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ABSTRACT

Context. We study the propagation of a fast magnetoacoustic wave in a 3D magnetic field created from two magnetic dipoles. The magnetic
topology contains an X-line.
Aims. We aim to contribute to the overall understanding of MHD wave propagation within inhomogeneous media, specifically around X-lines.
Methods. We investigate the linearised, 3D MHD equations under the assumptions of ideal and cold plasma. We utilise the WKB approximation
and Charpit’s method during our investigation.
Results. It is found that the behaviour of the fast magnetoacoustic wave is entirelydictated by the local, inhomogeneous, equilibrium Alfvén
speed profile. All parts of the wave experience refraction during propagation, where the magnitude of the refraction effect depends on the
location of an individual wave element within the inhomogeneous magnetic field. The X-line, along which the Alfv́en speed is identically zero,
acts as a focus for the refraction effect. There are two main types of wave behaviour: part of the wave is either trapped by the X-line or escapes
the system, and there exists a critical starting region around the X-line that divides these two types of behaviour. For the set-up investigated, it
is found that 15.5% of the fast wave energy is trapped by the X-line.
Conclusions. We conclude that linear,β = 0 fast magnetoacoustic waves can accumulate along X-lines and thus these will be specific locations
of fast wave energy deposition and thus preferential heating. The work here highlights the importance of understanding the magnetic topology
of a system. We also demonstrate how the 3D WKB technique described in thispaper can be applied to other magnetic configurations.
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1. Introduction

It is now clear that magnetohydrodynamic (MHD) wave mo-
tions (e.g. Roberts 2004; Nakariakov & Verwichte 2005; De
Moortel 2005) are ubiquitous throughout the solar atmo-
sphere (Tomczyk et al. 2007). Several different types of MHD
wave motions have been observed by various solar instru-
ments: longitudinal propagating disturbances have been seen
in SOHO data (e.g. Berghmans & Clette 1999; Kliem et al.
2002; Wang et al. 2002) and TRACE data (De Moortel et
al. 2000) and these have been interpreted as slow magnetoa-
coustic waves. Transverse waves have been observed in the
corona and chromosphere with TRACE (Aschwanden et al.
1999, 2002; Nakariakov et al. 1999; Wang & Solanki 2004),
Hinode (Okamoto et al. 2007; De Pontieu et al. 2007; Ofman
& Wang 2008), SDO data (e.g. McIntosh et al. 2011; Morton et
al. 2012, 2015; Morton & McLaughlin 2013, 2014; Thurgood
et al. 2014) and these have been interpreted as fast magnetoa-
coustic waves, specifically kink waves. These transverse mo-
tions have also been interpreted as Alfvénic waves, although
this interpretation is subject to discussion, e.g. see Erdélyi &
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Fedun (2007), Van Doorsselaere et al. (2008) and Goossens et
al. (2009). Non-thermal line broadening due to torsional Alfvén
waves has been reported by Erdélyi et al. (1998), Harrison et al.
(2002), O’Shea et al. (2003) and Jess et al. (2009).

It is also clear that the coronal magnetic field plays a funda-
mental role in the propagation and properties of MHD waves,
and to begin to understand this inhomogeneous magnetised en-
vironment it is useful to look at the topology (structure) of
the magnetic field itself. Potential-field extrapolations of the
coronal magnetic field can be made from photospheric magne-
tograms (e.g. see Régnier 2013) and such extrapolations show
the existence of important features of the topology:null points
- specific points where the magnetic field is zero,separatrices -
topological features that separate regions of different magnetic
flux connectivity, andX-lines or null lines - extended locations
where the magnetic field, and thus the Alfvén speed, is zero.
Investigations of the coronal magnetic field using such poten-
tial field calculations can be found in, e.g., Brown & Priest
(2001), Beveridge et al. (2002), Régnier et al. (2008) and in
a comprehensive review by Longcope (2005).

These two areas of scientific study, namely ubiquitous MHD
waves and magnetic topology, will naturally encounter each
other in the solar atmosphere, e.g. MHD waves will propa-
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gate into the neighbourhood of coronal null points, X-linesand
separatrices. Thus, the study of MHD waves within inhomoge-
neous magnetic media is itself a fundamental physical process.
Previous works, detailed below, have focused on MHD wave
behaviour in the neighbourhood of null points and separatrices
(see review by McLaughlin et al. 2011). However, less attention
has been given to the transient behaviour of MHD waves in the
vicinity of X-lines in the solar atmosphere. The motivationfor
this paper is to address this, i.e. this paper aims to investigate
the behaviour of fast MHD waves around an X-line in order to
contribute to the overall understanding of MHD wave propa-
gation within inhomogeneous media. Note that an X-line is a
degenerate structure and its existence requires a special sym-
metry of the magnetic field. Thus, given the inherent lack of
symmetry in solar magnetic observations, their existence in the
solar atmosphere is unlikely. However, X-lines are well stud-
ied in other areas, such as in the Earth’s magnetosphere, e.g.
Runov et al. (2003) and Phan et al. (2006).
The propagation of fast magnetoacoustic waves in an inhomo-
geneous coronal plasma has been investigated by Nakariakov
& Roberts (1995), who showed that the waves are refracted into
regions of low Alfv́en speed (see also Thurgood & McLaughlin
2013). In the case of X-lines, the Alfvén speed actually drops
to zero.
MHD waves in the neighbourhood of a single 2D X-point have
been investigated by various authors. Bulanov & Syrovatskii
(1980) provided a detailed discussion of the propagation offast
and Alfvén waves using cylindrical symmetry. Craig & Watson
(1992) mainly considered the radial propagation of them = 0
mode (wherem is the azimuthal wavenumber) using a mix-
ture of analytical and numerical solutions. They showed that
the propagation of them = 0 wave towards the null point
generates an exponentially large increase in the current den-
sity. Craig & McClymont (1991, 1993), Hassam (1992) and
Ofman et al. (1993) investigated the normal mode solutions
for both m = 0 andm , 0 modes with resistivity included.
They emphasise that the current builds as the inverse square
of the radial distance from the X-point. All these investiga-
tions were carried out using cylindrical models in which the
generated waves encircled the X-point and so the cylindrical
symmetry meant that the disturbances can only propagate ei-
ther towards or away from the X-point. The behaviour of MHD
waves around two-dimensional X-points in a Cartesian geome-
try has been investigated by McLaughlin & Hood (2004, 2005,
2006b), McLaughlin et al. (2009) and more recently by Kuźma
et al. (2015). Of note is also McLaughlin & Hood (2006a) who
investigated fast MHD wave propagation in the neighbourhood
of two dipoles. These authors solved the linearised,β = 0 MHD
equations and found that the propagation of the linear fast wave
is dictated by the Alfv́en speed profile and that close to the
X-point, the wave is attracted to the X-point by a refraction
effect. It was also found that in this magnetic configuration a
proportion of the wave can escape the refraction effect and that
the split occurs near the regions of very high Alfvén speed.
However, this study was limited to 2D. The current paper ex-
tends this work to 3D.
MHD waves in the vicinity of a 3D null point (e.g. Parnell et
al. 1996; Priest & Forbes 2000) have also been investigated.

Galsgaard et al. (2003) performed numerical experiments on
the effect of twisting the spine of a 3D null point, and described
the resultant wave propagation towards the null. They found
that when the fieldlines around the spine are perturbed in a rota-
tionally symmetric manner, a twist wave (essentially an Alfvén
wave) propagates towards the null along the fieldlines. Whilst
this Alfvén wave spreads out as the null is approached, a fast-
mode wave focuses on the null point and wraps around it. In
addition, Pontin & Galsgaard (2007) and Pontin et al. (2007)
performed numerical simulations in which the spine and fan of
a 3D null point are subject to rotational and shear perturbations.
They found that rotations of the fan plane lead to current sheets
in the location of the spine and rotations about the spine lead to
current sheets in the fan.

