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Influence of Macro-Topography on Mechanical
Performance of 1.0 wt% Nanoclay/Multi-Layer
Graphene-Epoxy Nanocomposites
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Northumbria University, Faculty of Engineering and Environment, Department of Mechanical and Construction Engineering, Newcastle upon
Tyne NE1 8ST, United Kingdom.

E-mail: fawad.inam @northumbria.ac.uk (Tel.: +44 1912273741)

Abstract: Influence of topography on the variation in mechanical performance oivt®0Multi-Layer
Graphene (MLG)/nanoclay-epoxy samples has been investigated. Thererdiffystems were produced:
1.0 wt% MLG-EP, 1.0 wt% nanoclay-EP, and 0.5 wt% MLG-0.5 wt% nanoclayFBe.influence of
synergistic effect on mechanical performance in case of dhytamocomposites is also studied. Various
topography parameters studied include maximum roughness hejgbt BR.y), root mean square value
(Ry), roughness average fRand surface waviness @ The R of as-cast 1.0 wt% MLG, nanoclay, and
0.5 wt% MLG-0.5 wt% nanoclay-EP nanocomposites were 41.43 um, 43.54 pum, and 40.28 |
respectively. The 1200P abrasive paper and the velvet cloth decreasedvtiiee of samples compared
with as-cast samples. In contrary, the 60P and 320P abrasive papers indreaRedatues. Due to the
removal of material from the samples by erosion, the dimensions ofesangdreased. The weight loss
due to erosion was commensurate with the coarseness of abrasive papersettondedrthat MLG is
more influential in enhancing the mechanical performance of epoxy oemmmsites than nanoclay.
Additionally, it was observed that mechanical performance of hytaitbcomposites did not show a
marked difference suggesting that synergistic effects are not strong enddg®iand nanoclay.

Keywords. Topography; mechanical performance; fracture toughness; 1.0 wt% MLG/agrepmbxy
nanocomposites; dynamic mechanical performance.

1. Introduction:

The tribological prevention of thermosetting polymers is getting prolifegaattention to use these
polymers in mechanical engineering and construction related fields].[To comprehend esoteric
phenomena of fracture mechanics and tribology, it is of utmost significanoedstigate the correlation
between bulk properties and the topographical features of the thermggaitymers [6]. To enhance
resistance against wear, surface coatings are applied on the monpblgioers. It is due to the
preferential growth of crystals that close the fissures and offers theectwfix the topographical features
apposite to the service conditions-ID]. Various coating methods include electrochemical/galvanic
deposition and thermal and plasma spraying that can produce heavy coatings of high load Elijppor

Although marked adhesive strength between substrate and the coating migtaimedah as-coated
samples, nevertheless, delamination is a possible occurrence when thessamggrgo any external
forces. It is due to the fact that the coatings have very high stiffnesgessalnd very low plastic
deformability to track the change in the shape and dimensions of theaselb3inis limitation may be
aggravated in case of elevated temperatures and/or thermal stresseg loéchadarge difference in the
coefficients of thermal expansion (CTE) of substrate and the coatingngtance, epoxy may present ten
times more expansion when subjected to thermal cycling than most thiinhldm materials investigated
[11]. On the other hand, coatings of polymers on the polymer substrate ragimlar CTE and stiffness
values; nevertheless, these coatings crash in applications where weaosiod might take place. Hence,
even if coated, there is high probability that the polymers will underggar in cases where sliding contact
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is inescapable. Therefore, it gets important to enhance the performatimerbdnolithic polymers, such as
epoxy, for tribological applications. The tribological properties of ep@tylge enhanced with the addition
of (nano-) fillers like metallic oxides [£2A4], clays [1517], carbon nanotubes (CNTs) )], and other
carbonaceous materials [213].

