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Abstract

Communication networks involve the transmission and reception of large volumes of data. Research indicates that
network tra� c volumes will continue to increase. These tra� c volumes will be unprecedented and the behaviour
of global information infrastructures when dealing with these data volumes is unknown. It has been shown that
complex systems (including computer networks) exhibit self-organized criticality under certain conditions. Given the
possibility in such systems of a sudden and spontaneous system reset the development of techniques to inform system
administrators of this behavior could be bene�cial. This article focuses on the combination of two dissimilar research
concepts, namely soni�cation (a form of auditory display) and self-organized criticality (SOC). A system is described
that soni�es in real time an information infrastructure's self-organized criticality to alert the network administrators
of both normal and abnormal network tra� c and operation. It is shown how the system makes changes in a system's
SOC readily perceptible. Implications for how such a system may support real-time situational awareness and post-
hoc incident analysis are discussed.

Keywords: Auditory Display, Soni�cation, Information Visualization, Self-Organized Criticality, Network
Monitoring

1. Introduction

With the large volumes of tra� c passing across net-
works it is important to know about the state of the var-
ious components involved (servers, routers, switches,
�rewalls, computers, network-attached storage devices,
etc.) and the types and volume of the data tra� c passing
through the network. In the case of the hardware, net-
work administrators need to know if a component has
failed or is approaching some capacity threshold (e.g.,
a server has crashed, a hard drive has become full, etc.)
so that appropriate action can be taken. Likewise, the
administrators need to be aware of tra� c type and �ow.
For example, a large increase in tra� c volume (perhaps
as would occur if the network were to broadcast a live
stream of a major sporting event) might require extra
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Vickers),christopher.laing@sciendum.org.uk (Chris Laing),
tom.fairfax@srm-solutions.com (Tom Fairfax)

1This work was done while Chris Laing was at Northumbria but
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servers to be brought online to handle and balance the
load. A sudden increase in certain types of tra� c (such
as small UDP packets) might indicate that a distributed
denial-of-service attack is in progress, for example, and
corrective action would need to be taken to protect the
network.2

Given the large volume of tra� c passing through a
network every second in the form of data packets and
the fact that each packet will be associated with par-
ticular sender and receiver IP addresses and port num-
bers, understanding what is happening to a network re-
quires information about the tra� c data to be aggre-
gated and presented to the network administrator in an
easy-to-understand way. This problem of information
presentation and interpretation, or `situational aware-
ness', was addressed by the military leading to Boyd's
OODA (observe, orient, decide, act) model (see [1]),

2UDP, or user datagram protocol, is a way of sending internet
packets without handshaking. It means that packets can be lost, but in
some real-time systems (e.g., online gaming) it is preferable to lose a
packet than to wait for a delayed one.
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and others have followed (notably Endsley's three-level
model [2]). Situational awareness, as Cook put it, “re-
quires that various pieces of information be connected
in space and time” (Nancy Cooke in McNeese [3]).

Computer networks possess high tempo and granu-
larity but with low visibilty and tangibility. Administra-
tors rely on complex data feeds which typically need
translatation into language that can be understood by
decision makers. Each layer of analytical tools that
is added can increase the margin for error as well as
adding Clausewitzian friction (see von Clausewitz's `On
War', 1873). Furthermore, it is practically impossible
for most administrators to watch complex visual data
feeds concurrently with other activity without quickly
losing e� ectiveness [4].

In military circles there is debate about whether cy-
berspace has become the �fth war�ghting domain (the
others being sea, land, air, and space) [4]. Com-
puter networks are increasingly coming under strain
both from adversarial attacks (war�ghting in military
parlance) and from load and tra� c pressures (e.g., in-
creased demand on web services).

Another term that has made its way from the military
lexicon into the wider world of network administration
is situational awareness. Endsley[2, p. 36] de�ned sit-
uational awareness (SA) as the “perception of elements
in the environment within a volume of time and space,
the comprehension of their meaning, and the projection
of their status in the near future”. So, SA facilitates an
administrator in becoming aware of a network's current
state. The perception phase of SA comprises the recog-
nition of situational events and their subsequent iden-
ti�cation. Soni�cation is a process of computational
perceptualisation which Vickers [5] suggested is well
suited to the monitoring of time-dependent processes
and phenomena such as computer networks.

Fairfaxet al. [4] noted that the cyber environment is
increasingly being viewed as the �fth war�ghting do-
main (alongside land, sea, air, and space). They stated
the challenge for maintaining situational awareness in
the cyber environment as:

. . . whilst land, sea, air and space are physi-
cally distinct and are de�ned by similar crite-
ria, cyberspace is de�ned in a di� erent way,
existing on an electronic plane rather than a
physical and chemical one. Some would ar-
gue that cyber space is a vein which runs
through the other four war�ghting domains
and exists as a common component rather
than as a discrete domain. One can easily see
how cyber operations can easily play a signi�-

cant role in land, sea, air or space warfare, due
to the technology employed in each of these
domains [4, p. 335].

Thus, in this environment where human perception is
constrained, adversaries and protagonists alike are de-
pendent on tools for their perception and understand-
ing of what is going on. Many tools on which we rely
for situational awareness are focused on speci�c detail.
The peripheral vision (based on a range of senses) on
which our instinctive threat models are based is very
narrow when canalised by the tools we use to moni-
tor the network environment. The majority of these
tools use primarily visual cues (with the exception of
alarms) to communicate situational awareness to oper-
ators. Put simply, situational awareness is the means
by which protagonists in a particular environment per-
ceive what is going on around them (including hostile,
friendly, and environmental events), and understand the
implications of these events in su� cient time to take ap-
propriate action.