The WKB approximation is an asymptotic approximation tech-
nique which can be used when a system contains a large param-
eter (see e.g. Bender & Orszag 1978). Hence, the WKB method
can be used in a system where a wave propagates through a
background medium which varies on some spatial scale which
is much longer than the wavelength of the wave. There are sev-
eral examples of authors utilising the WKB approximation to
compare with numerical results, e.g. Khomenko & Collados
(2006) and Afanasyev & Uralov (2011, 2012). Galsgaard et al.
(2003) compared their numerical results with a WKB approx-
imation and find that, for theβ = 0 fast wave, the wavefront
wraps around the null point as it contracts towards it. They per-
form their WKB approximation in cylindrical polar coordinates
and thus their resultant equations are two-dimensional, since a
simple 3D null point is essentially 2D in cylindrical coordi-
nates. In contrast, this paper will solve the WKB equations for
three Cartesian components, and thus we can solve for more
general disturbances and more general boundary conditions.
McLaughlin et al. (2008) utilised the WKB approximation to
investigate MHD wave behaviour in the neighbourhood of a
fully 3D null point. The authors utilised the WKB approxima-
tion to determine the transient properties of the fast and Alfvén
modes in a linear,β = 0 plasma regime. From these works, it
has been demonstrated that the WKB approximation can pro-
vide a vital link between analytical and numerical work, and
often provides the critical insight into understanding thephys-
ical results. This paper demonstrates the methodology of how
to apply the WKB approximation to a general 3D magnetic
field configuration. We believe that with the vast amount of
3D modelling currently being undertaken, applying this WKB
technique in 3D will be very useful and beneficial to the MHD
modelling community.

This paper describes an investigation into the behaviour offast
MHD waves around an X-line using the WKB approximation.
The paper has the following outline: In§2, the basic equations,
linearisation and assumptions are described, including details
of our equilibrium magnetic field.§3 details the WKB tech-
nique utilised in this paper as well as its application to thefast
wave. The results are given in§4 and the conclusions and dis-
cussion are presented in§5. There are multiple appendices (A,
B, C) which complement the work in the core text.
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(b)(a)

(d)(c)

Fig. 1.(a) Equilibrium magnetic field in they = 0, xz−plane. Dipoles are located atx = ±0.5. X-point is located atx = 0 andz =
√

2a =
√

0.5 =
0.707. Red lines indicate the separatrices in this plane. (b) 3D visualisation of the equilibrium magnetic field denoting the red separatrices along
y = 0 from (a) and perpendicular to this the blue X-line alongx = 0 from (c). Equilibrium magnetic field is rotationally symmetric about the
y = 0 axis and thus black curves denote the separatrices in thexy−plane atz = 0. (c) Equilibrium magnetic field shown in thex = 0, yz−plane.
Magnetic field is only in thex−direction, hence no arrows. Blue line denotes the X-line of the formy2 + z2 = 2a2. (d) Plot of Bx(0, r) where
r2 = y2 + z2. Bx(0, r) changes sign atr =

√
2a =

√
0.5 = 0.707, i.e. at location of the X-line. Maximum ofdBx(0, r)/dr occurs atr = 1, where

Bx(0, r = 1) = (4/5)5/2 = 0.5724.

2. Governing equations

2.1. Basic equations

The resistive, adiabatic MHD equations for a plasma in the so-
lar corona are used:

ρ
∂v
∂t
+ ρ (v · ∇) v = −∇p + j × B + ρg ,

∂B
∂t
= ∇ × (v × B) + η∇2B ,

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

∂p
∂t
+ v · ∇p = −γp∇ · v ,

µ0 j = ∇ × B , (1)

wherev is the plasma velocity,ρ is the mass density,p is the
plasma pressure,B is the magnetic induction (usually called
the magnetic field),j is the electric current density,g is grav-
itational acceleration,γ is the ratio of specific heats,η is the
magnetic diffusivity andµ0 is the magnetic permeability in a
vacuum.

2.2. Linearised equations and non-dimensionalisation

In this paper, the linearised MHD equations are used to study
the nature of wave propagation. Using subscripts of 0 for equi-
librium quantities and 1 for perturbed quantities, equations (1)
become:

ρ0
∂v1

∂t
= −∇p1 + j0 × B1 + j1 × B0 + ρ1g , (2)

∂B1

∂t
= ∇ × (v1 × B0) + η∇2B1 , (3)

∂ρ1

∂t
+ ∇ · (ρ0v1) = 0 , (4)

∂p1

∂t
+ v1 · ∇p0 = −γp0∇ · v1 , (5)

µ0 j1 = ∇ × B1 , (6)

where we note thatv0 = 0. We now consider several simplifi-
cations to our system. We will be considering a potential equi-
librium magnetic field and so∇ × B0 = j0 = 0. In addition, we
ignore the effect of gravity on the system, i.e. we setg = 0. We
also consider an ideal system and so the magnetic diffusivity,
η, is set to zero.
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(c)

(a) (b)

(d)

Fig. 2. (a) Shaded surface ofvA(x, y, z0) = |B0(x, y, z0)| in the xy−plane atz0 = 0.1, with local maxima at (x, y, z) = (±a,0,0), i.e. the dipoles’
location. (b) Colour contour ofvA(x,0, z) = |B0(x,0, z)| in they = 0, xz−plane. Contour is colour coded: 0≤ vA ≤ 0.3 (white); 0.3 ≤ vA ≤ 0.5724
(green); 0.5724≤ vA ≤ 2 (yellow); 2≤ vA ≤ 30 (orange);vA ≥ 30 (black). Red lines indicate the separatrices in this plane. (c) Colour contour
of vA(0, y, z) = |B0(0, y, z)| in the x = 0, yz−plane. Blue line indicates the X-line in this plane. Contour is colour coded in the same way as (b).
(d) Plot of |Bx(0, r)| = vA(0, y, z) wherer2 + y2 + z2 and axis displays 0.5 ≤ r ≤ 2. Colour coding corresponds to that of (b) and (c), except now
black represents|Bx(0, r)| ≤ 0.3.

Furthermore, we consider a cold plasma, i.e.β = 0 plasma
approximation, since in the solar coronaβ ≪ 1. Under this as-
sumption,p0 = 0 andp1 = p1(x, y, z) from equation (5). We
will also assume the equilibrium gas density,ρ0, is uniform.
Note that a spatial variation inρ0 can cause phase mixing (e.g.
Heyvaerts & Priest 1983; De Moortel et al. 1999; McLaughlin
et al. 2011). There are no assumptions onρ1 = ρ1(x, y, z, t) but
we will not discuss equation (4) further as it can be solved once
we knowv1. In fact, under the assumptions ofβ = 0, lineari-
sation and no gravity,ρ1 has no influence on the momentum
equation and so the plasma is effectively arbitrarily compress-
ible (Craig & Watson 1992).

