High precision NH$_3$ sensing using network nano-sheet Co$_3$O$_4$
arrays based sensor at room temperature

Zhijie Li1, Zhijie Lin1, Ningning Wang1, Junqiang Wang1, Wei Liu1, Kai Sun2, Yong Qing Fu3*, Zhiguo Wang1*

1School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
2Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, USA
3Department of Physics and Electrical Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, England, United Kingdom

* Corresponding author. Tel.: +86 02883200728. E-mail address: zgwang@uestc.edu.cn (Zhiguo Wang); Richard.fu@northumbria.ac.uk (Richard Yong Qing Fu)
Abstract

Network nano-sheet arrays of Co$_3$O$_4$ for high precision NH$_3$ sensing application were prepared on alumina tube using a facile hydrothermal process without template or surfactant, and their morphology, nanostructures and NH$_3$ gas sensing performance were investigated. The prepared nano-sheet Co$_3$O$_4$ arrays showed a network structure with an average sheet thickness of 39.5 nm. Detailed structural analysis confirmed that the synthesized Co$_3$O$_4$ nano-sheets were consisted of nanoparticles with an average diameter of 20.0 nm. NH$_3$ gas sensor based on these network Co$_3$O$_4$ nano-sheet arrays showed a low detection limit (0.2 ppm), rapid response/recovery time (9 s/134 s for 0.2 ppm NH$_3$), good reproducibility and long-term stability for NH$_3$ detection at room temperature.

Keywords: Co$_3$O$_4$; Nano-sheet array; Hydrothermal; NH$_3$ gas; Gas sensor
1. Introduction

Recently there is a huge demand for monitoring and controlling air pollutants, in which ammonia (NH$_3$) is one of the most common ones causing severe environmental problems. The search for new and more effective solid state chemical sensors for monitoring low level concentrations of ammonia in air is of great interest in many fields, including automotive, industrial process monitoring, medical diagnostics and air quality control. One of the mostly used sensing mechanisms for the NH$_3$ is based on resistive sensors using various metal oxide semiconductors [1,2], such as ZnO [3-4], WO$_3$[5], In$_2$O$_3$ [6-7], ZrO$_2$[8], V$_2$O$_5$[9], carbon nanotubes [10-11], Fe$_2$O$_3$[12] and Co$_3$O$_4$ [13]. Among these, cobalt oxide, Co$_3$O$_4$, has received much research attention due to its high resistance to corrosion, abundant raw material and non-toxicity. It is a promising material for applications in Li-ion batteries [14-16], catalysts [17,18], and gas sensors [13,19-25]. In particular, the oxidative catalytic activity of the Co$_3$O$_4$ is superior [17], thus it can be directly used to design or enhance the gas response, selectivity, and sensing kinetics [13,19-25]. However, most reports on the Co$_3$O$_4$ sensors [13,19-21,24,25] were focused on high temperature sensing applications (i.e., up to 300 °C). Up to now, the NH$_3$ sensor based on the Co$_3$O$_4$ operated at room temperature has not been reported.

As we know, the dimensionality, size and morphology of the oxide nanostructures have significant influences to their physical and chemical properties. Development of novel nanostructured transitional metal oxides with controlled shapes and morphologies has stimulated considerable research interest due to their novel physical
and chemical properties and potential wide-range applications [26-28]. So far, various morphological nanostructures of Co₃O₄ have been explored, including nanoparticles [19], nanofiber [20], nanowires [17,29-31], nanotube [15,16], nanobelt [32], nanorods [13,23,24], and nano-sheets [18,33,34] using various methods including thermal oxidation, hydrothermal synthesis, electrospinning and inverse microemulsion. Co₃O₄ nano-sheets grown directly on substrates should have excellent sensing performance because the interconnected nano-sheets will form a network porous nanoscale system which facilitates a fast and effective gas adsorption onto the entire sensing surface, thus significantly improving sensitivity and reducing the response time. However, development of low cost, large scale, highly sensitive and extremely selective gas sensors based on the Co₃O₄ nano-sheets grown directly on substrates still face many technical and economical challenges.

In this paper, a high precision NH₃ gas sensor operated at room temperature based on the Co₃O₄ nano-sheets grown directly on an alumina tube was reported using a facile hydrothermal method without any template or surfactant. The sensing characteristics including sensitivity, selectivity, stability, response time and recovery time as well as the NH₃ sensing mechanism based on the Co₃O₄ nano-sheets were investigated.