The mechanical performance of polymers can be significantly improved tiae incorporation of
nano-fillers [24-27]. When multiple nano-fillers are dispersed in the polymer matyixergistic effects
come into play [28]. Due to synergistic effects, the dispersion statghoid nano-fillers becomes better
than when single nano-filler is used. It helps improve the physical aobanical performances of hybrid
nanocomposites. Sumfleth et al. produced MWNT-epoxy nanocomposites and doped etime veatist
titania [28]. They reported that the dispersion state of nano-fillersowedrin multiphase nanocomposites.
Similarly, Ma et al. produced CNT-acrylonitrile butadiene styré&x&S) nanocomposites and doped them
with nanoclay [29]. They also observed a better dispersion state of the nars-filwas further reported
that nanoclay is also effective in improving the dispersion state of @NTCNT-polyamide
nanocomposites. It was concluded that titania can enhance the dispersionostatbam that by block
copolymers. A large volume fraction of CNT can be uniformly dispergedsing titania. The extent of
improvement in the dispersion state of a nano-filler by another ndeoifl dependent on the extent of
synergistic effects caused by hybrid nano-fillers.

The mechanical interlocking can improve the interfacial atgons in the nanocomposites [30]. In
addition, the capillary wetting of the fillers by the polymera ba enhanced by making the fillers more
hairy, rough, and hierarchical [31]. Due to the polymer wetting and amézdl interlocking of fillers with
rough surfaces, the fiber-matrix interphase is strengthened dyréacfmrcement [32]. As the topography
is influential at the interphase level, similarly, the topographybwk nanocomposites is of equal
importance. At one side, it is important in tribological applicatioasttee co-efficient of friction is
significantly dependent upon the surface condition-8&. On the other side, the mechanical performance
of sole nanocomposites is also dependent on topography. When the surfaces contanthetcioéches
generate triaxial state of stress under which the mechanicalrparioe severely degrades [37]. Therefore,
detailed observation of the influence of topography on mechanical parioem of (hybrid)
nanocompositess iessential. To the authors’ best knowledge, no article is yet published relating the
topography, synergistic effects, dispersion state of fillers and mechanicahpence of nanocomposites.

In this work, 1.0 wt% MLG/nanoclay-EP samples were processed with abizespers to modify the
topography. Three compositions were produced: 1.0 wt% MLG-EP, 1.0 wt% narife]agnd 0.5 wt%
MLG-0.5 wt% nanoclay-EP. The influence of synergistic effect omlaeical performance in case of
hybrid nanocomposites is also studied. The topography was measured using an Alicohenimptisaope.
The dynamic mechanical performance, mechanical performance and/dhation with topography of
samples were investigated. The results indicated that the topography s$igsificant impact on the
aforementioned properties of 1.0 wt% MLG/nanoclay-EP samples. In additiovas observed that
mechanical performance of hybrid nanocomposites did not show a markeendiffesuggesting that
synergistic effects are not strong enough in MLG and nanoclay.

2. Experimental work:

2.1. Materials

MLG (99.2% purity, 80 rig specific surface area, 4.5 um average lateral size, 12 nmgavera
thickness) used was purchased from Graphene Supermarket, USA. Hallmysdelay (30-70 nm
diameter, 1-4 um length, 2.53 gftdensity, 64 Mg surface area) was used as second filler and purchase
from Sigma-Aldrich. The epoxy and hardeners used were based on bispghepathlorohydrin and
dimethylbenzylamine isophorone diamine, respectively. The resin was putéhasePolyfibre, UK. The
densitities of liquid epoxy and hardener were ~1.3 gémd ~1.1 g/crf) respectively.
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2.2. Production of samples

The fillers were shaken in the resin for 3 h using tip sonicator (Modell™@; Vibra-cell, USA, 750
W, 250 kHz). The epoxy and hardener were degassed in separateslfeakeh. The mixing ratio of
hardener: epoxy was 1:2 by weight. Following thorough 10 min hand mbpasm) was again degassed for
15 min. Silicone molds were used to cast the samples. Samples wally icutied at room temperature (6
h), and to ensure proper crosslinking, post-curing was carried out at 15fvéfight). The abrasive
papers were used to treat bottom and top surfaces of samples on grinding wheels at 150 rpm.