We now non-dimensionalise the above equations as follows: let
v1 = v̄v∗1, B0 = BB∗0, B1 = BB∗1, x = Lx∗, y = Ly∗, z = Lz∗,
∇ = ∇∗/L and t = t̄ t∗, where we let∗ denote a dimension-
less quantity and̄v, B, L, and t̄ are constants with the dimen-
sions of the variable that they are scaling. In addition,ρ0 and
p0 are constants as these equilibrium quantities are uniform,
i.e. ρ∗0 = p∗0 = 1. We then setB/

√
µ0ρ0 = v̄ and v̄ = L/t̄,

which setsv̄ as a constant equilibrium Alfv́en speed. Under
these scalingst∗ = 1, for example, refers tot = t̄ = L/v̄, i.e.
the equilibrium Alfv́en time taken to travel a distanceL. For
the rest of this paper, we drop the star indices; the fact thatthey
are now non-dimensionalised is understood. Thus, ourβ = 0,

ideal, linearised, non-dimensionalised equations are given by:

∂v1

∂t
= (∇ × B1) × B0 and

∂B1

∂t
= ∇ × (v1 × B0) . (7)

Note that oncev1 is known,ρ1 can be calculated from equation
(4).
Equations (7) can be combined to form a single equation:

∂2

∂t2
v1 = {∇ × [∇ × (v1 × B0)]} × B0 . (8)

This equation is valid for any 3D potential equilibrium mag-
netic field,B0. Thus, we now detail our choice ofB0.

2.3. Magnetic equilibrium

We choose a magnetic field created by two magnetic dipoles
located at (x, y, z) = (±a,0,0). The mathematical form of our
dipolar magnetic field comes from the vector potential,A, pro-
duced by a magnetic dipole moment,m, whereB0 = ∇ × A
and:

A(x) =
µ0

4π
m × x
|x|3

whereµ0 is the permeability of free space andx = (x, y, z). See
Shadowitz (1975) for further details. Thus, the magnetic field
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takes the formB0 =
(

Bx, By, Bz

)

B/L3, where:

Bx =
−2(x + a)2 + y2 + z2

[

(x + a)2 + y2 + z2
]5/2
+
−2(x − a)2 + y2 + z2

[

(x − a)2 + y2 + z2
]5/2
,

By = −
3(x + a) y

[

(x + a)2 + y2 + z2
]5/2
− 3(x − a) y

[

(x − a)2 + y2 + z2
]5/2
,

Bz = −
3(x + a) z

[

(x + a)2 + y2 + z2
]5/2
− 3(x − a) z

[

(x − a)2 + y2 + z2
]5/2
, (9)

whereB is a characteristic field strength,L is the length scale
for magnetic field variations and the loci of the dipoles are lo-
cated at±a (2a is the separation of the dipoles). We choose
a = 0.5L in our investigation and soa = 0.5 under our non-
dimensionalisation. The magnetic field can be seen in Figure
1. The equilibrium magnetic field comprises of separatrix sur-
faces, i.e. the magnetic skeleton, that divide the magneticre-
gion into four topologically distinct regions. Figure 1a shows
the equilibrium magnetic field in thexz−plane aty = 0 where
the red lines indicate the separatrices in this plane. Note that the
equilibrium magnetic field is rotationally symmetric aboutthe
axisy = 0, and so the magnetic field geometry in thexy−plane
alongz = 0 is identical to that of Figure 1a forz→ y for y ≥ 0
andz → −y for y ≤ 0, respectively. This symmetry betweeny
andz can also be understood from the form of the equations for
By andBz themselves, which are identical under the mapping
(y, z)→ (z, y).
The (red) separatrices cross at an X-point, located at
(x, y, z) = (0,0,

√
2a) and at that locationBx(0,0,

√
2a) =

By(0,0,
√

2a) = Bz(0,0,
√

2a) = 0. This X-point, in the
xz−plane aty = 0, forms an X-line of the formy2 + z2 = 2a2

in the yz−plane atx = 0. This can be seen in Figure 1b
where the blue line denotes the X-line. The X-line is cen-
tral to the investigation in this paper. Note that the magnetic
field is identically zero along the whole of the X-line. There
is no guide-field along the X-line. Note that the X-point in
the y = 0, xz−plane is just a cut across the X-line, and so
y2 + z2⇒ z2 = 2a2⇒ z =

√
2a at x = y = 0.

Along x = 0, equations (9) simplify greatly such that:

Bx(0, y, z) =
2
(

−2a2 + y2 + z2
)

(

a2 + y2 + z2
)5/2

,

By(0, y, z) = Bz(0, y, z) = 0 , (10)

where alongy2 + z2 = 2a2, Bx = By = Bz = 0. Figure 1c
shows the equilibrium magnetic field in theyz−plane atx = 0
where the blue curve denotes the X-line. Note that whenx =
0, the magnetic field is in thex−direction only, is orientated
perpendicular to theyz−plane and, crucially, changes direction
across the X-line. The X-line manifests as a circle,y2 + z2 =

2a2, which is in agreement with our observation of rotational
symmetry about they = 0 axis.
Letting r2 = y2 + z2 simplifies equation (10) further:

Bx(0, r) =
2
(

−2a2 + r2
)

(

a2 + r2
)5/2

,

By(0, r) = Bz(0, r) = 0 . (11)

Thus, in Figure 1c and inside the blue circle,Bx < 0 and
so the magnetic field is in the−x−direction (into the page),
whereas outside the circleBx > 0 and the magnetic field is in
the x−direction (towards the reader).
Figure 1d shows a plot ofBx(0, r). We see thatBx(0, r) changes
sign as it passes throughr =

√
2a =

√
0.5 as expected, i.e. this

is the location of the X-line. There is a maximum atr = 1, i.e.
max[Bx(0, r = 1)] = (4/5)5/2 = 0.5724.
Note that asx, y or z get very large, the field strength becomes
small; this is a more physically-realistic topology than those
previously investigated in McLaughlin et al. (2008). Note that
although the magnetic field is inhomogeneous, it is still both
potential,∇ × B0 = 0, and solenoidal,∇ · B0 = 0.

2.4. Alfvén speed profile

Previous work (see McLaughlin et al. 2011) has high-
lighted that the equilibrium Alfv́en speed profile,vA(x, y, z) =
|B0(x, y, z)|, plays a key role in dictating the propagation of the
fast wave. Figure 2a shows a shaded surface ofvA(x, y,0) =
|B0(x, y,0)| in the xy−plane atz = 0.1. The shaded surface
clearly shows that the equilibrium Alfvén speed profile changes
substantially across the magnetic region and reaches maxima
at (x, y, z) = (±a,0,0), i.e. the location of the dipoles. Figure
2b shows a colour contour ofvA(x,0, z) = |B0(x,0, z)| along
in the xz−plane aty = 0. As in Figure 1a, the red lines in-
dicate the separatrices in this plane. The contour is colour
coded: white represents values 0≤ vA ≤ 0.3; green repre-
sents 0.3 ≤ vA ≤ 0.5724 (where max[Bx(0, r)] = 0.5724 at
r = 1); yellow represents 0.5725≤ vA ≤ 2; orange represents
2 ≤ vA ≤ 30; and black representsvA ≥ 30. Thus, we can see
that around the X-point, located atx = 0 andz =

√
2a =

√
0.5,

there is a small island of low Alfv́en speed, and that this is
zero at the X-point itself. Figure 2c shows a colour contour of
vA(0, y, z) along in theyz−plane atx = 0. Note that in this plane,
vA(0, y, z) = |B0(0, y, z)| = |Bx(0, y, z)| = |Bx(0, r)| as per equa-
tion (11). As in Figure 1c, the blue line indicates the X-line.
The contour is colour coded in the same way as for Figure 2b.
The Alfvén speed is identically zero along the X-line, denoted
by r2 = y2 + z2 = 2a2. Figure 2c can be further understood by
Figure 2d which shows a plot of|Bx(0, r)| = vA(0, y, z). Here,
the green, yellow and orange colours correspond to those of
Figure 2b and Figure 2c. However, note that here black repre-
sents|Bx(0, r)| ≤ 0.3.