2. Experimental procedures

2.1 Materials synthesis and characterization

In a typical synthesis process, Co(NO₃)₂·6H₂O of 8.109 g, urea of 0.450 g and NH₄F of 0.111 g were dissolved into the distilled water of 80 ml under continuous
stirring at room temperature to form a homogeneous solution. Subsequently the obtained solution was transferred into a Teflon-lined stainless steel autoclave of 150 ml, and an alumina tube was placed vertically at the bottom of the autoclave. The autoclave was kept at 130 °C for 9 hours, and subsequently was cooled down to room temperature naturally. The resultant black precipitates of Co(CO$_3$)$_{0.5}$(OH)$_{0.11}$H$_2$O was collected and washed with distilled water and absolute ethanol for three times, respectively. Then they were dried at 110 °C in air for two hours. Finally, the ceramic tube with the resultant black precipitate was annealed at 350 °C for two hours in air in order to obtain the black Co$_3$O$_4$.

Crystalline structures and phase composition of the Co$_3$O$_4$ nano-sheets were characterized using X-ray diffraction (XRD, Rigaku D/max-2500) with Cu Kα radiation at a wavelength of 1.5406 Å and operating voltage/current of 40 kV/30 mA. The morphologies of the obtained Co$_3$O$_4$ were observed using a scanning electron microscope (SEM, Inspect F50, USA) with an operation voltage of 5 kV. Transmission electron microscope (TEM, JEM-2200FS, Japan) was used to characterize crystallographic features of the sample. Surface porosity was characterized using a nitrogen physisorption apparatus (BELSORP-miniII, Japan) at 77.4 K. Before the measurements, the samples were degassed at 200 °C in a vacuum (with a based vacuum of 10$^{-6}$ Pa) for 6 hours. The specific surface area was calculated by Brunauer–Emmett–Teller (BET) method. The total pore volumes (V_{total}) were evaluated from the adsorbed amounts of nitrogen at a relative pressure P/P$_0$ of 0.99. The pore size distribution was attained by the non-local density functional theory.
(NLDFT) method. X-ray photoelectron spectroscopy (XPS, KratosAxis-Ultra DLD, Japan) was used with a monochromatic Al Kα radiation (1486.6 eV) in order to identify the chemical binding of the elements. UV–vis spectroscopy was recorded using a UV-2101 spectrophotometer (Shimadzu Corporation, Japan).

2.2 Gas sensor fabrication and measurements

The alumina tube coated with the Co₃O₄ nano-sheets was used to fabricate the sensors directly. A schematic diagram of the sensor design is shown in Fig. 1a. There are a pair of gold electrodes connected with Pt wires at each end of the ceramic tube. Between the two gold electrodes, it was the area coated with the Co₃O₄ nano-sheets film. A Ni-Cr heating wire was used as the heating supply source and was inserted inside the ceramic tube to control the operation temperature of the gas sensor.

Gas-sensing performance of the device was evaluated using a WS-30A gas sensor measurement system (Weisen Electronic Technology Co., Ltd., Zhengzhou, China). Fig.1b illustrates the measurement circuit of the gas sensor, where R_F is a load resistor connected in series with the gas sensor and R_S donates a resistor of the sensor. During testing, an appropriate working voltage (V_{working}=0.10 V in this study) was applied. The response of the gas sensor was monitored by the voltage changes of the R_F. The gas response (S) of the sensor was defined as follows: \(S = \frac{R_g}{R_a} \) for the NH₃ gas, where the R_g and R_a are the electrical resistance of the sensor measured in the NH₃ gas and dry air, respectively.
3. Results and discussion

3.1 Structural and morphological characteristics

Fig. 2 shows the XRD spectra of the synthesized products before and after calcination. Before calcination, as shown in Fig. 2a, all of the diffraction peaks can be indexed to orthorhombic Co(CO$_3$)$_{0.5}$(OH)$_0$.11H$_2$O (a = 8.792 Å, b = 10.150 Å and c = 4.433 Å; JCPDS No. 048-0083). The Co(CO$_3$)$_{0.5}$(OH)$_0$.11H$_2$O has a layered structure and consists of positively charged Co-OH layers and counter anions located between the Co-OH layers, which can be easily converted into the Co$_3$O$_4$ [35]. The crystalline structure of the product was changed after it was annealed at 350 °C for 2 hours in air. All the diffraction peaks as shown in Fig. 2b can be indexed to spinel Co$_3$O$_4$ (JCPDS No. 42-1467) with the calculated lattice parameters of 8.084 Å. No other peaks of impurities are observed, indicating that the cobalt carbonate hydroxide precursor was completely transformed into crystalline Co$_3$O$_4$ after the calcination. Furthermore, the crystal size of the Co$_3$O$_4$ was estimated to be 20.0 nm according to the standard Scherrer formula:

$$L = K\lambda/\cos\theta$$ \hspace{1cm} (1)

where λ is the wavelength of the X-ray radiation (0.15406 nm for CuKα); K is a constant taken as 0.89; β is the line width at half maximum height and θ is the diffracting angle.

Fig. 3 presents typical SEM and TEM images of the network nano-sheet Co$_3$O$_4$ arrays. It can be seen from Fig. 3a and (b) that the Co$_3$O$_4$ nano-sheets have an average thickness of 39.5 nm, grown uniformly on the alumina tube. The thickness of the
nano-sheet Co$_3$O$_4$ arrays on alumina tube is 5.2 μm. The nano-sheet structure looks like maple leaves with one layer structure. Most of the nano-sheets are grown perpendicularly to the substrate surface, forming a network-like structure with cavities between the adjacent sheets. Naturally, these nano-sheets present a large effective area, leading to a significant enhancement of the target gas activities. A fraction of the nano-sheet was analyzed using TEM analysis and the results are shown in Fig. 3c. The as-synthesized nano-sheets consist of nanoparticles with an average diameter of 20.0 nm, which is consistent with the calculation results from the XRD analysis. High resolution TEM (HRTEM) image (Fig. 3d) shows a well-defined crystalline structure with an average lattice spacing of 0.243 nm corresponding to the value of the (311) planes of the Co$_3$O$_4$ phase.

The pore distribution curve of the nano-sheet Co$_3$O$_4$ sample is shown in Fig. 4. It can be found that the nano-sheet Co$_3$O$_4$ nanostructures have a mesoporous structure, with an average pores diameter of 16.39 nm and the total pore volumes of 0.3526 cm3/g. The specific surface area obtained using the BET method for this sample is 61.69 m2·g$^{-1}$.

On the basis of these characterization results and previous literature related to cobalt hydroxide-carbonate nanoparticles [35], we proposed a possible formation mechanism of the Co(CO$_3$)$_{0.5}$(OH)-0.11H$_2$O precursors. At the beginning of the hydrothermal reactions, Co$^{2+}$ ions were coordinated with F$^-$ ions to form CoFxx complexes in the homogeneous solution. After the temperature of the reactant solution was increased to 130 °C, the hydrolysis process of the urea took place and a number
of CO_3^{2-} and OH^- anions were formed gradually, which could help to release Co^{2+} ions from the $\text{CoF}_x{(x-2)^{-}}$ complexes. As a result, the CO_3^{2-} reacted with OH^- and $\text{CoF}_x{(x-2)^{-}}$ to form cobalt–hydroxide–carbonate precursors [31]. All the involved chemical reactions are based on the following formulas:

$$\text{Co}^{2+} + x\text{F}^- \rightarrow \text{CoF}_x{(x-2)^{-}} \quad (2)$$

$$\text{H}_2\text{NCONH}_2 + \text{H}_2\text{O} \rightarrow 2\text{NH}_3 + \text{CO}_2 \quad (3)$$

$$\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{CO}_3^{2-} + 2\text{H}^+ \quad (4)$$

$$\text{NH}_3\cdot\text{H}_2\text{O} \rightarrow \text{NH}_4^+ + \text{OH}^- \quad (5)$$

$$\text{CoF}_x{(x-2)^{-}} + 0.5 \text{CO}_3^{2-} + \text{OH}^- + 0.11\text{H}_2\text{O} \rightarrow \text{Co(CO}_3)_{0.5}(\text{OH})\cdot0.11\text{H}_2\text{O} + x\text{F}^- \quad (6)$$

The heat treatment stage at 350 °C was mainly associated with the decomposition of the $\text{Co(CO}_3)_{0.5}(\text{OH})\cdot0.11\text{H}_2\text{O}$ precursors and thermal formation of the Co$_3$O$_4$, which can be explained using the following formula:

$$6\text{Co(CO}_3)_{0.5}(\text{OH})\cdot0.11\text{H}_2\text{O} + \text{O}_2 \rightarrow 2\text{Co}_3\text{O}_4 + 3.11 \text{H}_2\text{O} + 3\text{CO}_2 \quad (7)$$