2.3. Characterization

ASTM Standard D792 was used to measure densification. The densities ohaatener, and epoxy
were 0.9975, 1.1, and 1.3 gfénrespectively. Vickers microhardness was measured using Buehle
Micromet Il hardness tester (200 g, 10 s). Universal Testing Machs&qh Model 3382) was used to
conduct tensile test (ASTM D638, 4 mm thickness, Type-V geometry, 0.5 minimiee-point bending
test (ASTM D790, 3 x 12.7 x 48 mm, 1.0 mm/min), and mode-I fracture toughnegs3&si D5045, 36
x 6 x 3 mm, crack length 3 mm, 0.5 mm/min). ASTM standard D 61X usad to measure Charpy
impact toughness (specimen dimensions 64 x 12.7 x 3.2 mm with V-notch of 45°, 2iBptimand 0.25
mm tip radius). An Infinite focus Alicona G4 optical microscope was eypguldo measure topography.
The working principle of the microscope is focus-follow method which ron-contact method. DMA
(PerkinElmer, Model 8000, specimen dimensions 30 x 8 x 2.5 mm, temperageeofes0 °C - 180 °C,
rate of 5 °C/min, 1 Hz frequency with 10 N force) was used to medgunemic mechanical performance.
The values reported are an average of five specimens and error bars indicate staratéod.devi

3. Resaultsand discussion:

The topography of 1.0 wt% MLG-EP samples is highlighted in Figure 1. Thehrasg values were
lowered by processing with 1200P abrasive paper and velvet cloth whilecedhanth 320P and 60P.
Figure 1 (ai) is the optical micrograph of 1.0 wt% MLG-EP (astjcd he surface waviness (Figure laii) of
the nanocomposites fluctuates between £15 pm while the roughness (Figyrutaiates between +40
pum. The roughness in as-cast samples is caused by the mold surface. From the roughness chart,
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Figure 1. Topography profilesof 1.0wt% ML G-EP samples: (a) As-cast; (b) Velvet cloth; (c) 1200P; (d) 320P; and (E)
60P abrasive papers. In all cases, (i) optical image, (ii) surface waviness, (iii) surface roughness (selected line), (iv)
topographical dimensionsvs. percentage, and (v) surface profile of selected region of nanocomposites.
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pointed notches of depth of around 40 pum can be observed on the as-cast 1.0 wt®BPMLG
nanocomposites. The Gaussian distribution (Figure laiv) indicates a wideutiistriof surface roughness
with major size fraction of 2%. The roughness profile (Figure 1av) atelécthat the roughness mainly lies
in the range of 40 um with a large notch.

Figure 1 (bi) is the micrograph of 1.0 wt% MLG-EP. The waviness (Eidini) fluctuates between
+13 um while the roughness (Figure 1biii) fluctuates between +35 pymGahssian distribution (Figure
1biv) indicates a nearly uniform distribution of roughness size with majer fsaction of 2%. A big
variation in the roughness can be caused by the diamond paste which was tisedrelvet cloth. The
roughness profile (Figure 1bv) indicates that the roughness was lowerntlescast nanocomposites
(Figure lav).

Figure 1 (ci) is the micrograph of 1.0 wt% MLG-EP nanocomposites processhd12@0P. The
surface waviness (Figure 1cii) fluctuates in the range of 10 um wielsurface roughness (Figure 1ciii)
fluctuates in the range of £10 um. The roughness trend varies moddyr@n in as-cast samples and
those processed with velvet cloth. However, the large notches have diminishe@at$san distribution
(Figure 1civ) indicates that about uniform surface roughness was achievednajior size fraction of
2.2%. The roughness profile (Figure 1cv) indicates that there are no large surfawsnot

Figure 1 (di) is the optical micrograph of 1.0 wt% MLG-EP processed with 320B€.stratches of
different orientation and size were produced. The waviness (Figurellididtes in the range of 20 um
while the roughness (Figure 1diii) fluctuates in the range of £50 um. Hosdsian distribution (Figure
1div) indicates that the major roughness fraction is 1.4%. The roughneds (ffafure 1dv) indicates that
large notches emerge on the surface by processing with 320P.