3. WKB approximation

In this paper, we will be looking for WKB solutions (see e.g.
Bender & Orszag 1978) of the form:

v1 = Veiφ(x, y, z, t) (12)

whereV is a constant vector. In addition, we defineω = ∂φ/∂t
as the angular frequency andk = ∇φ = (p, q, r) as the wavevec-
tor. Note thatφ and its derivatives are considered to be the large
parameters in our system.
One of the difficulties associated with three-dimensional MHD
wave propagation is distinguishing between the three different
wave types, i.e. between the fast and slow magnetoacoustic
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waves and the Alfv́en wave. To aid us in our interpretation,
we now define a coordinate system (B0, k,B0 × k) wherek is
our wavevector as defined above. This coordinate system fully
describes all three directions in space whenB0 andk are not
parallel to each other, i.e.k , λB0, whereλ is some constant
of proportionality. In§3.1, we will consider the fast wave solu-
tion. The Alfvén wave solution is considered in Appendix A. In
§3.1, we will proceed assumingk , λB0. The scenario where
k = λB0 is looked at in Appendix B. In fact, the work described
in §3.1 is also valid fork = λB0 with the consequence that the
solution is degenerate, i.e. the waves recovered are identical
and so the fast wave (§3.1) cannot be distinguished from the
Alfv én wave whenk ∝ B0.
We now substitutev1 = Veiφ(x, y, z, t) into equation (8) and make
the WKB approximation such thatφ ≫ 1. Taking the scalar
product withB0, k andB0 × k gives three velocity components
which in matrix form are:




















ω2 0 0
(B0 · k) |k|2 ω2 − |B0|2 |k|2 0

0 0 ω2 − (B0 · k)2









































v1 · B0

v1 · k
v1 · B0 × k





















=





















0
0
0





















.

In order to avoid the trivial solution, the matrix of these three
coupled equations must have zero determinant. Thus, setting
the determinant equal to zero gives:

F (φ, ω, t,B0, k)

= ω2
(

ω2 − |B0|2 |k|2
) (

ω2 − (B0 · k)2
)

= 0 , (13)

whereF is a first-order, non-linear partial differential equation.
Equation (13) has two solutions, corresponding to two differ-
ent MHD wave types: the fast magnetoacoustic wave and the
Alfv én wave. Note that in general there are three wave solu-
tions, but the slow wave has vanished under theβ = 0 cold
plasma approximation. We also do not consider theω = 0 triv-
ial solution.
The case where the two roots of equation (13) are the same is
examined in Appendix B.

3.1. Fast wave solution

Let us consider the fast wave solution, and hence we assume
ω2
, (B0 · k)2. Thus, equation (13) simplifies to:

F (φ, ω, t,B0, k) = ω2 − |B0|2 |k|2

⇒ 1
2

[

ω2 −
(

B2
x + B2

y + B2
z

) (

p2 + q2 + r2
)]

= 0 , (14)

where we have introduced 1/2 to simplify the equations later
on. We can now use Charpit’s method (e.g. see Evans 1999)
to solve this first-order partial differential equation, where we
assume our variables depend upon some independent parame-
ter s in characteristic space. Charpit’s method replaces a first-
order partial differential equation with a set of characteristics
that are a system of first-order ordinary differential equations.

Here, Charpit’s equations take the form:

dφ
ds
=

(

ω
∂

∂ω
+ k · ∂

∂k

)

F , dt
ds
=
∂

∂ω
F , dx

ds
=
∂

∂k
F ,

dω
ds
= −

(

∂

∂t
+ ω
∂

∂φ

)

F , dk
ds
= −

(

∂

∂x
+ k
∂

∂φ

)

F ,

where as previously definedk = (p, q, r) = ∇φ andx = (x, y, z).
These ordinary differential equations are subject to the initial
conditionsφ = φ0(s = 0), x = x0(s = 0), y = y0(s = 0),
z = z0(s = 0), t = t0(s = 0), p = p0(s = 0), q = q0(s = 0),
r = r0(s = 0) andω = ω0(s = 0) and are solved numerically
using a fourth-order Runge-Kutta method.
Note that there are no boundary conditions in the traditional
sense: the variables are solved using Charpit’s method (essen-
tially a variation on the method of characteristics) and there-
sulting characteristics are only dependent upon initial position
(x0, y0, z0, t0) and the distance travelled along the characteristic,
s. Thus, only initial conditions are required and no boundary
conditions are imposed. The fact that WKB solutions are inde-
pendent of boundary conditions is actually an advantage over
traditional numerical simulations where the choice of boundary
conditions can play a significant role. In this paper, we have
chosen to illustrate our results in the domain−1 ≤ x ≤ 1,
−1 ≤ y ≤ 1, 0≤ z ≤ 2, and this choice is arbitrary.
For the fast wave solution and equation (14), Charpit’s equa-
tions are:

dφ
ds
= 0 ,

dt
ds
= ω ,

dω
ds
= 0 ,

dx
ds
= −p |B0|2 ,

dy
ds
= −q |B0|2 ,

dz
ds
= −r |B0|2 ,

dp
ds
=

(

Bx
∂Bx

∂x
+ By
∂By

∂x
+ Bz

∂Bz

∂x

)

|k|2 ,

dq
ds
=

(

Bx
∂Bx

∂y
+ By

∂By

∂y
+ Bz

∂Bz

∂y

)

|k|2 ,

dr
ds
=

(

Bx
∂Bx

∂z
+ By

∂By

∂z
+ Bz

∂Bz

∂z

)

|k|2 , (15)

where Bx, By and Bz are the components of our equilibrium
field, |B0|2 = B2

x + B2
y + B2

z , ω is the angular frequency of our

wave,s is the parameter along the characteristic,p = ∂φ
∂x , q =

∂φ

∂y , r = ∂φ
∂z and|k|2 = p2 + q2 + r2. We note thatφ = constant=

φ0 andω = constant= ω0, i.e. constant angular frequency. In
addition, t = ωs + t0 where we arbitrarily sett0 = 0, which
corresponds to the leading edge of the wave starting att = 0
when s = 0. The other six ordinary differential equations are
solved numerically using a fourth-order Runge-Kutta method.

3.2. Planar fast wave launched from z0 = 0.2

We now solve equations (15) subject to the initial conditions:

φ0 = 0 , ω0 = 2π , −1 ≤ x0 ≤ 1 , −1 ≤ y0 ≤ 1 ,

z0 = 0.2 , p0 = 0 , q0 = 0 , r0 = −ω0/|B0 (x0, y0, z0)| , (16)

where we have chosen arbitrarilyω0 = 2π andφ0 = 0. These
initial conditions correspond to a planar fast wave starting at
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Fig. 3. Particle paths for starting points of−1 ≤ x0 ≤ 0 set at intervals
of 0.01. The coloured lines represents the particle paths for starting
points ofx0 = −0.3 (blue) andx0 = −0.298 (red) respectively.

Fig. 5. Particle paths for starting points ofx0 = 0, −1 ≤ y0 ≤ 0
and z0 = 0.2. The X-line is indicated in blue. The lines for−1 ≤
y0 < −0.6782 have been coloured green to distinguish them from the
lines−0.6782 < y0 ≤ 0 which are black. The orange and red lines
represents the particle paths for a starting point ofy0 = −0.85 and
x0 = −0.848, respectively.

z = z0 and propagating in the direction of increasingz. From a
modelling viewpoint, this choice of initial condition is intended
to mimic a disturbance initiated at the ‘photosphere’ ofz = z0.