When network incidents occur experience shows that
the speed and accuracy of the initial response are critical
to a successful resolution of the situation. Operators ob-
serve the indicators, orient themselves and their sensors
to understand the problem, decide on the action to be
taken, and act in a timely and decisive way. Traditional
approaches to monitoring can hinder this by not making
the initial indication and its context clear thus requir-
ing an extensive orientation stage. An ine� ective initial
response is consistently seen to be one of the hardest
things for people to get right in practice [4]. D'Amico
(see McNeese [3]) put the challenge of designing visu-
alizations for situational awareness this way:

. . . visualization designers must focus on
the speci�c role of the target user, and the
stage of situational awareness the visualiza-
tions are intended to support: perception,
comprehension, or projection.

While work has been carried out to use informa-
tion visualization techniques on network data we note
that theperceiveand comprehendstages in Endsley's
three-level situational awareness model (the third be-
ing project) [2] align themselves with Pierre Schae� er's
two fundamental modes of musical listening,écouter
(hearing, the auditory equivalent of perception) anden-
tendre(literally `understanding', the equivalent of com-
prehension). Vickers [6] demonstrated how Schae� er's
musical context can be applied soni�cation. This pa-
per proposes a soni�cation tool as one of the means by
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which real-time situational awareness in network en-
vironments may be facilitated. A more detailed dis-
cussion of situational awareness and its relationship to
network monitoring (speci�cally within a cybersecurity
and war�ghting context) can be found in Fairfaxet al.
[4].

1.1. Soni�cation for Network Monitoring

Soni�cation has been applied to many di� erent types
of data analysis (for a recent and broad coverage see
The Soni�cation Handbook[7]). One task for which
it seems particularly well suited is live monitoring, as
would be required in situational awareness applications
[5]. The approach described in this article provides one
way of addressing the challenges outlined above by en-
abling operators to monitor networks concurrently with
other tasks using additional senses. This has the poten-
tial to increase operators' available bandwidth without
overloading individual cognitive functions, and could
provide an immediate and elegant route to practical sit-
uational awareness.

It has been suggested that understanding the patterns
of network tra� c is essential to the analysis of a net-
work's survivability [8]. Typically, analysis takes place
post-hoc through an inspection of log �les to determine
what caused a crash or other network event. Lessons
would be learned and counter measures put in place to
prevent a re-occurrence.

For the purpose of keeping a network running
smoothly load balancing can sometimes be achieved au-
tomatically by the network itself, or alerts can be posted
to trigger a manual response by the network administra-
tors. Guoet al. [8] observed that “from the perspective
of tra� c engineering, understanding the network tra� c
pattern is essential” for the analysis of network surviv-
ability.

Often, the �rst the administrators know about a prob-
lem on a network is after an attack, or other destabiliz-
ing event, has taken place or the network has crashed.
Here, the tra� c logs would be examined to identify the
causes and steps would be taken to try to protect against
the same events in future. Live monitoring of network
tra� c assists with situational awareness and could pro-
vide administrators either with advanced warning of an
impending threat or with real-time intelligence on net-
work threatening events in action.3

3By threat, we do not only mean a hacking/DDOS attack, but also
include `natural' disasters such as component failures, legitimate traf-
�c surges, etc.

Real-time network monitoring o� ers a challenge in
that, except for alarms for discrete events, the admin-
istrator must be looking at a console screen to observe
what is happening. To identify changes in tra� c �ow
would this require attention to be devoted to the console
[4]. Vickers [5, p. 455] categorised monitoring tasks as
direct, peripheral, or serendipitous-peripheral:

In a direct monitoring task we are directly en-
gaged with the system being monitored and
our attention is focused on the system as we
take note of its state. In a peripheral mon-
itoring task, our primary focus is elsewhere,
our attention being diverted to the monitored
system either on our own volition at intervals
by scanning the system . . . or through being
interrupted by an exceptional event signalled
by the system itself.

Serendipitous-peripheral is similar to peripheral
monitoring except that it uses what Mynattet al. [9]
term “serendipitous information”, that is, the informa-
tion gained “is useful and appreciated but not strictly
required or vital either to the task in hand or the overall
goal” [5, p. 456].

Thus, a system to sonify network tra� c may allow us
to monitor the network in a peripheral mode, the moni-
toring becoming a secondary task for the operator who
can carry on with some other primary activity. Network
tra� c is a prime candidate for soni�cation as it com-
prises series of temporally-related data which may be
mapped naturally to sound, a temporal medium [5].

Gil�x and Crouch's Peepsystem [10] is an early net-
work soni�cation example. They used natural sounds
to represent network states and events and hoped that
repeated listening would enable users to build up an un-
derstanding of what normal operation of their network
sounds like. The system was o� ered very much as a
proof-of-concept and no speci�c guidance was given on
particular ways in which Peepcould be used.

Kimoto and Ohno [11] developed a network soni�ca-
tion system called Stetho which uses HTTP tra� c data
to generate MIDI events which are in turn rendered into
sound by MIDI-compatible sound synthesis software.4

An experiment showed that four participants who used
the system for �ve minutes to identify peaks in HTTP
tra� c. Kimoto and Ohno concluded that the system was
suitable to grasp “tra� c vaguely”, so like Peepthere was

4MIDI (musical instrument digital interface) is a set of software
and hardware protocols developed by leading synthesizer manufac-
turers in the 1980s to allow interoperability between previously in-
compatible devices.
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a lack of a sense of real use cases that Stetho might sup-
port.