Chemical states of the samples were analyzed using the XPS. Fig. 5 shows the XPS spectra of Co 2p and O 1s for the Co$_3$O$_4$. The binding energy data obtained from the XPS analysis are calibrated for specimen charging by referencing the C1s peak to 284.80 eV. As indicated in Fig. 5a, two major peaks are obtained which are centered at 780.18 and 795.93 eV, corresponding to the binding energies of the Co 2p$_{3/2}$ and Co 2p$_{1/2}$, respectively, with a spin orbit splitting of 15.0 eV, agreed with the previous reports [24,25, 36]. The asymmetric O 1s peak in the surface can be fitted with three nearly Gaussian components, centered at 530.09, 531.63 and 532.90 eV, respectively, as shown in Fig. 5b. The first peak at the low binding energy side of 530.09 eV is
attributed to the O$^{2-}$ ions in the Co$_3$O$_4$ which are surrounded by Co atoms. Whereas
the peaks located at the higher binding energy values of 531.63 eV and 532.90 eV can
be assigned to oxygen species in adsorbed Co-OH and H$_2$O molecules, respectively
[37].

Co$_3$O$_4$ is a p-type semiconductor and its optical band gap is strongly influenced by
the size, shape, and dimensions of its crystals. Fig. 6a shows the UV-vis absorbance
spectrum of the Co$_3$O$_4$ nano-sheets. There are three broad absorption bands centered
at 245 nm, 456 nm and 759 nm, respectively, which are consistent with the published
reports on the optical properties for the spinel type Co$_3$O$_4$ thin films [38]. The band
gap E_g can be calculated from the following equation:

$$(ahv)^n = A(hv - E_g)$$ \hspace{1cm} (8)$$

where $h\nu$ is the photon energy, α is the absorption coefficient, A is a constant
characteristic to the material, E_g is the band gap, and n equals either 1/2 for an indirect
transition, or 2 for a direct transition. The calculated $(ahv)^2$ versus $h\nu$ curve is shown
in Fig. 6b. The value of $h\nu$ extrapolated to α=0 gives the absorption band gap energy.
The curve in Fig. 6b can be linearly fitted into 2 lines with the intercepts at 2.46 eV
and 1.80 eV. As has been reported in the literature [39-40], the larger band gap of
2.46 eV should be associated with the O$^{2-}$→CoII charge transfer process (basic
optical band gap energy or valence to conduction band excitation), whereas the band
gap of 1.80 eV should be related to the O$^{2-}$→CoIII charge transfer (with CoIII located
below the conduction band). The best fitting of Eq. (8) to the absorption spectrum of
the product gives n=2, which suggests that the as-synthesized Co$_3$O$_4$ nanocrystals are
semiconducting with a direct transition at these energies.

3.2 Gas sensing properties

The gas sensing performance of the sensors based on Co$_3$O$_4$ nano-sheets was characterized. Fig. 7 plots typical current-voltage (I-V) curves between the two neighboring platinum electrodes bridged by the Co$_3$O$_4$ nano-sheets at room temperature. The currents are increased linearly with the applied bias voltage (from -9 V to 9 V), indicating that good ohmic contacts are established between the Co$_3$O$_4$ nano-sheets layer and electrodes.

The response and recovery behaviors of the gas sensor operated at room temperature were investigated using different concentrations of the NH$_3$ gas, and the results are shown in Fig. 8a. It can be seen that the response is increased with increasing NH$_3$ concentration. Even at a low NH$_3$ concentration of 0.2 ppm, the Co$_3$O$_4$ nano-sheet based sensor still shows a good response. The electrical resistance values of the sensor quickly decrease as soon as the NH$_3$ gas are injected into chamber and then quickly recover to its initial values once the test chamber is refreshed with dry air, indicating the good repeatability and reversibility of the NH$_3$ sensor. The operating temperature is one of important sensing properties of a gas sensor and a low operating temperature such as room temperature in this study is preferable for its practical applications.