Note that our choice of a magnetic dipole configuration for the
equilibrium magnetic field has two singularities in the fieldat
(x, y, z) = (±a,0,0) and hencevA → ∞ at these points. Thus,
if we were to start our planar wave atz = 0 in the xy−plane,
it would encounter this extreme speed differential. Thus, we
generate our waves not atz = 0 but atz = z0, wherez0 is small.
This choice still starts the waves in a region of strongly varying
Alfv én speed, and so this choice results in very little loss of
insight into the system. In this paper, we choosez0 = 0.2.

4. Results

4.1. Wave behaviour in the xz−plane along y = 0

We now look at the behaviour and evolution of the fast wave
solution in the neighbourhood of our two dipoles. The WKB
solution permits us two approaches to investigating the wave
behaviour: we can visualise the particle paths or ray paths of
individual wave elements generated at specific start points(this
can be seen in Figure 3) or we can plot surfaces of constantφ at
various times which can be thought of as defining the location
of the wavefront (this can be seen in Figure 4).

Figure 3 plots the particle paths of individual elements from the
initially planar wave. To best illustrate the behaviour, weplot
the particle paths for starting points of−1 ≤ x0 ≤ 0 set at in-
tervals of 0.01. The system is symmetric and so the behaviour
for 0 ≤ x0 ≤ 1 can also be understood under the transformation
−x → x. We see that the lines forx0 ≤ −0.5 do not appear
to be influenced greatly by the X-point and simply propagate
in the direction of increasingz at varying angles. However, the
particle paths for starting points of−0.5 ≤ x0 < −0.3 are influ-
enced heavily by the X-point, but only in so much as to deflect
the ray path. The blue line represents the particle path for a
starting point ofx0 = −0.3 and again, though the ray path is
influenced significantly by the topology, namely refracted to-
wards the X-point, i.e. a region of lower Alfvén speed, and then
refracted away from the dipole loci close tox = 0.5, i.e. a re-
gion of high Alfvén speed, this individual element still even-
tually escapes the magnetic field configuration. We call this
starting pointxcritical = −0.3. For starting points greater than
xcritical = −0.3, the particle paths spiral towards the X-point
and are ultimately trapped there. The red line represents the
particle path for a starting point ofx0 = −0.298 and clearly
shows this spiralling effect, i.e. the particle is refracted into
the region of low Alfv́en speed around the X-point and wraps
around it. Thus, there are two types of behaviour: either the
ray paths are trapped by the X-point or ultimately escape, and
there is a critical starting point that divides these two types of
behaviour. For the system studied here, and due to symmetry,
this is x0 = xcritical = ±0.3.

Let us now consider the propagation of a wavefront as opposed
to the particle paths of individual elements. Figure 4 showssev-
eral plots of constantφ at various times, which can be thought
of as defining the position of the wavefront. Sincet = ωs, each
time also corresponds to a different value of the parameters,
which quantifies the distance travelled along the characteris-
tic curve. Each individual element is thus fully described by
its initial starting position (x0, y0, z0), wherez0 is fixed, and its
evolution according tos. In Figure 4, we have plotted each indi-
vidual element as a cross to better illustrate the wave stretching
and splitting effects that occur. The evolution of the wavefront
is shown for 0≤ t ≤ 3. Displayed times have been chosen to
best illustrate the evolution, e.g. more subfigures are presented
to detail the splitting between 1≤ t ≤ 1.1 and so the time
between frames is not uniform. We present the results for a
wavefront generated on−1 ≤ x0 ≤ 0 so as to best illustrate the
subsequent behaviour.
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Fig. 4. Solution of constant values ofφ for WKB approximation of a fast wave generated on lower boundary for −1 ≤ x0 ≤ 0, y0 = 0, z0 = 0.2
and its resultant propagation in thexz−plane at various times. Displayed times have been chosen to best illustrate evolution so time between
frames is not necessarily uniform. The wavefront consists of crosses from the WKB wave solution, to better illustrate the evolution. The red
separatrices in thexz−plane are also shown to provide context.

We find that the fast wave wavefront starting between−1 ≤
x0 ≤ 0 propagates upwards (in the direction of increasingz)
from the lower boundaryz0, but not all parts rise at the same
speed. The central part of the wave rises much faster, with the
maximum occurring overx = −0.5. This is due to the high
Alfv én speed localised in that area as seen in Figure 2b. This
inhomogeneous Alfv́en speed profile deforms the wave from
its original planar form, since each individual part of the wave-
front propagates with its own local (Alfvén) speed. Part of the
wave pulse also approaches the X-point, i.e. the part of wave
betweenxcritical < x ≤ 0, and this part gets caught around
the X-point. The subsequent evolution now takes two differ-
ent forms: with part of the wave being trapped by the X-point

and part being deformed by the varying Alfvén speed but, ulti-
mately, escaping and propagating in the direction of increasing
z. Thus, there is a critical starting point that divides thesetwo
types of behaviour,xcritical, in agreement with Figure 3.

Let us first consider the part of the wave captured by the X-
point, i.e. the part of wave generated betweenxcritical < x ≤ 0
at y = 0 andz = z0. This part of the wave propagates upwards
and begins to wrap around the X-point, due to the variation in
Alfv én speed as seen in Figure 2b. Ultimately, the wave wraps
itself around the X-point. As seen in Figure 2d, the Alfvén
speed is zero at the X-point and so the fast wave cannot cross
this point. Consequently the X-point acts as a focus for the re-
fraction effect.
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Fig. 6. Solution of constant values ofφ for WKB approximation of a fast wave generated on lower boundary for x0 = 0,−1 ≤ y0 ≤ 0, z0 = 0.2
and its resultant propagation in theyz−plane at various times. Displayed times have been chosen to best illustrate evolution so time between
frames is not necessarily uniform. The wavefront consists of crosses from the WKB wave solution, to better illustrate the evolution. The blue
line indicates the location of the X-line.

Let us now consider the part of the wave that escapes an ul-
timate fate of ending up at the X-point, i.e. the wave gener-
ated between−1 ≤ x ≤ xcritical at y = 0 andz = z0. This
part of the wave continues to propagate upwards and spread
out. This part of the wave propagates at a slower speed than at
earlier times, again due to the change in the strength of the lo-
cal Alfvén speed. Once above the magnetic skeleton, the wave
continues to rise and spread out: the wave is no longer influ-
enced by the X-point and it has escaped the refraction effect.
Ultimately this part of the wave leaves the presented domain
completely.

However, since part of the wave is wrapping around the X-
point and a second part is rising away, the wavefront is being
pulled in two different directions. This can be seen in Figure
4 at times 1≤ t ≤ 1.1. Turning our attention to the behaviour
to the right of the X-point, we see that the wave continues to
spread out: part of it propagates towards the top right corner
and part of it is hooked around the X-point. We see the wave is

stretched between these two destinations. Part of the wave then
ultimately wraps around the X-point and the other part propa-
gates away from the dipole region. This gives the appearance
of the wave splitting, however this is only due to our (discre-
tised) plotting of the wavefront as individual crosses. Whathas
actually occurred is extreme stretching of the wavefront. The
extreme stretching occurs when the wave enters the right-hand
region of high Alfv́en speed, i.e. largevA aroundx = 0.5.

When this extreme stretching occurs, the length scales across
(perpendicular) to the stretching will rapidly decrease and so
the local gradients will increase. Hence, if even a small amount
of resistivity was included in our system, ohmic heating will
act to extract the energy from this location. This would leadto
a genuine splitting of the wavefront.

