=3.58, p=.009). This increase in vVO₂max explained 71% (p=.008) of the variance in an improvement of 3.9±4.0% in vmax with barefoot (from 16.2±2.1 km·h⁻¹ to 16.8±1.8 km·h⁻¹ (t(7)=2.72, p=.030, 1-β=.607), where only one participant reached a higher peak velocity shod (by 0.1 km·h⁻¹). Participants ran for 88±92 s longer barefoot than shod (p=.030), but also ran 96±113 s
longer before reaching VO$_2$max (p=.047) with no greater persistence barefoot (-8±60 s, p=.724) once VO$_2$max was achieved. The percentage improvement in RE had a shared variance, but only in the last submaximal stage, of 50% (p=.049) with the percentage improvement in v_{max} and 52% (p=.044) with vVO_2max improvements. Furthermore, neither the improvements in v_{max} (r=.48, p=.224) nor vVO_2max (r=.55, p=.137) were significantly related to shoe mass. The smallest worthwhile changes for RE, vVO_2maxest, vVO_2max and v_{max} were 2.2%, 3.1%, 2.8% and 2.6% respectively. Neither VO$_2$max (4.08±0.39 L·min$^{-1}$ shod vs. 4.10±0.37 L·min$^{-1}$ barefoot (t_7=.34, p=.747)) nor body-mass (73.7±11.5 kg shod vs. 73.9±11.4 kg barefoot (t_7=-.60, p=.571)) differed between-conditions. Although RPE increased with exercise intensity ($F_{(1.4,9.6)}$=150.6, p<0.001), there were no significant between conditions effects ($F_{(1.0,7.0)}$=0.48, p=.510).

Discussion

The main aims of this study were to investigate the effect of barefoot on RE across a range of intensities, including those used in long-distance running training and competition, and to assess the influence of barefoot on vVO_2max and v_{max}. Indeed, the improvement in RE observed at the higher exercise intensities in this study is of greater relevance to competitive athletes than those previously reported at lower work rates2,4,6, particularly as the intensities employed in the latter sub-maximal stages are comparable to those reported for all-out 5,000 m running (87.0±5.8 %VO$_2$max in physical education students and 93.6±3.2 %VO$_2$max in elite runners25).

The relationship between RE improvement and removed shoe-mass in the present study appears to support previous assertions of a mass effect being the dominant influence on RE
differences2,4, although the wide range of shoe masses used could have aided the strength of the correlation. Whilst within-participant changes in shoe mass were not examined, there is no suggestion that individual RE responses to a given shoe mass might differ2,3,4,5,6,7,8,9. The magnitude of RE improvement that we measured (4.4\pm7.0\%), was at the higher end of those reported previously2,4,6, For instance, Frederick9 suggests a 1\% improvement in RE per 0.100 kg removed mass \textit{per foot}, which would have equated to an expected improvement in RE of 3.4\% in the present study. Moreover, this magnitude of improvement was evident despite a removed total shoe mass in the present study (absolute shoe mass 0.670\pm0.191 kg; shoe mass as a fraction of body mass of 0.90\pm0.20\%), at the lower end of the range where improvements were found in previous studies (absolute shoe mass 0.67-0.70 kg; shoe mass as a fraction of body mass 0.9-1.1\%2,4,6). Some difference could be accounted for by previous scaling to eliminate the benefit to RE of total mass reduction4 or confounded by the inefficient biomechanics of orthotic wearers2 but also limb inertia increasing with the square of velocity10. However, changes in limb inertia and acceleration due to increasing stride frequency10 were likely limited across submaximal velocities26. Nevertheless, 20\% of the variance in RE improvement remains unaccounted for by shoe mass.

If shoe cushioning differed between participants in the present study then there may have been a variable compensatory metabolic cost5 between participants, accounting for some of the variance in RE improvement. Similarly, if some shoes were sub-optimally cushioned compared to those in other studies, an associated cost of cushioning5 could have increased the difference between footwear conditions compared to those studies. However, since the present study allowed participants to use their preferred shoes, the findings may have greater external validity than where shoes were provided to participants4,5,8. Indeed, the
presence of an intercept at 0.520 kg (Figure 1) is consistent with an influence on economy beyond shoe mass such as a metabolic cost of cushioning5,9, associated with cushioning treadmill impact forces5. This raises the possibility that treadmill RE may be superior in some very lightweight shoes than during barefoot running at high intensities. Alternatively, if the cushioning for the treadmill in the present study was greater than in previous studies it could have provided more of the cushioning otherwise provided by shoes, thereby attenuating the associated metabolic penalty with barefoot. Notably, the present participant with the lightest shoes was more economical shod for this single trial but a running surface of different cushioning27 might be expected to alter the position of the intercept. More speculatively, since the effect of shoe rigidity on RE is unclear4, a rigid shoe might inhibit elastic plantar arch structures from providing up to \textasciitilde17\% of energy for the running stance phase28. Shoe design was not controlled in the present study and differing shoe rigidity between participants and an associated restriction of arch flexion1 could have added to the variance in RE improvement. A greater shoe rigidity than in studies employing different shoe designs could have also augmented the magnitude of this potential detrimental influence on shod RE compared to those studies.