Ballora et al. [12, 13, 14] built on these ideas to
address the particular case of situational awareness.
Rather than use environmental sounds, Balloraet al.
used synthesized musical instruments to represent net-
work data as pitched tones. Using an auditory model
of the network packet space they produced a “nuanced
soundscape in which unexpected patterns can emerge
for experienced listeners”. Their approach used the
�ve-level JDL fusion model which is concerned with
integrating multiple data streams such that situational
awareness is enhanced (see Blasch and Plano [15]).
Rather than focus on simple bytes and packets coming
in and leaving the network, their system allowed di� er-
entiation between the geographic origin of packets (via
IP addresses), and the nature of the tra� c (via port num-
bers). However, Balloraet al. [12] noted that the high
data speeds and volumes associated with computer net-
works can lead to unmanageable cognitive loads. Ends-
ley and Connor (in McNeese [3]) came to the same con-
clusion, stating that the “extreme volume of data and the
speed at which that data �ows rapidly exceeds human
cognitive limits and capabilities.” They concluded:

The combination of the text-based format
commonly used in cyber security systems
coupled with the high false alert rates can
lead to analysts being overwhelmed and un-
able to ferret out real intrusions and attacks
from the deluge of information. The Level 5
fusion process indicates that the HCI interface
should provide access to and human control at
each level of the fusion process, but the ques-
tion is how to do so without overwhelming the
analyst with the details.

Like Stetho, Giot and Courbe's InteNtion (Interac-
tive Network Soni�cation) system mapped network ac-
tivity to a musical aesthetic via MIDI [16]. Four sound
channels were implemented. The �rst three processed
HTTP, FTP, and DNS tra� c respectively, while the
fourth channel dealt with tra� c from all other protocols
together. The system mapped several details of tra� c
properties to the parameters of the output sounds. For
instance, packet size controlled the frequency of a tone
while the TTL (time to live) of a datagram controlled
the duration of the tone. Geographic distance (estimated
from IP addresses) controlled the amount of reverbera-
tion applied to the tone. Unfortunately, no target use
case was stated and no description or demonstration of
the system was provided. It remains to be determined

how e� ective this deliberate approach to consider musi-
cal aesthetics was.

Wolf and Fiebrink [17] designed the SonNet system
to help users (artists or people have an interest in net-
work tra� c information) to easily access network traf-
�c through a simple coding interface without requiring
knowledge of Internet protocols. The system used three
levels of abstraction dealing with raw packet data, tem-
poral aspects and directionality of tra� c (via source and
destination IP addresses, port numbers, and time since
the last packet, and aggregated information over multi-
ple packets (via packet state and �ags) respectively.

The system's default operation is to process TCP
packets on port 80 (i.e., HTTP tra� c), though users can
select to monitor UDP tra� c and tra� c on all network
ports if they wish. The soni�cation itself was left to the
user to specify by writing a script to control a ChucK
module.5

The system was evaluated with four composers and
students of music composition. The objective was to
discover whether SonNet would support composers in
creating a musical piece. Therefore, the target use case
is quite di� erent from the systems mentioned above
which were more concerned with assisting with the
monitoring of a network.

Worrall's NetSon project [18] is a network soni�ca-
tion tool that aims to “sonically reveal aspects of the
temporal structure of computer network data �ows in a
relatively large-scale organization”. The system began
as an exploratory tool for an art and technology event
and includes visualizations alongside the auditory out-
put and aims to assist people with the peripheral moni-
toring of a network. The soni�cation design is not ex-
plained in detail, but it is based on using the features
of raw tra� c data to control various aspects of the out-
put sound. The overall design is explained thus: “in
contradistinction to much parameter mapping soni�ca-
tion, `melodic' pitch structures are used very sparingly
in favour of a diverseklangfarben(timbral) palette.”

One particular con�guration of the system is de-
scribed as revealing “a combination of interesting
features (such as printer server activity) and load-
balancing” Worrall [18]. However, in its present version
NetSon is presented as a soni�cation for public spaces
so further work is necessary to see how well it supports
speci�c network monitoring tasks and goals.

As seen in the work mentioned above, network soni-
�cation typically approaches the task by representing

5ChucK is a concurrent music programming language that can be
used to generate audio (seehttp://chuck.cs.princeton.edu ).
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the raw tra� c data (packets) or aggregated information
about those packets. To address managing the complex-
ity we propose that the study of self-organized criticality
has the potential to provide a way of aggregating net-
work behaviour and presenting the `health' of the net-
work as a simple variable, or set of related variables.

2. Self Organized Criticality in Network Tra � c

The 20th century witnessed a number of advances
in our understanding of complexity in dynamical sys-
tems. In 1987 Bak, Tang, and Wiesenfeld [19] brought
together the concept of emergent complexity in sim-
ple systems, the mathematics describing the complex-
ity of fractals in natural systems, and the scale-invariant
power laws, fractal geometries, and the pink (1=f ) noise
observed at the critical points between phase transitions
in physical systems in a single explanatory model they
termedself-organized criticality, or SOC.

They showed that these factors could be observed in
a cellular automaton and that they were linked to crit-
ical point phenomena. While critical point phenom-
ena are typically associated with the phase transitions
of thermodynamical systems (e.g., when a liquid tran-
sitions to the vapor phase), SOC could be observed
in a range of natural systems. SOC accounts for the
emergence of complexity in a way that does not de-
pend on the way a system is con�gured internally. That
is, parameters of a system could be manipulated with-
out a� ecting the emergence of SOC (the scale-invariant
power laws, fractal geometries, 1=f noise are all still
observed), hence the criticality was self-organized, not
being dependent on external in�uences.