Figure 1 (ei) is optical micrograph of 1.0 wt% MLG-EP processed with &iarse topographical
features were achieved with high surface roughness. The waviness (F8gyflictuates between £30 pm
while the surface roughness (Figure leiii) fluctuates in the rangi20&f um. The deep sharp notches can
be seen which significantly affect the mechanical performance of nanocoego3ihe Gaussian
distribution (Figure 1leiv) indicates that major fraction of surface rougthme 1.2%. The surface profile
(Figure lev) shows the coarse topographical features with rapidly gamyirghness. Similar results were
observed for 1.0 wt% nanoclay- EP (Figure 2) and 0.5 wt% MLG-0.5 wt% nanoclagfEples (Figure
3).

The variation in mechanical performance with topography is showigurd-4. The densification of
samples (Figure 4a) was around 99.5% and weight loss by treating alpasérs (Figure 4b) was highest
in case of 60P abrasive paper (16%). The microhardness (Figure 4cy@ucneaase of nanocomposites
processed with velvet cloth and 1200P paper and decreased when sample®eessed with 320P and
60P abrasive papers. The maximum microhardness was recorded i @dsetdo MLG- 0.5 wt% caly-
EP samples. The Young’s modulus (Figure 4d) increased in all cases when nanocomposites were process
with 1200P and velvet cloth. However, the stiffness decreased when the nanoasnpesit processed
with 320P and 60P abrasive papers. The values indicate that stiffness examaheed by processing the
nanocomposites with velvet cloth and 1200P and degraded by processing the nantesmwibs820P
and 60P. The maximum increase in Young’s modulus was observed in case of 0.5 wt% MLG-0.5 wt%
nanoclay-EP nanocomposites and in case of nanocomposites processed with 1200P abrasive paper.
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Figure 2. Topography profiles of 1.0 wt% nanoclay-EP samples: (a) As-cast; (b) Velvet cloth; (c) 1200P; (d) 320P; and
(E) 60P abrasive papers. In all cases, (i) optical image, (ii) surface waviness, (iii) surface roughness (selected line), (iv)
topographical dimensionsvs. per centage, and (v) surface profile of selected region of nanocomposites.
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Figure 3. Topography profilesof 0.5wt% MLG-0.5wt% nanoclay-EP samples. (a) As-cast; (b) Velvet cloth; (c) 1200P;
(d) 320P; and (E) 60P abrasive papers. In all cases, (i) optical image, (ii) surface waviness, (iii) surface roughness
(selected line), (iv) topographical dimensionsvs. percentage, and (v) surface profile of selected region of nanocomposites.
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Figure 4. (a) Densification; (b) weight loss; (c) microhardness (d- ) Mechanical performance of 1.0 wt% MLG/nanoclay-
EP nanocomposites: (d) Young’s modulus; (¢) UTS; (f) tensile strain; (g) flexural modulus; (h) flexural strength; (i)
flexural strain; (j) Kyc; (k) Gic; and () Charpy impact toughness.

The UTS (Figure 4e) also increased in all cases when nanocompaositeprnacessed with 1200P
abrasive paper and velvet cloth. However, the stiffness decreased when the nanocongresitexessed
with 60P and 320P abrasive papers. The values show that UTS can lwednfry treating the
nanocomposites with 1200P abrasive paper and velvet cloth and decreasadity the nanocomposites
with 60P and 320P abrasive papers. The maximum increase in UTS was obsecasd df 0.5 wt%
MLG-0.5 wt% nanoclay-EP samples processed with 1200P.

The variation in tensile strain with topography is shown in Figure. & (f¢ tensile strain increased
with high surface roughness values. It can be because of the reducti@mgihstind stiffness values. The
treatment with velvet cloth did not show any visible change in tesséén. However, the tensile strain
slightly increased when the nanocomposites were processed with 1200P abrpsiveSpailar results
were shown by nanocomposites when tested for flexural properties (Fig)rerig-values indicate that,
from the three compositions made with five surface conditions for eagbosition, the best combination
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of mechanical performance can be achieved in case of 0.5 wt% OHGwt% nanoclay-EP
nanocomposites processed with 1200P.