Thus, a fast wave generated between−1 ≤ x ≤ 0 alongy = 0
andz = z0 propagates into the magnetic region unevenly due to
the inhomogeneity in Alfv́en speed profile. Part of the wave ex-
periences a refraction effect, of various magnitudes, due to the
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(a) (b)

Fig. 7.Particle paths for individual elements generated along (a) −1 ≤ x0 ≤ 1, y0 = 0, z0 = 0.2 and (b) alongx0 = 0,−1 ≤ y0 ≤ 1, z0 = 0.2. The
blue line indicates the location of the X-line.

non-uniform local Alfv́en speed, but ultimately spreads out and
propagates away from the dipolar regions. However, part of the
wave is caught by the X-point, refracted into it and accumulates
eventually at the X-point. Thus, there is a critical starting point
that divides these two types of behaviour and investigationof
the particle paths shows that for the system studied here this
occurs atx0 = xcritical = ±0.3.

We can also use the WKB approximation to plot a solution for
a wave generated at−1 ≤ x0 ≤ 1, y0 = 0, z0 = 0.2. This can be
seen in Figure C.1 in Appendix C. As before, each wavefront
consists of many tiny crosses. Of course, the system is symmet-
ric acrossx = 0 and so the explanation of the behaviour is the
same as that above.

4.2. Wave behaviour in the yz−plane along x = 0

We now look at the behaviour of the fast wave solution in the
x = 0,yz−plane, i.e. the plane that contains our X-line. This can
be seen in Figure 5 which depicts the particle paths for starting
points of−1 ≤ y0 ≤ 0 set at intervals of 0.01. Here,x0 = 0
andz0 = 0.2. The system is symmetric and so the behaviour
for 0 ≤ y0 ≤ 1 can also be understood under the transformation
−y→ y.

For a wave generated atz0 = 0.2, the straight line seg-

ment under the X-line is bounded byy = ±
√

2a2 − z2
0 =

±
√

0.5− 0.22 = ±0.6782. The rays from−1 ≤ y0 < −0.6782
have been coloured green to distinguish them from the lines
−0.6782< y0 ≤ 0 which are coloured black. We see that for
−0.6782 < y0 ≤ 0 the (black) generated ray paths propagate
upwards from the lower boundaryz0 and all terminate at the
X-line. Here, the individual elements of the wave cannot cross
the X-line due to the zero Alfv́en speed along those locations
and thus this is where the wave accumulates. This propagation
can be understood by looking at the Alfvén speed profile in
Figure 2d, which shows that the magnitude of the wave speed
decreases as an individual element approaches the X-line, and
is equal to zero atr =

√
0.5 = 0.707. This result, i.e. that fast

waves accumulate along X-lines, is a new phenomenon which
has not been reported in previous papers.

For −1 ≤ y0 < −0.6782, the (green) ray paths are deflected
by the varying Alfv́en speed profile and we observe two types
of behaviour. In Figure 5, the orange and red lines represents
the particle paths from a starting point ofy0 = −0.85 and
y0 = −0.848, respectively. Fory0 ≤ −0.85, we see that the
ray paths are influenced heavily by the inhomogeneous Alfvén
speed profile but ultimately escape the system. However, for
y0 > −0.85 the ray paths refract towards the X-line and termi-
nate there. Thus, as in§4.1, there is a critical starting point that
divides these two types of behaviour. For the system studied
here, and due to symmetry, this isy0 = ycritical = ±0.85.

Figure 6 shows plots of constantφ at various times. The evolu-
tion of the wavefront is shown for 0≤ t ≤ 3. Displayed times
have been chosen to best illustrate the evolution, e.g. moresub-
figures are presented to detail the splitting between 2≤ t ≤ 2.5
and so the time between frames is not uniform. We present the
results for a wavefront generated on−1 ≤ y0 ≤ 0 so as to best
illustrate the subsequent behaviour.

We find that the fast wave solution starting between−0.6782<
y0 ≤ 0.0, i.e. under the X-line, propagates upwards from the
lower boundaryz0 and accumulates along the X-line. Note that
elements generated at the X-line itself, i.e.x0 = 0, y0 = 0.6782,
z0 = 0.2, have zero local Alfv́en speed and so remain stationary.

For the fast wave solution starting between−1 ≤ y0 < −0.6782,
we find that elements of the wavefront generated on−0.85 <
y0 < −0.6782 are refracted into the X-line, whereas ele-
ments generated−1 ≤ y0 ≤ −0.85 ultimately escape the X-
line, although their propagation is modified by the inhomoge-
neous Alfv́en speed profile. From Figure 5, this corresponds to
ycritical = −0.85.

We can also use the WKB approximation to plot a solution for
a wave generated atx0 = 0,−1 ≤ y0 ≤ 1 andz0 = 0.2. This can
be seen in Figure C.2 in Appendix C. As before, each wavefront
consists of many tiny crosses. Of course, the system is symmet-
ric acrossy = 0 and so the explanation of the behaviour is the
same as that above.
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(c) (d)

(a) (b)

Fig. 8. Particle paths for individual elements that start along (a) y0 = −x0. (b) y0 = x0. (c) y0 = x0 looking down on thexy−plane, i.e. there is a
line-of-sight effect along thez−direction and X-line is viewed from above. (d) y0 = x0 looking down on thexz−plane, i.e. there is a line-of-sight
effect along they−direction and X-line is viewed end-on. Blue line denotes the X-line. Ray pathsfor |x0| < 0.252 are coloured red and are
trapped by the X-line.

4.3. Three-dimensional particle paths launched from
z0 = 0.2

We can also use our WKB solution to plot the three-
dimensional particle paths of individual fluid elements gen-
erated at (x0, y0, z0 = 0.2). In Figure 7a, we see the particle
paths for individual elements that begin at starting pointsof
−1 ≤ x0 ≤ 1 set at intervals of 0.01 alongy0 = 0 andz0 = 0.2.
Thus, this is a comparison figure for Figure 3 and Figure C.1.
Figure 7b depicts the particle paths for individual elements that
begin at starting points of−1 ≤ y0 ≤ 1 set at intervals of 0.01
alongx0 = 0 andz0 = 0.2, i.e. a comparison figure for Figure 5
and Figure C.2. In both, the blue line indicates the locationof
the X-line. The results above have shown that it is the X-line
that plays a key role, rather than the separatrices. Hence, we do
not plot the separatrices in our 3D figures.

Figure 8a and Figure 8b show the particle paths for individual
elements that start along the liney0 = −x0 and y0 = x0 re-
spectively. We see that, as detailed in§4.1 and§4.2, there are
two types of ray behaviour: rays can be trapped by the X-line
and ultimately terminate there, or can eventually escape the X-
line, where the closer a ray gets to the X-line the stronger its
deflection/modification by the local Alfv́en speed profile.

Along the liney0 = ±x0, elements that are generated for|x0| <
0.252 are coloured red and we see that these are all trapped by

the X-line. Elements generated on|x0| ≥ 0.252 are coloured
black and ultimately escape the X-line. Figure 8c and Figure
8d show the same particle paths and colouring as Figure 8b,
i.e. for individual elements that start along the liney0 = x0, but
with a rotated perspective. Figure 8c shows the same particle
paths looking down on thexy−plane, i.e. there is a line-of-sight
effect along thez−direction and one is looking upon the X-line
from above. Figure 8d shows the same particle paths looking
across thexz−plane, i.e. there is a line-of-sight effect along the
y−direction and one is looking at the X-line end-on. We see
that it is the proximity to the X-line that entirely dictatesthe
behaviour, in this case the critical value being|x0| = 0.252.