The classic example Bak, Tang, and Wiesenfeld of-
fered was the sandpile model. Avalanches in the sand-
pile (critical points) happen as a result of grains of sand
being sprinkled onto the pile. It is the sandpile orga-
nizing itself that leads to an avalanche (a system re-
set). SOC is a function of an external driving force
and and internal relaxation process with a separation of
timescales between them [4]. In the case of the sandpile
the external driving force is the addition of sand grains
and the internal relaxation process is the avalanche. The
avalanche can take seconds to happen yet the external
driving force can operate over a longer timescale (min-
utes or hours). Since then, SOC has been demonstrated
in other natural systems such as earthquakes (in which
the relaxation process can take seconds compared to the
years or decades involved in the external driving force)
and forest �res and has subsequently been observed in
arti�cial systems such as stock markets and, latterly,
computer networks.

The separation of timescales also comprises two
other essential elements: thresholds and metastability
[20]. Since the time taken before an internal relaxation
process occurs is non-deterministic, so is the threshold
at which the internal relaxation process occurs. Thus, a
system can exhibit many many di� ering states, each of
which is `barely stable', a condition called metastability
[19].

Modern computer networks demonstrate periods of
very high activity alternating with periods of relative
calm, a characteristic known as `burstiness' [21]. It
was commonly thought that ethernet tra� c conformed
to Poisson or Markovian distributions. Tra� c would
thus possess a characteristic burst length which would
be smooth when averaged over a timescale [22]. How-
ever, network tra� c has been shown to have signi�cant
variance or burstiness over a range of timescales. Such
tra� c can be described using the statistical concept of
self-similarity and it has been established that ethernet
tra� c exhibits this property [23].

In a wavelet analysis of the burstiness of self-similar
computer network tra� c Yanget al. [24] demonstrated
that the avalanche volume, duration time, and the inter-
event time of tra� c �ow �uctuations obey power law
distributions. According to Baket al. [19] such power
law distributions in complex systems are evidence of
SOC. Fukudaet al. [25] demonstrated the existence
of phase transition phenomena in network tra� c and
Valverde and Solé [23] showed how network tra� c ex-
hibits the critical states associated with SOC.

Yanget al. [24] suggested that SOC might be a better
explanation of network tra� c than traditional Poisson
models. They argue that the power laws evident in inter-
event timings indicates that network tra� c “exhibits
long-term memory (its behavior across widely separated
times is correlated)” o� ering new ways to model and
understand network tra� c and behavior. This supports
Fukudaet al. [25]'s suggestion that that self-organized
criticality could be the origin of the �uctuation of bursti-
ness in network tra� c. In experiments with an ethernet
tra� c simulator to investigate competition among nodes
and the exponential back-o� that occurs when packets
fail to be transmitted due to congestion, they discov-
ered that when tra� c �ow rate was low there were few
collisions and the tra� c statistics were “dominated by
the random input” [25, p. 299]. However, when the
input reached the critical rate the number of collisions
became signi�cant and the output tra� c became “cor-
related in long time scales”. They observed that at this
critical point the tra� c hovered or �uctuated randomly
about the two phases and that these �uctuations exhib-
ited self-similarity.
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2.1. Identifying and Measuring the SOC

SOC is not a discrete variable that can be identi�ed
and monitored directly. Instead, its presence is inferred
through the analysis of a system's behaviour or prop-
erties, speci�cally by looking at some time-dependent
characteristics. For networks such analysis would typ-
ically focus on the tra� c, that is, the packets passing
through the system. We may observe the SOC by mea-
suring these time-dependent characteristics and com-
paring changes in successive samples. This is typically
done by calculating a log return. The log return,r, of
two data values on a streamS at intervalst and t0 is
given by equation (1).

r = ln[S(t0)] � ln[S(t)] (1)

That is, two successive data samples are converted to
logarithms, which are then subtracted to give the log
return value. During normal behaviour the log return
di� erences will be small. However, a repeated series
of large changes may well indicate a network instabil-
ity, and the possibility of some form of network `reset'.
Here, a reset does not necessarily mean a catastrophic
failure of the network, but could rather mean the exis-
tence of a rapidly increasing level of service tra� c re-
strictions [4].

Some simple examples may illustrate what we mean
by service tra� c restrictions. The log returns (r) of
normal network tra� c and a network undergoing a dis-
tributed denial of service (DDoS) attack were compared
using a Daubechies wavelet (part of the wavelet trans-
formation package within Matlab). Since we are con-
cerned with the notion of self-similar properties, then it
made sense to use this particular approach [26].

As can be seen in Figure 1(a), the residuals have the
characteristic burstiness of normal network tra� c. This
can be seen more clearly in Figure 1(b), were the resid-
uals have been denoised. In addition, the FFT spectrum
for the normal tra� c displays almost consistent energy
levels across the entire frequency range.

Figure 2(a) shows DDoS attack tra� c. Again the
characteristic burstiness can be seen in the residuals,
this time slightly more intense and regular. However,
note the energy levels and distribution in the FFT spec-
trum. The energy levels have increased by a factor of
10, while the distribution is con�ned towards the up-
per end of the frequency spectrum, and note the rising
trend, possibly an indication of increasing SOC activity,
and an unstable situation.