Further novel aspects of the present study were the observation that v\textsubscript{VO2}\textsubscript{max} and v\textsubscript{max} improved with barefoot running whilst VO\textsubscript{2}\textsubscript{max} remained unchanged. The improvement in v\textsubscript{VO2}\textsubscript{max}est (5.8\%) might be expected, given that RE is used in the calculation of v\textsubscript{VO2}\textsubscript{max}est. The 50\% shared variance between improvements in v\textsubscript{max} and RE at 91\% VO\textsubscript{2}\textsubscript{max}, is consistent with a previously established association but with extra anaerobic or neuromuscular factors relevant to v\textsubscript{max}17. Although the potential confounding influence of a placebo effect of barefoot on v\textsubscript{max} should not be discounted, it appears that v\textsubscript{max} gains were achieved largely by delaying the onset of VO\textsubscript{2}\textsubscript{max} since participants did not persist
for longer beyond \(\nu \text{VO}_2 \text{max} \) when barefoot. Equally, the absence of significant relationships between shoe mass and changes in either \(\nu \text{VO}_2 \text{max} \) or \(\nu \text{max} \) suggests that factors not related to shoe mass were predominantly responsible, yet still favouring barefoot by a similar magnitude to RE (\(\approx 4\% \)). This may also explain why, despite a delayed \(\text{VO}_2 \text{max} \) implying improved economy, RE improvements that were explained 80% by shoe mass, had only a limited shared variance (at 91% of \(\text{VO}_2 \text{max} \)) of 52% with improvements in \(\nu \text{VO}_2 \text{max} \) and of 50% with \(\nu \text{max} \). Speculatively, these factors could include elastic energy storage\(^{13}\), associated mechanical efficiency\(^4\) or fore-foot striking\(^{14}\). This could further account for the differential performance of the present participant with the lightest shoes, being more economical shod at submaximal intensities but unable to achieve a higher peak velocity shod, suggesting a need for individual assessment. Nevertheless, a greater contribution to the improved \(\nu \text{VO}_2 \text{max} \) and \(\nu \text{max} \) in barefoot may still have been available from limb kinetic energy, at higher velocities than those where RE was assessed\(^{10}\). Indeed, in contrast to changes in submaximal velocity, approaches to maximal velocity can be characterised by increases in stride frequency rather than stride length\(^{26}\), which might increase the acceleration of the centre of mass of the lower limbs and limb inertia further\(^{10}\). Similarly, these velocity-related factors could have also contributed to the increased magnitude of improvement in RE that we observed with barefoot running compared to previous studies employing lower velocities\(^2,4,6\).

The present study was not without limitation. Given the observed improvement in RE and increases in RPE with intensity, a concomitant change in RPE might have been anticipated, although this was not evident. However, the resolution afforded by a category-ratio scale such as the 15-point RPE scale\(^{20}\) is smaller than the magnitude of change in RE that was observed and future studies should consider utilising perceptual scales with a greater
resolution. Equally, conflicting influences from reduced limb inertia but increased cushioning cost barefoot could have yielded the global measure of RPE inadequate in discriminating between conditions. Although the two-way ANOVA revealed a difference between footwear conditions \((p=.040, \ 1-\beta=.579)\), the similar sample size to others\(^{6,8}\) may have impacted the ability of the post-hoc analysis to detect a between conditions difference in RE during the first and second sub-maximal stages. Nevertheless, the mean difference was similar to that recorded at the higher work rates where the difference in RE was statistically significant.

It has been suggested that \(\nu\text{VO}_2\text{max}\) is an important parameter in endurance-running training and performance\(^{29}\). Taking into account the magnitude of improvement in \(\nu\text{VO}_2\text{max}\) and the observation that \(\text{VO}_2\text{max}\) can be sustained for \(~10\) minutes\(^{23}\) it can be estimated that this would equate to the ability to run a further \(~120\) m in the same period during treadmill running. The ergogenic effects of barefoot are further evidenced by the improved \(\nu\text{max}\), itself a ‘performance’ measure during incremental treadmill running. Indeed, the improvements of 4.4% for RE, 4.5% for \(\nu\text{VO}_2\text{max}\) and 3.9% for \(\nu\text{max}\), exceeded the smallest worthwhile changes (2.2% for RE, 2.8% for \(\nu\text{VO}_2\text{max}\) and 2.6% for \(\nu\text{max}\))\(^{24}\), but caution should be exercised given that RE and \(\nu\text{VO}_2\text{max}\) improvements reported in other studies have exceeded the magnitude of performance improvements by 100-380%\(^{30,31}\). Nevertheless, the improvements observed in the present study were in novice barefoot runners and greater familiarity with barefoot running might augment these improvements, although this speculation should be tempered by the fact that these findings should not be extrapolated to other surfaces beyond the cushioned treadmill surface employed.
Conclusions

The present study has shown improvements in RE at high exercise intensities as well as a faster $v\text{VO}_2\text{max}$ and $v\text{max}$, suggesting a possible ergogenic benefit of barefoot compared to shod running. The improvements in RE appear to be related to the removed shoe mass but this may only apply to heavier shoes for the present running surface. In contrast, the improvements in $v\text{VO}_2\text{max}$ and $v\text{max}$ were of a similar magnitude but were not significantly related to shoe mass. Further research is required to confirm the mechanisms, to identify whether this translates to improved race performance and to clarify the influence of very light shoe weight on RE for various running surfaces.
REFERENCES

30. Denadai BS, Ortioz MJ, Greco CC, de Mello MT. Interval training at 95% and 100% of the velocity at VO2max: Effects on aerobic physiological indexes and running performance. *Appl Physiol Nutr Metab.* 2006;31:737-743.

Table I: Running economy (ml·kg⁻¹·km⁻¹) at the four experimental intensities for shod and barefoot running. *denotes a significant difference between conditions (p<.05).

Figure 1: Percent change in RE during barefoot running relative to shod running, relative to total removed shoe mass, at velocities corresponding to 67, 75, 84 and 91% shod VO₂max. The regression analysis refers to the relationship between the individual mean improvement (across intensities) in RE with barefoot relative to the individual total removed shoe mass.