Finally, we can consider the propagation of an entire wavefront,
as opposed to individual ray paths. Figure 9 shows surfaces of
constantφ at three particular times, showing the behaviour of
the initially-planar wavefront that is generated on−1 ≤ x0 ≤ 1,
−1 ≤ y0 ≤ 1, z0 = 0.2. We have coloured−1 ≤ x0 ≤ 0 red
and 0≤ x0 ≤ 1 black to aid the reader in tracking the wave be-
haviour. Figure 9a, 9b and 9c show the wavefront at timest = 0,
t = 0.1 andt = 0.3 respectively. We see that the initially-planar
wavefront propagates away fromz0 = 0.2 in the direction of
increasingz. The wavefront is distorted due to the inhomoge-
neous Alfv́en speed profile. From the results detailed above,
we know that the behaviour aftert = 0.3 involves wrapping
around the X-line and so the surfaces of constantφ become
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(a)

(c)

(b)

(d)

Fig. 9.Surfaces of constantφ at times (a) t = 0, (b) t = 0.1 and (c) t = 0.3 for initially-planar wavefront generated on−1 ≤ x0 ≤ 1,−1 ≤ y0 ≤ 1,
z0 = 0.2.−1 ≤ x0 ≤ 0 is coloured red and 0≤ x0 ≤ 1 black to aid the reader in tracking the evolution. (d) Same as (c) but only for 0≤ x0 ≤ 1,
−1 ≤ y0 ≤ 1, z0 = 0.2 in order to highlight the behaviour alongx = 0.

significantly distorted, i.e. wrapping back on themselves,and
thus there is little extra information to be gained from looking
at such figures fort > 0.3. Hence, we only present the surfaces
of constantφ at these early times.
Figure 9d shows the same surface as Figure 9c att = 0.3 but
only for the wavefront generated on 0≤ x0 ≤ 1, −1 ≤ y0 ≤ 1,
z0 = 0.2 (black). This removes the red surface and allows us to
see and highlight the behaviour alongx = 0. As expected, the
wavefront cannot cross the X-line and so it trapped there: one
can clearly see the outline of the X-line alongx = 0 in Figure
9d.

5. Conclusion

This paper describes an investigation into the behaviour offast
magnetoacoustic waves in the neighbourhood of two magnetic
dipoles, under the assumptions of ideal and cold plasma. We
have demonstrated how the WKB approximation can be used to
help solve the linearised MHD equations and we have utilised
Charpit’s method and a Runge-Kutta numerical scheme during
our investigation.
For the fast magnetoacoustic wave, we find that the wave speed
is entirely dictated by the local equilibrium Alfvén speed pro-
file. For individual elements generated on a lower plane, where
here a wavefront was generated on thexy−plane atz0 = 0.2, we
find that all parts of the wave experience a refraction effect, i.e.

a deviation towards regions of lower Alfvén speed, and that the
magnitude of the refraction is different depending upon where
a fluid element is in the magnetic field configuration. We find
that there are two main types of wave behaviour:

– Individual fluid elements can be trapped by the X-line, spi-
ralling into the X-line due to the refraction effect. These in-
dividual elements terminate at the X-line. The wave speed
decreases as an element approaches the X-line and the
speed is identically zero at the X-line. Hence, it cannot be
crossed.

– Individual fluid elements can escape the system, where el-
ements closer to the X-line have their ray paths modified to
a greater extent that those farther away.

Thus, there is a critical starting point that divides these two
types of behaviour. We find that in thexz−plane alongy = 0,
this critical starting point isx0 = xcritical = ±0.3, and in the
the yz−plane alongx = 0, this critical starting point isy0 =

ycritical = ±0.85. For starting positions along the linesy0 = ±x0,
it was found that the critical starting point was|x0| = 0.252.
We can also estimate the amount of wave energy trapped by the
X-line. For the system studied here, the fraction captured by the
X-line will depend upon the critical starting point that divides
the particle paths into those that spiral into the X-line andthose
that escape, as well as the overall length of the domain. In this
paper we have set−L ≤ x ≤ L, −L ≤ y ≤ L and z = z0 =
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0.2L, whereL is the length of our lower boundary andL = 1
under our non-dimensionalisation. Thus along the linex = 0,
ycritical = ±0.85 and so 85% of the wave energy is trapped by
the X-line, whereas alongy = 0, xcritical = ±0.3 and so 30%
is trapped. Thus, more wave energy is trapped from the wave
along the X-line than across it. Similarly, it was found thatthe
critical starting point along the linesy0 = ±x0 was|x0| = 0.252,
which corresponds to 17.8% of the wave energy being trapped
along a diagonal line of length

√
2L, or 25.2% being trapped

along a radial line ofL = 1. Further investigation shows that
there is a criticalarea surrounding the X-line, within which all
wave elements and thus wave energy is trapped. This critical
area corresponds to 0.618L2 across−L ≤ x ≤ L, −L ≤ y ≤ L
andz = z0 = 0.2L, which corresponds to 15.5% of the wave
energy generated across an area 4L2 being trapped by the X-
line. This critical area is fixed for the magnetic topology and so
the percentage trapped decreases as one increases the area of
the initial wave considered.
We have also limited our investigation to understanding thefast
wave, but we could have also investigated the second root of
equation (13), i.e. the equations governing the Alfvén wave be-
haviour. To do so, we would assumeω2

, |B0|2|k|2 and investi-
gate the resultant equations. We have included such a derivation
in Appendix A although a full investigation is outside the scope
of this current paper.
The 3D WKB technique described in this paper can also be
applied to other magnetic configurations and we hope that this
paper has illustrated the potential of exploiting the technique.
In addition, it is possible to extend the work by dropping the
cold plasma assumption. This will lead to a third root of equa-
tion (13) which will correspond to the behaviour of the slow
magnetoacoustic wave. When the cold plasma assumption is
dropped the fast wave speed will no longer be zero along the
X-line, and thus the wave may pass through it. McLaughlin
& Hood (2006b) investigated the behaviour of magnetoacous-
tic waves in a finite-β plasma in the neighbourhood of a two-
dimensional X-point. It was found that the fast wave could now
pass through the X-point due to the non-zero sound speed and
that a fraction of the incident fast wave was converted to a slow
wave as the wave crossed theβ = 1 layer.
There are some caveats concerning the method presented here,
i.e. if modellers wish to compare their work with a WKB ap-
proximation, it is essential to know the limitations of sucha
method. Firstly, in linear 3D MHD, we would expect a cou-
pling between the fast wave and the other wave types due to the
geometry. However, under the WKB approximation presented
here, the wave sees the field as locally uniform and so there is
no coupling between the wave types. To include the coupling,
one needs to include the next terms in the approximation, i.e.
the work presented here only deals with the first-order terms
of the WKB approximation. Secondly, note that the work here
is valid strictly for high-frequency waves, since we tookφ and
henceω = ∂φ/∂t to be a large parameter in the system. The
extension to low frequency waves is considered in Weinberg
1962.
In this paper we have found that the X-line acts as a focus for
the refraction effect and that this refraction effect is a key fea-
ture of fast wave propagation. Since the Alfvén speed drops to

identically zero at the X-line, mathematically the wave never
reaches there, but physically the length scales (i.e. the distance
between, say, the leading edge and trailing edge of a wave pulse
and/or wave train) will rapidly decrease, indicating that all gra-
dients, including current density, will increase at this location.
In other words,the fast wave, and thus all the fast wave energy,
accumulates along the X-line. If even a small amount of resis-
tivity was included in our system, ohmic heating will extract
the energy from this location. Thus, we deduce that X-lines
will be specific locations of fast wave energy deposition and
preferential heating. This highlights the importance of under-
standing the magnetic topology of a system and it is at these
areas where preferential heating will occur. This paper specif-
ically concerns itself with preferential heating at the X-line.
However, it is important to note that these are not the only topo-
logical locations at which heat deposition is expected.
Finally, we note that an X-line is a degenerate structure and
its existence requires a special symmetry of the field, and any
arbitrarily small perturbation to this symmetric configuration
will lead to a magnetic topology without a true X-line. The re-
sulting new topology may exhibit a non-zero component ofB
all along the original X-line, which may manifest as a quasi-
separatrix layer, or as one or multiple null points. Should the
symmetry be broken and the topology changed, we expect that
(i) should a quasi-separatrix layer manifest, then we wouldstill
get the extreme stretching described in this paper, since the
quasi-separatrix layer would be a location of rapidly chang-
ing magnetic field connectivity, and hence all gradients, includ-
ing current density, may increase at these locations. (ii) Should
null points appear, then we would expect to recover the results
of McLaughlin et al. (2008), who studied wave propagation
around 3D null points.
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Appendix A: Equations governing the Alfv én wave