In Figure 2(b), the residuals of the beginning of a ma-
licious network attack have been denoised. On a cursory
inspection it appears to be very similar to Figure 1(b).

Both �gures plot the same data sets, but Figure 2(b) is a
representation of the denoised residuals of normal tra� c
data that is also carrying malicious tra� c data. Con-
sequently, one would expect to see some di� erences,
and on a closer inspection, the di� erences become clear.
Firstly, at approximately 500 (x-axis) in Figure 2(b), a
small amount of SOC activity can be observed (this is
not present in Figure 1(b)). Secondly, between 1000
and 1500 (x-axis) on both �gures, it can be seen that
the level and intensity of SOC activity has increased
in Figure 2(b). Whereas between 1500 and 2000 (x-
axis), the SOC spike has moved, while between 2000
and 2500 (x-axis), the SOC activity has intensi�ed. In
the next section we describe a system for sonifying the
SOC characteristics of network tra� c.

3. The SOC Soni�cation System

A prototype SOC soni�cation system,socs, was de-
signed and constructed to facilitate the real-time audi-
tory perception of the SOC properties of network traf-
�c. The tool was implemented using the Pure Data
audio programming environment (freely available from
http://puredata.info ) and a custom Python script
that used the Pythonsocket library for dealing with
the capture of network packets and the transmission to
the tool of the log return values of the variables being
monitored.6

Network tra� c is fed into the Python script either via
a live capture device (e.g., the Wireshark program) or
from a �le of previously captured data that is played
back via a script which can maintain the original timing
of the events, or resample the data to allow the playback
of di� erent timescales (see below).

For purposes of illustration, the example chosen here
soni�es the log returns of the following time-dependent
network tra� c data items: number of bytes sent, num-
ber of packets sent, number of bytes received, number
of packets received by the network which we callbs,
ps, br, pr respectively. These variables represent the
total number of packets and bytes sent and received in a
given time interval,t; t0. As SOC has been shown to ex-
ist across multiple timescales, network tra� c could be
sampled at any regular interval. The size of the interval
is not speci�ed and is at the discretion of the user. SOC
properties can be observed by comparing the log return
values of successive samples of time series data. Thus,

6The system and example audio output can be accessed from
the project's repository athttps://github.com/paulvickers/
nuson-SOCS[28].

6



in this example we calculate four log return values for
the variablesbs, ps, br, pr:

rbs = ln
�
bs(t0)

�
� ln [bs(t)] (2)

rps = ln
�
ps(t0)

�
� ln

�
ps(t)

�
(3)

rbr = ln
�
br(t0)

�
� ln [br(t)] (4)

rpr = ln
�
pr(t0)

�
� ln

�
pr(t)

�
(5)

This may result in negative values for the log return
which can be used to indicate the direction of a SOC
event's change in level (i.e., an increase in value means
a step up to the next level of steady state, whilst a de-
crease means a step down). Therefore, the system can
also use absolute (unsigned) log return values to keep
all values positive (which might be done if one were in-
terested only in large changes of level regardless of di-
rection). In addition, all values can be squared with the
sign retained or discarded. Thus, if using absolute val-
ues, the squares will all be positive, but if signed values
are used, then the squares retain the sign of the original
value (e.g., a log return of� 2 becomes� 4 when using
signed values, but 4 when using absolute values). The
reason for squaring the values is discussed in Section 4.

The Python script calculates the log return values and
feeds them as input to the soni�cation engine. Each log
return value is used to control the parameters of an indi-
vidual sound generator (orvoice), a technique known as
parameter-mapping soni�cation, or PMSon, (see Grond
and Berger [27] for a detailed discussion of PMSon).

3.1. Soni�cation Parameters

There are many possible mappings between the in-
put data values and the various parameters that a� ect
the audio. For example, this may be done by increas-
ing/decreasing the amplitude, altering a sound's posi-
tion in a sound �eld (e.g., left-right pan in a stereo
�eld, front /back/left/right in a surround-sound �eld,
or front/back/left/right and azimuth in a full three-
dimensional sound �eld), altering the sound's phase, or
altering its spectral characteristics (e.g., by changing the
parameters of a �lter). The following sections describe
the processes that were used in the system.

3.1.1. Scaling
SOC evidences itself through orders-of-magnitude

changes in the log return values but audio process-
ing units tend to require restricted ranges of digital in-
put values (say, 0: : :127, 0: : :15, � 256: : :255, etc.).
Therefore, it was necessary to scale all incoming data
so a scaler module was built that takes four arguments:
the minimum and maximum values of the input range

and the minimum and maximum of the desired output
range. Any any value received on the scaler's input is
converted to a corresponding value in the speci�ed out-
put range.

3.1.2. Amplitude Control
An amplitude control module was constructed that

adjusts the amplitude, or level, of the output sound ac-
cording to the value of the module's input variable, in
this case, the log return values. The lower the log return
value the quieter the sound, the higher it is the louder
the sound that is played back. Thus, the real-time mon-
itoring of the network leads to constant �uctuations in
the amplitude of the output, but only large changes in
level are readily perceived.