The variation in fracture toughness @K with topography is shown in Figure 4 (j). TheK
remained impervious to any variation in topography. However, the staddaiation is not the same. It
can be explained on the basis of tip of notch. A razor blade was uskdrfzen the tip of notch that may
not create tips of equal curvature and length. The other factor ahstiieution, size, and volume fraction
of porosity influencing the mechanical performance of nanocomposites. Thaiovann G with
topography is shown in Figure 4 (k). TheGincreased with increasing surface roughness values
However, as Kc remained impervious to topography, therefore, the variation¢gsfuld not directly be
a result of variation in topographki,  was divided by stiffness to @EWlhc. As stiffness decreased
with increasing surface roughness values, therefore, a high valugcoksgailted by increasing surface
roughness. The variation in Charpy impact toughness with topography is shbigana 4 (). We believe
that it is the stain rate which is different ingé@nd Charpy tests. The results indicate that surface roughnes
will be more influential in case of high strain rate (Charpy test) than at laim sate (K¢ test).

The variation in dynamic mechanical performance with topograptshasvn in Figure 5. The
maximum storage modulus values were shown by 0.5 wt% MLG-0.5 wt% Blaaples while the least
were shown by 1.0 wt% clay-EP samples. The dynamic values cormlblogatrends recorded in case of
mechanical tests. It was further recorded that dynamic meahgmerformance is not sensitive to any
variation in topography.

The surface roughness of as-cast nanocomposites was +43 um (Figurel@agl):face roughness
of nanocomposites processed with velvet cloth and 1200P became +33 um and,HE3pettively.
Therefore, the increase in UTS and modulus can be related to tleaskeon surface roughness values.
Hence, stiffness and strength of nanocomposites can be improved by treatmgvith 1200P abrasive
paper and velvet cloth. Furthermore, the surface roughness values of nano@snposiessed with 320P
and 60P abrasive papers, became 52 um and 103 um, respectively. Ehénefoecrease in strength
and stiffness of nanocomposites by treating them with 60P and 320P alpags@recan be related to the
increase in surface roughness. From the surface roughness values, asdidetadhanical performance,
it can be stated that the roughness up to about 20 pum is benign foamoat performance of
nanocomposites. Similarly, mechanical performance starts degradargsurface roughness exceeds +20
pm.
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(middle column), and 0.5 wt% ML G-0.5wt% nanoclay-EP (right column): (a,b,c) storage modulus, (d,e,f) loss modulus,
(g,h,i) Tan (loss factor), and (j,k, ) Ty, Tan , loss modulus, and storage modulus values corresponding to T
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Figure 6. Mold photographs: (a) Tensile, (b) K¢ fracture toughness; (c) three-point bending; and (d) Charpy impact
toughness. () Nanocompositestreated with abrasive papers, (f) as cast nanocomposite sample under bend load, (g)
nanocomposite sample processed with abrasive paper. (h) High resistance offered to indenter by flat surface. (i) Rough
and porous surface offerslessresistance to indenter. (j) Debrisformed during wear. (k) The coalesced debrisresult in
crater.

The K;c values of nhanocomposites remained impervious to any variation in topographby. be
explained on the basis of loading axis and orientation of surface notchesiddre(bottom and top)
surfaces of the nanocomposites were only processed with the abrasive papénsiriEnesides were not
processed. Therefore, when bending loading was applied, the surfacesoansie topography were
oriented along the loading axis (Figure 6e-g). The size of the sample (8otem) was much bigger than
the surface notches generated by the abrasive papers (x100 um). Thénefagentation of surface
notches with respect to loading axis and the relative size of surfadeesavith respect to sample notch
could possibly be the reasons that Khowed no variation with topography.

The increase in hardness can also be related to the variation iresudigbness. When surfaces
are coarse, the indenter may sit at the edge of the ridge as #hdvigure 6 (h, i). In that case, less
resistance will be observed by the material and hence low hardnése wdcorded. This is a possible
reason that low hardness was recorded in samples processed with 60P and 320® @dpars. On the
other hand, when surfaces are smooth, strong resistance will be offeré Inyaterial against the
penetration of indenter. In that case, high hardness will be observed. Thisbeaille possible reason for
high hardness observed in nanocomposites processed with 1200P abrasive paper and velvet cloth.