The response sensitivity of the Co$_3$O$_4$ nano-sheets sensor to the NH$_3$ (0.2–100 ppm) was calculated and the results are shown in Fig. 8b. The response sensitivity of the sensor increases with the concentration of the NH$_3$, but the sensor still has a good
response to the concentration as low as 0.2 ppm. A linear plot between the increase of the sensitivity and NH₃ concentration is obtained with the dynamic detection range from 1 ppm to 100 ppm as shown in Fig. 8b, revealing that the sensor presents a good linearity characteristic to the detection of NH₃. The equation fitted for the response sensitivity (S) and NH₃ concentration (C_{NH₃}) was obtained based on the data in Fig. 8b:

\[S = 0.0819 C_{NH₃} + 1.09128 \] \hspace{1cm} (9)

Where S is the response sensitivity, C_{NH₃} is the NH₃ concentration (in ppm). The constant of 0.0819 (in ppm⁻¹) and 1.09128 are the slope and altitude intercept of the fitted line.

Fig. 9 shows the response time and recovery time of the Co₃O₄ nano-sheets based sensor as a function of NH₃ concentration. The time resolution is 1 s. Here, the response time and recovery time are defined as the time to reach 90% of the maximum sensing response upon injection of the NH₃ gas and the time to fall to 10% of the maximum sensing response upon air purging. As can be seen from Fig. 9, the response time and recovery time show variations upon exposure to different concentrations of the NH₃ gas. The response time and recovery time are obviously shorter at lower concentrations of the NH₃ (i.e., less than 1 ppm) than those at higher concentrations (i.e., more than 1 ppm). For the 0.2 ppm NH₃, the sensor shows fast response and recovery, and the response time and recovery time are only 9 s and 134 s, respectively.

Most reports on the NH₃ sensors [3,9,13] were focused on high temperature sensing
applications, whereas the NH\textsubscript{3} sensors applied to room temperature are quite limited. For example, Zeng et al reported that the response of their sensor based on Pd-sensitized ZnO nanostructures towards 50 ppm NH\textsubscript{3} is 3.4 at 100 °C with the response and recovery time of 20 and 60 s, respectively [3]. Although the sensor has also been tested at room temperature, its recovery time (>40 min) is quite long for the practical applications [3]. Bedi and Singh reported that the gas sensor based on the CuO film showed a respond sensitivity of 9 toward 100 ppm NH\textsubscript{3} at room temperature, but its signal seemed not fully recovered [41]. Hoa et al reported that a sensor based on nanocomposite of carbon nanotubes and SnO\textsubscript{2} showed a response time of 100 s and a recovery time of 3.2 min respectively, but the sensor only detected the concentration of NH\textsubscript{3} down to 10 ppm at room temperature [42]. Kshirsagar et al reported that the respond sensitivity of a ZnO films NH\textsubscript{3} sensor to 400 ppm of NH\textsubscript{3} gas is only 1.15 at room temperature with a response time of 240 s and a recovery time of 900 s, respectively [43]. The NH\textsubscript{3} sensor based on the network Co\textsubscript{3}O\textsubscript{4} nano-sheet array in this study showed excellent sensitivity, rapid response/recovery time. It could detect the concentration of NH\textsubscript{3} down to 0.2 ppm at room temperature.

Fig. 10 displays the real-time transient for the NH\textsubscript{3} sensing of the sensor based on Co\textsubscript{3}O\textsubscript{4} nano-sheets when it was exposed to 20 ppm NH\textsubscript{3} gas at room temperature. The response curve indicates that the sensor has a rapid response to the NH\textsubscript{3} gas. When the sensor was exposed to the purged air, the response of the sensor could be returned near to the baseline level. The response time and recovery time were determined to be 204 s and 835 s, respectively.
Once the Co$_3$O$_4$ nano-sheets are exposed to the air, oxygen adsorption plays an important role in electrical transport properties of the Co$_3$O$_4$ nano-sheets. At room temperature, the surface oxygen species O$_2^-$ is the most active one [24].

\[
O_2(g) \rightarrow O_2(ad)
\]

(10)

\[
O_2(ad) + e^- \rightarrow O_2^(-)
\]

(11)

Surface acceptor states are created by the oxygen adsorption and trapped electrons, and in turn both the accumulation of holes and the electrical carrier concentrations are enhanced. These changes result in an increase in the conductivity of the gas sensor and the downward bending of energy band, thus producing an accumulation layer of holes [13] on the surface and generating a barrier \(\Delta \phi \) as shown in Fig. 11b. It is different with the energy band in an Ar atmosphere (as shown in Fig. 11a).