Let us consider the second root to equation (13) which cor-
responds to the Alfv́en wave solution, and hence we assume
ω2
, |B0|2 |k|2. This simplifies equation (13) to:

F (φ, x, y, z, p, q, r) = ω2 − (B0 · k)2

⇒ 1
2

[

ω2 −
(

Bx p + Byq + Bzr
)2
]

= 0 , (A.1)

where we have introduced 1/2 to simplify the equations later
on.
As in §3.1, we can solve this partial differential equation us-
ing Charpit’s method to reduce the system to seven ordinary
differential equations, which can then be solved using, e.g., a
Runge-Kutta numerical method. For the Alfvén wave solution,
Charpit’s equations relevant to equation (A.1) are:

dφ
ds
= 0 ,

dt
ds
= ω ,

dω
ds
= 0 ,

dx
ds
= −Bx

(

Bx p + Byq + Bzr
)

,

dy
ds
= −By

(

Bx p + Byq + Bzr
)

,

dz
ds
= −Bz

(

Bx p + Byq + Bzr
)

,

dp
ds
=

(

p
∂Bx

∂x
+ q
∂By

∂x
+ r
∂Bz

∂x

)

(

Bx p + Byq + Bzr
)

,
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dq
ds
=

(

p
∂Bx

∂y
+ q
∂By

∂y
+ r
∂Bz

∂y

)

(

Bx p + Byq + Bzr
)

,

dr
ds
=

(

p
∂Bx

∂z
+ q
∂By

∂z
+ r
∂Bz

∂z

)

(

Bx p + Byq + Bzr
)

, (A.2)

wherep = ∂φ

∂x , q = ∂φ

∂y , r = ∂φ

∂z , Bx, By andBz are the compo-
nents of our equilibrium field,ω is the angular frequency of our
wave ands is the parameter along the characteristic. We note
thatφ = constant= φ0 andω = constant= ω0, i.e. constant
angular frequency. Thus,t = ωs + t0 and so one can arbitrarily
sett0 = 0, which corresponds to the leading edge of the wave
starting att = 0 whens = 0.
To generate a planar Alfvén wave launched fromz0 = 0.2, one
would then solve equations (A.2) subject to the following initial
conditions:

φ0 = 0 , ω0 = 2π , −1 ≤ x0 ≤ 1 , −1 ≤ y0 ≤ 1 , z = z0 ,

p0 = 0 , q0 = 0 , r0 = ω0/|Bz (x0, y0, z0)| ,

where we have (arbitrarily) chosenω0 = 2π andφ0 = 0. This
corresponds to a planar Alfvén wave initially atz = z0 and
propagating in the direction of increasingz.

Appendix B: k parallel to B0

In this appendix, we address the scenariok = λB0 in which the
vectors of our three-dimensional coordinate system (B0, k,B0×
k) are no longer linearly independent. To do this we consider
equation (13):

∂2

∂t2
v1 = {∇ × [∇ × (v1 × B0)]} × B0

µ0ρ0
,

where we have explicitly includedµ0 andρ0. Now assuming
k = λB0 and applying the WKB approximation from equation
12 gives:

ω2v1 = {k × [k × (v1 × B0)]} × B0

µ0ρ0

= (k · B0)2 v1

µ0ρ0
− (k · B0) (v1 · B0)

k
µ0ρ0

− (k · B0) (k · v1)
B0

µ0ρ0
+ (k · v1) |B0|2

k
µ0ρ0

= λ2 |B0|2

µ0ρ0
|B0|2 v1 − λ2 |B0|2

µ0ρ0
(v1 · B0) B0

− λ2 |B0|2

µ0ρ0
(B0 · v1) B0 + λ

2 (B0 · v1)
|B0|2

µ0ρ0
B0

= λ2v2
A |B0|2 v1 − λ2v2

A (v1 · B0) B0

wherev2
A = |B0|2/µ0ρ0. We have explicitly includedµ0 andρ0

to make the construction ofv2
A clear.

Thus, forv1 parallel toB0, i.e.v1 = αB0, we have:

ω2αB0 = λ
2v2

A |B0|2αB0 − λ2v2
Aα |B0|2 B0 ⇒ ω2 = 0 .

So the longitudinal oscillations (sincev1 ‖ B0 ‖ k) do not prop-
agate, i.e. this is the dispersion relation for slow waves under
theβ = 0 assumption.

Forv1 perpendicular toB0, i.e.v1 ·B0 = 0, which are transverse
oscillations, we have:

ω2v1 = λ
2v2

A |B0|2 v1 ⇒ ω2 = v2
A |k|2 .

This is the dispersion relation for a transverse and incompress-
ible Alfv én wave, i.e.k ‖ B0 ⊥ v1, i.e. it is the same as equation
(A.1) under the assumptionB0 ‖ k. However, it is also the dis-
persion relation for the fast magnetoacoustic wave propagating
in the direction of the magnetic field. Thus, we cannot distin-
guish between these two wave types in this specific scenario.
It is also worth noting that even though the coordinate system
we considered in§3 is not linearly independent whenB0 ‖ k,
the result from equation (13) still holds. Under the assumption
k = λB0, equation (13) simplifies to:

F (φ, x, y, z, p, q, r) =
(

ω − v2
A |k|2

)2
= 0 .

So we have a double root and the solution is degenerate, i.e. it
is impossible to distinguish the waves under these conditions,
i.e. this is the same as equation (A.1).

Appendix C: Fast wave behaviour in the y = 0,
xz−plane and x = 0, yz−plane

We can use the WKB approximation to plot a solution for a
wave generated at−1 ≤ x0 ≤ 1, y0 = 0, z0 = 0.2. This can
be seen in Figure C.1 which should be compared to Figure 4 in
§4.1. We can also use the WKB approximation to plot a solu-
tion for a wave generated atx0 = 0,−1 ≤ y0 ≤ 1 andz0 = 0.2.
This can be seen in Figure C.2 where this should be compared
to Figure 6 in§4.2.
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Fig. C.1.Solution of constant values ofφ for WKB approximation of a fast wave generated on lower boundary for −1 ≤ x0 ≤ 1, y0 = 0, z0 = 0.2
and its resultant propagation in thexz−plane at various times. Displayed times have been chosen to best illustrate evolution so time between
frames is not necessarily uniform. The wavefront consists of crosses from the WKB wave solution, to better illustrate the evolution. The red
separatrices in thexz−plane are also shown to provide context.
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Fig. C.2.Solution of constant values ofφ for WKB approximation of a fast wave generated on lower boundary for x0 = 0,−1 ≤ y0 ≤ 1, z0 = 0.2
and its resultant propagation in theyz−plane at various times. Displayed times have been chosen to best illustrate evolution so time between
frames is not necessarily uniform. The wavefront consists of crosses from the WKB wave solution, to better illustrate the evolution. The blue
line indicates the location of the X-line.