The UTS of as-cast 1.0 wt% MLG-EP samples is 59 MPa and of 1.0 wt% ngitlelaamples is
47 MPa. The microhardness and flexural properties showed similar trends. Téeldid® is more
influential than nanoclay in enhancing the mechanical performartbe oanocomposites. The UTS of as-
cast 1.0 wt% MLG-1.0 wt% nanoclay-EP samples is 63 MPa and is near to 1 WwG6HE® samples.
Therefore, synergistic effects are not prominent enough at 1.0 wigieltba marked enhancement in
mechanical performance of the nanocomposites.
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The treatment of 1.0 wt% MLG/nanoclay-EP samples with abrasive paypehsced topographical
features with disparate orientation of surface notches, their shage&zantt can arise from the variation in
surface roughness and size distribution of particles of the papers emphoyeder momentous related
phenomenon can be the formation of crater as shown in Figure 6 (j,k) [38]. Whesutfaces are rubbed
against each other, the extent of erosion depends on the roughness of the nfateg.dtven the best
polished surfaces show surface roughness at microscopic level [39]. When suréacasoath, the
coefficient of friction is low. Hence, less erosion takes place. On the contrary, wherféltesare coarse,
the coefficient of friction is high. Hence, large erosion takes placaddlition to large erosion, there is
possibility that the debris formed may not find a way to escape. frcéisa, they get trapped in between
the mating surfaces. These debris may coalesce due to mechanitadkimg and cold welding. If surface
energy is taken into account, then reduction in free energy could kasanr for coalescence. The
coalesced debris are pressed against the mating surface and resulform#i®sn of deep crater. This
crater may significantly degrade the mechanical performaricenating surfaces by causing stress
concentration. Hence, roughness above certain threshold may significatélyordéee mechanical
performance of nanocomposites. In case of polymer nanocomposites, the afegresslinking may be
affected by the rise in temperature during friction. An in@dategree of crosslinking can improve certain
mechanical performance such as hardness and stiffness [11]. However, tilme fi@eghness showed an
inverse relationship with the degree of crosslinking [40].

As air bubbles have lower density than that of epoxy, therefore, ¢helytb move out of the epoxy
during curing. The velocity of air bubbles is directly proportional tosthe of the air bubbles. Some of the
air bubbles may escape the nanocomposites because of their higher \@&ldgisoximity to the surface.
However, those air bubbles that would not be able to escape will segregaitthe surface such that the
bigger bubbles will be closer to the surface than the smaller bubblesiZEhef bigger bubbles may be
large enough to cause a significant amount of stress concentration that carcéusleedeterioration in the
mechanical performance. Therefore, removing the material frersarface will remove the areas with
majority of defects. The presence of air bubbles next to the suidackecwitnessed in the literature [41].
Warrier et al. produced carbon nanotubes filled epoxy nanocomposites usingnvbhagging. They
reported that air bubbles were concentrated on the edges of producegs(4fl]. They further reported
that CNT reinforced samples had more air bubbles than those without4ZNTSpme of the authors have
also shown that air bubbles are retained in nanocomposites produced using salstilog technique
[25,42]. Once the surface material is removed, then not only the surfabesocain be eradicated, but also
the regions with air bubbles. A similar technique is used in forgedastdretals and alloys. For example,
forged steel contains scale at its surface arising from theaeadtiron with oxygen at high temperature
which produces iron oxide. The forged steel parts are machined to removeeddeserials as well as to
get surface of required finish. Therefore, removing surface materigl meyp improve mechanical
performance of polymer nanocomposites.

4. Conclusions:

The topography can significantly influence the mechanical performangmgry @anocomposites. The
tensile properties start degrading when surface notches exceed +20owever flexural properties are
less sensitive to topography than tensile properties and start degatdmgs0 um. The UTS of 1.0 wit%
MLG-EP samples (as-cast) is 59 MPa and of 1.0 wt% nanoclay-EP samples is 47 iRPaicfohardness
and flexural properties showed similar trends. Therefore, MLG ise nmftuential than nanoclay in
enhancing the mechanical performance of epoxy nanocomposites. The UTS dfd BRIlvBG-1.0 wt%
nanoclay-EP samples (as-cast) is 63 MPa and is near to 1 wt% MLG-EP sahiy@exfore, synergistic
effects are too weak at 1.0 wt% to yield a marked enhancement in meghaarformance of the
nanocomposites. The topography did not vary the dynamic mechanical performance.
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