When the NH$_3$ gas molecules contact with the oxygen species covered on the oxide surface, the reactions between the NH$_3$ and adsorbed oxygen are triggered based on the following chemical reactions [44]:

\[
\text{NH}_3(g) \rightarrow \text{NH}_3\text{ads}
\]

(12)

\[
4\text{NH}_3\text{ads} + 3O_2^- \rightarrow 2\text{N}_2 + 6\text{H}_2\text{O} + 3e^-
\]

As a consequence, when the sensor is exposed to NH$_3$ gas, the electrons trapped by the adsorptive states will be released to combine with the holes, which results in the accumulation layer of holes reduced. Therefore the potential barrier (\(\Delta \phi \)) is increased as shown in Fig. 11c, leading to an increase in sensor resistance. This is opposite to
the n-type semiconductor gas sensors [45,46].

The nano-sheet surface structures are advantageous to achieve quick and significant gas responses via effective and rapid diffusion of gas onto the sensor surfaces. It can supply multiple-transportation and diffusion paths for the target gas molecules, thus enhancing gas diffusion and mass transportation through the nano-sheet sensing material. Moreover, the surface of sheets can promote the formation of more chemisorbed oxygen species. Thus, the ammonia molecules can efficiently react with the oxygen species on the sensor surface, which can change the electrical resistance significantly, thus increasing the sensitivity to the target NH₃ gas.

Apart from the high sensitivity, another important property is the reproducibility of the Co₃O₄ nano-sheets sensor. By successively exposed to the NH₃ gas with a concentration of 20 ppm for 5 cycles at room temperature, the Co₃O₄ nano-sheets based sensor shows a good reproducibility as demonstrated in Fig. 12a. During the repeated NH₃ gas injection and dry air purging processes, the response-recovery curves of the sensor are almost identical. No apparent resistance attenuation is detected after the repeated testing. It shows a stable response curve with a maximum response of 2.30 when it is exposed to 20 ppm NH₃. The response time and recovery time are almost identical for the five repeated tests, and the fluctuation of response values are less than 3%, indicating the good reproducibility characteristics of the Co₃O₄ nano-sheets based gas sensor.

Long-term stability, other critical parameters for the sensor during the practical application, has been investigated as shown in Fig. 12b. For the stability test, the
response of the gas sensor to the \(\text{NH}_3 \) was recorded once in a day for 23 days. From Fig. 10b, it can be concluded that the responses of the gas sensor are constant and the deviation of sensor’s response to 100 ppm \(\text{NH}_3 \) was lower than 3% after repeated testing for 23 days, indicating that the sensor possesses an excellent long-term stability for \(\text{NH}_3 \) detection.

For practical application, the selectivity of the gas sensor is another critical parameter. A poor selectivity of a gas sensor would lead to a false alarm, thus severely limiting its industrial applications. Therefore, the sensing responses of the \(\text{Co}_3\text{O}_4 \) nano-sheets based sensor to several common reducing gases (including \(\text{NH}_3 \), \(\text{H}_2\text{S} \), \(\text{CO} \), \(\text{H}_2 \) and \(\text{C}_2\text{H}_5\text{OH} \)) were measured at the same gas concentration of 100 ppm at room temperature. The measurement results are shown in Fig. 13a. Clearly, the \(\text{Co}_3\text{O}_4 \) nano-sheets based sensor displays a remarkably higher response to \(\text{NH}_3 \) gas than those to other gases at the same test conditions. Fig. 13b shows the sensitivity data of the sensor exposed to the different target gases. As shown in Fig. 13b, the response sensitivity to \(\text{H}_2\text{S} \), \(\text{CO} \), \(\text{H}_2 \), \(\text{C}_2\text{H}_5\text{OH} \) are 2.0, 1.4, 1.2 and 1.5, respectively. These values are far less than the response sensitivity towards the \(\text{NH}_3 \) gas, which reaches 9.5 at the same concentration of 100 ppm. It means that the gas response to \(\text{NH}_3 \) was 4.65, 6.64, 7.75 and 6.20 times higher than that those to \(\text{H}_2\text{S} \), \(\text{CO} \), \(\text{H}_2 \), and \(\text{C}_2\text{H}_5\text{OH} \), respectively. It suggests that the sensor has an excellent selective toward the \(\text{NH}_3 \).