3.1.3. Filtering
There are several ways that the spectral character-

istics of an audio signal may be processed, each of
which will cause a change in the timbre of the au-
dio. For this example the input log return values
were used to determine the coe� cients of a biquad �l-
ter which has been con�gured with initial values of
f1:41409; � 0:9; 1; � 1:41421;1g which de�nes a notch
�lter. The advantage of a biquad �lter is that it o� ers
a richer set of �ltering options than a single type of ded-
icated (e.g., band pass) �lter and its coe� cients can be
altered in run time to changed the sound processing in
real time. If desired, a basic band pass (BP) �lter may
be used by swapping theloopChannel3 sub patch for
the loopChannel sub patch which is available in the
abstractions folder of the project's repository [28].
A notch or band-reject �lter prevents frequencies within
a certain range from passing. A BP �lter, by contrast,
allows frequencies within a certain range of the central
frequency to pass unhindered and attenuates frequencies
falling outside this range. In the Pure Data language
the range's width is speci�ed by the BP �lter'sreso-
nanceinput. The higher the resonance the wider the
band of frequencies that are allowed to pass through.
The choice of �lter depends on the kinds of sounds be-
ing loaded into the system. The disadvantage of the BP
�lter was that it tended to mu� e the soundscape dur-
ing normal operation, whilst the notch �lter retained
the soundscape's original brightness and altered it only
when large changes were detected in the log returns.

A �ltering unit was used for each audio channel.
The �lter's initial parameters are hard-coded into the
loopChannel3 sub patch to best �t the sonic material
being used but ultimately it is intended to expose this
functionality to the end user. The value of the input vari-
able being monitored by each channel was then used to
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alter the �lter's response in real time. This means that
the timbre of the audio changed as the input variable
changed.

3.1.4. Sampled and Synthesized Voices
Because the prototype system monitored four vari-

ables four voices or channels were used, one per vari-
able. The system can be extended to include as many
voices as there are data dimensions to be monitored. A
voice can be a synthesized tone generated in real time or
it can be a segment of sampled audio that is played back
as a repeated loop. The loop playback method incorpo-
rates a sub patch designed by Farnell [29] which loads
a wave audio �le and plays it continuously, restarting
it when it reaches the end. The amplitude of the loop
is controlled by the amplitude control module and its
timbre is controlled by the �lter above. Thus, the log
return value of each data stream is used to modulate the
corresponding voice.

The loops and synthesized voices could, in princi-
ple, be any sound, but it is recommended to use sounds
that complement each other (e.g., the di� erent sounds
of a natural ecology) to minimize perceptual distrac-
tion. In the version described here, the channels con-
tained di� erent sounds that combined to make a coun-
tryside soundscape. Any wave �les can be loaded into
the system. For the examples described here voice 1
was mapped to a woodland sound with a variety of bird
calls. voice 2 used a recording of a running stream,
and voice 3 used a recording of wind. All the audio
�les were downloaded in mp3 format from the freeSFX
web site [30] (countrysounds.mp3, stream02.mp3, and
vientos.mp3), edited for length, and exported as wave
audio �les. Voice 4 used a synthesized rain sound; the
sub patch for generating the rain sound was taken from
Farnell [29]. This enables the various audio channels to
be attended to as a single coherent whole, but alterations
in any single channel will stand out.

3.2. System Architecture

Figure 3 shows the architecture of the soni�cation de-
sign used for sonifying four data streams. Each of the
numbered items in Figure 3 is explained below.

1. Capture network traffic : Network tra� c is cap-
tured from a log �le or a live packet sni� er program
by the custom Python script.

2. Select variables: The variables chosen here are
bs, ps, br, pr (see above).

3. Calculate the log returns : Calculation of the log
returns is done in the Python script and the values
fed to the soni�cation engine built in Pure Data.

4. Scaler: This module scales the input values to the
ranges required by the various audio processing
units.

5. Amplitude control: Modulates the amplitude of
the voice by the log return value.

6. filter : Alters the parameters of the band pass or
biquad �lter according to the log return value.

7. Voicen loop: A looped sample playback. The am-
plitude of the loop is controlled by the Amplitude
control (above) and its timbre is controlled by a
filter above.

8. Voicen (synthesiszed tone): A synthesized rather
than sampled sound channel.

9. Mixer: The four audio channels are combined into
a single stereo output which is then sent to the au-
dio system of the host computer.

Figure 4 shows a screen shot of the application as it
looks to the user. The application has four principal sec-
tions: network input (A), channel processing (B), the
mixer (C), and the graph view (D). The network input
section contains a module that receives the log returns
generated by thetrafficSender.py Python script.
The channel processing section contains four similar
units: three for dealing with audio loop playback and
one for dealing with synthesized tone playback. Each
of the four units contains a scaler module and a �lter
module. The three loop-based units also contain mod-
ules for loading and playing back the pre-recorded audio
�les. The synthesizer unit contains modules for gener-
ating and �ltering white noise. Each of these four chan-
nel processors contain a real-time graphic plot which
shows the values of the log returns. The mixer section
(C) allows the relative amplitudes of the four channels
to be set. These four channels are then mixed down to
a single stereo output which is sent to the host com-
puter's audio hardware. The audio output can also be
captured in real-time and saved to a wave audio �le via
the `startrec' `stoprec' buttons. The graph view (D)
plots the aggregate network tra� c in real-time which
allows visual reference to be made when something of
interest is heard.

The network input section (A) contains taps to turn
the four data streams that are being soni�ed on and o� .
This allows the operator to generate an overall sound-
scape of all the network variables being monitored or to
focus on an desired subset. Additionally, the mixer sec-
tion (C) allows the overall balance between the sound-
scape channels to be adjusted as desired. For example, if
the operator wished to focus more attention on the bytes
sent per time interval then they could raise the level of
voice 1.
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4. Discussion

The system was driven by a number of tra� c data
sets captured from live networks. Tra� c data were ag-
gregated over 1 s intervals and the number of bytes and
packets sent and received per interval were fed to the
socsapplication via the Python script. Each time a set
of log return values is received the system uses the val-
ues to modulate the four respective audio channels.