4. Conclusions

In summary, network nano-sheet arrays of \(\text{Co}_3\text{O}_4 \) on alumina ceramic tube were prepared using a facile hydrothermal process without any template or surfactant. The network pristine \(\text{Co}_3\text{O}_4 \) nano-sheet array showed a uniform nano-sheet array structure
with a thickness of 39.5 nm, which is consisted of nanoparticles with an average diameter of 20 nm. Gas sensor based on the network Co$_3$O$_4$ nano-sheets array showed excellent sensitivity, rapid response/recovery time and low detection limit (0.2 ppm) towards NH$_3$ gas at the room temperature. Therefore, the Co$_3$O$_4$ nano-sheet array investigated in this study can be efficiently used for high-performance NH$_3$ gas sensor.

Acknowledgments

This work was supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (U1330108). Funding support from the UoA and CAPEX from Northumbria University at Newcastle, and Royal academy of Engineering UK-Research Exchange with China and India is also acknowledged.
Reference

[34] X. Wang, X.L. Wu, Y.G. Guo, Y.T. Zhong, X.Q. Cao, Y. Ma, and J.N. Yao, Synthesis and

[35] Y. Wang, H. Xia, L. Lu, and J.Y. Lin, Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO$_3$)$_{0.5}$(OH)$_{0.11}$H$_2$O nanobelt array and its conversion into mesoporous and single-crystal Co$_3$O$_4$, ACS Nano 4 (2012) 1425-1432.

Biographies

Dr. ZhiJie Li is an associate professor in School of Physical Electronics at University of Electronic Science and Technology of China. He obtained his Ph.D degree of physical chemistry from Institute of Coal Chemistry, Chinese Academy of Sciences in 2005. His research interests include nano materials, gas sensors and surface acoustic wave (SAW) devices.

Zhijie Lin obtained his B.S. degree at North University of China in 2014. He is a graduate student in School of Physical Electronics at University of Electronic Science and Technology of China. His research interests include gas sensors and surface acoustic wave (SAW) devices.

Ningning Wang obtained her B.S. degree at Shijiazhuang University in 2014. She is a graduate student in School of Physical Electronics at University of Electronic Science and Technology of China. Her research interests include gas sensors and surface acoustic wave (SAW) devices.

Junqiang Wang obtained his B.S. degree at Yancheng Teachers University in 2015. He is a graduate student in School of Physical Electronics at University of Electronic Science and Technology of China. His research interests include applications of nanomaterials and functional thin films for sensors.

Dr. Wei Liu received his Ph.D degree of condensed matter physics in 2012 at Beihang University and he is currently an associated professor at School of Physical Electronics, University of Electronic Science and Technology of China. His one of the prime research interest is the mirostructure charaterization and analysis of nano-materials.

Dr. Kai Sun received his Ph.D degree of materials science and engineering in 1998 at Dalian University of Technology and he is currently a senior research scientist at Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, U.S.A.. His one of the prime research interest is the scanning transmission electron microscopy (STEM) mirostructure charaterization and quansi-crystal investigations.

Dr. YongQing Fu (Richard) is a Reader in Faculty of Engineering and Environment, University of Northumbria at Newcastle, UK. He was a senior lecturer/Reader in Thin Film Centre and Physics Department in University of West of Scotland, UK, and a lecturer in Heriot-Watt University, UK. He obtained his Ph.D degree from Nanyang Technological University, Singapore in 1999, and then worked as a Research Fellow in Singapore-Massachusetts Institute of Technology Alliance, and a Research Associate in University of Cambridge. He has extensive experience in advanced thin film materials, biomedical microdevices, lab-on-chip, micromechanics, microelectromechanical systems (MEMS), sensors and microfluidics, shape memory/piezoelectric thin films and nanotechnology.
Dr. Zhiguo Wang is a professor at the University of Electronic Science and Technology of China (UESTC). He graduated from Sichuan University in China and received M.S. in condensed matter physics. He got his Ph.D. in materials physics and chemistry from UESTC. His research interests include computer modeling of the electronic, thermal, mechanical, defect and doping properties of semiconductor, electrode materials, and radiation detection materials with density functional theory (DFT) simulation, molecular dynamics (MD), DFTMD, and Monte Carlo simulation.
Figure Captions

Fig. 1 (a) Schematic gas sensor based on Co$_3$O$_4$ nano-sheet array. (b) The measurement electric circuit for the gas sensor.

Fig. 2 XRD spectra of products (a) before calcination and (b) after calcination at 350 °C for 2 hours in air.

Fig. 3 (a) SEM image of samples with magnification of 10000 times (inset indicates the panoramic image of the Co$_3$O$_4$ on the surface of alumina tube), (b) SEM images with magnification of 40000 times,(c) TEM image of Co$_3$O$_4$ nano-sheet (d) HRTEM image showing the crystalline framework.

Fig. 4 Pore size of distribution curves of the nano-sheet Co$_3$O$_4$ samples.

Fig. 5 XPS spectra of (a) Co 2p and (b) O 1s for Co$_3$O$_4$ nano-sheets.

Fig. 6 (a) UV–vis absorption spectra of Co$_3$O$_4$ nano-sheets (b) Optical band gap energy of Co$_3$O$_4$ nano-sheets obtained by extrapolation to $\alpha = 0$.

Fig. 7 The I-V characteristics between the two neighboring electrodes bridged by the Co$_3$O$_4$ nano-sheets at room temperatures.

Fig. 8 (a) Dynamic response-recovery curve and (b) Response sensitivity of the Co$_3$O$_4$ nano-sheets based sensor to NH$_3$ gas at the room temperature.

Fig. 9 Response time and recovery time of the Co$_3$O$_4$ nano-sheets based sensor to NH$_3$ gas at the room temperature.

Fig. 10 Real-time gas sensing transients of the sensor based on Co$_3$O$_4$ nano-sheets to 20 ppm NH$_3$ gas at room temperature.

Fig. 11 Band diagrams and schematic images of the surface reactions at different
surroundings: (a) in Ar atmosphere, (b) exposed in air, (c) in the presence of NH$_3$ gas.

Fig. 12 (a) Reproducibility to 20 ppm NH$_3$ gas and (b) Long-term stability to 100 ppm NH$_3$ gas of the gas sensor based on Co$_3$O$_4$ nano-sheets at room temperature.

Fig. 13 (a) Response and (b) Sensitivity histogram of Co$_3$O$_4$ nano-sheets gas sensor towards different gases at the same concentration of 100 ppm.

Fig. 1 (a) Schematic gas sensor based on Co$_3$O$_4$ nano-sheet array. (b) The measurement electric circuit for the gas sensor.

Fig. 2 XRD spectra of products (a) before calcination and (b) after calcination at 350 °C for 2 hours in air
Fig. 3 (a) SEM image of samples with magnification of 10000 times (inset indicates the panoramic image of the Co$_3$O$_4$ on the surface of alumina tube), (b) SEM images with magnification of 40000 times, (c) TEM image of Co$_3$O$_4$ nano-sheet (d) HRTEM image showing the crystalline framework.

Fig. 4 Pore size of distribution curves of the nano-sheet Co$_3$O$_4$ samples using the Barrett-Joyner-Halenda (BJH) method.
Fig. 5 XPS spectra of (a) Co 2p and (b) O 1s for Co$_3$O$_4$ nano-sheets

Fig. 6 (a) UV–vis absorption spectra of Co$_3$O$_4$ nano-sheets (b) Optical band gap energy of Co$_3$O$_4$ nano-sheets obtained by extrapolation to $\alpha = 0$.
Fig. 7 The I-V characteristics between the two neighboring electrodes bridged by the Co$_3$O$_4$ nano-sheets at room temperatures.

![I-V Characteristics Graph]

Fig. 8 (a) Dynamic response-recovery curve and (b) Response sensitivity of the Co$_3$O$_4$ nano-sheets based sensor to NH$_3$ gas at the room temperature.

![Response Curve Graph]

Fig. 9 Response time and recovery time of the Co$_3$O$_4$ nano-sheets based sensor to NH$_3$ gas at the room temperature.

![Response Time Graph]
Fig. 10 Real-time gas sensing transients of the sensor based on Co$_3$O$_4$ nano-sheets to 20 ppm NH$_3$ gas at room temperature.

Fig. 11 Band diagrams and schematic images of the surface reactions at different surroundings: (a) in Ar atmosphere, (b) exposed in air, (c) in the presence of NH$_3$ gas.

Fig. 12 (a) Reproducibility to 20 ppm NH$_3$ gas and (b) Long-term stability to 100
ppm NH$_3$ gas of the gas sensor based on Co$_3$O$_4$ nano-sheets at room temperature.

Fig. 13 (a) Response and (b) Sensitivity histogram of Co$_3$O$_4$ nano-sheets gas sensor towards different gases at the same concentration of 100 ppm.