When the tra� c is exhibiting normal patterns small
�uctuations in log return values do not lead to very
noticeable changes in the soundscape, either in ampli-
tude or timbre. Using the mappings described above
one hears a soundscape comprising the combination of
sounds described above.

When one or more very large log returns occur (such
as would be expected during a dynamic system relax-
ation event) the corresponding soundscape experiences
a very noticeable change: the amplitude varies greatly
and the timbre alters as �lters are adjusted (see Figure
8). In practice this was experienced as a sudden attenu-
ation, loud rumble, or click (depending on the �lter be-
ing used and whether signed, unsigned, or squared log
return values were being used).

4.1. Audio examples
Audio �les demonstrating the system output can be

found in the project repository [28]. Table 1 lists the
available example audio �les.

Table 1: Example sound �les

Audio �le name Description

normal.wav No large log returns
spike2 1s a.wav Two audible spikes using unsigned

(absolute) log returns, see Fig. 5.
spike2 1s.wav Same spikes but using signed log

returns.
spike2 20msa.wav Same spikes, but at 20 ms speed,

absolute log returns.
multiSpike 1s a.wav Multiple spikes, 1 s playback,

absolute log returns, see Fig. 7.
multiSpike 1s as.wav Same spikes, 1 s playback, but

squared log returns.
multiSpike 1s s.wav Same spikes, 1 s playback, squared

log returns retaining original sign.
multiSpike 1s.wav Same spikes, signed log returns,

see Fig. 6.
multiSpike 20msa.wav Same spikes, 20 ms playback,

absolute log returns.
multiSpike 20ms.wav Same spikes, 20 ms playback,

signed log returns.
multiSpike 20msas.wav Same spikes, 20 ms playback,

squared log returns.

All �les available in theexamples directory at
https://github.com/paulvickers/nuson-SOCS

Running the Python script at di� erent playback rates
and with signed, unsigned, and squared log return val-
ues leads to di� erent auditory outputs. For example,
running the system using signed log returns (the sys-
tem default) reveals that the tra� c spikes shown in Fig.
5 are both negative. The sound �lespike2 1s .wav
demonstrates that at a playback speed of 1 s per record
(the timescale at which the tra� c data were captured)
the negative spikes reveal themselves as gaps in the
soundscape. In this case, the woodland sounds and
the wind sound are attenuated as these are mapped to
the sent and received bytes variables. However, when
playing back the tra� c data at a higher rate, as one
might do when spooling through a log �le to get a
feel for where any problems might lie, these attenuta-
tions are not so perceptible. In this case it is prefer-
able to run the system using absolute (unsigned) log re-
turn values. This renders all large changes as positive
spikes which results in all spikes being heard as large
increases in amplitude and �ltering e� ects. The sound
�le spike2 20msa.wav is a recording of the system
processing the tra� c data at 20 ms per record. The two
spikes are now clearly audible.

Fig. 6 shows a series of spikes in the tra� c data.
The sent and received bytes variables each have three
spikes the �rst two being negative and the third pos-
itive, while the sent and received packets variables
have a single positive spike each. In the audio �le
multiSpike 1s.wav the negative spikes are clearly
heard as gaps in the soundscape whilst the positive spike
is very audible, particularly in the wind sound which
represents the received bytes variable.

Using absolute log returns the spikes appear as in
Fig. 7. This time, at a playback rate of 1 s per record
(multiSpike 1s abs.wav) the �rst two spikes in the
sent and received bytes are heard as a very loud noise
signal, which is made even stronger by the sent and
received packets spikes coinciding. The third spike
is dominated by the wind sound of the received bytes
channel. The same spikes when played back at 20 ms
per record are much shorter and more percussive.

4.2. The Situational Awareness Loop

On hearing an events such as described above (sit-
uational awareness level 1— Perception) the network
aministrator would be drawn to inspecting the state of
the network (situational awareness level 2 — Compre-
hension) to decide whether any action needs to be taken
(situational awareness level 3 — Projection). After de-
ciding what action to take (level 3) then comes the stage
of managing the action, which itself requires situational
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awareness as actions are taken to address the situa-
tion. The �nal step in all UK military decision support
methodology is to ask the question “has the situation
changed?”, thus restarting the OODA loop.

In a healthy network one would expect a number of
signi�cant changes in the soundscape over time as re-
laxation events occur (much as a sandpile would un-
dergo shifts in its topology as sand is added to it over
time). Some of these events may go unnoticed by the
administrator (if, for example, they left the monitoring
station for a short period of time) but individual events
are not a matter of great concern. What will be of par-
ticular interest is when there is an extended series of
repeated high log return values which might indicate
growing instability in the network. An extended period
of increased soundscape amplitude signals as a clear
alert to the administrator.

4.3. Timescales

The system was run with log return intervals of 1 s
and 20 ms. The tra� c data set used in the examples was
collected at 1 s intervals, so the 20 ms playback was
done in a post-hoc examination mode.

The running of thesocssystem at a higher rate than
the tra� c data's initial sample rate allowed historical
feeds to be listened to post-hoc in a manner analogous
to spooling quickly through an audio tape (the main
di� erence being that there is no consequent alteration of
pitch). This means that logs can be auditioned quickly
and interesting areas of activity spotted. This is useful
for post-incident investigations and means that the
system can be used for more than live monitoring. The
Python script can be supplied with run-time arguments
to focus on certain sections of the tra� c data, and/or to
slow down playback once a particular point is reached.
For example, the command:

python trafficSender.py -t 0.02 -f 6000 -w
6960 -f 7100

tells the Python script to send unsquared signed log re-
turns (the default) to thesocssystem at a playback rate
of 20 ms (0.02 s), starting at record number 6000 and
slowing down to a default rate of 1 s per record once
record number 6960 is reached, and then stopping at
record number 7100.

5. Concluding Remarks

The combination of using a system's self-organized
criticality as the underlying data set for situational

awareness and a tool for sonifying this SOC o� ers a
number of potential advantages. First, because SOC
is an emergent property of the network as a whole,
and can be seen at di� erent timescales, it means that
one can get an impression of the overall state of a net-
work by monitoring a relatively small number of data
streams, thereby ameliorating the problems of extreme
volumes and speeds of data identi�ed by previous re-
searchers. Second, the soni�cation approach allows for
the real-time presentation of simple, but relevant data
via a medium that lets network administrators work at
situational awareness levels 1 and 2 using without hav-
ing to keep a visual focus on a complex graphical dis-
play. Third, because SOC manifests itself fractally and
across timescales, whatever data sampling interval is
chosen, the network SOC ought still to be perceptible
regardless of the interval over which tra� c data are sam-
pled and aggregated.

While the work described here focused on the tradi-
tional tra� c metrics of bytes and packets sent and re-
ceived, it is important to explore what other variables
and characteristics are implicated in a network's SOC
and this is the subject of ongoing work. For example,
rather than using log returns, Valverde and Solé [23] ex-
plored network criticality through packet density, con-
gestion, and the “critical load rate” measured by� c”. It
will be instructive to investigate how di� erent views of
network behavior exhibit SOC and how each of these
can be used in the situational awareness loop.

The present system allowed the creation of a sound-
scape of up to four independent audio streams (mixed
down to a pair of stereo channels). The underlying sys-
tem architecture promotes interactivity by letting the
user select the combination of incoming data streams
to be soni�ed and the sonic balance of the auditory
streams.

Another aspect of the ongoing work is to explore
combining soni�cation with a multitouch display to cre-
ate a richer interaction experience. The following ex-
ample use case describes how this might be realized.
A possible intrusion is detected through an anomalous
change in the SOC variables. The administrator now
wishes to investigate the network's behaviour. To do
this a diagram showing a network setup is projected
onto a multi-touch display. The data indicate a prob-
lem between the router and the internet, and between
the switch and the laptop. A tangible user interface ob-
ject (e.g., a cube) with a �ducial marker on its bottom
surface is placed above the router. Another object is
placed on the channel between the switch and the lap-
top. A camera beneath the display recognizes the �du-
cials which are coded to speci�c tra� c data variables.
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Rotating the objects controls the auditory and/or visual
parameters of the data streams. Visual feedback can be
projected onto the surface (e.g., printing data above the
interface object) with auditory feedback being via loud-
speakers or headphones. The interface objects become
probes to monitor chosen network locations for partic-
ular events or data types. In this way the administrator
can gain intelligence about the state of the network in a
hands-on way.
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(a)

(b)

Figure 1: (a) shows a Daubechies wavelet analysis of normal tra� c data while (b) shows the denoised tra� c residuals.
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(a)

(b)

Figure 2: (a) Shows a Daubechies wavelet analysis of DDoS tra� c data while (b) presents the denoised tra� c residuals.
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Figure 3: Schematic view of the SOC soni�cation system for four network tra� c variables: number of bytes sent (bs), number of packets sent (ps),
number of bytes received (br), number of packets received (pr).
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Figure 4: Thesocsapplication. Section A deals with reading the network tra� c from the capture device. Section B contains the voice de�nitions
to which each tra� c variable is mapped. Section C is a mixer to convert the four separate audio streams into a single stereo feed. Section D is a
graphical display of the combined variables being monitored. The channel graph plots are updated more frequently than the aggregate graph plot.
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Figure 5: This screen grab shows the double spike in the sent bytes and received bytes variables. The log returns are negative jumps as shown by
the descending peaks. The sound �lesspike2 1s a.wav andspike2 1s.wav demonstrate how this sounds at playback speeds of 1 s per record,
using the absolute and signed log returns respectively.spike2 20msa.wav is the same tra� c segment but played back at 20 ms per record and
using absolute (unsigned) values.

Figure 6: This screen grab shows shows a series of spikes in the sent bytes and received bytes variables.The audio �lemultiSpike 1s.wav
demonstrates how this sounds at a playback speed of 1 s per record using signed log return values. There is an audible di� erence between the
positive and negative tra� c changes. However, notice how the peaks are not salient when playing back signed values at the faster rate of 20 ms as
in multiSpike 20ms.wav— the peaks occur at around the 1.5 s mark in the audio �le.
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Figure 7: This screen grab shows the same series of spikes as Fig 6 but this time using the unsigned log returns. The sound �les
multiSpike 1s a.wav andmultiSpike 20msa.wav are recordings of this tra� c segment played back at 1 s and 20 ms per record respec-
tively. In both cases the tra� c peaks are quite noticeable. The �lemultiSpike 20msas.wav demonstrates how squaring the log return values
leads to an even more marked e� ect.

Figure 8: This screen shot of the voice channel section shows log return spikes occurring on all four channels with the largest values occuring in the
sent bytes and sent packets streams. These spikes generate a noticeable increase in the amplitude and brightening of the timbre of the soundscape.

18


